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Abstract001

Table retrieval, essential for accessing infor-002
mation through tabular data, is less explored003
compared to text retrieval. The row/column004
structure and distinct fields of tables (including005
titles, headers, and cells) present unique chal-006
lenges. For example, different table fields have007
varying matching preferences: cells may fa-008
vor finer-grained (word/phrase level) matching009
over broader (sentence/passage level) match-010
ing due to their fragmented and detailed nature,011
unlike titles. This necessitates a table-specific012
retriever to accommodate the various match-013
ing needs of each table field. Therefore, we014
introduce a Table-tailored HYbrid Matching015
rEtriever (THYME), which approaches ta-016
ble retrieval from a field-aware hybrid match-017
ing perspective. Empirical results on two ta-018
ble retrieval benchmarks, NQ-TABLES and019
OTT-QA, show that THYME significantly out-020
performs state-of-the-art baselines. Compre-021
hensive analyses have confirmed the differing022
matching preferences across table fields and023
validated the efficacy of THYME.024

1 Introduction025

Table retrieval is an important way for seeking in-026

formation stored in tables, organized in rows and027

columns (Cafarella et al., 2008; Jauhar et al., 2016;028

Zhang and Balog, 2020). Its significance is evi-029

dent in real-world applications: for instance, in the030

Natural Questions dataset constructed from Google031

queries targeting Wikipedia pages, table-based in-032

formation needs account for 25.6% of all ques-033

tions (Kwiatkowski et al., 2019). Retrieved tables034

serve as the input of table-related tasks such as035

question answering (Cafarella et al., 2008; Jauhar036

et al., 2016) and fact verification (Chen et al.,037

2020b). Despite extensive studies on unstructured038

text retrieval, structured table retrieval remains039

under-explored. We aim to enhance table retrieval040

performance to better serve table-related informa-041

tion needs.042

Table retrieval presents unique challenges com- 043

pared to text retrieval: (1) Text data are usually 044

unstructured, while tables have a structured format 045

with cells, rows, columns, and headers, suggest- 046

ing a table-specific encoding approach. (2) Unlike 047

documents whose sentence order matters, tables’ 048

data entry order does not affect their information. 049

(3) Each row in a table is equally important, mak- 050

ing it challenging to compress table information 051

into dense representations. (4) Table cells contain 052

detailed information, often in words or phrases, 053

making local finer-grained matching more critical 054

than in document retrieval. Figure 1 shows an ex- 055

ample to illustrate the importance of local lexical 056

matching in table retrieval. 057

Query:  When does Avengers: Infinity War come out? 
Relevant:

Irrelevant:

Film U.S. release date Director(s) Producer(s)
Black February 16, 2018 Ryan Coogler Kevin Feige

...

Avengers: Infinity War  April 27, 2018 Anthony and Joe Russo Kevin Feige

Marvel Cinematic Universe: Phase Three

The Avengers Film Series (until 2016) 

Name Release dates Director(s) Box office Producer(s)

The Avengers April 11, 2012 (El Capitan Theatre)
May 4, 2012 (United States)

Joss 
Whedon $1.521 billion Kevin Feige

Avengers: Age of
Ultron

April 13, 2015 (Dolby Theatre)
May 1, 2015 (United States)

Joss 
Whedon $1.405 billion Kevin Feige

Figure 1: A case of table retrieval. It shows fine-grained
matching in cells is important.

