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ABSTRACT

In open-vocabulary object detection (OVDet), specifying the object of interest
at inference time opens up powerful possibilities, allowing users to define new
categories without retraining the model. These objects can be identified through
text descriptions, image examples, or a combination of both. However, visual
and textual data, while complementary, encode different data types, making direct
comparison or alignment challenging. Naive fusion approaches often lead to
misaligned predictions, particularly when one modality is ambiguous or incomplete.
In this work, we propose an approach for OVDet that aligns relational structures
across these incomparable spaces, ensuring optimal correspondence between visual
and textual inputs. This shift from feature fusion to relational alignment bridges
the gap between these spaces, enabling robust detection even when input from one
modality is weak. Our evaluation on the challenging datasets demonstrates that
our model sets a new benchmark in detecting rare objects, outperforming existing
OVDet models. Additionally, we show that our multi-modal classifiers outperform
single-modality models and even surpass fully-supervised detectors.

1 INTRODUCTION

In many real-world applications, such as e-commerce and autonomous systems, the range of objects a
system needs to detect is constantly evolving. Traditional object detection models are limited by the
fixed set of categories they were trained on, and when new products or object categories appear, these
models require manual retraining, which is both costly and time-consuming Lin et al. (2014); Zhu
et al. (2021); Redmon et al. (2016). Open-vocabulary object detection (OVDet) Zareian et al. (2021);
Feng et al. (2022); Xu et al. (2024); Gu et al. (2022); Wang et al. (2024) addresses this limitation by
enabling models to detect objects at inference time, without the need for retraining. Users can provide
inputs through textual descriptions, image examples, or a combination of both, to identify objects of
interest that were not explicitly part of the training data. This capability enables systems to adapt to
new categories or unseen objects, offering the scalability required in dynamic environments. Existing
OVDet approaches Zareian et al. (2021); Feng et al. (2022) address the challenge of detecting unseen
objects by replacing the fixed classifiers in traditional detectors with text embeddings. These text
embeddings are generated from pretrained text encoder using manual prompts, such as object class
names or brief descriptions of the objects. While effective to some extent, these designs have notable
limitations Lin et al. (2023); Wu et al. (2023); Kaul et al. (2023). Lexical ambiguity: some words
have multiple meanings, and a simple text prompt cannot resolve these ambiguities. For example,
“bat” can refer to both the animal and the sports tool, making it difficult for the model to interpret
the correct meaning without additional context. Lack of visual specificity: text descriptions are often
insufficient for conveying important visual details such as color, shape, or texture, which are essential
for distinguishing between similar-looking objects. For example, describing different models of cars
or species of animals requires detailed descriptions that are difficult to capture in simple prompts,
whereas an image can provide all the necessary visual information instantly. Unknown class names:
users may not always know the correct class name or how to describe the object they want to detect.
In such cases, supplying an image example can bypass the need for an accurate verbal description.

To address these challenges, recent methods Wu et al. (2023); Lin et al. (2023) propose fusing visual
and textual embeddings during inference to enhance object detection. The idea is to combine what
the model sees in the image (visual data) with what it knows from text (descriptions or class names).
However, these embeddings are learned from different modalities, each representing distinct types of
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Figure 1: Overview of our model using text, vision, and multimodal classifiers for OVDet. Vision
classifier (top-left) process K examples per category through a frozen visual encoder, generating
a refined embedding for each exemplar via a prototype discovery mechanism. These embeddings
are then aggregated to form the final vision classifier. Text classifier (bottom-left) uses descriptive
sentences generated by GPT-3, which are encoded by a text encoder. The resulting embeddings are
averaged to construct the text classifier. Instead of a simple concatenation of features, our multimodal
classifier (center) aligns both text and visual embeddings by leveraging feature-level and relational
alignment, resulting in an improved combination of modalities for object detection.

information Ma et al. (2024b). A naive fusion assumes that these inputs are directly comparable and
can be combined meaningfully, but in practice, the misalignment in their geometric and relational
structures leads to poor generalization or incorrect object matching, especially for unseen categories.

We propose VOCAL (Vocabulary Alignment Classifier), a sophisticated approach to integrating
visual and textual embeddings. Instead of relying on simple fusion methods, our approach aligns
both feature-level and relational structures across the two modalities. By focusing on the contextual
relationships between objects, our model finds the optimal mapping (correspondence) between visual
and textual data. For instance, when a striped animal is described in text and an image of a zebra
is provided as a visual example, our model aligns these inputs, even if one of them is unclear or
incomplete. Rather than just matching individual objects, we capture how objects relate to one another
in a broader context. This contextual understanding allows the model to infer the correct object, even
when the input data is ambiguous. To further validate the effectiveness of this approach, we construct
classifiers using either language descriptions or image examples and evaluate their impact individually.
The proposed model is illustrated in Figure 1. Through a comprehensive evaluation on the challenging
LVIS OVDet benchmark Gupta et al. (2019), we demonstrate several key advancements: by generating
detailed language descriptions, we develop text-based classifiers that significantly outperform other
methods that depend solely on class names. Using the image examples, we create vision-based
classifiers capable of detecting new categories. We develop multimodal classifiers that outperform
single-modality classifiers and achieve better results than existing methods.

