Under review as submission to TMLR

Defense Against Multi-target Backdoor Attacks

Anonymous authors
Paper under double-blind review

Abstract

Neural Trojan/Backdoor attacks pose a significant threat to the current deep-learning-based
systems and are hard to defend against due to the lack of knowledge about triggers. In this
paper, we first introduce a variant of BadNet that uses multiple triggers to control multiple
target classes and allows these triggers to be at any location in the input image. These
features make our attack more potent and easier to be conducted in real-world scenarios.
We empirically found that many well-known Trojan defenses fail to detect and mitigate our
proposed attack. To defend against this attack, we then introduce an image-specific trigger
reverse-engineering mechanism that uses multiple images to recover a variety of potential
triggers. We then propose a detection mechanism by measuring the transferability of such
recovered triggers. A Trojan trigger will have very high transferability i.e. they make other
images also go to the same class. We study many practical advantages of our attack and then
apply our proposed defense mechanism to a variety of image datasets. The experimental
results show the superiority of our method over the state-of-the-arts.

1 Introduction

Deep learning models have been shown to be vulnerable to various kinds of attacks such as adversarial attacks
proposed by |Goodfellow et al| (2015)); Moosavi-Dezfooli et al.| (2017)); Fawzi et al.| (2018), and backdoor or
Trojan attacks as discussed in |Ji et al. (2017)); |Gu et al| (2017)); |Chen et al. (2017); |(Chan & Ongl (2019)).
Among them, Trojan attacks |Gu et al.| (2017)); [Liu et al.| (2017) are one of the hardest to defend against.
In its simplest form, in Trojan attacks, the data for training a model is poisoned by putting a small trigger
in it |Gu et al| (2017)). A model trained on such a poisoned dataset behaves expectedly with pure data but
would wrongly predict when a test data is poisoned with the trigger. A small trigger may not cause any
issue with other non-Trojan models or human users, and thus may escape detection until it is able to cause
the intended harm. Due to its stealth, detection of Trojan backdoors requires specialised testing.

Testing methods to detect Trojan attacks rely heavily on the assumed threat model. For Badnet |(Gu et al.
(2017, 12019)), with only one target class with a fixed trigger location, Neural Cleanse (NC) [Wang et al.
(2019), and GangSweep (GS) |Zhu et al.| (2020)) provide useful defense through trigger reverse engineering.
NC requires an optimization process over a large set of pure images for the trigger reverse engineering.
Moreover, both NC and GS rely on detecting a single Trojan trigger as anomalous patterns. Unsurprisingly,
they do not work in multi-target attack settings as Trojan triggers are many and thus are not anomalous.
STS [Harikumar et al.| (2021)) can defend against triggers placed anywhere, and does not involve anomaly
detection, but fails if the number of images used during trigger reverse-engineering is small, as mentioned
by the authors. STRIP |Gao et al.| (2019)), Grad-CAM |Selvaraju et al.| (2017)), Neural Attention Distillation
(NAD) [Li et al.| (2021)), and Fine-pruning (Fp) [Liu et al.| (2018); |Zhao et al.| (2020) are some of the remedial
measures that try to de-risk the use of a potential Trojan model either by trying to create a pure model out
of it (NAD, Fp) or to stop Trojan images during test time (STRIP, Grad-CAM). NAD and Fine-pruning fail
if the features of the trigger overlap with that of the pure images or if we do not have a sufficient number
of images to separate the trigger features from other features. STRIP fails if the location of the trigger
overlaps with the main features of the pure images. Hence, a proper testing method for multi-target Trojan
attack with minimal restriction on triggers and that can work in sample-poor settings is still an open problem.
We focus on fixed trigger-based Trojans because it is much more robust and feasible than the more recent

Under review as submission to TMLR

C2 via Backdoor

<1

C1

(a) (b)

Figure 1: (a) Pure model when backdoor is not present. Each image from class C1 has different perturbations
(blue arrows) to be classified as class C2. (b) When the backdoor is present it creates a shortcut subspace
(red plane). Some of the images from C1 will find perturbations that are now aligned with this backdoor
subspace (red arrows) and thus are Trojans. All the Trojan triggers (single-target setting) are similar, and
they can take any image from C1 to the C2 via the backdoor. Some images of C1 will still find image-specific
perturbations (blue arrows) because they are closer to the original subspace of C2 (gray) than the backdoor
subspace.

input-aware attacks (IA) Nguyen & Tran| (2020aib)). TA generates perturbations for each individual image
and in applications like autonomous car where a sensor makes multiple measurements of the same object at
slightly different poses, the input-aware attacks would likely fail to influence the composite decision process,
and thus, in our opinion, they do not pose a significant threat.

Our objective is to create a defense for multi-target Trojan attacks, with minimal assumptions about the
trigger, e.g., the trigger can be placed anywhere, and we may not have lots of pure images during the Trojan
model detection process. Our proposed method is built on trigger reverse engineering but designed in a
way to detect multi-target Trojan attacks. The intuition of our method is illustrated in Figure [I] through
an understanding of the classification surface in pure and Trojan models. In pure models, each image from
class C1 has different perturbations (blue arrows) to be classified as class C2 (Figure la). But in Trojan
models, due to the presence of the trigger, it creates a shortcut subspace (backdoor), shown as a red shaded
plane (e.g., z = 1) in Figure 1b. Some of the images from C1 will find perturbations that are now aligned
with this backdoor subspace (red arrows) and thus are Trojan triggers. These Trojan triggers are similar
and thus transferable because they will make any image from C1 go to C2 through the backdoor subspace.
For some images, however, these backdoor perturbations are larger than directly going from C1 to C2,
and thus their perturbation will remain image-specific (blue arrows in Figure 1b). Our method is based
on finding these transferable perturbations in a given model because their existence indicates the presence
of a backdoor. We do this in two steps: perform trigger reverse engineering on each image in the set of
pure images (Data_trigger) and then verify their transferability based on a separate set of pure images
(Data__transfer). To perform trigger reverse engineering, we solve an optimization problem to find a small
perturbation that takes an image to each of the other classes. Thus, for a 10-class problem, each image
will generate 9 triggers. Each reverse-engineered trigger is then pasted on the images from Data_ Transfer,
and the entropy of the class distribution is measured for each trigger. A Trojan trigger would cause most
of the images to go to the same class, thus resulting in a skewed class distribution, which means a small
entropy. We provide a mechanism to compute a threshold for the entropy below which a perturbation can
be termed a Trojan trigger. Our method can work with small size Data__trigger set as we would assume that
for small trigger trained Trojan models most of the images will take the shortcut subspace for crossing the
class boundary. We call our proposed attack as Multi-Target Trojan Attack (MTTA) and the associated
defense as Multi-Target Defense (MTD.