Current table retrieval methods have investigated 058

various strategies, including: (1) condensing table 059

information by selecting cells (Herzig et al., 2020) 060

and row/column aggregation (Trabelsi et al., 2022) 061

and (2) specialized pre-training objectives for table 062

retrieval (Herzig et al., 2021; Chen et al., 2023). 063

However, these methods often compress tables into 064

dense representations, which may not capture the 065

semantics of parallel data rows and fine-grained 066

exact matching effectively. 067

We approach table retrieval from a field-aware 068

hybrid matching perspective, integrating both 069

sparse and dense representations to adapt effec- 070

1



tively to various table fields. Sparse representations071

(Formal et al., 2021) preserve detailed token-level072

information, complementing the global semantics073

carried in dense representations, which are particu-074

larly well-suited for table cells. In contrast, dense075

representations excel in handling unstructured text076

fields, such as titles, aligning with proven effec-077

tiveness in passage retrieval (Guo et al., 2025). A078

key challenging issue is how to adaptively learn079

the optimal representation and matching pattern for080

each table field.081

To this end, we introduce THYME, a Table-082

tailored HYbrid Matching rEtriever for field-aware083

hybrid matching. Using a shared encoder, we con-084

struct dense and sparse representations for queries085

and tables. The [CLS] embedding implicitly cap-086

tures field importance/preference on coarse-grain087

semantics through extensive Transformer interac-088

tions. In contrast, sparse representations hold089

greater potential for field-specific considerations090

due to their explicit segmentation of content to-091

kens by field. Therefore, we focus on learning092

field-aware sparse representations, which can re-093

flect field importance on fine-grained semantics.094

Based on a shared encoder, sparse and dense repre-095

sentations can be learned coordinately and finalize096

the field suitability for coarse and fine grains of097

semantics during relevance matching. Specifically,098

for sparse representations of table bodies (head-099

ers and cells), we employ mean pooling to retain100

similar types of information within columns and101

max pooling to extract the most important seman-102

tics across columns. Then, we learn the field (title,103

header, cell) importance of each token/dimension104

in the sparse representation, and aggregate them dy-105

namically for matching. The final relevance score106

is computed as the sum of dense and sparse match-107

ing scores. During training, we use a score dropout108

strategy to enable adaptive learning across both lex-109

ical (sparse) and semantic (dense) matching path-110

ways.111

We evaluate THYME on table retrieval bench-112

marks, NQ-TABLES (Herzig et al., 2021) and OTT-113

QA (Chen et al., 2020a), showing that it outper-114

forms state-of-the-art baselines, including sparse,115

dense, and hybrid retrievers. Analyses confirm that116

table titles prefer dense matching, while headers117

and cells prefer sparse matching, and THYME ef-118

fectively captures these preferences. Within the119

RAG framework, THYME enhances the results of120

various LLMs by providing more relevant tables.121

Our studies indicate a promising way of elevating122

table retrieval, which can shed light on future re- 123

search on this topic. 124

2 Related Work 125

2.1 Text Retrieval 126

Text retrievers can be classified into three types 127

based on representations used: sparse, dense, and 128

hybrid retrieval which incorporates them. 129

Sparse retrievers refer to models that use sparse 130

representations such as TF-IDF (Sparck Jones, 131

1972) and BM25 (Robertson and Walker, 1994). 132

Building on pre-trained language models (PLMs), 133

SparTerm (Bai et al., 2020) and SPLADE (Formal 134

et al., 2021) aim to generate term distributions over 135

vocabulary. Dense retrievers typically encode in- 136

puts to dense vectors using PLMs (Devlin et al., 137

2019; Liu et al., 2019). Dense and Sparse retrieval 138

have complementary advantages. Dense retrieval 139

generally outperforms sparse retrieval, while the 140

latter can be more effective when limited training 141

data is available. Hybrid retrieval can combine 142

the advantages of them (Craswell et al., 2020; Ba- 143

jaj et al., 2018). A straightforward combining ap- 144

proach is to train two different types of retrievers 145

independently and then combine their outputs lin- 146

early to give a final relevance score(Chen et al., 147

2021; Kuzi et al., 2020; Lin and Lin, 2021; Luan 148

et al., 2020; Guo et al., 2025; Shen et al., 2023). 149

There are some other ways to combine different 150

retrievers such as: CLEAR (Gao et al., 2020) utiliz- 151

ing boosting, UnifieR (Shen et al., 2023) leveraging 152

knowledge distillation. 153

2.2 Table Search 154

Table search has emerged as a fundamental re- 155

search challenge in structured data search(Cafarella 156

et al., 2008; Zhang and Balog, 2018; Bhagavatula 157

et al., 2013). To maintain both efficiency and effec- 158

tiveness, the table search is typically decomposed 159

into two phases: retrieval and reranking. 160

For table retrieval, PLMs exhibit limited per- 161

formance due to their primary training on textual 162

corpora. To improve PLMs’ comprehension of 163

tabular structures, TAPAS (Herzig et al., 2020) 164

and DTR (Herzig et al., 2021) utilize distinct 165

types of embeddings like row and column embed- 166

dings, to represent the structure of tables based on 167

BERT (Devlin et al., 2019). Alternatively, fine- 168

tuning PLMs on the table corpus can improve their 169

comprehension of tables like UTP (Chen et al., 170

2023). Given the complexity of table structure and 171
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content, a single dense representation often fails172

