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Abstract

Vision-extended LLMs have made significant001
strides in Visual Question Answering (VQA).002
Despite these advancements, VLLMs still003
encounter substantial difficulties in handling004
queries involving long-tail entities, with a ten-005
dency to produce erroneous or hallucinated006
responses. In this work, we introduce a007
novel evaluative benchmark named SnapNTell,008
specifically tailored for entity-centric VQA.009
This task aims to test the models’ capabilities010
in identifying entities and providing detailed,011
entity-specific knowledge. We have developed012
the SnapNTell Dataset, distinct from tradi-013
tional VQA datasets: (1) It encompasses a wide014
range of categorized entities, each represented015
by images and explicitly named in the answers;016
(2) It features QA pairs that require extensive017
knowledge for accurate responses. The dataset018
is organized into 22 major categories, contain-019
ing 7,568 unique entities in total. For each020
entity, we curated 10 illustrative images and021
crafted 10 knowledge-intensive QA pairs. To022
address this novel task, we devised a scalable,023
efficient, and transparent retrieval-augmented024
multimodal LLM. Our approach markedly out-025
performs existing methods on the SnapNTell026
dataset, achieving a 66.5% improvement in the027
BELURT score. We will soon make the dataset028
and the source code publicly accessible.029

1 Introduction030

Vision-extended LLMs have shown significant ad-031

vancements, excelling at capturing complex seman-032

tics and context-aware attributes needed for intri-033

cate tasks. However, their abilities in factual VQA034

tasks, which demand accurate, concrete answers035

about real-world entities and phenomena, expose036

certain limitations. Particularly, torso-to-tail or037

long-tail entities, which constitute a large propor-038

tion of real-world data but appear infrequently in039

training datasets, pose a challenge. This scarcity040

in representation often leads to VLLMs resorting041

Figure 1: Comparing SnapNTell with existing methods
reveals a distinctive focus. In the SnapNTell benchmark,
the answers are predominantly entity-centric, charac-
terized by a greater depth of knowledgeable information
pertaining to the specific entity depicted in the image as
the answer.

to generating plausible but incorrect or imaginative 042

content in their outputs, a problem that manifests 043

as “hallucinations" within the context of model re- 044

sponses. To ensure the confident deployment of 045

VLLMs in practical scenarios, there is an urgent 046

need for dedicated research that not only recognizes 047

but actively strives to tackle and reduce instances of 048

hallucinations, especially in the context of factual 049

queries involving these long-tail entities. 050

The lack of publicly available evaluation datasets 051

specifically tailored to assess models’ ability in rec- 052

ognizing real-world long-tailed entities presents a 053

notable gap in VQA. Existing datasets fall short 054

in serving this purpose due to a narrow range of 055

entity categories, the prevalence of overly simplis- 056

tic yes/no QA pairs, and a general lack of entity 057

specificity, often using broad terms like “Tiger" 058

instead of more specific ones like “Siberian Tiger". 059

To address this gap, we introduce a novel eval- 060

uation task called SnapNTell, which focuses on 061

entity-centric knowledge-based VQA. The Snap- 062

NTell benchmark has been designed to evaluate 063

models’ abilities in accurately identifying entities 064

and generating responses that showcase a deep un- 065

derstanding of these entities. To support this task, 066

we have curated a new evaluation dataset that de- 067

parts from existing datasets in two crucial ways: (1) 068

It includes a wide range of fine-grained and catego- 069
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rized entities, each accompanied by corresponding070