Under review as submission to TMLR

Trojan triggers

x' = argmingy) L(fgn (B(x)), t),
Vi € [ty ... ty]

Axpp=x"—B(x)

Data_transfer

Non-Trojan triggers

Figure 2: Schematic diagram of the proposed Multi-target Defense (MTD) method. Images from the
Data_ trigger is used for trigger reverse engineering. The reverse-engineered triggers are tested on
Data_ transfer to check their transferability. Triggers that produces low entropy for the class distribution are
termed Trojan triggers (top row) and the others are non-Trojan triggers (bottom row). The dotted red line
in the entropy plots separate the Trojan and non-Trojan triggers. The original trigger used is a checkerboard
pattern, thus the Trojan triggers contains a similar pattern (please zoom in to see the pattern).

To some extent our trigger reverse engineering process is similar to GangSweep, but instead of learning a GAN
|Goodfellow et al|(2014) we use individual triggers in the detection process. Because we check for Trojan in
each class individually, our method works well even when all the classes are Trojaned. We show the efficacy
of our method on four image datasets (MNIST, CIFAR-10, GTSRB, and Youtube Face). Additionally, we
also show that our proposed attack is more robust than the well-known Badnet and input-aware attacks.

2 Method

A Deep Neural Network (DNN) can be defined as a parameterized function fp : X — R® that recognizes
the class label probability of an image © € X where X ~ Py and 6 represents the learned function’s
parameter. Let us consider the probability vector for the image = by the function fp as [p;....pc], thus the
class corresponding to = will be argmax;c(y. cypi-

2.1 Threat Model

The attack setting has three key features: 1) multiple triggers, [Az;....Azx]; 2) multiple target classes,
[t1....tn]; and 3) trigger can be placed anywhere in the image. We use a square patch as trigger which when
put on the image cause misclassification. However, the attacker can use triggers of any shape as long as
it is not covering a large part of the whole image. We have different triggers associated with each target
class and each pixel of the trigger has a different color. The target classes are a subset of classes randomly
chosen from the known set of classes of the dataset i.e. N < C. The practicality of this trigger anywhere
lies in the fact that in the real world an attacker can put a sticker on any location of the image, instead of
carefully positioning it like Badnet. Mathematically, for the Trojan model the original DNN model with
model parameters 6 will be replaced by Trojan model parameters 6" denoted as for(.). The following shows
the composition method for the trigger and the images.

Definition 1 : A trigger is formally defined as a small square image patch Az of size s that is either
physically or digitally overlaid onto the input image x at a location (i*,j*) to create a modified image z .
Concretely, an image of index k of the dataset xy is altered into an image x;, by,

L a ifie i, +s],5 € 5,5+
b = 1
ACE) { b elsewhere. o

Under review as submission to TMLR

Algorithm 1 Multi Target Defense (MTD).

Inputs : z, C, fo(.), Ttest, threshold
Outputs: target_classes, Boolean trojan_model
for each class in C do
Compute optimised image, =’ with class using Eq
Compute reverse engineered trigger, Ax,.., with Eq
Compute entropy, H(Ax,.c,,) using ies: with Eq
if (H(Azyep)) < threshold then
target_ classes.append(class)
end if
end for
if length (target_ classes) > 1 then
trojan_ model = True
else
trojan_ model = False
end if

where a = (1 — a(i/,j/))xk(i,j) + a(i/,jl)Ax(i/,j/) , b= a1(i,7), (i/,j/) denote the local location on the
patch (i',j) = (i —i*,j — j*) as defined in Harikumar et al| (2021). The transparency of the trigger is
controlled by the weight, a. This parameter can be considered as a part of the trigger, and we will be
inclusively mentioning it as Az. Meanwhile, the rest of the image is kept the same. In our setting, (i*,j*)
can be at any place as long as the trigger stays fully inside the image.

2.2 Trojan Detection

We use the validation dataset of pure images for trigger reverse engineering and transferable trigger de-
tection by splitting it into two separate datasets: a) Data_ Trigger - for trigger reverse engineering, and
b) Data_ Transfer - for checking transferability of the reverse engineered triggers. For each image in the
Data_ Trigger we find a set of perturbations by setting each class as a target class. Each reverse engineered
trigger is then used on the images of Data_ Transfer to compute the class-distribution entropies. If a pertur-
bation is the Trojan trigger, then it will transfer to all the images and the class distribution would be peaky
at the target class, resulting in a small entropy value. We provide a mechanism to compute the entropy
threshold below which a perturbation is termed Trojan trigger.