2 RELATED WORK

Closed-Vocabulary Object Detection. Object detection has long been a cornerstone of computer
vision, with a wide range of approaches developed over the years. Key methods can be broadly
divided into one-stage and two-stage (or multi-stage) detectors. One-stage detectors, such as those
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proposed by Redmon et al. (2016); Redmon & Farhadi (2018); Tan et al. (2020), perform classification
and bounding box regression in a single step, often using predefined anchor boxes or directly detecting
features like corners and center points. On the other hand, two-stage detectors first generate bounding
boxes, then refine them into fixed-size region-of-interest (RoI) features for classification in the second
stage Li et al. (2019); Cai & Vasconcelos (2018); Zhou et al. (2021). The use of Transformers
Vaswani et al. (2017) in object detection, as proposed by Carion et al. Carion et al. (2020), marked a
significant shift, treating object detection as a set prediction problem. Despite these advancements,
traditional object detectors remain limited to recognizing only the objects present in their training
datasets, lacking the ability to generalize to unseen classes during inference.

Open-Vocabulary Object Detection (OVDet). OVDet extends traditional object detection by
allowing models to detect novel categories not present during training. To achieve this, OVDet
leverages pretrained vision-language models (VLMs) like CLIP Radford et al. (2021) and ALIGN
Jia et al. (2021), which are trained on large-scale image-caption pairs to associate visual features
with natural language descriptions. For example, ViLD Gu et al. (2022) generates embeddings
from image regions and matches them to object classes using a VLM, while RegionCLIP Zhong
et al. (2022) employs region-text contrastive learning to recognize new objects. Other approaches
like GLIP and MDETR Li et al. (2022); Kamath et al. (2021) align image and text features early
on, framing detection as grounding textual descriptions within images. Zareian et al. Zareian
et al. (2021) introduce OVR-CNN, which pretrains a visual encoder on image-caption pairs to
build a comprehensive vocabulary. OWL-ViT Minderer et al. (2022) extends this by using larger
transformer models and extensive image-caption datasets. OV-DETR Zang et al. (2022) adapts the
DETR framework Carion et al. (2020) to handle open-vocabulary tasks. Detic and PromptDet Zhou
et al. (2022); Feng et al. (2022) concurrently learn object localization and detailed vision-language
matching by using max-size proposals to assign image-level labels. Recent methods Kaul et al.
(2023); Ma et al. (2024b); Xu et al. (2024); Ren et al. (2023) fuse text and image embeddings,
balancing uni-modal and multi-modal representations for better performance. CoDet Ma et al.
(2024a) aligns object regions with textual descriptions based on their co-occurrence in large-scale
image-text datasets, using contrastive learning to capture fine visual-language correlations. BARON
Wu et al. (2023) adopts a bag-of-regions strategy, projecting contextually related regions into a word
embedding space, aligned using contrastive learning. F-VLM Kuo et al. (2023) simplifies OVDet by
leveraging frozen VLMs without knowledge distillation or weakly supervised learning. VLDet Lin
et al. (2023) formulates region-word alignments as a set-matching problem and efficiently solves it
using the Hungarian algorithm. By replacing the classification loss with a region-word alignment
loss, VLDet improves novel category detection. DVDet Jin et al. (2024) introduces a visual prompt
that refines region-text alignment by interacting with large language models to generate fine-grained
descriptors. Our work builds on these advances, exploring various ways to construct classifiers that
improve object detector generalization across diverse categories. Furthermore, recent works like
those by Menon et al. Menon & Vondrick (2022), Pratt et al. Pratt et al. (2023), and Jin et al. Jin
et al. (2024) employed GPT-3 Brown et al. (2020) to generate detailed class descriptions, enhancing
zero-shot image classification. Our model similarly leverages natural language descriptions from
large language models to enhance our textual classification for object detection.

3 METHOD

We propose VOCAL (Vocabulary Alignment Classifier) to detect and classify objects in images,
including unseen categories. First, we provide an overview of OVDet (Section 3.1) followed by the
construction of classifiers using language models (Section 3.2) and visual examples (Section 3.3).
Finally, we explain the integration of these classifiers into a unified multimodal system in Section 3.4.