images and clear mention of the entity name within071

the answer sets. (2) It features QA pairs designed072

to prompt knowledge-intensive responses, moving073

beyond the binary yes/no format to challenge and074

assess the depth of the model’s comprehension.075

Furthermore, the limitations identified in factual076

query generation underscore the need for new so-077

lutions to address the problem of hallucinations.078

Recent advancements suggest that retrieval-based079

approaches hold significant promise in this regard080

(Guu et al., 2020; Srinivasan et al., 2022; Yang081

et al., 2023a,b). These methods enhance LLMs by082

integrating external knowledge sources or incor-083

porating retrieval mechanisms to access relevant084

information from extensive knowledge bases. The085

synergy between the advanced inference capabil-086

ities of LLMs and the wealth of external knowl-087

edge has the potential to significantly reduce issues088

related to long-tail entities and, consequently, de-089

crease the occurrence of hallucinatory responses.090

In this work, we aim to propose an evaluation091

task to investigate the model’s ability to recog-092

nize real-world long-tailed entities and provide093

knowledge-intensive answers. We also propose094

a retrieval-augmented method to reduce hallucina-095

tions and enhance the precision and trustworthiness096

of generated responses.097

Our contribution is summarized as follows:098

• SnapNTell task. We propose a novel task for099

entity-centric VQA, specifically designed to100

assess the proficiency of models in accurately101

identifying and generating responses that ex-102

hibit a deep comprehension of these identified103

entities.104

• SnapNTell model. We proposed a retrieval-105

augmented multimodal LLM, devised as a106

baseline model capable of undertaking the107

SnapNTell task, which is scalable, effective,108

and explainable.109

• SnapNTell dataset. We collected a new eval-110

uation dataset with distinctive characteristics,111

which stands out for two key features: (1) It112

encompasses a diverse range of fine-grained113

entities, each accompanied by correspond-114

ing representative images. (2) The question-115

answer pairs contain knowledge-intensive re-116

sponses with entity names specifically men-117

tioned in the answer sets.118

• Our model demonstrates superior perfor-119

mance on the SnapNTell dataset, surpassing120

current methodologies with a 66.5% improve- 121

ment in BELURT score. 122

2 Related Works 123

Knowledge-based VQA Research in vision- 124

language tasks, which necessitate understanding 125

image content to answer questions, has seen sig- 126

nificant advancements over recent years. Begin- 127

ning with datasets like FVQA (Wang et al., 2016), 128

which extracted facts from pre-established knowl- 129

edge bases, the field has progressed to more chal- 130

lenging ones like the OK-VQA dataset (Marino 131

et al., 2019), encompassing diverse knowledge cat- 132

egories. MultiModalQA (Talmor et al., 2021) intro- 133

duced complexity with questions demanding cross- 134

modal reasoning over snippets, tables, and images. 135

The successor of OK-VQA, AOK-VQA (Schwenk 136

et al., 2022), raises the bar by providing ques- 137

tions that transcend simple knowledge base queries. 138

ManyModalQA (Hannan et al., 2020) shifts the 139

focus to answer modality selection, MIMOQA 140

(Singh et al., 2021) emphasizes multimodal answer 141

extraction, and WebQA (Chang et al., 2021) in- 142

troduces real-world knowledge-seeking questions, 143

albeit with some limitations regarding entity catego- 144

rization and granularity. More comparison details 145

can be found in Section 3.5. 146

Multimodal LLMs Integrating visual under- 147

standing into text-based LLM typically combines 148

them with a visual encoder and uses image cap- 149

tioning datasets for alignment (Koh et al., 2023; 150

Wu et al., 2023; Chowdhery et al., 2022). Tech- 151

niques like adapter-based tuning (Alayrac et al., 152

2022) and prefix tuning (Tsimpoukelli et al., 2021) 153

allow these models to process visual inputs while 154

maintaining their linguistic capabilities, without 155

requiring full model retraining (Yin et al., 2023). 156

Retrieval-augmented LLM Previous studies 157

have explored retrieval augmentation in text-only 158

settings or image captioning tasks. Guu et al. 159

(2020) introduced a retriever for language models 160

to access large corpus during various stages. Srini- 161

vasan et al. (2022) showed retrieval-augmented 162

queries enhance LLMs’ context understanding. Ya- 163

sunaga et al. (2023) and Yang et al. (2023a) de- 164

veloped methods for integrating multimodal doc- 165

uments and speeding up LLM inference, respec- 166

tively. Yang et al. (2023b) created a visual lan- 167

guage model, inspired by Flamingo (Alayrac et al., 168

2022), for image captioning with external database 169

retrieval. Similarly, Gui et al. (2021) combined im- 170
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plicit and explicit knowledge in an encoder-decoder171

setup to improve answer generation.172

Open-domain visual entity recognition Hu et al.173

(2023) developed OVEN for associating images174

with Wikipedia entities via text queries, while Chen175

et al. (2023) introduced INFOSEEK, a dataset for176

Visual Question Answering focused on informa-177

tional queries. While OVEN is proficient in entity178

recognition using a knowledge base, INFOSEEK179

mainly supplies factual responses. Our study seeks180

to merge these strengths, creating detailed para-181

graphs that provide context for a more compre-182

hensive understanding beyond basic facts. More183

related work can be found in Appendix E.184

3 SnapNTell Dataset185

3.1 Entity Categorization186

To tackle the challenge of the new SnapNTell task,187

the first step involves creating a comprehensive188

dataset that represents a wide array of real-world189

entities. Our dataset creation methodology entails190

selecting a diverse set of entity names from vari-191

ous categories that mirror the diversity of the real192

world. This selection encompasses both commonly193

encountered entities and less frequently encoun-194

tered ones. We have identified 22 categories that195

adequately represent a cross-section of entities one196

might encounter in daily life. These categories197

include landmark, painting, sculpture, food, fruit,198

vegetable, mammal, amphibian, insect, fish, bird,199

reptile, celebrity, instrument, plant, electronics,200

tool, transportation, sport, book, household, and201

car. More details about the categories can be re-202

ferred to Table 10 in the Appendix.203

To populate each category with specific enti-204

ties, we leveraged Wikipedia as a primary resource205

due to its extensive and detailed entries. (See Ap-206

pendix A for more details.) Our selection criteria207

are heavily biased towards specificity; for instance,208

in the category of mammals, we deliberately opted209

for precise names such as “German Shepherd” or210

“Alaskan Malamute” instead of the generic “Dog”.211

This level of specificity is critical as it enables the212

model to demonstrate its capacity for fine-grained213

recognition and its ability to generate detailed, ac-214

curate information about each entity. This dataset-215

building approach is what distinguishes our dataset216

from existing VQA datasets, which often lack fine-217

grained entities and specificity.218

3.2 Image collection 219

The dataset comprises 22 primary categories, en- 220

capsulating a total of 7,568 unique entities. For 221

each individual entity, a set of 10 images has been 222

curated, where the statistic of the entity list is 223

shown in Table 10 in the Appendix. 224

Filtering Initially, a comprehensive list of enti- 225

ties, encompassing 22 primary categories, was com- 226

piled, in a total of 14,910 diverse entities. Then the 227

entity list underwent filtering by cross-referencing 228

each entry with its corresponding Wikipedia page. 229

Entities lacking valid Wikipedia pages were sub- 230

sequently removed from the list. For each corre- 231

sponding entity, images were sourced from Cre- 232

ative Commons (CC). Further filtering was con- 233

ducted by removing entities that didn’t have a suffi- 234

cient number of images obtained via Google Image 235

Search engine. The collected metadata was stored 236

in a CSV file containing essential information such 237

as image URLs, source page URLs, renamed im- 238

age names, and the corresponding Wikipedia page 239

URLs. After filtering, the final number of entities 240

in the SnapNTell dataset is 7,568. (More filtering 241

details can be found in Appendix B.) 242

3.3 Knowledge-intensive Question-Answer 243

Pairs 244

In our SnapNTell dataset, we considered five types 245

of questions: 246

• Static facts (absolute facts, discrete facts). 247

These are objective facts that are concrete and 248

are not contingent on other conditions. They 249

can usually be answered with a unique answer. 250

i.e., “When was he (Barack Obama) born?" 251

• Narrative facts. These facts encompass com- 252

prehension of larger contexts (e.g., song lyrics, 253

movie plot). They are factual in the sense that 254

the content of the narrative should accurately 255

reflect the source material or events, but a cor- 256

rect answer is usually not unique, as they can 257

vary in their level of detail and focus. i.e., 258

“What is the plot of that (‘The Godfather’)?" 259

• Dynamic facts. These are facts that are sub- 260

ject to change over time. i.e., “What is the 261

Yelp customer rating of it (the Eleven Madi- 262

son Park restaurant) in NYC?" 263

• Procedural facts. These are usually answers 264

to “how” questions, outlining a sequence of 265

steps to accomplish a task. While the steps 266

may not be unique and could be subjective, 267
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the answer can still be classified as logical or268