2.2.1 Trigger Reverse Engineering

Given an image, x € RE"*H*xW "where Ch, H, W are the number of channels, height, and width with a
target label y, we define B(z) as the mask that only keeps inside pixels active for the optimization i.e.,

B(x) =z ® B, (2)

where © is the element-wise product and B is a binary matrix. B has a value of 1 across a region H/4 x W/4
across all Ch channels; and can be positioned anywhere, as long as it is fully within the image. Alternatively,
one can use a mask of size H x W with Ll-regularization [Park & Hastie| (2007) on B(z) (initial z') to control
the sparsity level of perturbations. We have shown some analysis based on both types of mask in the
experiments (Section . We then minimize the cross-entropy loss between the predicted label for B(x)
and the target label y:

2 = argming, £ (for(B(x)),y). 3)

We denote the new optimized value of B(z) as 2. The reverse engineered trigger which we denote as
Ay, is the difference between z and B(z):

’

AZyep = — B(x). 4)

Under review as submission to TMLR

Pure accuracy Trojan accuracy
Dataset #classes | Input Size Classifier #Target classes Pure Trigger size Trigger size
model 4x4 8x8 4x4 8x8
MNIST 10 1x28%28 2 conv, 2 fc 7 99.53 98.83 | 99.24 | 99.76 99.98
GTSRB 43 3x32x32 | PreActResl8 30 98.85 | 98.84 | 98.76 | 100.0 100.0
CIFAR-10 10 3x32x32 PreActRes18 7 94.55 93.93 | 94.39 | 100.0 100.0
YTF 1283 3x55x47 Resnet18 384 99.70 | 99.55 | 99.34 | 96.73 99.79

Table 1: Dataset, classifier and MTTA attack configuration Pure accuracy of Pure models and MTTA Trojan
Models as well as the Trojan accuracy of the MTTA Trojan models.

2.2.2 Transferability Detection

To check for transferability, we compute the entropy |Shannon| (1948)) of the class distribution for each reverse
engineered trigger when used on all the images of the Data_ transfer as follows,

C
H(Axrev) = - Zpi10g2 (pl)7 (5)

where {p;} is the class probability for the ¢-th class for using that perturbation. The entropy of a Trojan
trigger will be zero if the Trojan attack success rate is 100%. However, in real-world situation, we assume a
slightly less success rate that leads to a non-zero entropy value. The following lemma shows how to compute
an upper bound on the value of this score for the Trojan models in specific settings, which then can be used
as a threshold for detecting Trojans.

Lemma 1 : Let the accuracy of Trojan model on data with embedded Trojan triggers to be (1 — §),
where § << 1, and let there be C different classes. If Ax,e, is a Trojan trigger then the entropy computed
by Eq[3 will be bounded by
)

H(AZpey) < —(1—6) xlogy(1 — 5) — § % 1og2(ﬁ). (6)
The above lemma can easily be proved by observing that the highest entropy of class distribution in this
setting happens when (1 — 0) fraction of the images go to the target class ¢ and the rest ¢ fraction of the
images gets equally distributed in the remaining (C' — 1) classes. This entropy score is independent of the
type and size of triggers used and is universally applicable. This threshold computation has been adopted
from STS [Harikumar et al.| (2021)).

3 Experiments

We evaluate our proposed defense method on four datasets namely, MNIST, German Traffic Sign Recognition
Benchmark (GTSRB) [Stallkamp et al.| (2011), CIFAR-10 Krizhevsky| (2009)), and YouTube Face Recognition
(YTF) dataset Ferrari et al.| (2018). We use Pre-activation Resnet-18|[Nguyen & Tran| (2020a)) as the classifier
for CIFAR-10 and GTSRB and Resnet-18 |He et al.| (2016]) for YTF. We use a simple network architecture
Nguyen & Tran| (2020al) for MNIST dataset.

We train the Pure and Trojan classifiers using SGD Bottou| (2012)) with initial learning rate of 0.1 and used
a learning rate scheduler after 100, 150, and 200 epochs, weight decay of 5e-4 and the momentum of 0.9. We
use a batch size of 128 for CIFAR-10 and MNIST, and 256 for GTSRB with the number of epochs as 250.
For YTF we use the batch size of 128 and the number of epochs as 50. For Trojan models, the target and
non-target class ratio we have used is 70:30 ratio except for YTF which is 30:70 as it contains lots of classes
and we found it hard to obtain a good pure accuracy with 70:30 poisoning ratio. While training the Trojan
model, the ratio of Trojan data in a batch for MNIST and CIFAR-10 is set to 10% of the batch size 2% for
GTSRB, and 0.2% for YTF. We have done all our experiments on DGX servers with 16 gpus.

We use square triggers of sizes 4x4, and 8x8 with trigger transparency of 1.0 to train MTTA model. In
addition, we have used a 16x1 trigger to train a MTTA model to show the effectiveness of the defense in
capturing the Trojan in the presence of a long and different size trigger. We have used a mask of size H x W

Under review as submission to TMLR

v Y
B . 951 eeeidi B g o5] FTE . 95| TR e
85 e 85 S Ny 85 8 T
75 B 75 ¥ i 75 " 75 e, .
65 A Pure_IA 2651 e Pure_IA 265 365 v ; g Y
Sss S B Pure_MTTA Ss50 e Pure_MTTA Sss ; 55 v R
E 451 i e Pure_Badnet E 451 e Pure_Badnet E 45 E 45
354 i e Troj_IA 354 e Troj_IA 35 S hA Troj_IA 354 e Troj_IA
25 o, v Troj_MTTA 25 v Troj_MTTA 25 T, v Troj_MTTA 25 v Troj_MTTA
15 . ¥ Troj_Badnet 15 v Troj_Badnet 15 +... ¥ Troj_Badnet 15 v Troj_Badnet
1334567 8 510 1334567 8 510 1334567 8 510 1334567 8 510
Number of rows translated Number of rows translated Number of rows translated Number of rows translated
(a) Image up. (b) Image down. (c) Trigger up. (d) Trigger down.