to capture fine-grained details. SSDR (Jin et al.,173

2023) aims to represent both the query and table174

through multiple vector representations and graph-175

based methods (Wang et al., 2021) have also been176

adapted for table retrieval.177

Table reranking fundamentally differs from table178

retrieval through its joint encoding of query-table179

pairs, enabling more sophisticated interaction than180

the independent processing of retrieval. Existing181

approaches such as TaBERT (Yin et al., 2020), Stru-182

BERT (Trabelsi et al., 2022) and others (Shraga183

et al., 2020) improve results by emphasizing struc-184

tural information during encoding.185

Both retrieval and reranking tasks critically de-186

pend on table structure representation, our work187

takes a fundamentally different approach from ex-188

isting complex architectures. Rather than designing189

elaborate structural encoding methods, we investi-190

gate domain-specific matching preferences to opti-191

mize table retrieval performance.192

3 Task Description193

Let D = {(qi, T+
i )}Ni=1 be a labeled dataset, where194

qi denotes an individual query and T+
i is a set of195

tables {t+i } that are considered relevant to qi with196

variable size per query. Table retrieval aims to train197

a retriever to learn query-table relevance matching198

considering table structure and fields. After train-199

ing, this retriever is expected to understand how200

the fields F = {title, headers, cells} align with201

the information needs expressed in the query. Ulti-202

mately, for any query q, the retriever can retrieve203

relevant tables from a given collection.204

4 Table-Tailored Hybrid Matching205

Retriever (THYME)206

In this section, we introduce THYME, a Table-207

tailored HYbrid Matching rEtriever. Figure 2 illus-208

trates the overall architecture. The model employs209

dual representations: dense representations capture210

semantic information from unstructured text (e.g.,211

titles), and sparse representations preserve details212

for fine-grained information needs. To effectively213

capture the relevance matching patterns (lexical,214

semantic, and at various granularities) across dif-215

ferent fields, we incorporate matching preferences216

of different fields, propose a field-aware lexical217

matching mechanism, and craft a hybrid training218

strategy. Note that we employ BIBERT (Lin et al.,219

2021) and SPLADE (Formal et al., 2021) as the220

backbones to calculate dense and sparse represen- 221

tations. Although other advanced backbones can 222

be alternatives to achieve better performance, our 223

focus is to study table-specific hybrid matching. 224

Next, we detail each component of THYME. 225

4.1 Query Representation 226

Since query q is an unstructured text without spe- 227

cial processing, we directly obtain its dense and 228

sparse representation based on BIBERT (Lin et al., 229

2021) and SPLADE (Formal et al., 2021) respec- 230

tively. The hidden state of [CLS] is represented as 231

the dense representation. The sparse representation 232

is obtained by applying max pooling over the entire 233

sequence: 234

Hq = Enc(q), Zq = Trans(Hq),

qcls = Hq[CLS],

qlex = max
i∈|q|

log(1 +ReLU(Wq[i])),
(1) 235

where qcls ∈ Rh and qlex ∈ R|V | represent the 236

dense and sparse query representations, respec- 237

tively, h is the dimension of outputs yielded by 238

Pre-trained Language Models (PLMs), |V | is the 239

size of the vocabulary used. Trans(·) is a linear 240

used to map the output of Enc(·) to the distribution 241

in the vocabulary space. 242

4.2 Table Serialization 243

To encode tables with PLMs, we explicitly annotate 244

structural components (titles, headers, and cells) us- 245

ing special tokens [TTL], [HEAD], and [CELL] 246

to maintain their distinct semantic and structural 247

roles. Given a table t with a title, n headers - 248

headersn, and cellm×n of m rows and n columns, 249

we serialize the table structure as follows: 250

t = [ [CLS], [TTL], title, [HEAD], header0,

. . . headern−1, [CELL], cell0,0, cell0,1, . . . ,

cellm−1,n−1, [SEP ] ].

251

4.3 Global Semantic Matching 252

The global semantics of a table, which encapsu- 253

lates its comprehensive information by integrating 254

all field-level data, are crucial for accurately ad- 255

dressing topic-related queries. With the field in- 256

dicator tokens in the input sequence marking the 257

field boundary, the self-attention mechanism en- 258

ables [CLS] embedding to aggregate the informa- 259

tion stored in each field as the global dense repre- 260

sentation. The dense representation of a table t is 261
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Rank Name Area Type

1 Superior 82,103km2 natural

2 Lake Huron 59,570 km2 natural

...
9 Lake Oahe ... ...

List of largest lakes of the United States by Area

Encoder

[TTL][CLS] [SEP][CELL][HEAD]

Table-Structure 
Pooling

List of largest lakes of 
the United States by 

Area

[Rank, Name, 
Area, Type]

[[1, Superior, 82103...], ... 
[9, Lake Oahe...]]
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Figure 2: Illustration of THYME. Headers can be regarded as a row of cells. In this context, we adopt the identical
pooling strategy that is applied to the cells. The query is treated in the same manner as the title of the table.

generated as follows:262

tcls = Enc(t)[CLS]. (2)263

We have also tried alternative pooling strategies264

(mean and max over the entire sequence). However,265

it does not perform better than simply using [CLS].266

The semantic matching scores between the query267

and the table are obtained in the following way:268

ssem(q, t) = sim(qcls, tcls). (3)269

We use the inner product as the similarity function270

for semantic matching.271

4.4 Field-aware Lexical Matching272

The body of the table, including headers and cells,273

mainly consists of words or phrases that lack coher-274

ent semantics. We hope to construct sparse repre-275

sentations for each field and obtain the final sparse276

representations of tables with differentiated em-277

phasis on these fields. To this end, we propose a278

table-structure pooling mechanism and a mixture-279

of-field-experts mechanism for field-level aggrega-280

tion to facilitate fine-grained lexical matching.281

Table-Structure Pooling. First, to obtain sparse282

representations, the table t is transformed into a283

sequence of logits Zt ∈ R|t|∗|V |:284

Ht = Enc(t),Zt = Trans(Ht), (4)285

where |t| is the length of tables and |V | is the num-286

ber of tokens used by PLMs. Then, we employ287

distinct pooling strategies for different table fields.288

Max pooling excels at extracting fine-grained fea-289

tures while mean pooling preserves every piece of290

information in the sequence. Based on this pre- 291

sumption, for the title, headers, and cells, our 292

pooling strategies are as follows. 293

Title: Since the table title is unstructured text, 294

similar to queries, we use max pooling as in Formal 295

et al. (2021): 296

titlelex = max
t[i]∈title

log (1 +ReLU(Zt[i]) ), (5) 297

where i is the index of a token within the title of 298

table t. 299

Headers: Headers encode the relational schema 300

of tabular data. We use mean pooling for the to- 301

kens within each header and max pooling across 302

all headers to construct the sparse header represen- 303

tation: 304

headerjlex = mean
t[i]∈headerj

log (1 +ReLU(Zt[i]) ),

headerslex = max
1≤j≤n

headerjlex,
(6) 305

where headerj is the j-th header among n headers 306

in table t. 307

Cells: Cells in the same column share identical 308

properties indicated by the corresponding header. 309

The semantics carried in each cell within a col- 310

umn are equally important to represent the column, 311

so we first aggregate cell-level information within 312

each column through mean pooling. In contrast, 313

different columns are of different importance dur- 314

ing matching. For cross-column aggregation, we 315

employ max pooling over column representations 316

to emphasize discriminative features. The process 317

can be formalized as: 318

coljlex = mean
t[i]∈colj

log (1 +ReLU(Zt[i]) ),

cellslex = max
1≤j≤n

coljlex,
(7) 319
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where colj = cell0,j , cell1,j , · · · , cellm−1,j is the320