nonsensical. Note that these facts may some-269

times overlap with dynamic facts or narrative270

facts, i.e., “How do you check the battery level271

of my item (Ray-Ban Stories Glasses)?"272

• Subjective facts. (opinion-based facts).273

These “facts” are not objective indisputable274

facts, but based on individual perspectives275

or experience. Recommendations fall in this276

category. While there’s generally no single277

correct answer to questions seeking subjec-278

tive facts, it still requires the system to un-279

derstand the topic and provide reasonable an-280

swers grounded by world facts. i.e., “Why do281

you like it (Niagara Falls)?"282

To construct a comprehensive and knowledge-283

intensive QA dataset, we employ a three-step284

process. Firstly, we extracted and condensed perti-285

nent information from Wikipedia for each entity,286

i.e., the summary of the introduction, the caption of287

the image, etc. (See Appendix A for more details).288

Following similar approaches proposed by LLaVA289

(Liu et al., 2023b), Dettmers et al. (2023) is utilized290

to generate QA pairs for each entity automatically291

based on five pre-defined question types, ensuring292

diversity and informativeness. Then, we enlisted293

three annotators (2 male and 1 female) from294

Amazon SageMaker to assess QA pair quality295

and make necessary revisions to meet specific296

criteria. The responsibilities of these annotators297

include: (1) ensuring that the images and QA298

pairs are semantically aligned, (2) validating the299

accuracy of the provided answers, (3) making sure300

the questions are free of particular entity names301

but demanding such specificity in the answers,302

(4) assessing if the modified QA pairs adhere303

to the criteria for knowledge-intensive content,304

and (5) removing specific entity-related details305

from the questions. This last step guarantees that306

the question queries cannot be answered without307

understanding the accompanying visual context.308

Quality and consistency In order to verify the309

quality of the QA pairs, we conducted a quality310

evaluation by randomly choosing 1,000 QA pairs311

from our dataset. We assigned three independent312

human evaluators (1 male, 2 female) from Amazon313

SageMaker to review these pairs for accuracy [ac-314

curate, inaccurate] and agreement on whether to315

save the QA pair by Fleiss’ Kappa (Fleiss, 1971).316

The outcome of this assessment revealed 98% ac-317

curacy and κ = 0.95 agreement rate among the 318

evaluators, demonstrating a significant degree of 319

uniformity in the quality of the QA pairs. 320

3.4 Statistics and Analysis of Our Dataset 321

Entity statistics To provide a clear summary of 322

this comprehensive dataset, we have condensed the 323

details of the entity list into Table 10 and Figure 9 324

(in Appendix F). Our analysis indicates that the 325

dataset displays a well-balanced distribution across 326

different categories, enhancing its balanced and 327

diverse characteristics. Such a balanced and diverse 328

composition enhances the representativeness of our 329

proposed evaluation dataset. 330

Popularity The importance of entity popularity 331

in search engines is a key aspect to consider, simi- 332

lar to examining the head, torso, and tail sections of 333

knowledge bases within search engine frameworks. 334

As demonstrated in Figure 11 in Appendix F, we 335

use the average Wikipedia pageviews per entity 336

over the last 60 days as the metric. This average is 337

calculated by summing up the pageviews and then 338

dividing by the number of entities. The insights 339

from Figure 11 reveal that entities in the celebrity 340

category have the highest average popularity. For 341

a broader comparison among different categories, 342

we also present a comprehensive analysis of total 343

pageviews for all categories in Figure 10 in Ap- 344

pendix F, which shows that the celebrity category 345

remains at the forefront in terms of overall entity 346

popularity. This is attributed to the combination of 347

a higher number of entities in this category and the 348

generally higher popularity of each entity within it. 349

3.5 Comparison with Existing VQA Datasets 350

In Table 2 and Figure 2, we present a compari- 351

son with existing VQA datasets. It is evident that 352

some existing VQA datasets lack categorization, 353

fine-grained entities, and knowledge-intensive an- 354

swers, as observed in VQA 2.0 (Goyal et al., 2016) 355

and GQA (Hudson and Manning, 2019). OK-VQA 356

(Marino et al., 2019) contains images that may not 357

be sufficient to answer the questions, encouraging 358

reliance on external knowledge resources. How- 359

ever, the answers in OK-VQA are often simplistic 360

binary (yes/no) responses or selections from the 361

questions. A-OKVQA (Schwenk et al., 2022), the 362

successor of OK-VQA, aims to provide questions 363

that require commonsense reasoning about the de- 364

picted scene but use general object names in the 365

answers. MultiModalQA (Talmor et al., 2021) fo- 366
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Table 1: More detailed comparison with existing knowledge-based VQA datasets. Anonymity means whether the
question already contains a knowledge clue related to the entity in question. (* Unclear)

Dataset Categories Unique Entity QA Pairs Images Average Ans Length Number of Images / Entity Anonymity

ViQuAE 3 2,400 3,700 3,300 1.8 * ✗
Encyclopedic VQA (test) 12 * 5,750 5,750 3.2 * ✗
SnapNTell (Ours) 22 7,568 75,680 75,680 25.7 10 ✓

Table 2: Comparison with existing VQA datasets Knowl-
edge means the QA pairs are knowledgeable, not simple
yes/no answers or selection questions. Entities means
whether there are fine-grained entities specifically con-
tained in answers. Categorization means the entities are
categorized, not randomly crawled online.

Dataset Knowledge Entities Categorization

VQA 2.0 (Goyal et al., 2016)
GQA (Hudson and Manning, 2019)
OK-VQA (Marino et al., 2019)
ManyModalQA (Hannan et al., 2020) ✓
MultiModalQA (Talmor et al., 2021) ✓
MIMOQA (Singh et al., 2021) ✓
A-OKVQA (Schwenk et al., 2022) ✓
WebQA (Chang et al., 2021) ✓ ✓ ✓
ViQuAE (Lerner et al., 2022) ✓ ✓ ✓
Encyclopedic VQA (Mensink et al., 2023) ✓ ✓ ✓
SnapNTell (Ours) ✓ ✓ ✓

cuses on cross-modal knowledge extraction but re-367

lies on question templates for question generation.368

ManyModalQA (Hannan et al., 2020) focuses on369

answer modality choice rather than knowledge ag-370

gregation or extraction. In MIMOQA (Singh et al.,371

2021), the task of extracting a multimodal answer372

is not necessarily knowledge-intensive. WebQA373

(Chang et al., 2021) does have categorization but374

lacks fine-grained entities in many QA pairs, result-375

ing in more general questions and answers. Our376

proposed SnapNTell differs by including a wide377

range of fine-grained entities with representative378

images and explicit entity names in the answer sets.379

Additionally, it incorporates question-answer pairs380

that demand knowledge-intensive responses, going381

beyond simplistic binary answers. Examples of our382

dataset can be found in Figure 8 in Appendix F.383

ViQuAE (Lerner et al., 2022) and Encyclope-384

dic VQA (Mensink et al., 2023) both incorporate385

entity-level knowledge-based information along386

with categorization. Therefore, we performed a387

more in-depth analysis comparing them in Table 1.388

Our dataset surpasses these in terms of the vari-389

ety of categories, the number of distinct entities,390

and the overall number of QA pairs. Additionally,391

our dataset boasts a higher count of images and a392

longer average length for answers. Specifically, our393

dataset is structured to include 10 images for each394

entity, whereas the exact number of images per en-395

tity in ViQuAE and Encyclopedic VQA remains396

unspecified. Most notably, our dataset’s questions397

are highly anonymous, implying that they do not398

Figure 2: Comparison with existing datasets, where pre-
vious VQA datasets mostly focus on freeform answers
(such as yes/no for verification questions and choice for
selection questions).