Figure 3: Robustness of MTTA attack against image/trigger translations. Pure and Trojan (denoted as
Troj_) accuracies vs the number of rows translated for Badnet, Input-aware attack (IA), and MTTA. Figure
[3a] shows the accuracy when we translate the images up, Figure [3D] when we translate the images down,
Figure when we translate the triggers up, and Figure [d] when we translate the triggers down. Pure
accuracies are not affected by trigger translations, and thus not reported.

with L1-regularization to show the effectiveness of our proposed MTD. We use random pixel values to create
class-specific triggers. The purpose of random colored triggers is two-fold: a) to show that the attack is
potent even when triggers are not optimally distinct, and b) that the defense works without any structure
in the triggers. We use Adam optimizer Kingma & Bal (2015) with a constant learning rate of 0.01 for
trigger reverse engineering. The details of the datasets, network architecture, and number of target classes
for MTTA are reported in Table [I]

We term the accuracy computed on the pure data on the ground-truth labels as the pure accuracy and
the accuracy on the Trojan data corresponding to the intended target classes as the Trojan accuracy. To
demonstrate the strengths of MTTA, we also analyse two additional properties: a) Robustness - how badly
the Trojan accuracy is affected by i) image translation, to mimic the misplacement of the object detection
bounding box and ii) trigger translations to mimic the misplacement during physical overlaying of the trigger
on the image. In both the cases a part of the trigger may get lost; and b) Invisibility - how well Trojan
data can hide from the pure classifiers. If an attack is visible, then it would cause unintended side-effects
by attacking pure classifiers too and thus compromise their stealth. We believe that strong robustness and
complete invisibility are the hallmarks of an extremely potent Trojan attack.

We use six state-of-the-art defense strategies, i.e. STRIP |Gao et al.|(2019), Grad-CAM |Selvaraju et al.[(2017)),
FinePruning |Liu et al.| (2018), STS Harikumar et al.| (2021)), NAD |[Li et al.| (2021)) and Neural Cleanse [Wang
et al.[(2019) to compare the proposed defense. However, STRIP and Grad-CAM are testing time defense and
thus do not admit the same metric as Neural Cleanse, STS, and MTD. We do not compare with DeepInspect
Chen et al.| (2019)) or GangSweep |Zhu et al| (2020) as we believe that it would be unreasonable to train a
GAN (used in both) with the small number of trigger reverse-engineering that we will be performing (20
-128) for different datasets.

3.1 Effectiveness of MTTA

The accuracies of the pure and the MTTA Trojan models are reported in Table[I} The performance shows
that across various configuration choices, the proposed attack strategy succeeds in providing a high Trojan
effectiveness (~100%) whilst keeping the pure accuracy close to the pure model accuracy.

3.2 Robustness of MTTA to View Change

We use the MTTA Trojan model which was trained on CIFAR-10 with 8x8 Trojan triggers to demonstrate
the robustness of MTTA under both slight misplacement of the image window and the trigger placement.
To carry out the test, we translate the image up and down and pad the added rows (to match the original
image size) with white pixels. For trigger translation we do the same just for the trigger before compositing
it with the untranslated images.

Under review as submission to TMLR

1000 B clean
B trojan 80

0.0 02 04 06 08
entropy

0.0 0.2 0.4 0.6 0.8
entropy

— = fine_pruning (Clean) == fine »
0 100 200 300 400 500
Number of pruned neurons

(a) STRIP. (b) Grad-CAM with STRIP. (c¢) Fine pruning.

Figure 4: a) STRIP results of CIFAR-10 on pure and Trojan data on a target class (class 6), b) Grad-CAM
and STRIP, ¢) Fine pruning on MTTA CIFAR-10 8x8 Trojan model.

Pure data acc. Pure model acc. on Trojan data
(for reference) MTTA Badnet IA
4x4 8x8 4x4 8x8
94.55 94.54 | 94.54 | 94.54 | 94.54 | 93.41

Table 2: Pure accuracy for Trojan data by a Pure model on both 4x4 and 8x8 triggers of CIFAR-10 dataset.
The lowest accuracy is for the Input-aware attack.

The plots show the pure and Trojan accuracy of the Trojan models when we translate image up (Figure [3al),
translate image down (Figure [3b), translate trigger up (Figure [3d), and translate trigger down (Figure
We have chosen three attack models, the 8 x8 trigger trained CIFAR-10 MTTA model, Input-aware attack
(denoted as IA in Figure [3) and a Badnet trained with a 8x8 checkerboard trigger placed at the top-right
corner. When translating up, we see that Badnet is disproportionately affected, whilst input-aware attack
remained largely resilient. MTTA also dropped, but only slightly. When translating down, the Badnet
remained resilient as the trigger patch remained within the translated image, but the Trojan effectiveness
(Trojan accuracies) of input-aware attack dropped way more than MTTA.

When trigger is translated, the image underneath is not affected, and hence pure accuracies are not affected.
But the Trojan effectiveness drops. However, we see again that whilst MTTA remains more or less resilient,
in one case Badnet dropped catastrophically (Fig and in another case input-aware attack dropped way
more than MTTA (Figure. This shows that MTTA is a robust attack, especially when carried out in the
physical space. The set of Figures from [3a] - [Bd] shows the failure of the performance of the different existing
attacks, however our approach maintains a consistency in performance throughout different settings.

