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ABSTRACT

In open-vocabulary object detection (OVDet), specifying the object of interest
at inference time opens up powerful possibilities, allowing users to define new
categories without retraining the model. These objects can be identified through
text descriptions, image examples, or a combination of both. However, visual
and textual data, while complementary, encode different data types, making direct
comparison or alignment challenging. Naive fusion approaches often lead to
misaligned predictions, particularly when one modality is ambiguous or incomplete.
In this work, we propose an approach for OVDet that aligns relational structures
across these incomparable spaces, ensuring optimal correspondence between visual
and textual inputs. This shift from feature fusion to relational alignment bridges
the gap between these spaces, enabling robust detection even when input from one
modality is weak. Our evaluation on the challenging datasets demonstrates that
our model sets a new benchmark in detecting rare objects, outperforming existing
OVDet models. Additionally, we show that our multi-modal classifiers outperform
single-modality models and even surpass fully-supervised detectors.

1 INTRODUCTION

In many real-world applications, such as e-commerce and autonomous systems, the range of objects a
system needs to detect is constantly evolving. Traditional object detection models are limited by the
fixed set of categories they were trained on, and when new products or object categories appear, these
models require manual retraining, which is both costly and time-consuming |[Lin et al.| (2014)); Zhu
et al.[(2021); Redmon et al.|(2016). Open-vocabulary object detection (OVDet) Zareian et al.| (2021);
Feng et al.[(2022)); Xu et al.|(2024);|Gu et al|(2022); Wang et al.| (2024) addresses this limitation by
enabling models to detect objects at inference time, without the need for retraining. Users can provide
inputs through textual descriptions, image examples, or a combination of both, to identify objects of
interest that were not explicitly part of the training data. This capability enables systems to adapt to
new categories or unseen objects, offering the scalability required in dynamic environments. Existing
OVDet approaches |Zareian et al.[(2021); Feng et al.| (2022) address the challenge of detecting unseen
objects by replacing the fixed classifiers in traditional detectors with text embeddings. These text
embeddings are generated from pretrained text encoder using manual prompts, such as object class
names or brief descriptions of the objects. While effective to some extent, these designs have notable
limitations |Lin et al.| (2023)); [Wu et al.| (2023)); Kaul et al.| (2023)). Lexical ambiguity: some words
have multiple meanings, and a simple text prompt cannot resolve these ambiguities. For example,
“bat” can refer to both the animal and the sports tool, making it difficult for the model to interpret
the correct meaning without additional context. Lack of visual specificity: text descriptions are often
insufficient for conveying important visual details such as color, shape, or texture, which are essential
for distinguishing between similar-looking objects. For example, describing different models of cars
or species of animals requires detailed descriptions that are difficult to capture in simple prompts,
whereas an image can provide all the necessary visual information instantly. Unknown class names:
users may not always know the correct class name or how to describe the object they want to detect.
In such cases, supplying an image example can bypass the need for an accurate verbal description.

To address these challenges, recent methods Wu et al.[(2023); Lin et al.[(2023)) propose fusing visual
and textual embeddings during inference to enhance object detection. The idea is to combine what
the model sees in the image (visual data) with what it knows from text (descriptions or class names).
However, these embeddings are learned from different modalities, each representing distinct types of
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Figure 1: Overview of our model using text, vision, and multimodal classifiers for OVDet. Vision
classifier (top-left) process K examples per category through a frozen visual encoder, generating
a refined embedding for each exemplar via a prototype discovery mechanism. These embeddings
are then aggregated to form the final vision classifier. Text classifier (bottom-left) uses descriptive
sentences generated by GPT-3, which are encoded by a text encoder. The resulting embeddings are
averaged to construct the text classifier. Instead of a simple concatenation of features, our multimodal
classifier (center) aligns both text and visual embeddings by leveraging feature-level and relational
alignment, resulting in an improved combination of modalities for object detection.

information|Ma et al.| (2024b). A naive fusion assumes that these inputs are directly comparable and
can be combined meaningfully, but in practice, the misalignment in their geometric and relational
structures leads to poor generalization or incorrect object matching, especially for unseen categories.