reveal any knowledge hints about the entity. This 399

design ensures that the questions cannot be straight- 400

forwardly answered without interpreting the image 401

data, setting our dataset apart from both ViQuAE 402

and Encyclopedic VQA. 403

4 Method 404

In this section, we will introduce the details of our 405

proposed retrieval-augmented multimodal LLM 406

model. The architecture of our model is shown 407

in Figure 3 (larger figure in Appendix D due 408

to space limit). Our model can be considered 409

twofold: (1) Retrieval augmentation. Given the 410

input image-question pair, we retrieve useful entity- 411

centric information within knowledge sources. (2) 412

Entity-centric knowledge-based answer genera- 413

tion. The retrieved information will be combined 414

with the image and question together to generate a 415

knowledgeable answer. 416

4.1 Retrieval Augmentation 417

The retrieval augmentation process can be sub- 418

divided into: (i) Semantic region extraction via 419

language-guided object detection, (ii) Entity recog- 420

nition via image retrieval, and (iii) Knowledge re- 421

trieval via multi-source aggregation. 422

Semantic Region Extraction via Language- 423

Guided Object Detection To improve recogni- 424

tion performance, we focus on extracting specific 425
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Figure 3: Our SnapNTell model architecture takes an
image-question pair as input. It begins with retrieval
augmentation to source relevant information about the
entity in the image. This information, along with the
question, feeds into the word embedding layer. Text
embeddings merge with image-projected embeddings
before entering the LLM, culminating in a knowledge-
able answer as the output.

image regions containing the entity, rather than426

general image-level recognition. We employ a427

language-guided object detection model, i.e., GLIP428

(Li et al., 2021), for language-guided object detec-429

tion, extracting regions relevant to textual queries430

by understanding the query context. This targeted431

approach ensures precise region extraction, enhanc-432

ing the system’s accuracy and contextual relevance.433

Entity Recognition via Image Retrieval We434

construct a similarity index using CLIP embed-435

dings (Radford et al., 2021) and Faiss (Johnson436

et al., 2017) for indexing. Our database, built on437

the WIT dataset (Srinivasan et al., 2021), maps438

CLIP image embeddings to their text descriptions,439

leveraging Faiss’s robust similarity search capa-440

bilities. After setting up the indexing database,441

given an input query image I , we perform a k-442

nearest neighbor retrieval based on cosine simi-443

larity. The retrieval outcomes are represented as444

R(I) = {(i1, c1) , · · · , (ik, ck)}, where for each j445

within the range of 1 to k, ij and cj correspond446

to the retrieved image and its associated caption,447

respectively. By comparing I with similar images448

from the database, we identify the entity in the449

image region, which enables precise image-level450

entity recognition.451

Knowledge Retrieval via Multi-Source Aggrega-452

tion Facing diverse user queries, we gather extra453

information to compile resources for accurate re-454

sponses. Some queries require up-to-date informa-455

tion, not present in existing databases. We then turn456

to external sources to collect critical data like “year457

built," “description," and more. By using Knowl-458

edge Graph (KG) and web searches, we access rele-459

vant knowledge links, enriching our understanding 460

of the specified image region, and improving our 461

ability to comprehend and contextualize the ex- 462

tracted content. More details of the method can be 463

found in Appendix D. 464

4.2 Entity-centric Knowledge-based Answer 465

Generation 466

Following information collection, we enter the inte- 467

gration phase, blending the input image, question, 468

and retrieved data to generate a knowledgeable 469

response, which is illustrated in Figure 3. Our 470

method enhances multimodal understanding by 471

pre-training a LLM with image-text paired data. 472

Taking cues from Moon et al. (2023), we employ 473

lightweight adapters for each modality, converting 474

inputs into the text token embedding space of the 475

chosen LLM. 476

In our method, the LLM’s text token embedding 477

space morphs into a unified space, representing 478

both text and image content, with each modality 479

assigned 64 to 256 token embeddings. We freeze 480

the LLM’s parameters during alignment training 481

to quicken convergence and retain the LLM’s rea- 482

soning skills for inference. To ensure feature align- 483

ment, we use an image encoder, g(·), previously 484

synchronized with a text embedding space, like 485

in CLIP (Radford et al., 2021; Schuhmann et al., 486

2022). For text-image pairs (Xtext,Ximage), we 487

align them using specific objectives and a projec- 488

tion module, like the Perceiver Resampler (Alayrac 489

et al., 2022), applied to the vision encoder as: 490

p(Xtext|Ximage) =

L∏
i=1

pθ(X
[i]
text|Zimage,Z

[1:i−1]
text ) (1) 491

492
Zimage = Projθ(hlatents, g(Ximage)) (2) 493

5 Experiments and Results 494

5.1 Experimental Setup 495

Evaluation Metrics (1) In our evaluation pro- 496

cess, the quality of the answers is first assessed 497

using established NLP metrics such as BLEU (Pa- 498

pineni et al., 2002), METEOR (Denkowski and 499

Lavie, 2014), ROUGE (Lin, 2004), and BLEURT 500

(Sellam et al., 2020; Pu et al., 2021). (2) Addition- 501

ally, we incorporate accuracy and hallucination rate 502

metrics from (Sun et al., 2023). These metrics used 503

GPT4 to automatically measure the proportion of 504

questions for which the model provides correct 505

answers or incorrect/partially incorrect answers, 506

respectively. (3) We conduct human evaluation 507

following Ye et al. (2023); Moon et al. (2023). 508
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Table 3: Performance comparison of different ap-
proaches on the SnapNTell dataset.

Method ROUGE ↑ BLEU ↑ METEOR ↑ BLEURT ↑

Instruct-BLIP (Dai et al., 2023) 10.72 0.95 7.59 0.09
BLIP2 (Li et al., 2023) 15.00 0.52 8.49 0.16
Mini-GPT4 (Zhu et al., 2023) 26.12 5.62 25.55 0.27
LLaVA (Liu et al., 2023b) 26.86 6.03 26.97 0.31
Open-Flamingo (Awadalla et al., 2023) 30.57 6.52 22.53 0.32
COGVLM (Wang et al., 2023) 30.25 6.67 23.35 0.31
mPLUG-Owl2 (Ye et al., 2023) 31.39 6.72 24.67 0.33
LLaVA 1.5 (Liu et al., 2023a) 32.87 6.94 25.23 0.33
SnapNTell (ours) 35.28 7.81 29.27 0.55