3.3 Robustness of MTTA against test-time and Trojan mitigation defense

We have tested CIFAR-10 8x8 trigger (7 target classes (class 6, 9, 0, 2, 4, 3, and 5) with 7 different triggers
for each target class) trained MTTA Trojan model against a state-of-the-art test time defense mechanisms
such as STRIP |Gao et al| (2019), Grad-CAM [Selvaraju et al. (2017), and Trojan mitigation mechanisms
such as Fine-pruning [Liu et al| (2018), and NAD |Li et al. . STRIP, Grad-CAM, Fine-pruning and
NAD are different kinds of remedial measures that try to use the infected model, without needing to ever
detect one being a Trojan model. Here we show that MTTA is resistant to all these remedial measures.

3.3.1 Test-time defense

Test time defense are useful in screening the inputs. Figure [{a] shows the entropy plots of pure images and
Trojan images for a target class (class 6) after performing STRIP. The threshold of the entropy is calculated
from the pure images by assuming that it follows a normal distribution. The 1% of the normal distribution
of the entropy of the pure images will be chosen as the threshold to separate pure and Trojan images. So,
during test time, any inputs which have an entropy value above the threshold will be considered as a pure
image. The False Positive Rate (FPR) and the False Negative Rate (FNR) based on 1% threshold is 0.02%
and 99.40% respectively. From the Figure [4a] it is evident that it is difficult to separate the pure and Trojan

Under review as submission to TMLR

Dataset Target classes

MNIST 6,9,0,24,3,5
aTsrp | 2% 26 2, 16, 32, 31, 25, 19,29, 34, 27, 40, 10, 15, 28, 1
30, 22, 13, 8, 9, 4, 42, 3,35, 36, 37, 17, 33, 41
CIFARIO0 6,9,0,2,4,3,5
YTF 30% Trojan (384 target classes) and
70% Pure (899 pure classes) among 1283 classes.

Table 3: List of target classes of MNIST, GTSRB, CIFAR10, and YTF.

images with the computed threshold (shown as a red dotted vertical line). The results show that STRIP
totally fails to defend against MTTA attacks.

Grad-CAM [Selvaraju et al.| (2017)) introduced a mechanism to provide explanations of images by utilizing
gradient information. We have used Grad-CAM to inspect an input with a trigger as shown in Figure [4b]
These explanations are extracted and later used to detect the presence of a trigger in input during test
time with STRIP |Gao et al.| (2019). We note that the combination of Grad-CAM and STRIP has not been
previously done. The heat map of the Trojan image in Figure [4b] shows that the Grad-CAM is picking up
the trigger region. However, the results vary greatly depending upon which layer is chosen for Grad-CAM
inspection. In our experiments, we have found that layer 3 is the best. We have converted the heatmap
from Grad-CAM to a mask using a threshold of 0.5. This mask will later be used to blend the Trojan image
with the set of pure images. It is clear from Figure [4b] that there is an overlap exists between the pure and
the Trojan entropy distribution. It is more successful compared to STRIP; however, it still cannot stop the
Trojan images without considerable drop in efectiveness. For example, if we allow only 1% of pure images
to be Trojan the False Negative Rate of Trojan images as pure is 30.35%.

3.3.2 Trojan mitigation

Fine Pruning [Liu et al.| (2018) results of the CIFAR-10 8x8 trigger trained MTTA model is shown in Figure
This mechanism removes the least activated neurons based on the pure images the defender has access
to. Thus, this mechanism will prune the neurons which are highly influenced by the Trojan features and
drop the Trojan accuracy of the model. It is clear that the Trojan and pure accuracy remains intact as the
pruning progresses and drops together only when the number of pruned neurons is equal to the total number
of neurons - something that is not at all desirable.

Neural Attention Distillation |Li et al.| (2021]) uses attention-based knowledge distillation to finetune a student
model from the given Trojan model. We have done experiments on results on the CIFAR-10 8x8 trigger
trained MTTA model which drops pure accuracy by ~ 5%, and Trojan accuracy by ~ 45%. Although
somewhat reduced, NAD was unable to remove the Trojan effect totally.

3.4 Invisibility of MTTA

Here, we test the invisibility of the MTTA attack against pure models. We use a pure model to check for the
pure accuracy for images under all three attacks: MTTA, Badnet, and input-aware attack. It is clear from
the Table [2] that both the Badnet and MTTA attacks are invisible to the pure model. However, there is a
slight drop (>1%) of performance for input-aware attacks. This is expected because the amount of changes
for input-aware (IA) attacks is much higher than MTTA and Badnet. Even a slight drop in pure accuracy
might be enough to make it vulnerable to early detection.

Under review as submission to TMLR

Dataset Original classes Predicted classes Intrinsic Trojan classes
1, 2, 3, 4, 8,9, 10, 13, 15, 0,1,2,3,4,5,6,7,8,9,
16, 17, 19, 22, 24, 25, 26, 10, 11,12, 13, 14, 16, 17, 18, 0. 5. 6. 7. 38. 39
GTSRB | 27, 28, 29, 30, 31, 32, 33, | 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, > T e
34, 35, 36, 29, 30, 31, 32, 33, 34,35, 36,
37, 40, 41, 42 37,38, 39, 40, 41, 42

Table 4: Original and predicted target classes of GTSRB 4 x 4 triggers trained MTTA model. The intrinsic
Trojan classes are non-target classes but are predicted as target classes.

F1-score target class detection

F1-score model detection

Dataset Dataset 4x4 8x8

NC | STS MTD
NC | MTD | NC MTD

MNIST 0.0 | 0.8 1.0
MNIST 0.0 | 0.92 | 0.0 1.0

GTSRB 0.0 1.0 1.0
GTSRB 0.0 | 0.81 | 0.0 0.77

CIFAR-10 | 0.0 | 0.8 1.0
YTE 0.0 10 1.0 CIFAR-10 | 0.0 1.0 0.0 1.0
YTF 0.0 | 0.43 | 0.0 0.46

(a) Model detection. :
(b) Target class detection.