j-th column of t which have m cells.321

Mixture of Field Experts (MoFE). The sparse322

representation of each field computed based on323

Equation (5), (6), and (7), is a distribution over the324

vocabulary tokens. The importance of each token325

varies across different fields in representing the ta-326

ble. We adopt a Mixture of Field Experts (MoFE)327

mechanism to adaptively aggregate different field328

sparse representations. Specifically, we use the329

hidden states of [TTL], [HEAD], and [CELL]330

to assess the importance of each token in the dis-331

tribution corresponding to different fields during332

matching. The final sparse representation tlex is333

calculated according to:334

tg = [Ht[TTL],Ht[HEAD],Ht[CELL]],

tf = [titlelex,headerslex, cellslex],

gf = Softmax(Trans(tg)),

tlex[i] =
∑
i∈|V |

|F |∑
j=1

gf [j][i] · tf [j][i],

(8)335

where F represents the set of fields in the table, |F |336

is the number of fields. tg ∈ R|F |×h is the list of337

hidden states of [TTL], [HEAD], and [CELL],338

tf ∈ R|F |×|V | is the sparse representations of dif-339

ferent fields stacked, gf ∈ R|F |×|V | adjusts each340

field of the inflow representation. The final sparse341

representation is obtained by a weighted aggrega-342

tion across fields, where gf [j][i] is the importance343

score of the token i in field j, tf [j][i] is the lexical344

feature (e.g., occurrence probability) of the token i345

in field j.346

We employ the inner product operation as the347

similarity function, consistent with semantic match-348

ing scores.349

slex(q, t) = sim(qlex, tlex). (9)350

4.5 Hybrid Training351

To enable retrievers to effectively learn both global352

semantic matching and field-aware lexical match-353

ing concurrently, we implement a dropout training354

strategy:355

Matching Score Dropout. During training, we356

compute the final relevance score as either the se-357

mantic matching score ssem(q, t) with probability358

psem or the lexical matching score slex(q, t) with359

probability plex. For the remaining training steps,360

we use the sum of them as the relevance score:361

s(q, t) =


ssem(q, t), psem,

slex(q, t), plex,

ssem(q, t) + slex(q, t), 1− psem − plex.

(10)362

This approach enables both independent and joint 363

learning of global semantic matching and field- 364

aware lexical matching, ensuring the development 365

of each component while promoting their effective 366

integration. In our experiments, we set psem = 367

plex since we consider them equally important for 368

matching. 369

Loss Function. We adopt the InfoNCE loss for 370

training (van den Oord et al., 2019). Specifically, 371

for a query qi in a batch, we pair a positive table t+i , 372

with a set of random negative tables (positive tables 373

from the other queries in the batch, e.g., {t−i,j} for 374

query qj in the batch), the relevance loss for this 375

sample is computed as: 376

ℓrel = −log es(qi,t
+
i

)

es(qi,t
+
i

)+
∑

j e
s(qi,t

−
i,j

)
. (11) 377

We further employ the FLOPS regulariza- 378

tion (Paria et al., 2020) to constrain computational 379

complexity during the training process, the training 380

objective can be defined as follows: 381

ℓall =

{
ℓrel + (λqℓ

q
FLOPS + λtℓ

t
FLOPS), s(q, t) = slex(q, t),

ℓrel, otherwise.

(12) 382

The regularization weights (λq and λt) enforce spar- 383

sity constraints for queries and tables on lexical 384

matching, which is critical for fast retrieval. 385

During inference, we sum the semantic and lexi- 386

cal matching scores as the final relevance score: 387

s(q, t) = ssem(q, t) + slex(q, t). (13) 388

4.6 Efficiency Discussion 389

Let h be the dimension of the dense vectors yielded 390

by PLMs and d be the number of non-zero items in 391

sparse representations. During training, the com- 392

putational costs of the different retrievers are as 393

follows: single-vector dense retrievers like BIB- 394

ERT require O(|q|2h + |t|2h) for encoding, fol- 395

lowed by O(h2) for matching, |q| and |t| are the 396

lengths of the query and table sequence. Multi- 397

vector dense retrievers such as SSDRim incur the 398

same encoding cost of O(|q|2h+ |t|2h), but their 399

matching costs scale to O(αβh2), where α denotes 400

the number of vectors used to represent a query 401

and β is the number of vectors per tables. Simi- 402

larly, the total computational cost of SPLADE is 403

O(|q|2h+ |t|2h) +O(d2). Although d exceeds h 404

at initialization due to the large vocabulary size, it 405
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gradually approaches h under FLOPS regulariza-406

tion. From the overall training process, SPLADE407

costs about as much as BIBERT. For THYME, the408

computational cost is O(|q|2h+|t|2h)+O(h2+d2).409

This is slightly higher than that of BIBERT and410

SPLADE. But it remains significantly lower than411

that of multi-vector dense retrievers like SSDRim.412

During inference, since the dense and sparse413

representations are constructed independently, se-414

mantic matching and exact matching can be done415

in parallel. THYME does not introduce an addi-416

tional time delay and is as efficient as its backbone417

models, BIBERT and SPLADE.418

5 Experimental Settings419

5.1 Datasets420

We conduct experiments on two standard table re-421

trieval benchmarks:422

• NQ-TABLES (Herzig et al., 2021) is a subset of423

the Natural Questions (NQ) (Kwiatkowski et al.,424

2019), collected from Wikipedia and search en-425

gine logs.426

• OTT-QA (Kostić et al., 2021) is an open-domain427

multi-hop QA dataset from Wikipedia, contain-428

ing both textual and tabular corpus. We use the429

subset related to tables for retrieval evaluation.430

The statistics of our benchmarks are shown in Ta-431

ble 1. We also show representative samples of these432

benchmarks in the Appendix B.