Model Setting We chose LLaMA2 (70B) (Tou-509

vron et al., 2023) as our LLM. For image encoding,510

the CLIP image encoder (ViT-B/32) is employed511

(Radford et al., 2021; Schuhmann et al., 2022). Ad-512

ditional configurations comprise a batch size of513

2,048, the integration of two resampler layers, and514

the use of 64 modality tokens.515

Model Training We used a cleaned subset of the516

LAION-2B dataset, filtered using the CAT method517

(Radenovic et al., 2023b) and with any detectable518

faces blurred (Radenovic et al., 2023a). Signifi-519

cant resources are essential to scale pre-training520

to 70 billion parameter models on a substantial521

dataset of over 200 million instances. Often, this522

necessitates the utilization of an FSDP wrapper, as523

outlined in Dettmers et al. (2023), to distribute the524

model across multiple GPUs efficiently. To opti-525

mize our training process, we employ quantization526

strategies, specifically 4-bit and 8-bit quantization527

techniques (Dettmers et al., 2023), within our mul-528

timodal framework. In this approach, we maintain529

the LLM component of our model in a frozen state,530

allowing only the image modality tokenizers to531

be trainable. This strategy drastically reduces the532

memory requirements by an order of magnitude.533

As a result of these optimizations, we can success-534

fully train a 70 billion parameter model on a single535

GPU with 80GB VRAM, using a batch size of 4.536

5.2 Results and Discussion537

Table 3 displays the comparative results between538

the baseline models and our proposed method.539

Analysis of this table indicates that for every met-540

ric assessed, our retrieval-augmented multimodal541

LLM surpasses the performance of all existing542

baseline models. This strong performance empha-543

sizes the efficiency of retrieval augmentation in544

producing responses enriched with entity-centric545

information, thereby illustrating its substantial im-546

pact on the task at hand.547

Moreover, to gain deeper insights into which548

evaluation metric more accurately reflects the out-549

comes, we computed the Kendall correlation coef-550

Table 4: Effectiveness of evaluation metrics.

ROUGE BLEU METEOR BELURT

τ 0.999 0.799 0.600 0.999
P_value 0.014 0.050 0.142 0.014

ficient (Kendall, 1938; Knight, 1966; Kendall et al., 551

1995), comparing the results with those from the 552

human evaluation in Section 5.4. Kendall’s τ is a 553

measure of the correspondence between two rank- 554

ings. Values close to 1 indicate strong agreement, 555

values close to -1 indicate strong disagreement. Ta- 556

ble 4 revealed that both the ROUGE and BLEURT 557

scores were more indicative in distinguishing the 558

differences among various models. This finding 559

suggests that these two metrics are particularly sig- 560

nificant in evaluating model performance in a way 561

that aligns closely with human judgment. 562

5.3 Ablation Study 563

For a more in-depth understanding, we conducted 564

several ablation studies to delve into the finer de- 565

tails of our approach. 566

Effectiveness of Entity Detection To assess the 567

impact of entity detection (ED) in our model, we 568

performed an ablation study. This involved com- 569

paring the performance of our approach with and 570

without the ED component. As indicated in Ta- 571

ble 5, our approach incorporating entity detection 572

markedly surpasses the variant lacking this feature. 573

This highlights the significant contribution and ne- 574

cessity of the entity detection step in our model’s 575

overall effectiveness. 576

Table 5: Ablation study on the effectiveness of entity
detection (ED).

Method ROUGE ↑ BLEU ↑ METEOR ↑ BELURT ↑

w/o ED 28.02 3.73 26.26 0.45
w/ ED 35.28 7.81 29.27 0.55

Head/Torso/Tail Entities Head knowledge per- 577

tains to well-established entities for which there is 578

a wealth of available training data. Ideally, LLMs 579

could be trained to possess this knowledge, fa- 580

cilitating efficient retrieval. On the other hand, 581

torso-to-tail knowledge pertains to less-known or 582

obscure entities, often characterized by scarce or 583

non-existent training data. Providing access to such 584

knowledge involves effectively determining when 585

external information is necessary, retrieving the 586

relevant knowledge efficiently, and seamlessly inte- 587

grating it into responses. 588

To assess the performance improvement for 589

head/torso/tail entities, we randomly selected 10% 590
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Table 6: Ablation study on head/torso/tail entities,
where RA is short for Retrieval Augmentation and ∆ is
the performance difference of with and without RA.

Accuracy ↑ Hallucination ↓

Head
w/o RA 24.4 75.6

w/ RA 27.1 72.9
∆ (100%) 11.1 % ↑ 3.6 % ↓

Torso
w/o RA 19.1 80.9

w/ RA 22.7 77.3
∆ (100%) 18.8 % ↑ 4.4 % ↓

Tail
w/o RA 6.8 93.2

w/ RA 12.6 87.4
∆ (100%) 85.3 % ↑ 6.2 % ↓

entities for each category, where head/torso/tail591

entities are defined based on pageview statistics592

(popularity) in Section 3.4. The results presented593

in Table 6 clearly demonstrate that retrieval aug-594

mentation can significantly enhance performance595

across various entity types. Notably, the perfor-596

mance improvement for torso-to-tail entities far597

exceeds that of head entities, effectively address-598

ing the challenge of hallucinations in long-tailed599

entities through retrieval augmentation.600

Performance of Different VQA Datasets To601

demonstrate the uniqueness of our SnapNTell602

dataset compared to existing VQA datasets, we an-603

alyzed the performance of various baseline models604

on both traditional VQA datasets and our SnapN-605

Tell dataset. According to the findings presented in606

Table 7, the performance disparities among base-607

line models on existing datasets are not particularly608

marked. In contrast, on the SnapNTell dataset,609

we observed significantly larger differences and610

notably lower performance. This indicates that611

our SnapNTell dataset is particularly effective in612

evaluating the capabilities of different models to613

recognize entities and produce responses centered614

around these entities.

Table 7: Ablation on the accuracy performance of dif-
ferent VQA datasets.

Method VQAv2 TextVQA OK-VQA SnapNTell

Instruct-BLIP (Dai et al., 2023) – 46.6 55.5 8.88
BLIP2 (Li et al., 2023) 52.6 43.1 54.7 16.16
Flamingo (Alayrac et al., 2022) 56.3 37.9 57.8 32.17

615

5.4 Human Evaluation Results616

In alignment with the methodology presented in617

Ye et al. (2023); Moon et al. (2023), we involved618

a human evaluation process conducted by a panel619

of five human judges (3 male, 2 female). These620

judges were given specific instructions for their as-621

sessment, which encompassed three key aspects:622

0%

25%

50%

75%

100%

MIni-GPT4
Open-Flamingo

COGVLM
mPLUG-Owl2

LLaVA 1.5
SnapNTell

Lose Tie Win

Figure 4: Human evaluation results on pairwise com-
parisons (% win, tie, lose) with baseline outputs against
the manually annotated ground-truth from SnapNTell.