Table 5: a) Fl-score for MTTA Trojan model detection using MTD (90% Trojan effectiveness for entropy
threshold computation), NC (anomaly detection threshold 2.0), and STS. b) Fl-score for detecting the target
class in MTTA based on our proposed defense MTD.

Figure 5: The non-target classes of GTSRB dataset which have intrinsic Trojans in them are class 0 (Speed
limit 20 km/hr), 5 (Speed limit 80 km/hr), 6 (Speed limit 80 km/hr end), 7 (Speed limit 100 km/hr), 38
(Keep right), and 39 (Keep left).

3.5 Intrinsic Trojans in non-target classes

Intrinsic Trojans are the properties of the non-target classes which are similar to the target classes of a
MTTA model. The introduction of triggers in target classes can produce intrinsic Trojan patterns in non-
target classes, mainly because of the feature similarity between the target and non-target classes. This can
result in the detection of non-target classes as target classes. For example, in GTSRB, class 0 (Speed limit
20 km/hr), 5 (Speed limit 80 km/hr), 6 (Speed limit 80 km/hr end), and 7 (Speed limit 100 km/hr), are
detected as target classes, this can be because of the Trojans in class I (Speed limit 30 km/hr), 2 (Speed limit
50 km/hr), 3 (Speed limit 60 km/hr), 4 (Speed limit 70 km/hr), and 8 (Speed limit 120 km/hr). Similarly,
class 88 (Keep right), and 39 (Keep left) are also detected as target classes due to the presence of Trojans in
class 33 (Turn right), 34 (Turn left), 35 (Only straight), 36 (Only straight or right), and 37 (Only straight
or left).

Table [3| reports the target classes (Trojan inserted classes can be called as Trojan classes) for all the
datasets MNIST, German Traffic Sign Recognition Benchmark (GTSRB) |[Stallkamp et al.| (2011]), CIFAR10
Krizhevsky| (2009), and YouTube Face Recognition (YTF) dataset [Ferrari et al. (2018]) for reference. We

Under review as submission to TMLR

(d) Original (). (e) Optimised (z’). (f) Azyey = 2’ — . (g) Original
trigger.

Figure 6: Sample reverse-engineered triggers for non-Trojan class (top row) and Trojan class (bottom row)
of a CIFAR-10 Trojan model with 4 x 4 trigger. Please zoom in to see how the non-Trojan perturbations
are optimising more towards part of the image of the target class whilst the Trojan triggers are optimising
towards the original trigger.

use the 7:3 ratio for target and non-target classes except for YTF. For YTF we use a 3:7 ratio for target
and non-target classes. Table {] reports the original and predicted target classes of GTSRB 4 x 4 trigger
trained MTTA model. The predicted target classes are computed from the entropy of the reverse-engineered
triggers. It is evident that some non-target classes are being predicted as target classes. The classes which
are originally non-target classes but have got intrinsic Trojans are also reported (third column). The images
of the set of non-target classes (class 0 (Speed limit 20 km/hr), 5 (Speed limit 80 km/hr), 6 (Speed limit 80
km/hr end), 7 (Speed limit 100 km/hr), 38 (Keep right), and 39 (Keep left) which has got intrinsic Trojans
in it are shown in Figure [

3.6 Trojan Detection by our proposed MTD

We look at both the class-wise detection and model-level detection performance. A class is declared Trojan
if any of the recovered triggers for that class produces a class-distribution entropy that is lower than the
threshold (as per Eq @ We use § = 0.1 in all our experiments. A model is flagged as Trojan when at least
one of the classes is Trojan.

3.6.1 Model Detection

We have a pure model and two Trojan models corresponding to two different trigger sizes for each dataset.
The Fl-score of the model detection by Neural Cleanse (NC), STS, and our method (MTD) is shown in Table
It is clear from the Table that NC failed to detect Trojan in the MTTA setting. It is also interesting to
note that Pure models of all the datasets are getting detected as Trojan models in NC. Though STS perfectly
detected Trojan models as Trojan it detected pure model as Trojan in the case of CIFAR-10 and MNIST. STS
has achieved an Fl-score of 1.0 for GTSRB and YTF datasets. However, our proposed detection mechanism
MTD has an Fl-score of 1.0 for all the datasets clearly separating Trojans from pure.

3.6.2 Class-wise Detection

In Table 5B we report the Fl-score of NC and MTD in detecting the target classes. We didn’t report results
from STS since it can detect at most one Trojan class. For MNIST and CIFAR-10 it was able to detect the
target classes correctly. However, for GTSRB and YTF, there has been a drop in the class-wise detection
performance. The drop happens because in those datasets (traffic signs, and faces) many of the classes
are quite similar and when among a group of similar classes if one is the target class then we observe that
many of the others also happen to be detected as target class as well. This is expected because the shortcut

10

Under review as submission to TMLR

F1-score
4x4 trigger 8x 8 trigger
1) 0.01 | 0.05 | 0.1 0.15 | 0.20 | 0.01 | 0.05 | 0.1 0.15 | 0.20
MNIST 0.92 | 0.82 | 0.82 | 0.82 | 0.82 | 1.0 1.0 0.93 | 0.93 | 0.93
GTSRB 0.28 | 0.66 | 0.81 | 0.82 | 0.82 | 0.56 | 0.61 | 0.77 | 0.82 | 0.82
CIFAR-10 | 1.0 1.0 1.0 1.0 | 0.93 | 1.0 1.0 1.0 1.0 0.93
YTF 0.02 | 0.28 | 0.43 | 0.46 | 0.45 | 0.12 | 0.37 | 0.46 | 0.45 | 0.45

Dataset

Table 6: The performance of our proposed defense MTD with respect to 6 on MTTA Trojan models trained
on different datasets.

introduced by a target class also end up serving the classes close by. As expected, NC failed badly because
it was not designed to detect multi-target attack.