NQ-TABLES OTT-QA
Train Test Train Test

Query Count 9,594 919 41,469 2,214
Avg. # Words. 8.94 8.90 21.79 22.82

Table
Count 169,898 169,898 419,183 419,183
Avg. # Row. 10.70 10.70 12.90 12.90
Avg. # Col. 6.10 6.10 4.80 4.80

# Relevant Tables per Query 1.00 1.05 1.00 1.00

Table 1: Statistics of benchmarks. Note that there are
919 unique queries and 966 query-table pairs in the test
set of NQ-TABLES.433

5.2 Baselines434

We compare THYME with the following base-435

lines. Sparse Retrievers: BM25 (Robertson and436

Walker, 1994) and SPLADE (Formal et al., 2021).437

Dense Retrievers: We selected three groups of438

dense retrievers as our baselines. (1) Single-vector439

text retrievers, such as BIBERT (Lin et al., 2021)440

and PRE-DPR (Wang et al., 2022), which had441

been trained on text retrieval corpus with rele-442

vance matching capability. (2) Single-vector ta-443

ble retrievers, such as TAPAS (Herzig et al., 2020)444

and DTR (Herzig et al., 2021). (3) Table retriev- 445

ers that use multi vectors, such as SSDRim (Jin 446

et al., 2023), which extracts multi vectors to repre- 447

sent both queries and tables. Hybrid Retrievers: 448

We introduced hybrid retrievers such as DHR (Lin 449

et al., 2023), along with two of our implementa- 450

tions: BIBERT-BM25sf to investigate the impact 451

of score fusion and BIBERT-SPLADEtf to analyze 452

the joint training of hybrid representations based 453

on a shared encoder. Details of baselines are shown 454

in the Appendix A. 455

Additionally, there are some methods, such as 456

TaBERT (Yin et al., 2020) and StruBERT (Tra- 457

belsi et al., 2022), which are not used as our base- 458

lines, since they are designed for table reranking, 459

not retrieval. There are also some LLM-based 460

retriever (BehnamGhader et al., 2024; Lee et al., 461

2025) that achieve remarkable performance in text 462

retrieval. Due to resource constraints, we do not 463

choose these models as our baselines. THYME im- 464

proves the performance of table retrieval from the 465

perspective of field-aware hybrid matching. It is 466

orthogonal to backbones’ optimization and can be 467

integrated into different backbones to yield cumu- 468

lative performance improvements. 469

5.3 Evaluation Metrics 470

We use recall and normalized discounted cumu- 471

lative gain (NDCG) for evaluation. We apply a 472

cutoff at 50 for retrieved tables and report R@1, 473

R@10, and R@50 to show how many relevant ta- 474

bles are retrieved, following Herzig et al. (2020) 475

and Jin et al. (2023). Since high-ranking tables 476

in retrieval results serve as the inputs for down- 477

stream tasks (e.g., table comprehension, tableQA, 478

etc.), we use NDCG to evaluate whether relevant 479

tables are ranked to top positions. Given that 480

queries in our test set typically have only one an- 481

notated relevant table, NDCG@1 closely aligns 482

with R@1 and NDCG@50 shows limited discrimi- 483

native power due to minimal score variation. We 484

select NDCG@5 and NDCG@10 as our primary 485

evaluation metrics, as they provide practical rele- 486

vance to real-world applications where only the top 487

few results are examined. Statistical significance is 488

measured with two-tailed t-tests with p < 0.05. 489

6 Results and Discussion 490

6.1 Overall Retrieval Performance 491

Table 2 shows the performance of three groups of 492

baselines: sparse, dense, and hybrid retrievers, on 493
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NQ-TABLES OTT-QA
NDCG@5 NDCG@10 R@1 R@10 R@50 NDCG@5 NDCG@10 R@1 R@10 R@50

Sparse BM25 25.52 27.12 18.49 36.94 52.61 35.09 37.45 23.98 51.94 69.11
SPLADE 53.70 56.75 39.84 83.33 94.65 75.27 76.72 62.74 89.52 95.21

Dense

BIBERT 60.49 63.16 43.78 82.25 93.71 70.57 72.49 56.82 86.50 94.26
PRE-DPR 63.05 66.13 45.32 85.84 95.44 67.92 70.00 53.43 85.95 93.22
TAPAS⋆ 61.77 64.29 43.79 83.49 95.10 70.89 72.72 57.86 86.77 94.04
DTR⋆ 51.04 53.98 32.62 75.86 89.77 56.68 58.94 42.10 75.75 88.80
SSDRim 62.31 65.02 45.47 84.00 95.05 69.81 71.76 56.96 86.22 93.55

Hybrid
DHR 61.16 64.32 43.67 84.65 95.62 75.27 76.65 63.64 88.48 95.30
BIBERT-BM25sf 53.81 57.19 35.87 79.63 94.56 71.36 73.29 59.49 86.81 94.67
BIBERT-SPLADEtf 63.24 66.25 45.62 86.72 95.62 76.90 78.30 64.72 91.01 96.34

THYME 65.72† 68.14† 48.55† 86.38 96.08 78.21† 79.58† 66.67† 91.10 96.16

Table 2: Overall table retrieval performance. Bold and underline indicate the best and suboptimal performance
respectively. We set the batch size to 144 for all methods, and the difference with the corresponding paper is denoted
by ⋆. Statistically significant (p < 0.05) improvements over BIBERT-SPLADEtf are marked with †.