We propose VOCAL (Vocabulary Alignment Classifier), a sophisticated approach to integrating
visual and textual embeddings. Instead of relying on simple fusion methods, our approach aligns
both feature-level and relational structures across the two modalities. By focusing on the contextual
relationships between objects, our model finds the optimal mapping (correspondence) between visual
and textual data. For instance, when a striped animal is described in text and an image of a zebra
is provided as a visual example, our model aligns these inputs, even if one of them is unclear or
incomplete. Rather than just matching individual objects, we capture how objects relate to one another
in a broader context. This contextual understanding allows the model to infer the correct object, even
when the input data is ambiguous. To further validate the effectiveness of this approach, we construct
classifiers using either language descriptions or image examples and evaluate their impact individually.
The proposed model is illustrated in Figure[I] Through a comprehensive evaluation on the challenging
LVIS OVDet benchmark|Gupta et al.| (2019), we demonstrate several key advancements: by generating
detailed language descriptions, we develop text-based classifiers that significantly outperform other
methods that depend solely on class names. Using the image examples, we create vision-based
classifiers capable of detecting new categories. We develop multimodal classifiers that outperform
single-modality classifiers and achieve better results than existing methods.

2 RELATED WORK

Closed-Vocabulary Object Detection. Object detection has long been a cornerstone of computer
vision, with a wide range of approaches developed over the years. Key methods can be broadly
divided into one-stage and two-stage (or multi-stage) detectors. One-stage detectors, such as those
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proposed by Redmon et al.|(2016); Redmon & Farhadil (2018));Tan et al.|(2020), perform classification
and bounding box regression in a single step, often using predefined anchor boxes or directly detecting
features like corners and center points. On the other hand, two-stage detectors first generate bounding
boxes, then refine them into fixed-size region-of-interest (Rol) features for classification in the second
stage L1 et al.| (2019); [Ca1 & Vasconcelos| (2018); Zhou et al.| (2021). The use of Transformers
Vaswani et al.|(2017) in object detection, as proposed by Carion et al. (Carion et al.| (2020), marked a
significant shift, treating object detection as a set prediction problem. Despite these advancements,
traditional object detectors remain limited to recognizing only the objects present in their training
datasets, lacking the ability to generalize to unseen classes during inference.

Open-Vocabulary Object Detection (OVDet). OVDet extends traditional object detection by
allowing models to detect novel categories not present during training. To achieve this, OVDet
leverages pretrained vision-language models (VLMs) like CLIP Radford et al.|(2021)) and ALIGN
Jia et al.|(2021), which are trained on large-scale image-caption pairs to associate visual features
with natural language descriptions. For example, VILD |Gu et al.| (2022) generates embeddings
from image regions and matches them to object classes using a VLM, while RegionCLIP Zhong
et al.| (2022) employs region-text contrastive learning to recognize new objects. Other approaches
like GLIP and MDETR |Li et al.| (2022); Kamath et al.| (2021)) align image and text features early
on, framing detection as grounding textual descriptions within images. Zareian et al. Zareian
et al.| (2021) introduce OVR-CNN, which pretrains a visual encoder on image-caption pairs to
build a comprehensive vocabulary. OWL-ViT Minderer et al.| (2022) extends this by using larger
transformer models and extensive image-caption datasets. OV-DETR |Zang et al.| (2022) adapts the
DETR framework (Carion et al.|(2020) to handle open-vocabulary tasks. Detic and PromptDet|Zhou
et al.| (2022); |[Feng et al.|(2022) concurrently learn object localization and detailed vision-language
matching by using max-size proposals to assign image-level labels. Recent methods Kaul et al.
(2023); Ma et al.| (2024b)); [ Xu et al.| (2024); Ren et al.| (2023) fuse text and image embeddings,
balancing uni-modal and multi-modal representations for better performance. CoDet [Ma et al.
(2024al) aligns object regions with textual descriptions based on their co-occurrence in large-scale
image-text datasets, using contrastive learning to capture fine visual-language correlations. BARON
Wau et al.| (2023)) adopts a bag-of-regions strategy, projecting contextually related regions into a word
embedding space, aligned using contrastive learning. F-VLM Kuo et al.| (2023)) simplifies OVDet by
leveraging frozen VLMs without knowledge distillation or weakly supervised learning. VLDet|Lin
et al.[(2023) formulates region-word alignments as a set-matching problem and efficiently solves it
using the Hungarian algorithm. By replacing the classification loss with a region-word alignment
loss, VLDet improves novel category detection. DVDet Jin et al.| (2024) introduces a visual prompt
that refines region-text alignment by interacting with large language models to generate fine-grained
descriptors. Our work builds on these advances, exploring various ways to construct classifiers that
improve object detector generalization across diverse categories. Furthermore, recent works like
those by Menon et al. Menon & Vondrick] (2022), Pratt et al. [Pratt et al.[(2023), and Jin et al. Jin
et al.| (2024) employed GPT-3 [Brown et al.| (2020) to generate detailed class descriptions, enhancing
zero-shot image classification. Our model similarly leverages natural language descriptions from
large language models to enhance our textual classification for object detection.