The initial set of images, the optimized images, the difference between the given images and the optimised
images (Axyey), of a non-target class (class 7) and a target class (class 6) is shown in the top and bottom
rows of Figure [6] respectively for a CIFAR-10 Trojan model trained with 4 x 4 trigger. The Az, of the
non-Trojan class samples have no visible trigger patterns in it, however, for the Trojan class there are some
patterns which look like the original trigger as shown in Figure [6g]

3.7 Ablation Study

3.7.1 Performance Vs ¢

We report the Fl-score of Trojan class detection for Trojan models based on different values of . The results
show that as we increase ¢, the F1-score reduces. This is because with higher § many non-Trojan classes are
also classified as Trojan classes. We find that 6 = 0.1 provides the most stable results across all the datasets.

3.7.2 Performance with, without and full size mask (H x)

We use the 8x8 triggers trained CIFAR-10 MTTA model to perform experiments with and without a mask.
Our method won’t be able to detect the Trojan classes and hence the Trojan model for without mask.
However, it achieves a perfect Fl-score (1.0) when we use mask as shown in Figure

We use a 16 x 1 trigger-trained CIFAR-10 MTTA model to perform experiments with the size of the mask
as same size of the input image (a sample is shown in Figure [7d). We use this trigger which is quite long
to show the effectiveness of the proposed method in situation where we don’t assume any pre-assumption of
the trigger size. We have used L1-regularization to control the sparsity of the perturbations. The F1-score
for detecting the MTTA model and the target classes are shown in Figure [7b] This shows the utility of our
proposed defense method against MTTA models trained with triggers of various shapes.

3.7.3 Single target attack

We choose a Badnet trained on CIFAR-10 dataset with 4 x 4 trigger and apply our MTD. For the Badnet,
class 0 is the target class, and the rest are non-target classes. When MTD is applied, only the target class
is detected as Trojan and all the non-target classes are detected as non-Trojan. The entropy plots which are
shown in Figure|7alof the Trojan (class 0) and a randomly sampled a non-Trojan class (class 2) demonstrate
the difference between the entropy distributions.

3.7.4 Robustness against adaptive attack

What if the attacker knows about our defense mechanism? The attacker can do one of the two things: a)
can use a large trigger or b) can use a trigger that only works on a portion of the dataset such that the
transferability property is invalid. The first one is essentially coming at a cost of decreased stealth and thus
may not be feasible. The second one does not cost anything, but it requires that we can divide the data

11

Under review as submission to TMLR

] mmm Trojan model
mmw target class

Fl-score

" no mask H/4xW/4 HXW | | i = R
s mask sizes

(a) (b) (c)

Figure 7: a) Distribution of class distribution entropies computed over many recovered triggers for both
Trojan (left) and non-Trojan class (right) for single target Badnet attack. Only the Trojan class has some
triggers that resulted in entropy scores lower than the threshold (red dashed line) b) Fl-score of Trojan
model and target class detection (with 90% Trojan effectiveness) with different mask sizes, ¢) a sample of
16x1 trigger.

»

s average
5

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
brightness factor

(a) (b) (c)

Figure 8: a) Training image (cloudy day) for adaptive attack, b) same image (test image) on a sunny day
for adaptive attack, c) Adaptive Attack with different brightness factors.

distribution of a class into two or more non-overlapping sub-distributions. However, we think such a division
would be very unlikely to be achieved for real data. We have simulated the above-discussed settings using
the GTSRB dataset. We have created two sub-distributions within a selected class (STOP sign) by making
one set of images darker and the other set brighter. The darker images resemble images that are taken on
a cloudy day. The other set resembles the images that are taken on sunny day. We train the model with
only the darker set of images. This trained Trojan model was later tested on images from sunny days. The
sample image used for training and testing for the adaptive attack is shown in Figure [8a]and [8a] On average,
the Trojan attack success rate is 78% with the new distribution of images as shown in Figure So, any
potential trigger will be still transfer to a large portion of the Data_ Transfer set (78%).

4 Conclusion

In this paper, we proposed a variation of the Badnet style attack on multiple targets that can defeat six state-
of-the-art defense mechanisms and are more robust than recent attacks. We then proposed a new detection
method based on reverse-engineering triggers for individual images and then verifying if a recovered trigger
is transferable. We use a class-distribution based entropy mechanism to compute a threshold that would
separate the Trojan triggers from the rest. Our extensive experiments with four image datasets of a varying
number of classes and sizes show that we can classify pure and Trojan models with a perfect score. We tested
the efficacy of the attacks on fixed image datasets only. In physical domain our proposed attack may become
less robust due to the presence of environmental disturbances. However, that will affect all attack methods.
In relative terms, MTTA may still provide a better attack model especially when the attack is carried out
in physical space. When environmental conditions are more favorable e.g., in clear daylight, Trojan attacks
would work quite well and thus they still pose a significant threat. A future possible study is to investigate
the cases when a pure detection dataset is not available or when purity cannot be guaranteed.

12

Under review as submission to TMLR

References

Léon Bottou. Stochastic Gradient Descent Tricks. In Neural Networks: Tricks of the trade, pp. 421-436.
Springer, 2012.