NQ-TABLES and OTT-QA. It shows that hybrid494

retrievers perform better than dense and sparse re-495

trievers. Even the simple combination of BIBERT496

and SPLADE boosts the performance by a large497

margin. Among all the methods, THYME per-498

forms the best, significantly better than the SOTA499

baselines, indicating its efficacy in conducting field-500

aware hybrid matching.501

We also have the following observations: (1)502

Dense retrievers excel on NQ-TABLES, while503

sparse retrievers perform better on OTT-QA. The504

reason for this disparity is that queries in OTT-QA505

are obtained by decontextualizing questions from506

the closed-domain QA dataset, which contains507

more detailed information compared with queries508

in NQ-TABLES. Hybrid retrieval bridges this gap509

through combined semantic and exact matching,510

demonstrating robust performance across diverse511

queries. THYME takes it a step further. It cali-512

brates the retrieval preferences of various fields to513

make it a compelling solution for table retrieval.514

(2) THYME utilizes field indicator tokens in ta-515

ble inputs to facilitate adaptive differentiation and516

aggregation of information across different fields.517

BIBERT achieves comparable results to TAPAS518

using the same approach. This suggests that the519

model can adaptively learn the structure of the ta-520

ble, and neural models designed for tables may be521

not necessary for retrieval. (3) PRE-DPR, trained522

for text retrieval, also shows competitive perfor-523

mance in table retrieval, which suggests that rel-524

evance learned from text matching also benefits525

table retrieval.526

6.2 Analyses on Model Variants527

To derive the sparse representations of the table,528

we perform table-structure pooling and aggregate529

these representations using MoFE. To evaluate the 530

impact of our design, we train and evaluate alter- 531

native variants for both components. For pooling 532

within the field, we also tried max or mean pooling 533

on all the tokens instead of the table-structure pool- 534

ing in THYME. For the aggregation over fields, we 535

attempted max and mean pooling. Notably, using 536

max/mean pooling both within and across fields 537

degrades to treating tables as unstructured text and 538

representing them with SPLADE. Table 3 shows 539

how the variants of THYME perform with the re- 540

vised sparse representations.

Pooling Aggregation NDCG@5 NDCG@10 R@10

Table-Structure MoFE 65.72 68.14 86.38

Max MoFE 62.18⋆ 64.52⋆ 85.79
Mean MoFE 60.61⋆ 63.96⋆ 85.09⋆

Max Max 61.44⋆ 64.19⋆ 85.42
Mean Mean 57.72⋆ 60.96⋆ 83.15⋆

Table 3: Comparisons of pooling and aggregation meth-
ods for sparse representations on NQ-TABLES. ‘⋆’ in-
dicates statistically significant differences (p<0.05) with
THYME (the first row).

541
We can see that (1) table structure in the sparse 542

representation can not be ignored; (2) max pooling 543

has better performance than mean pooling in terms 544

of sparse field representations, consistent with the 545

observations from SPLADE on text retrieval (For- 546

mal et al., 2021), but both are significantly worse 547

than our table-structure pooling approach and (3) 548

MoFE is better than using max or mean pooling to 549

aggregate the field representations, indicating field 550

importance in its final sparse representations are 551

better learned. 552

6.3 Matching Preferences of Different Fields 553

To see whether table titles and bodies have dif- 554

ferent relevance matching preferences, we com- 555
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pare THYME variants that selectively mask556

dense/sparse representations of titles or bodies. For557

instance, when only dense representations of titles558

are used, their sparse representations are not ag-559

gregated to the tables’ final sparse representations.560

Table 4 shows the performance of these variants.561

We can observe: (1) The absence of title sparse rep-562

resentations results in a smaller degradation com-563

pared to other variants; (2) Performance declines564

more significantly when sparse representations of565

table bodies are omitted than when dense repre-566

sentations are removed; (3) THYME exhibits the567

worst performance when only sparse title represen-568

tations and dense body representations are used.569

The comparison of different variants reveals that570

titles benefit primarily from semantic matching,571

whereas table bodies (headers and cells) depend572

more critically on lexical matching.

Title Headers&Cells NDCG@5 NDCG@10 R@10

Dense, Sparse Dense, Sparse 65.72 68.14 86.83

Dense Dense, Sparse 63.97⋆ 67.18 86.72
Dense, Sparse Sparse 63.81⋆ 66.48⋆ 85.65⋆

Dense, Sparse Dense 57.98⋆ 61.14⋆ 82.48⋆

Sparse Dense 57.48⋆ 60.25⋆ 82.15⋆

Table 4: Study on the impact of representation types
of table fields on NQ-TABLES. ‘⋆’ marks the sta-
tistically significant difference (p<0.05) compared to
THYME (the first row).

573

7 Application in TableQA574

In the era of LLMs, retrievers are often used575

as a component of a retrieval-augmented gener-576

ation (RAG) system to provide context for LLMs.577

We evaluated THYME’s practical value in Open578

Domain TableQA via RAG using Mistral (Jiang579

et al., 2023), Llama3 (Grattafiori et al., 2024), and580

Qwen2.5 (Qwen et al., 2025). NQ-TABLES con-581

tains factual questions, relevant tables, and corre-582

sponding answers. We measure the accuracy of583

whether the LLMs’ outputs contain the ground-584

truth answers. Results are shown in Table 5.585

When more results are used for augmentation,586

QA performance becomes better as well. Due to587

incomplete annotation of the relevant tables in the588

NQ-TABLES, the tables retrieved by the model589

that are not labeled as relevant may contain infor-590

mation that is related to the query. This requires591

the retriever to learn the relevance matching be-592

tween queries and tables, rather than fitting the data.593

Among existing table retrievers, THYME demon-594

strates the best RAG performance.595

Retriever LLM Accuracy
n=1 n=3 n=5

SPLADE
Mistral-7B 29.61 35.42 34.95
Llama3-8B 32.07 37.17 33.88
Qwen2.5-7B 31.90 35.79 37.35