3 METHOD

We propose VOCAL (Vocabulary Alignment Classifier) to detect and classify objects in images,
including unseen categories. First, we provide an overview of OVDet (Section followed by the
construction of classifiers using language models (Section[3.2) and visual examples (Section [3.3).
Finally, we explain the integration of these classifiers into a unified multimodal system in Section

3.1 PRELIMINARY

In open-vocabulary object detection (OVDet), the input is an image I € R3*#*W and the model
produces two outputs: i) classification, which assigns a category label c¢; € Cinr to each detected
object j, where Cinr represents the categories defined during inference; ii) localization, which predicts
the bounding box coordinates b; € R* indicating the precise position of each object within the image.
Following Zareian et al.|(2021)); Zhou et al.|(2022) our model is trained with two types of datasets.
Specifically, a detection dataset Dpgr contains annotated images with bounding boxes and class
labels covering a set of base categories Cpgr. Image classification dataset Dyyg consists of images
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with class labels but no bounding boxes, covering a vocabulary Cpyg. The categories within Dpgr
are known as base categories, whereas those appearing in Cinr are identified as novel categories.
Most OVDet models follow a multi-stage detection framework [Zareian et al.|(2021)), comprising a
visual encoder YN, a region proposal network 1rp, and an open-vocabulary classification module
1cLs. The process can be summarized as

{5, b53550 = {¥w(f5), YeLs © Ppro (f5) 1554
{fJ}jw:1 = 1Pror © ¥pG © Yen([)

The image I is encoded into a set feature representation using an image encoder 1gN. The proposal
generator ¥pg then identifies regions in the image that are likely to contain objects, and the pooling
module ¢rp processes these proposals, generating feature vectors { f;}22,, each corresponding to an

j=1s
object. The bounding box module ¥y, then predicts object positions {b; }2Z,, while the classification
M

j=1
module, consisting of a projection layer 1y, and classifier ¥crs, assigns category labels {c; J=1-
In traditional closed-vocabulary settings, all components are trained jointly on Dpgr. In OVDet,
however, the classifiers 1/crs are generated at inference time from external sources, such as pre-trained
text encoders, enabling the model to adapt to novel categories Cing that differ from the training

categories in Cpgr. The following sections will explain how these classifiers are constructed.

ey

3.2 TEXT-BASED CLASSIFIER WITH WEIGHTED CONTEXTUAL EMBEDDINGS

Traditional OVDet approaches, such as Detic Zhou et al.[(2022)) and ViLD |Gu et al.|(2022), rely on
straightforward text-based classifiers generated from category names using simple prompts like “a
photo of a(n) class name”, which are then encoded using the CLIP text encoder. These methods often
suffer from ambiguous representations, especially for categories with multiple meanings [Wu et al.
(2023)). To address this, we enhance the generation of text-based classifiers by using a large language
model like GPT-3 to generate multiple context-specific descriptions for each category {c; }Y; (IV
is the number of classes). We prompt the LLM with questions like “What does a [¢;] look like?”
or “Describe the visual characteristics of a [¢;],” generating five descriptions that capture different
aspects of the object. However, not all descriptive elements are equally relevant to the visual features
of the category. To address this, we introduce a weighted approach that focuses on selecting the most
important elements from these descriptions. Given a set of M descriptions {s$}}, for a class c,
for each descriptive element e;;, we calculate its relevance/alignment with the respective category’s
embedding. This is done by calculating the similarity between the element’s embedding ( ferp-r(es;))
and the category’s embedding ( fcLip-r(c)). We then select the most relevant element e, . ; from
each s7, which is the element with the highest similarity score e, ., ; = arg max; s7;. This ensures
that only the most relevant descriptive element is used to construct the classifier (the algorithm is
given in[2]). The final classifier is constructed by averaging the embeddings of these relevant elements

M
1
WigxT = i Z feupr(€50z.) 2
i=1

During training, these text-based classifiers are pre-computed for categories of interest in Cpgr
and Cyg, and are kept frozen throughout the training process. At inference, classifiers for unseen
categories Cnr are generated similarly, allowing the model to adapt to new categories effectively.