Alvin Chan and Yew-Soon Ong. Poison as a Cure: Detecting & Neutralizing Variable-Sized Backdoor
Attacks in Deep Neural Networks. arXiv preprint arXiv:1911.08040, 2019. [I]

Huili Chen, Cheng Fu, Jishen Zhao, and Farinaz Koushanfar. Deeplnspect: A Black-box Trojan Detection
and Mitigation Framework for Deep Neural Networks. In Proceedings of the 28th International Joint
Conference on Artificial Intelligence., pp. 4658-4664, 2019. [3]

Xinyun Chen, Chang Liu, Bo Li, Kimberly Lu, and Dawn Song. Targeted Backdoor Attacks on Deep
Learning Systems using Data Poisoning. arXiv preprint arXiv:1712.05526, 2017.

Alhussein Fawzi, Hamza Fawzi, and Omar Fawzi. Adversarial Vulnerability for any Classifier. Advances in
Neural Information Processing Systems, 31, 2018. [I]

Claudio Ferrari, Stefano Berretti, and Alberrto Del Bimbo. Extended Youtube Faces: A Dataset for Hetero-
geneous Open-set Face Identification. In International Conference on Pattern Recognition, pp. 3408-3413.
IEEE, 2018. 3} -5

Yansong Gao, Change Xu, Derui Wang, Shiping Chen, Damith C Ranasinghe, and Surya Nepal. Strip: A
Defence Against Trojan Attacks on Deep Neural Networks. In Proceedings of the 35th Annual Computer

Security Applications Conference, pp. 113-125, 2019.

Tan Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. Generative Adversarial Nets. Advances in Neural Information Processing
Systems, 27, 2014.

Tan J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and Harnessing Adversarial Examples.
In International Conference on Learning Representations, 2015. [I]

Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg. Badnets: Identifying Vulnerabilities in the Machine
Learning Model Supply Chain. arXiv preprint arXiv:1708.06733, 2017.

Tianyu Gu, Kang Liu, Brendan Dolan-Gavitt, and Siddharth Garg. Badnets: Evaluating Backdooring
Attacks on Deep Neural Networks. IEEE Access, 7:47230-47244, 2019. [I]

H Harikumar, Vuong Le, Santu Rana, S Bhattacharya, Sunil Gupta, and Svetha Venkatesh. Scalable Back-
door Detection in Neural Networks. In Joint European Conference on Machine Learning and Knowledge
Discovery in Databases, pp. 289-304. Springer, 2021. [T} 21} 2:2:2] 3]

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual Learning for Image Recognition.
In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770-778, 2016.

Yujie Ji, Xinyang Zhang, and Ting Wang. Backdoor Attacks against Learning Systems. In IEEFE Conference
on Communications and Network Security, pp. 1-9. IEEE, 2017. [I]

Diederik P Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. In International Con-
ference on Learning Representations, 2015. [3]

Alex Krizhevsky. Learning Multiple Layers of Features from Tiny Images. Technical report, 2009.

Yige Li, Xixiang Lyu, Nodens Koren, Lingjuan Lyu, Bo Li, and Xingjun Ma. Neural Attention Distilla-
tion: Erasing Backdoor Triggers from Deep Neural Networks. In International Conference on Learning

Representations, 2021. [} B] B3] -3:2]

Kang Liu, Brendan Dolan-Gavitt, and Siddharth Garg. Fine-pruning: Defending Against Backdooring
Attacks on Deep Neural Networks. In International Symposium on Research in Attacks, Intrusions, and

Defenses, pp. 273-294. Springer, 2018. [1} 3] B-3] B-3-2]

13

Under review as submission to TMLR

Yuntao Liu, Yang Xie, and Ankur Srivastava. Neural Tojans. In International Conference on Computer
Design, pp. 45-48. IEEE, 2017.

Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, Omar Fawzi, and Pascal Frossard. Universal Adversarial
Perturbations. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.
1765-1773, 2017. [I]

Tuan Anh Nguyen and Anh Tran. Input-Aware Dynamic Backdoor Attack. Advances in Neural Information
Processing Systems, 33:3454-3464, 2020a. [1] [3]

Tuan Anh Nguyen and Anh Tuan Tran. Wanet-Imperceptible Warping-Based Backdoor Attack. In Inter-
national Conference on Learning Representations, 2020b. [I]

Mee Young Park and Trevor Hastie. L1-Regularization Path Algorithm for Generalized Linear Models.
Journal of the Royal Statistical Society: Series B (Statistical Methodology), 69(4):659-677, 2007.

Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh, and
Dhruv Batra. Grad-Cam: Visual Explanations from Deep Networks via Gradient-based Localization. In
Proceedings of the IEEE International Conference on Computer Vision, pp. 618-626, 2017.

Claude Elwood Shannon. A Mathematical Theory of Communication. The Bell System Technical Journal,

27(3):379-423, 1948,

Johannes Stallkamp, Marc Schlipsing, Jan Salmen, and Christian Igel. The German Traffic Sign Recogni-
tion Benchmark: A Multi-class Classification Competition. In International Joint Conference on Neural
Networks, pp. 1453-1460. IEEE, 2011. [3] 3.5

Bolun Wang, Yuanshun Yao, Shawn Shan, Huiying Li, Bimal Viswanath, Haitao Zheng, and Ben Y Zhao.
Neural Cleanse: Identifying and Mitigating Backdoor Attacks in Neural Networks. In IEEE Symposium
on Security and Privacy, pp. 707-723. IEEE, 2019.

Pu Zhao, Pin-Yu Chen, Payel Das, Karthikeyan Natesan Ramamurthy, and Xue Lin. Bridging Mode Con-
nectivity in Loss Landscapes and Adversarial Robustness. In International Conference on Learning Rep-
resentations, 2020. [I]

Liuwan Zhu, Rui Ning, Cong Wang, Chunsheng Xin, and Hongyi Wu. Gangsweep: Sweep out Neural
Backdoors by GAN. In Proceedings of the 28th ACM International Conference on Multimedia, pp. 3173—
3181, 2020. [1} 3]

14