3.1 PRELIMINARY

In open-vocabulary object detection (OVDet), the input is an image I ∈ R3×H×W , and the model
produces two outputs: i) classification, which assigns a category label cj ∈ CINF to each detected
object j, whereCINF represents the categories defined during inference; ii) localization, which predicts
the bounding box coordinates bj ∈ R4 indicating the precise position of each object within the image.
Following Zareian et al. (2021); Zhou et al. (2022) our model is trained with two types of datasets.
Specifically, a detection dataset DDET contains annotated images with bounding boxes and class
labels covering a set of base categories CDET. Image classification dataset DIMG consists of images
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with class labels but no bounding boxes, covering a vocabulary CIMG. The categories within DDET
are known as base categories, whereas those appearing in CINF are identified as novel categories.
Most OVDet models follow a multi-stage detection framework Zareian et al. (2021), comprising a
visual encoder ψEN, a region proposal network ψRP, and an open-vocabulary classification module
ψCLS. The process can be summarized as

{cj , bj}Mj=1 = {ψbb(fj), ψCLS ◦ ψpro(fj)}Mj=1

{fj}Mj=1 = ψROI ◦ ψPG ◦ ψEN(I)
(1)

The image I is encoded into a set feature representation using an image encoder ψEN. The proposal
generator ψPG then identifies regions in the image that are likely to contain objects, and the pooling
module ψRP processes these proposals, generating feature vectors {fj}Mj=1, each corresponding to an
object. The bounding box module ψbb then predicts object positions {bj}Mj=1, while the classification
module, consisting of a projection layer ψpro and classifier ψCLS, assigns category labels {cj}Mj=1.
In traditional closed-vocabulary settings, all components are trained jointly on DDET. In OVDet,
however, the classifiers ψCLS are generated at inference time from external sources, such as pre-trained
text encoders, enabling the model to adapt to novel categories CINF that differ from the training
categories in CDET. The following sections will explain how these classifiers are constructed.

3.2 TEXT-BASED CLASSIFIER WITH WEIGHTED CONTEXTUAL EMBEDDINGS

Traditional OVDet approaches, such as Detic Zhou et al. (2022) and ViLD Gu et al. (2022), rely on
straightforward text-based classifiers generated from category names using simple prompts like “a
photo of a(n) class name”, which are then encoded using the CLIP text encoder. These methods often
suffer from ambiguous representations, especially for categories with multiple meanings Wu et al.
(2023). To address this, we enhance the generation of text-based classifiers by using a large language
model like GPT-3 to generate multiple context-specific descriptions for each category {ci}Ni=1 (N
is the number of classes). We prompt the LLM with questions like “What does a [ci] look like?”
or “Describe the visual characteristics of a [ci],” generating five descriptions that capture different
aspects of the object. However, not all descriptive elements are equally relevant to the visual features
of the category. To address this, we introduce a weighted approach that focuses on selecting the most
important elements from these descriptions. Given a set of M descriptions {sci}Mi=1 for a class c,
for each descriptive element eij , we calculate its relevance/alignment with the respective category’s
embedding. This is done by calculating the similarity between the element’s embedding (fCLIP-T(eij))
and the category’s embedding (fCLIP-T(c)). We then select the most relevant element ecmax,i from
each sci , which is the element with the highest similarity score ecmax,i = argmaxj s

c
ij . This ensures

that only the most relevant descriptive element is used to construct the classifier (the algorithm is
given in 2.). The final classifier is constructed by averaging the embeddings of these relevant elements

wc
TEXT =

1

M

M∑
i=1

fCLIP-T(e
c
max,i) (2)

During training, these text-based classifiers are pre-computed for categories of interest in CDET
and CIMG, and are kept frozen throughout the training process. At inference, classifiers for unseen
categories CINF are generated similarly, allowing the model to adapt to new categories effectively.

3.3 VISION-BASED CLASSIFIER WITH PROTOTYPE DISCOVERY

In addition to text-based classifiers, visual examples provide an alternative way to identify objects
of interest at inference time. Visual examples are particularly effective for capturing fine-grained
details that may be difficult to express in text, such as the complex wing patterns of a butterfly. For a
given category c, let {xci}Ki=1 represent K visual exemplars. These images are processed through a
pre-trained CLIP visual encoder, resulting in embeddings Ec

i = fCLIP-IM(xci ), for i = 1, 2, . . . ,K. To
capture the relationships between the image exemplars, we calculate a similarity matrix S ∈ RK×K ,
where its element sij represents the similarity between the i-th and j-th image embeddings. A
two-layer MLP (denoted as ψ) takes the similarity matrix S as input and generates a probability
vector p ∈ RK , assigning probabilities to each exemplar, indicating how representative each one is
for the category. Using these vectors, the prototype embedding f cp for the category c is computed

p = softmax(ψ(S)) f cp =

K∑
i=1

pi · Ec
i (3)
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This prototype embedding focuses on the most representative features of the exemplars. To ensure
consistency in the feature representation, each exemplar embedding Ec

i is refined by blending it with
the prototype embedding f cp . The new embedding is calculated as