3.3 VISION-BASED CLASSIFIER WITH PROTOTYPE DISCOVERY

In addition to text-based classifiers, visual examples provide an alternative way to identify objects
of interest at inference time. Visual examples are particularly effective for capturing fine-grained
details that may be difficult to express in text, such as the complex wing patterns of a butterfly. For a
given category c, let {z¢}X | represent K visual exemplars. These images are processed through a
pre-trained CLIP visual encoder, resulting in embeddings EY = ferpm(x§), fori =1,2,..., K. To
capture the relationships between the image exemplars, we calculate a similarity matrix S € RE>*K
where its element s;; represents the similarity between the i-th and j-th image embeddings. A
two-layer MLP (denoted as 1)) takes the similarity matrix S as input and generates a probability
vector p € R, assigning probabilities to each exemplar, indicating how representative each one is
for the category. Using these vectors, the prototype embedding f, for the category c is computed

K
p = softmax(y(S))  f5 = sz‘ - B G
i=1

4
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This prototype embedding focuses on the most representative features of the exemplars. To ensure
consistency in the feature representation, each exemplar embedding E is refined by blending it with
the prototype embedding f;. The new embedding is calculated as

Ef =X B+ (1= f;, “
where, X controls the balance between the original embedding and the prototype, which set to 0.5 by

default. Once the new embeddings are generated, they are passed through a multi-layer Transformer
with a [CLS] token, and the output of the [CLS] token serves as the final vision classifier

Wiy = Transformer({Ef}fil; tors)- 5)

To enhance classifier discrimination, we employ contrastive learning with the InfoNCE loss, which
pulls embeddings of the same category closer while pushing apart those of different categories.
The model is trained offline using visual exemplars from large-scale datasets like ImageNet-21k
Ridnik et al.[(2021)), which contains 11M images across 11,000 categories. During training, the CLIP
visual encoder remains frozen to maintain consistency and ensure generalization to unseen categories
Wu et al.| (2023)); Ma et al.| (2024b)). Once the model has been trained, the vision-based classifiers
generated from the new embeddings are integrated into the overall OVDet model, and used during
both training and testing phases, CPET U C™6 /C™NF Qur algorithm is described in Appendix

3.4 MULTI-MODAL CLASSIFIER GENERATION

We extend the above methods by constructing classifiers that leverage the complementary strengths
of text and image data. Text provides rich semantic relationships (e.g., dog and puppy), while
images capture detailed spatial and appearance-based patterns. Directly combining these modalities
is challenging due to differing feature representations Ma et al.[(2024b). To address this, we propose
an alignment mechanism that bridges the gap between text-based and vision-based classifiers. Given
the visual embeddings { £¢}/<, and from the image classifier and the text embeddings {s§ }Jle
from the text classifier, we align these modalities in two steps: feature-level alignment and relational
alignment. Let A;; be a degree of correspondence between the i-th visual embedding {E‘f}fi ; and
j-th text embedding {sj J]\i 1- The correspondence matrix A € RM*X helps minimize the distance
between corresponding embeddings, Zf\il Zfil Aijlls§ — E¢||. While feature-level alignment
focuses on matching individual text and image embeddings, relational alignment is essential to
ensure that the relationships between objects are preserved across both modalities. For example, text
embeddings of lion and tiger are naturally close due to their semantic similarity, and this relationship
should also be reflected in the visual embedding space. This alignment ensures that when the
model encounters a novel category like a lion during inference, it can recognize it by relating it to a
similar known category like tiger. To achieve this, we compute the pairwise relationships (distances)
between text embeddings, represented as Ryxr € RM*M and visual embeddings, represented as

Rivg € RE*K and align them by minimizing the difference between distances across the two
. 2 . . . . .

domains 3=, . (Rixrij — Rivig,mn) Afm A, Next, we combine this relational alignment with

feature-level alignment (matching individual embeddings) into a single objective function

M K
a- Z ZA;”S; - Ef”2 +(1—-a)- Z (R”(l:"XT,ij - RICMG,mn)QAimAjn’ (6)

i=1 j=1 ©,3,m,mn

where, a € [0, 1] controls the balance between aligning individual features and maintaining relation-
ships between embeddings. Once aligned, the final multi-modal classifier is constructed

M K
Wy = Z Z A?,j (5; + Ezc) . @)

i=1 j=1

This approach creates a robust and generalizable classifier, capable of identifying unseen categories
in OVDet settings. Our algorithm is described in Appendix [3] Figure[I]presents a comprehensive
pipeline highlighting our three classifiers.