(1) Recognition Accuracy, where they evaluated 623

whether the model correctly identified the entity in 624

the image relevant to the question; (2) Response 625

Accuracy, in which they assessed the factual cor- 626

rectness of the model’s responses while checking 627

for any signs of hallucination (Rawte et al., 2023); 628

and (3) Pairwise Comparison, where judges se- 629

lected the response that better addressed the given 630

question in terms of contextual appropriateness and 631

accuracy, categorizing responses as winning, tying, 632

or losing. 633

In our study, we conducted pairwise compar- 634

isons for each baseline model against ground-truth 635

data across 1,000 samples. As depicted in Figure 4, 636

our model outperforms the baselines by displaying 637

a significantly smaller difference when measured 638

against manually annotated ground-truth samples, 639

highlighting its robustness. 640

6 Conclusion 641

In this work, we tackle the significant challenge 642

VLLMs face with long-tail entity queries, which of- 643

ten lead to inaccurate or hallucinated responses. To 644

address these issues, we introduce an entity-centric 645

VQA task named SnapNTell. This task is designed 646

to test models on entity recognition and their abil- 647

ity to provide detailed, entity-specific knowledge 648

in their responses. We collected a unique eval- 649

uation dataset for this task, which distinguishes 650

itself from existing VQA datasets by including a 651

wide array of fine-grained categorized entities, sup- 652

ported by images and explicit entity mentions in 653

the answers. This dataset emphasizes knowledge- 654

intensive responses over simple binary answers. In 655

addition, we propose a retrieval-augmented multi- 656

modal LLM solution for the SnapNTell task as an 657

effective baseline. Our experimental results show 658

that our model outperforms existing approaches, 659

providing more accurate and coherent answers. 660
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Limitations661

In this study, we introduce a novel SnapNTell task662

and its accompanying dataset, which features five663

unique types of questions, each paired with metic-664

ulously formulated answers. It’s important to rec-665

ognize that in cases involving human preferences,666

which are subjective by nature, the given answers667

might not represent the only correct options. Fur-668

thermore, the relevancy of some answers may di-669

minish over time, highlighting the need for peri-670

odic updates to the dataset to ensure its ongoing671

relevance and accuracy. Our proposed method ex-672

hibited superior performance over existing base-673

lines. However, human evaluation results suggest674

significant potential for further improvement. Al-675

though our approach often neared human-level per-676

formance, it did not consistently outperform human677

annotations, showing opportunities for future ad-678

vancements.679

Ethics Statement680

In this study, the dataset was sourced from pub-681

licly accessible databases, and all author details682

remain anonymous. We conscientiously excluded683

any content from our dataset that could be consid-684

ered ethically sensitive. To our understanding, and685

with careful consideration, we do not anticipate any686

detrimental applications arising from the findings687

or methodologies presented in this research.688

Broader Impact689

Current models have made commendable progress690

in grasping the nuanced semantics and context-691

sensitive aspects of Visual Question Answering692

(VQA). However, their efficacy in factual VQA693

tasks, which require precise and factual answers694

about tangible entities and events, reveals certain695

deficiencies. This is especially true for torso-to-tail696

or long-tail entities. Despite their prevalence in697

the real world, these entities are underrepresented698

in training datasets, leading to a common issue699

where models produce plausible yet inaccurate or700

invented responses, a phenomenon often termed701

“hallucinations" in the realm of model-generated702

content. Tackling and minimizing these hallucina-703

tions is vital for enhancing the trustworthiness and704

applicability of these models in practical scenarios.705

The existing VQA datasets, however, are inade-706

quate for evaluating a model’s ability to recognize707

entities, as they do not explicitly highlight these708

entities within the dataset. Our newly introduced 709

dataset bridges this gap. It is designed to test mod- 710

els’ capabilities not just in identifying entities but 711

also in generating informed and entity-aware re- 712

sponses. Furthermore, our proposed dataset might 713

serve as resources for either pre-training or fine- 714

tuning existing models, to improve their ability in 715

recognizing entity-level real-world objects. 716
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A More Details about the Dataset Building977

More details about the dataset building process are shown in Figure 5.978

Figure 5: The pertinent information collected during dataset building, i.e., from Wikipedia for each entity, which
includes the summary of the general introduction, toponym, lococation information, and so on.

B More Details about the Filtering Process979

More details about the filtering process are shown in Table 8.980

C Types of Questions981

More introduction of different types of question in the SnapNTell dataset are shown Table 9.982

D Method983

In this section, we will introduce the details of our proposed retrieval-augmented multimodal LLM model.984

The architecture of our model is shown in Figure 7. Our model can be considered twofold: (1) Retrieval985

augmentation. Given the input image-question pair, we retrieve useful entity-centric information within986

knowledge sources. (2) Entity-centric knowledge-based answer generation. The retrieved information987

will be combined with the image and question together to generate the answer. More details are introduced988

in the following sections.989

D.1 Retrieval Augmentation990

The retrieval augmentation process can be subdivided into three distinct steps: (i) Semantic region991

extraction via language-guided object detection, (ii) Entity recognition via image retrieval, and (iii)992
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Table 8: Filtering statistics of the entity dataset. [1st Wiki filtering]: removing ones without wiki page. [2nd Google
filtering]: removing ones without enough images via google search API. [3rd Wiki filtering]: removing entity name
with ambiguous wiki pages.

Main category Original Entity 1st Wiki filtering 2nd Google filtering 3rd Wiki filtering

Category

landmark 1595 1000 899 753
painting 1057 367 358 288
sculpture 300 164 164 134
food 883 338 337 271
fruit 361 236 233 180
vegetable 389 290 286 214
mammal 778 633 619 434
hibian 211 148 139 124
insect 366 179 176 145
fish 1089 1054 987 722
bird 739 546 545 480
reptile 279 232 231 210
celebrity 1514 1484 1466 732
instrument 477 375 368 277
plant 606 601 593 489
electronics 432 354 342 269
tool 801 213 209 150
transportation 334 296 290 227
sport 694 478 464 395
book 1030 826 777 645
household 475 319 299 221
car 500 320 320 208

Summary 22 14910 10453 10102 7568

Figure 6: Collecting images for building the evaluation dataset. Licenses: CC Publicdomain, CC Attribute, AA
Sharealike, CC Noncommercial, or CC Nonderived licenses. Metadata: image URLs, source page URLs, renamed
image names, and the corresponding Wikipedia page URL.

Knowledge retrieval via multi-source aggregation. 993

Semantic Region Extraction via Language-Guided Object Detection Due to the presence of entities 994

within the image that occupy only a portion of the available space, employing a comprehensive image-level 995

entity recognition approach may lead to a decrease in recognition performance. Instead, we opt to initially 996

extract the image region containing the entity and utilize this specific region in subsequent recognition 997

processes to enhance accuracy. During this phase, we leverage a language-guided object detection model, 998

i.e., GLIP (Li et al., 2021), to extract meaningful regions from complex images. This approach helps 999

precisely identify and extract image regions directly relevant to specific textual queries. It accomplishes 1000

this by understanding the context of the query and adjusting its object detection method to find the most 1001

13



Table 9: Types of questions.