BIBERT
Mistral-7B 32.93 33.46 35.30
Llama3-8B 32.40 33.03 34.17
Qwen2.5-7B 34.80 37.92 37.01

SSDRim

Mistral-7B 32.76 36.95 36.30
Llama3-8B 34.25 38.14 37.89
Qwen2.5-7B 33.42 39.27 39.66

BIBERT-SPLADEtf

Mistral-7B 32.67 33.59 35.71
Llama3-8B 32.66 34.67 34.55
Qwen2.5-7B 33.24 36.76 37.30

THYME
Mistral-7B 35.48 37.59 37.20
Llama3-8B 36.14 39.16 39.29
Qwen2.5-7B 37.28 40.28 41.20

Table 5: End-to-end tableQA performance. Bold indi-
cates the best performance.

8 Case Study 596

Figure 3 compares THYME with SOTA baselines 597

on a query about the 2018 Olympics opening cer- 598

emony time. Only THYME ranks the relevant 599

table at the top. “2018”, “Olympics”, “open- 600

ing”, and “ceremony” occur in the titles and/or 601

cells while “when” is semantically matched with 602

“Date” and “Time” in the relevant table. In con- 603

trast, the strongest baselines BIBERT-SPLADEtf , 604

and SSDRim prioritize exact keyword matching 605

while neglecting the semantic matching to “when 606

for 2018” that needs date or time to answer. It 607

shows that THYME has successfully learned field- 608

aware hybrid matching.

Query:  When are the opening ceremonies for the 2018 Olympic Games?

Top-1 Retrieved Table  Relevant

Date Time Location Filmed by Venue

9 February
2018

20:00 – 22:20 
KST

(UTC+9)

Pyeongchang,
South Korea

Olympic
Broadcasting Services

Pyeongchang 
Olympic
Stadium 

2018 Winter Olympics opening ceremony

Olympic Games ceremonies

Opening ceremony
Summer 1896,1900,1904, ... 2016, 2020, 2024 ...

Winter 1924,1928,1932, ... 2014, 2018, 2022, 2026 ...

Closing ceremony
Summer 1896,1900,1904, ... 2016, 2020, 2024 ...

Winter 1924,1928,1932, ... 2014, 2018, 2022, 2026 ...

THYME

Top-1 Retrieved Table  Irrelevant

SSDRim  /
BIBERT-
SPLADEtf

Figure 3: Top-1 retrieved table from different retrievers.

609

9 Conclusion 610

In this work, we propose a retriever based on the ob- 611

servation that table cells could prefer local match- 612

ing of detailed information which differs from un- 613

structured text such as table titles. We tailor the rep- 614

resentations for tables and incorporate both dense 615

and sparse representations to better suit the match- 616

ing needs at different granularities. Experimental 617

results show that our proposed method can adap- 618

tively balance the semantic and lexical matching 619

requirements among the table fields. 620
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Limitations621

This paper investigates the preferences in matching622

across different fields in a table during the retrieval.623

Tables represent a critical category of structured624

data that coexists with other prevalent formats (e.g.,625

HTML, PDF) in real-world information systems.626

Our method demonstrates effectiveness for table-627

structured data. How to extend it to a wider range628

of data formats needs to be further explored.629

Ethics Statement630

We approach ethics with great care. In this pa-631

per, all the datasets we use are open-source, which632

are widely adopted in previous research. These633

datasets are collected from publicly available In-634

ternet such as Wikipedia. The methods covered635

in the paper with their checkpoints, are also from636

the open-source community. There are no ethics-637

related issues involved.638
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A Details of Baselines847

Sparse Retrievers:848

• BM25 (Robertson and Walker, 1994) is a well-849

known retrieval method that estimates the rele-850

vance of documents to a user query based on bag-851

of-words representations and exact term match-852

ing.853

• SPLADE (Formal et al., 2021) is a sparse re-854

triever based on BERT and one of the backbones855

of our model. It maps a query or document to a856

vector of the vocabulary size, where each dimen-857

sion corresponds to the probability of a term.858

Dense Retrievers:859

• BIBERT (Lin et al., 2021) is a standard dense860

retriever based on BERT. It is also one of the861

backbones of our model. The hidden state of862

[CLS] for a query and a document from BERT is863

used to estimate the relevance score.864

• PRE-DPR (Wang et al., 2022) is a text retriever865

that has been fine-tuned with a large text corpus.866

• TAPAS (Herzig et al., 2020) utilizes distinct867

types of embeddings like row and column em-868

beddings to represent structure. It is also pre-869

trained on a large amount of tabular data and870

fine-tuned on cell, row, and column-level tasks.871

It is a universal table encoder that is widely used872

in table-related tasks.873

• DTR (Herzig et al., 2021) uses TAPAS as the874

encoder and has been fine-tuned with relevant875

data of tables and queries.876

• SSDRim (Jin et al., 2023) is the state-of-the-art877

(SOTA) table retriever, which extracts the vectors878

of nouns to represent the query. For tables, it879

constructs representations of rows and columns880

by pooling, a part of which is sampled as the881

representation of tables.882

Hybrid Retrievers: 883

• BIBERT-BM25sf is a hybrid retrieval method 884

that obtains the relevance score by directly 885

adding the scores of semantic matching based 886

on BIBERT and exact matching from BM25. 887

• BIBERT-SPLADEtf is a simple fusion of BIB- 888

ERT and SPLADE. The outputs of both are used 889

to estimate semantic matching and lexical match- 890

ing respectively. Similar to BIBERT-BM25sf , 891

the relevance score comes from the sum of the 892

semantic matching score and lexical matching 893

score. 894

• DHR (Lin et al., 2023) densifies the sparse repre- 895

sentation and concatenates it with the dense rep- 896

resentation to construct a single representation. 897

It is compatible with most retrieval frameworks. 898

B Case Overview of Benchmarks 899

To effectively visualize and compare the differ- 900

ences in queries between NQ-TABLES and OTT- 901

QA, we show samples from each of them in Fig- 902

ure 4 and Figure 5. 903

Website: https://en.wikipedia.org//w/index.php?title=Eagle_Creek_(Oregon)&amp;oldid=738892320

Query: What is the elevation of eagle creek oregon?