4 EXPERIMENTS

Benchmark setup. We conduct our experiments using the LVIS benchmark |Gupta et al.|(2019)),
which contains annotations for 1203 classes across 100,000 images from MS-COCO. The dataset
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Figure 2: Qualitative examples of our model detecting rare categories in the LVIS validation set using
text-based classifier. The classifier is generated from detailed descriptions provided by GPT-3.

provides bounding box and mask annotations for object instances, which are categorized as rare,
common, and frequent, based on their occurrence in the dataset. To train our open-vocabulary
object detector, we follow a setup similar to[Zhou et al.| (2022)); |Gu et al.| (2022); [Xu et al (2024).
Specifically, we use a filtered version of LVIS, where annotations for rare categories are removed, but
the images containing these rare objects are kept. This reduced dataset, referred to as LVIS-filtered
and denoted as Dpgr, allows the model to learn from common and frequent categories while being
evaluated on rare categories. Additionally, for image-level data (Dpvg), a subset of ImageNet-21K
is used that overlap with the LVIS vocabulary. This subset is referred to as IN-LVIS,
covering 997 of the 1203 classes in the LVIS dataset. The model’s performance is evaluated on the
LVIS validation set (LVIS-val), which includes all categories, but rare classes are treated as novel
categories since no annotations for them were provided during training. We also conduct transfer
experiments to show the generalization ability of our approach, evaluating our LVIS-trained model
on the COCO and Objects365 validation sets. We report two
evaluation metrics, Novel-AP and mAP. These metrics show that our model not only performs well
on unseen categories (Novel AP) but also maintains strong overall performance (mAP).

Implementation details. For open-vocabulary LVIS experiments, we adopt CenterNet2
with ResNet50 backbone (2016), pre-trained on ImageNet-21k-PRidnik et al.[(2021).
The learning rate is warmed up to 2e-4 over the first 1000 iterations. The model is trained on the LVIS-
filtered Dpgr, for 90,000 iterations using Adam optimizer with batch size 64. When incorporating
additional image-labeled data from ImageNet-21K (IN-LVIS), we perform joint training on both
Dpgr and Dyyg, with a sampling ratio of 1:4. The batch size for this joint training is set to 64 for
Dpgr and 256 for Dyyg, with image resolutions of 640 x 640 for Dpgr and 320 x 320 for Dyvg.
We also set & = 0.5, and A = 0.5. All experiments are run on 4 NVIDIA 32GB GPUs.

Constructing textual and visual classifiers. For the textual classifier (Algorithm , we use GPT-3
from OpenAl to generate five descriptions for each class in the LVIS dataset. These descriptions
are processed through the CLIP ViT-B/32 text encoder [Radford et al| (2021)), and the final token
embedding from each input text is used to construct the classifier. To construct the vision-based
classifier, we leverage CLIP ViT-B/32 as the visual encoder, pre-trained on ImageNet-21K-P [Ridnik|
(2021), a curated subset of ImageNet-21K containing around 11 million images from 11,000
classes. For each category, we use K visual exemplars {z$}% ,, which are processed by the CLIP
ViT-B/32 to produce visual embeddings. We apply adaptive image augmentation (AIA), augmenting
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Table 1: Open-vocabulary detection performance on LVIS. Rows for our models are highlighted
in green and yellow, representing results from text, vision, and multimodal classifiers. Models are
divided into those trained only on LVIS-filtered (top) and those incorporating additional images
(bottom). Due to computing limitations, we compare to models which use ResNet-50 He et al.| (2016)
or similar architectures.