Types of questions Definition

Static facts (absolute
facts, discrete facts)

These are objective facts that are concrete and are not contingent on other conditions.
They can usually be answered with a short, unique answer. For example: When was
Barack Obama born?

Narrative facts These facts encompass comprehension of larger contexts (e.g., song lyrics, movie plot,
historical events). They are factual in the sense that the content of the narrative should
accurately reflect the source material or events, but a correct answer is usually not unique,
as they can vary in their level of detail and focus. For example: What is the plot of “The
Godfather”?

Dynamic facts These are facts that are subject to change over time. For example: What is the Yelp
customer rating of the Eleven Madison Park restaurant in NYC?

Procedural facts These are usually answers to “how” questions, outlining a sequence of steps to accom-
plish a task. While the steps may not be unique and could be subjective, in many cases,
an answer can still be classified as logical (factual) or nonsensical (a hallucination). Note
that these facts can overlap with dynamic facts or narrative facts. For example, How do
you check the battery level of my Ray-Ban Stories Glasses?

Subjective facts
(opinion-based facts)

These “facts” are not objective, indisputable facts, but are based on individual perspec-
tives or experiences. Recommendations fall in this category. While there’s generally no
single correct answer to questions seeking subjective facts, it still requires the system
to understand the topic and provide reasonable answers grounded by world facts. For
example: Where should I visit Tokyo next month?

important image areas. This step enables the system to better understand the query’s context, resulting in1002

more accurate and contextually meaningful region extraction.1003

Entity Recognition via Image Retrieval To accomplish this goal, we begin by constructing a similarity1004

index using CLIP embeddings, specifically employing Faiss (Johnson et al., 2017) as our indexing tool.1005

Our indexing database is established based on the WIT dataset (Srinivasan et al., 2021). This database1006

follows a key-value mapping structure, where the keys represent CLIP ViT-B/32 image embeddings, and1007

the corresponding text descriptions serve as the values. Faiss, known for its efficiency in similarity search,1008

is utilized for indexing (Johnson et al., 2017).1009

Once the indexing database is set up, we are ready to proceed with the query process. Given an input1010

query image, denoted as I (which is the entity image region extracted in the preceding step), we perform1011

a k-nearest neighbor retrieval based on cosine similarity between the embeddings of the query image and1012

those of the database images. The retrieval outcomes are represented as R(I) = {(i1, c1) , · · · , (ik, ck)},1013

where for each j within the range of 1 to k, ij and cj correspond to the retrieved image and its associated1014

caption, respectively. Subsequently, by using the extracted image region as input for a search in the1015

indexing database, we identify the entity within the extracted image region. This identification is achieved1016

by comparing it with the most similar images retrieved from the indexing database, ultimately resulting in1017

image-level entity recognition.1018

Knowledge Retrieval via Multi-Source Aggregation Given the wide array of questions users may pose,1019

we need to obtain additional information to compile the necessary resources for crafting accurate responses.1020

Furthermore, certain queries may demand the latest information, which is not readily available within1021

pre-existing databases or knowledge graphs. In such cases, we rely on external sources of knowledge, such1022

as online references, to gather essential data, encompassing elements like “year built," “description," and1023

other pertinent details. To accomplish this, we leverage Knowledge Graph (KG) and conduct web searches1024

to access relevant knowledge connections. This approach enables us to acquire a wealth of information1025

concerning the specified image region, thereby bolstering our capacity to grasp and contextualize the1026

extracted content effectively.1027
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Figure 7: The architecture of our SnapNTell model. The input to the model is an image-question pair, and our model
first uses retrieval augmentation to retrieve useful information regarding the entity in the image. Then, the retrieved
information is combined with the question as input to the word embedding layer, where the text embeddings will be
combined with image-projected embeddings as the input to LLM, which finally generates a knowledgeable answer
as the output.

D.2 Entity-centric Knowledge-based Answer Generation 1028

Following the preceding step, where we’ve gathered insightful information from diverse sources, we now 1029

proceed to the second phase: determining how to integrate the input image, the question, and the retrieved 1030

information in order to produce a knowledge-driven response. 1031

Our approach is illustrated in Figure 7. Our strategy for improving the model’s multimodal compre- 1032

hension entails pre-training a LLM using paired multimodal data, which comprises images alongside 1033

corresponding textual descriptions. To achieve this, we draw inspiration from Moon et al. (2023) and 1034

create lightweight adapters for each modality. These adapters facilitate the transformation of inputs into 1035

the text token embedding space of a designated LLM. 1036

Our approach transforms the text token embedding space of the LLM into a unified token embedding 1037

space, where tokens can represent either textual or image content. The number of token embeddings 1038

allocated to each input modality is predetermined for each adapter, ranging from 64 to 256. Throughout 1039

the alignment training process, we keep the model parameters of the underlying LLM frozen. This 1040

approach not only accelerates convergence compared to training the model from scratch but also allows 1041

the model to inherit the reasoning capabilities of the LLM during inference. Additionally, to maximize 1042

feature compatibility, we employ an encoder denoted as g(·) for the image modality. This encoder has 1043

previously been aligned with a text embedding space, for instance, in the case of CLIP (Radford et al., 1044

2021; Schuhmann et al., 2022). For each pair of text and image, represented as (Xtext,Ximage), we 1045

align them using specific objectives along with a projection module, such as the Perceiver Resampler 1046

(Alayrac et al., 2022) for the vision encoder. 1047

p(Xtext|Ximage) =

L∏
i=1

pθ(X
[i]
text|Zimage,Z

[1:i−1]
text ) (3) 1048

1049

Zimage = Projθ(hlatents, g(Ximage)) (4) 1050
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E More Related Works1051

Knowledge-based VQA Various vision-language tasks often require knowledge to answer questions1052

based on image content and have evolved in recent years. Beginning with datasets like FVQA (Wang1053

et al., 2016), which extracted facts from pre-established knowledge bases, the field has progressed to1054

more challenging ones like the OK-VQA dataset (Marino et al., 2019), encompassing diverse knowledge1055

categories. MultiModalQA (Talmor et al., 2021) introduced complexity with questions demanding1056

cross-modal reasoning over snippets, tables, and images. The successor of OK-VQA, AOK-VQA1057

(Schwenk et al., 2022), raises the bar by providing questions that transcend simple knowledge base queries.1058