Answer: 344 ft (105 m)

Name Type Elevation Coordinate USGS Map GNIS ID
West Eagle Creek 
(Union County, 

Oregon)
Stream 4,426 ft (1,349 m) 45°01′10″N 

117°27′15″W Bennet Peak 1128826

Eagle Butte Creek 
(Lane County, 

Oregon)
Stream 1,765 ft (538 m) 43°47′34″N 

122°19′24″W
Huckleberry 

Mountain 1141461

Eagle Creek, 
Oregon

Populated 
Place 344 ft (105 m) 45°21′26″N 

122°21′32″W Estacada 1120258

...
West Eagle Creek 
(Union County, 

Oregon)
Stream 4,426 ft (1,349 m) 45°01′10″N 

117°27′15″W Bennet Peak 1128826

Relevant Table:
Eagle Creek (Oregon)

Figure 4: A case of NQ-TABLES.

Website: https://en.wikipedia.org//w/index.php?title=Eagle_Creek_(Oregon)&amp;oldid=738892320

Query: What is the elevation of eagle creek oregon?

Answer: 344 ft (105 m)

Name Type Elevation Coordinate USGS Map GNIS ID
West Eagle Creek 
(Union County, 

Oregon)
Stream 4,426 ft (1,349 m) 45°01′10″N 

117°27′15″W Bennet Peak 1128826

Eagle Butte Creek 
(Lane County, 

Oregon)
Stream 1,765 ft (538 m) 43°47′34″N 

122°19′24″W
Huckleberry 

Mountain 1141461

Eagle Creek, 
Oregon

Populated 
Place 344 ft (105 m) 45°21′26″N 

122°21′32″W Estacada 1120258

...
West Eagle Creek 
(Union County, 

Oregon)
Stream 4,426 ft (1,349 m) 45°01′10″N 

117°27′15″W Bennet Peak 1128826

Relevant Table:
Eagle Creek (Oregon)

Query: Which male athlete was born in Alabama and had a 400 meter 
time under 44.5 seconds?

Relevant Table:

Year Time Role Place

1966 44.82y Wendell Mottley (TTO) Kingston

1967 44.74+h Tommie Smith (USA) San Jose

...
1984 44.27 Alonzo Babers (USA) Los Angeles

...

2024 43.40 Quincy Hall (USA) Saint-Denis

Website: https://en.wikipedia.org/wiki/400_metres

Answer: Alonzo Babers

400 Metres

Figure 5: A case of OTT-QA.
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C Implementation Details904

We initialize THYME, BIBERT, and SPLADE with905

BERT-base. For the other baselines, we use the906

released checkpoints for initialization. To ensure a907

fair comparison, we maintain identical batch size,908

learning rate, and training steps across all trained909

models. With a batch size of 144 and a learning910

rate of 1e − 5, we compare the performance of911

the different models after 50 training epochs. For912

THYME, we set psem = plex = 0.15 for matching913

score dropout and λq = λt = 1e− 4 for FLOPS914

regularization.915

D Prompt for TableQA916

The prompt we used in evaluating the effect of917

different table retrievers on the answers generated918

by LLM is shown in Figure 6.

System: You are a helpful assistant.
User: Answer the question based on the table provided, 
outputting the answer directly, not the reasoning process or 
other additional information. 
<Question>: Who is the owner of reading football club?
<Tables>: [Table 1]: Reading F.C., ['Full name', 'Nickname(s)', 
'Founded', 'Ground', 'Capacity', 'Owner', 'Chairman', 'Manager', 
'League', '2016–17', 'Website', '', '', 'Home colours'], [['Reading 
Football Club', 'The Royals', '1871; 147 years ago', 'Madejski 
Stadium', '24,161[1]', 'Dai Yongge and Dai Xiuli (majority)', 
'Sir John Madejski', 'Jaap Stam', 'Championship', 'Championship, 
3rd', 'Club website', '', 'Home colours Away colours', 'Away 
colours']].
<Answer>:

Assistant: Dai Yongge and Dai Xiuli

Figure 6: The prompt for tableQA.

919

0% 10% 15% 20% 25% 30%

psem(psem = plex)

84.5

85.0

85.5

86.0

86.5

87.0

R
ec

al
l@

10

NQ-TABLES

Figure 7: Impact of dropout rate.

E Hyper-parameter Sensitivity920

Dropout Rate. During training, we introduce a921

dropout strategy. To see how the dropout ratio922

psem and plex (note that we set psem = plex) im- 923

pact the retrieval performance of THYME, we vary 924

the probability from 0% to 30% and examine how 925

Recall@10 changes. From Figure 7, we can see 926

the performance fluctuates on both datasets when 927

the ratio is set to larger values. However, the best 928

performance is always achieved when psem and 929

plex are above 0, which means our matching score 930

dropout strategy is beneficial. 931
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