Method Detector backbone  Extradata Novel AP AP

Detic|Zhou et al.| (2022) RNet-50 - 16.5 30.0
PromptDet |Feng et al.|(2022) RNet-50 - 19.0 21.4
OVDETR |Zang et al.|(2022) DETR+RNet-50 - 17.4 26.6
DetPro|Du et al.| (2022) RNet-50 - 19.8 25.9
ViLD Gu et al.[(2022) RNet-50 - 16.6 25.5
MMOVD |Kaul et al.[(2023) RNet-50 - 19.3 30.6
BARON Wau et al.|(2023) RNet-50 - 19.2 26.5
F-VLM Kuo et al.|(2023) RNet-50 - 18.6 24.2
DVDet \Jin et al.|(2024) RNet-50 - 21.3 28.1
VLDet|Lin et al.| (2023) RNet-50 - 21.7 30.1
OVMR Ma et al.|(2024b) RNet-50 - 21.2 30.0
OVMR- T Ma et al.| (2024b) RNet-50 - 19.0 29.6
VOCAL-T RNet-50 - 21.7 30.3
VOCAL-V RNet-50 - 21.2 29.7
VOCAL- MM RNet-50 - 22.8 30.8
OWL-ViT Minderer et al.[(2022) ViT-B/32 LiT 19.7 23.5
RegionCLIP Zhong et al.| (2022) RNet-50 CC3M 17.3 28.3
PromptDet |Feng et al.|(2022) RNet-50 LAION 21.4 25.3
Detic|Zhou et al.| (2022) RNet-50 IN-LVIS 24.6 32.5
POMP Ren et al.| (2023 ViT-B/32 IN-LVIS 26.8 36.2
CoDet|Ma et al.| (2024a) RNet-50 CC3M 234 30.7
VOCAL-T RNet-50 IN-LVIS 26.9 33.0
VOCAL-V RNet-50 IN-LVIS 25.1 31.6
VOCAL- MM RNet-50 IN-LVIS 28.5 33.7
Fully-Supervised |Zhou et al.| (2022) RNet-50 - 25.5 31.1

each exemplar five times before passing them through the CLIP encoder, resulting in 5/ augmented
visual embeddings per class. These augmented embeddings are refined using our prototype discovery
method (as described in [3.3)), which ensures that the most representative features are aggregated
into the final classifier. The refined embeddings are then processed through 4 transformer blocks,
each with an output dimension of 512, and an MLP with a dimension of 2048. These blocks
aggregate the refined embeddings into a cohesive classifier representation. The vision-based classifier
is trained using visual exemplars from the ImageNet-21K-P. LVIS-filtered data is used to train the
open-vocabulary object detector, and IN-LVIS serves as an additional source of weak supervision.
Figure 2| shows an example of our model detecting the rare categories from the LVIS validation set.

Multi-modal classifier generation. To construct the multi-modal classifier, we combine both
text-based and vision-based classifiers to capture complementary information from both modalities.
Text embeddings are generated from category descriptions, while vision embeddings are generated
from augmented visual exemplars. These embeddings are aligned at both the feature level and the
relational level, and the final multi-modal classifier is built by aggregating the aligned embeddings
from both modalities, allowing the model to effectively handle open-vocabulary object detection
tasks. Additionally, for comparison, we test the effectiveness of our visual classifier by combining
our text-based classifiers with the baseline vision-based classifiers, as described in the ablation study.

4.1 MAIN RESULTS

Open-Vocabulary LVIS benchmark. Table [I] shows the performance comparisons on the open-
vocabulary LVIS object detection using Novel AP (for rare categories) and AP (for overall per-
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Table 2: Cross-datasets transfer detection from LVIS to COCO and Objects365.

Method Target Dataset: COCO  Target Dataset: Objects365
AP  AP-50 AP-75 AP  AP-50 AP-75
DetPro Du et al.| (2022)) 349 53.8 374 12.1 18.8 12.9
ViLD |Gu et al.{(2022) 36.6 55.6 39.8 11.8 18.2 12.6
Detic Zhou et al.[(2022) 38.8 56.0 41.9 13.9 19.7 15.0
F-VLM Kuo et al.|(2023)  32.5 53.1 34.6 11.9 19.2 12.6
BARON |Wu et al.[(2023)  36.6 55.7 39.1 13.6 21.0 14.5
CoDet|Ma et al.|(2024a) 39.1 57.0 42.3 14.2 20.5 15.3
VOCAL (Ours) 40.3 57.9 43.5 15.0 20.7 16.1

Table 3: Ablation study evaluating the performance of our vision-based, text-based, and multimodal
classifiers on the LVIS OVDet benchmark. Vision-based classifiers ( red rows) are compared to a
baseline that uses a simple mean of visual embeddings (V-Mean), demonstrating the effectiveness
of our prototypical embedding strategy. Multimodal classifiers ( orange rows) outperform both
vision-only and text-only classifiers ( gray row), emphasizing the advantage of combining visual
and textual information for detecting rare and unseen categories. The left half of the table shows
results from models trained on LVIS-filtered, while the right half incorporates extra image data
(LVIS-filtered + IN-LVIS), illustrating how additional data further enhances performance.