ManyModalQA (Hannan et al., 2020) shifts the focus to answer modality selection, MIMOQA (Singh1059

et al., 2021) emphasizes multimodal answer extraction, and WebQA (Chang et al., 2021) introduces1060

real-world knowledge-seeking questions, albeit with some limitations regarding entity categorization and1061

granularity. More comparison details are introduced in Section 3.5.1062

Multimodal LLMs Expanding text-only LLMs to interpret visual information typically involves in-1063

tegrating a visual encoder with a frozen LLM, using extensive image captioning datasets for alignment1064

(Koh et al., 2023; Wu et al., 2023; Chowdhery et al., 2022). This integration can be accomplished through1065

methods such as adapter-based tuning (Alayrac et al., 2022), which fine-tunes a small portion of the model1066

to process visual inputs, or prefix tuning (Tsimpoukelli et al., 2021), where trained prefixed vectors are1067

inputted to guide the frozen LLM towards contextually relevant text outputs based on the visual data.1068

These techniques allow LLMs to maintain their linguistic prowess while gaining visual understanding1069

without full model retraining (Yin et al., 2023).1070

Retrieval augmented LLM Several prior approaches have investigated retrieval-augmented in the1071

text-only setting or image captioning tasks. Guu et al. (2020) augmented language model pretraining1072

with a latent knowledge retriever, which allows the model to retrieve and attend over documents from1073

a large corpus such as Wikipedia, used during pretraining, fine-tuning, and inference. Srinivasan et al.1074

(2022) demonstrated that retrieval augmentation of queries provides LLMs with valuable additional1075

context, enabling improved understanding. Yasunaga et al. (2023) proposed a retriever to retrieve relevant1076

multimodal documents from external memory and use the generator to make predictions for the input.1077

Yang et al. (2023a) proposed an accelerator to losslessly speed up LLM inference with references through1078

retrieval. Yang et al. (2023b) introduced a retrieval-augmented visual language model, built upon the1079

Flamingo (Alayrac et al., 2022), which supports retrieving the relevant knowledge from the external1080

database for zero and in-context few-shot image captioning. Another related work by Gui et al. (2021)1081

integrated implicit and explicit knowledge in an encoder-decoder architecture for jointly reasoning over1082

both knowledge sources during answer generation.1083

Open-domain visual entity recognition Hu et al. (2023) introduced Open-domain Visual Entity1084

Recognition (OVEN) for linking images to Wikipedia entities through text queries. Chen et al. (2023)1085

presented INFOSEEK, a Visual Question Answering dataset designed for information-seeking queries.1086

OVEN excels at entity recognition but relies on a knowledge base for entity names, while INFOSEEK1087

primarily provides factual answers. Our research aims to bridge these gaps by generating informative1088

paragraphs that offer context, enabling a deeper understanding beyond mere facts.1089

F More Statistics of the SnapNTell Dataset1090

In Table 10 and Figure 9,10,11, we show more statistics of the SnapNTell dataset.1091
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Figure 8: Examples from our SnapNTell dataset.

Table 10: Category statistics of the SnapNTell dataset.

Category Number of entities

Category

landmark 753
painting 288
sculpture 134

food 271
fruit 180

vegetable 214
mammal 434

fish 124
bird 145

reptile 722
amphibian 480

insect 210
celebrity 732

instrument 277
plant 489

electronics 269
tool 150

transportation 227
sport 395
book 645

household 221
car 208

Summary 22 7568
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Figure 9: Statistics of number of entities in each category.
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Figure 10: Statistics of all pageviews for all categories.
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Figure 11: Average pageview per entity within each category, where average pageview is defined as the sum of
pageviews/ number of entity.
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G Some Result Examples and Human Evaluation 1092

In Table 11, we showed several example result by different models, and the corresponding human 1093

evaluation results. 1094

Table 11: Examples of answers generated by different models, where Ground-truth, BLIP2, MiniGPT4, Open-
Flamingo, InstructBLIP, LLaVA, SnapNTell are assigned as M0, M1, ..., M6 in rating.

Image

Question Where is the attraction located?

Ground-truth (M0) Abel Tasman National Park is located at the northern tip of the South Island of
New Zealand between Golden Bay and Tasman Bay

BLIP-2 (M1) california

Mini-GPT4 (M2) The image shows a beach with a body of water in the foreground and trees and
mountains in the background.

Open-Flamingo (M3) It is located in New Zealand.

Instruct-BLIP (M4) beach 1

LLaVA (M5) The image is located at the beach, which is surrounded by a forest of trees.

SnapNTell (Ours)
(M6)

The image is not located in the Republic of Altai, but rather in the South Island
of New Zealand. The location is the Abel Tasman National Park, specifically
the area around Awaroa Beach.

Human Rating M0 = M6 > M3 > M1 = M2 = M5 > M4

Image

Question What date did it open to the public?

Ground-truth (M0) The Acropolis Museum was inaugurated on June 20, 2009 after many years of
planning and construction

BLIP-2 (M1) 1 January 2009

Mini-GPT4 (M2) The museum opened to the public on January 1, 2018

Open-Flamingo (M3) The museum opened to the public on December 12, 1987.

Instruct-BLIP (M4) 2007

LLaVA (M5) The museum opened to the public on April 13, 2019.

SnapNTell (Ours)
(M6)

The Acropolis Museum opened to the public on June 20, 2009.

Human Rating M0 = M6 > M1 > M2 = M3 = M4 = M5
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Image

Question What is the name of the view in this picture?

Ground-truth (M0) Lake Titicaca is a large freshwater lake located in the Andes Mountains spanning
the borders of both Bolivia and Peru

BLIP-2 (M1) a town in Peru

Mini-GPT4 (M2) It is a small town with colorful buildings and boats in the water.

Open-Flamingo (M3) This is the city of Puerto Natales in Chile.

Instruct-BLIP (M4) harbor 2

LLaVA (M5) It is a cityscape with boats in the water, located near a mountainous area.

SnapNTell (Ours)
(M6)

It’s Lake Titicaca in the Andes Mountains.

Human Rating M0 = M6 > M1 > M3 > M2 = M5 > M4

Image

Question What is the age of the building now?

Ground-truth (M0) The Chapel Bridge is over 700 years old having been built in 1333

BLIP-2 (M1) 16th century

Mini-GPT4 (M2) The age of the building in the image is not known.

Open-Flamingo (M3) The age of the bridge is over 100 years old.

Instruct-BLIP (M4) old

LLaVA (M5) The age of the building in the image is not specified. However, it is described
as an old building, which suggests that it could be quite old or historic.

SnapNTell (Ours)
(M6)

The Chapel Bridge (Chapel Bridge or Kapellbrücke) in Lucerne, Switzerland,
is a medieval wooden bridge that dates back to the 14th century. It was built
in 1333 and is one of the oldest covered bridges in Europe, which is over 700
years old now.

Human Rating M6 >= M0 > M1 = M2 = M3 = M4 = M5
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