Model V-CLS V-Mean T-CLS Extra|APr |AP ||Model V-CLS V-Mean T-CLS Extra|APr | AP

X-A v 21.2129.7| X-F v v |25.1|31.6
X-B v 17.6 (285 | X-G v v 227|312
X-C v 21.7|30.3 || X-H v v’ 126.933.0
X-D v v 2281308 || X-I v v v |285|33.7
X-E v v 21.6 (395 X-J v v v 1279|332

formance). In OVDet, Novel AP is critical, as it measures the model’s ability to detect unseen
objects. In the LVIS-filtered setup, where no additional image data is used, our multi-modal model
(VOCAL-MM) achieves a Novel AP of 22.8, establishing new benchmarks in detecting unseen and
rare categories. This marks a +1.1 improvement over VLDet (21.7) and +1.6 over OVMR (21.2). Our
text-based (VOCAL-T) and vision-based (VOCAL-V) classifiers also demonstrate strong results with
Novel APs of 21.7 and 21.2, respectively. When incorporating additional image-level data, our results
are even more striking, with a 28.5 Novel AP, outperforming Detic by +16% and PromptDet by
+33% in Novel AP. The standout performance of our models, especially in detecting rare and unseen
categories is attributed to the seamless integration of textual and visual information. The alignment
between two complementary modalities at both the feature level and relational level ensures that the
classifier captures not just the visual appearance of objects, but also their semantic context, leading to
superior performance in open-vocabulary detection tasks. Some works like RO-ViT and DITO use
larger backbones (e.g., Swin-B/L |Liu et al.| (2021)), but due to limited computational resources, we
focus on comparisons with models using ResNet-50 |He et al.| (2016) backbones or similar.

Transfer to other datasets. We evaluate our model’s ability to generalize across different domains
using cross-dataset transfer detection, where the detector trained on LVIS is applied to COCO and
Objects365 without fine-tuning. As shown in Table [2] among the open-vocabulary models, our
approach achieves the strongest transfer performance, an AP of 40.3/15.0 on COCO/Objects365,
outperforming CoDet by +1.2/+0.8, and BARON by +3.7/+1.4. These results highlight the robustness
and generalization ability of our model in handling object detection tasks across diverse domains.

Ablation study. In OVDet methods, the focus is often on text-based classifiers, with vision-based
classifiers receiving less attention. To address this gap, we compare our proposed vision-based
classifier, as detailed in Section [3.3] to a baseline classifier that uses a straightforward mean of
visual embeddings generated by the CLIP visual encoder (% Zfil E¥), and does not incorporate our
prototype discovery strategy. The red rows in Table[3|highlight the comparison between our complete
vision classifier and its baseline. When trained without additional image data (left-half of the table),
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Figure 3: Vision-based classifiers using different numbers of image exemplars per class (K =
1,2,...,10), on the LVIS OVOD. Optimal performance is achieved with K = 5.

our refined vision classifier (X-A) achieves a +3.6 APr improvement for rare categories over the
baseline model (X-B). When extra data is used (IN-LVIS), our model (X-F) further outperforms
its baseline counterpart (X-G) by +2.4 APr. These results demonstrate the effectiveness of our
prototypical embedding strategy in constructing effective vision-based classifiers, as opposed to
simply averaging the visual exemplars. All results were based on K = 5. Similarly, the orange rows
in Table|3|show the performance of our multimodal (MM) classifiers. Without additional image-level
data, the MM classifier (X-D) achieves a +1.2 APr gain over its baseline (X-E). When using additional
data, we see a smaller improvement of +0.6. We also note that for constructing our MM classifier, as
detailed in , we used the description embeddings {s; }ﬁl Interestingly, when comparing the use
of raw text embeddings to the refined e, the raw descriptions result in a +0.8 gain with extra data,
whereas e, 4, provides a +0.6 gain in scenarios without additional data. Lastly, by comparing the
text-based classifier (gray row) with the multimodal classifiers (yellow rows), we observe that in all
cases, adding visual examples improves performance. This clearly demonstrates that the combination
of visual and text embeddings in multimodal classifiers significantly boosts performance, particularly
in detecting unseen categories.

5 USING IMAGE EXEMPLARS

This section presents the results of different numbers of K image exemplars per class used for
our visual classifiers. Figure [3]illustrates the detection results on the LVIS OVOD benchmark for
rare categories with K = {1,2,...10}. We compare our method, which incorporates prototype
embeddings (green dashed line), against a simple vector mean of the embeddings (blue line) for
the K exemplars. Across all values of K, our classifier consistently improves performance on rare
classes, demonstrating its ability to effectively extract and combine the most relevant information
from the exemplars. The optimal performance is achieved with K = 5, and even for K = 1, our
model provides a +2.5 APr boost over the baseline.

6 CONCLUSION

In this paper, we address the challenges of open-vocabulary object detection (OVDet) by focusing on
the integration of text and image data to generate robust classifiers. Unlike other methods that rely on
simple class names, our approach leverages large language models to generate rich, context-aware
descriptions for each object category. We further enhance the detection capabilities by incorporating
visual exemplars, enabling our model to capture fine-grained visual details that are often difficult to
express in text. By aligning the feature and relational structures between text and image embeddings,
our method achieves a more accurate and flexible detection framework. The resulting classifiers
outperform existing approaches in identifying unseen categories, pushing the boundaries of OVDet.
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A APPENDIX

The proposed algorithms for vision, text, and multimodal classifiers.

Algorithm 1 Text-based Classifier with Weighted Contextual Embeddings

Require: C': Set of categories {cz}fvzl feuw-r: Pre-trained CLIP text encoder, M: Number of descriptions per
category, LLM: Large language model (e.g., GPT-3)
Ensure: wipyr: Text-based classifier for category ¢
1: Step 1: Generate Descriptions
2: for each category c do
3: {s¢}22, < LLM(Prompts for category ¢)
4: end for
5: Step 2: Compute Element Similarities
6
7
8
9

: for each category c do
for each description s{ do
for each descriptive element e;; in s§ do

Eicj — fCLIP—T(eij) >
10: Sfj — COS(EiCj7 fc]_Ip.T(C)) >
11: end for
12: €mag,; ¥ argmax; s;; >
13: end for
14: Step 3: Construct Classifier
15: WTpXT ﬁ Zle fCLIP—T(efnaz,i) >
16: end for
17: return wigxr >
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Algorithm 2 Vision-based Classifier with Prototype Discovery

Require: {xf}iK:l: Visual exemplars for category ¢, fcuip-m: Pre-trained (Frozen) CLIP visual encoder,, 1):
Two-layer MLP, S: Similarity matrix, tcrs: [CLS] token, A
Ensure: wyyg: Vision-based classifier for category c
1: Step 1: Embedding Extraction
2: for each exemplar x§ do
3 Ef + feupam () >
4: end for
5: Step 2: Similarity Matrix Calculation
6: S[i,j] < cos(Ef, E5) >
7: Step 3: Prototype Discovery
8: p « softmax(¢(.5)) >
9: fgeZiK:Ipi-Ef >
10: Step 4: Adaptive Refinement
11: for each exemplar embedding E; do

120 Ef e XN -Ef+(1—=N)-fS >
13: end for

14: Step 5: Vision Classifier

15: wiyg < Transfonner({E‘f}le, ters) >

16: Step 6: Contrastive Learning
17: Apply contrastive learning with InfoNCE loss to improve discrimination:
18: return wiyg

Algorithm 3 Multi-modal Classifier Generation with Feature and Relational Alignment

Require: {Ef}filc Visual embeddings, {sg}f‘il Text embeddings, o

Ensure: wyyr: Multi-modal classifier for category ¢

: Step 1: Feature-level Alignment

: Compute the correspondence matrix A;; > B4
: Step 2: Relational Alignment

: Compute Rrxr and Rivc > B4
: Minimize the difference between text and image embeddings >

AW N =

: Step 3: Joint Objective

: Combine feature and relational alignment > [
: Step 4: Construct Multi-modal Classifier

: Combine aligned text and visual embeddings > |
: return Wy

S0 0o

—
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