Êc
i = λ · Ec

i + (1− λ) · f cp , (4)
where, λ controls the balance between the original embedding and the prototype, which set to 0.5 by
default. Once the new embeddings are generated, they are passed through a multi-layer Transformer
with a [CLS] token, and the output of the [CLS] token serves as the final vision classifier

wc
IMG = Transformer({Êc

i }Ki=1; tCLS). (5)
To enhance classifier discrimination, we employ contrastive learning with the InfoNCE loss, which
pulls embeddings of the same category closer while pushing apart those of different categories.
The model is trained offline using visual exemplars from large-scale datasets like ImageNet-21k
Ridnik et al. (2021), which contains 11M images across 11,000 categories. During training, the CLIP
visual encoder remains frozen to maintain consistency and ensure generalization to unseen categories
Wu et al. (2023); Ma et al. (2024b). Once the model has been trained, the vision-based classifiers
generated from the new embeddings are integrated into the overall OVDet model, and used during
both training and testing phases, CDET ∪ C IMG/C INF. Our algorithm is described in Appendix 1.

3.4 MULTI-MODAL CLASSIFIER GENERATION

We extend the above methods by constructing classifiers that leverage the complementary strengths
of text and image data. Text provides rich semantic relationships (e.g., dog and puppy), while
images capture detailed spatial and appearance-based patterns. Directly combining these modalities
is challenging due to differing feature representations Ma et al. (2024b). To address this, we propose
an alignment mechanism that bridges the gap between text-based and vision-based classifiers. Given
the visual embeddings {Êc

i }Ki=1 and from the image classifier and the text embeddings {scj}Mj=1
from the text classifier, we align these modalities in two steps: feature-level alignment and relational
alignment. Let Aij be a degree of correspondence between the i-th visual embedding {Êc

i }Ki=1 and
j-th text embedding {scj}Mj=1. The correspondence matrix A ∈ RM×K helps minimize the distance
between corresponding embeddings,

∑M
i=1

∑K
j=1Aij∥scj − Êc

i ∥. While feature-level alignment
focuses on matching individual text and image embeddings, relational alignment is essential to
ensure that the relationships between objects are preserved across both modalities. For example, text
embeddings of lion and tiger are naturally close due to their semantic similarity, and this relationship
should also be reflected in the visual embedding space. This alignment ensures that when the
model encounters a novel category like a lion during inference, it can recognize it by relating it to a
similar known category like tiger. To achieve this, we compute the pairwise relationships (distances)
between text embeddings, represented as RTXT ∈ RM×M , and visual embeddings, represented as
RIMG ∈ RK×K , and align them by minimizing the difference between distances across the two
domains

∑
i,j,m,n

(
Rc

TXT,ij −Rc
IMG,mn

)2
Ac

imA
c
jn. Next, we combine this relational alignment with

feature-level alignment (matching individual embeddings) into a single objective function

α ·
M∑
i=1

K∑
j=1

Ac
ij∥scj − Êc

i ∥2 + (1− α) ·
∑

i,j,m,n

(Rc
TXT,ij −Rc

IMG,mn)
2AimAjn, (6)

where, α ∈ [0, 1] controls the balance between aligning individual features and maintaining relation-
ships between embeddings. Once aligned, the final multi-modal classifier is constructed

wc
MULTI =

M∑
i=1

K∑
j=1

Ac
ij

(
scj + Êc

i

)
. (7)

This approach creates a robust and generalizable classifier, capable of identifying unseen categories
in OVDet settings. Our algorithm is described in Appendix 3. Figure 1 presents a comprehensive
pipeline highlighting our three classifiers.

4 EXPERIMENTS

Benchmark setup. We conduct our experiments using the LVIS benchmark Gupta et al. (2019),
which contains annotations for 1203 classes across 100,000 images from MS-COCO. The dataset
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Figure 2: Qualitative examples of our model detecting rare categories in the LVIS validation set using
text-based classifier. The classifier is generated from detailed descriptions provided by GPT-3.

provides bounding box and mask annotations for object instances, which are categorized as rare,
common, and frequent, based on their occurrence in the dataset. To train our open-vocabulary
object detector, we follow a setup similar to Zhou et al. (2022); Gu et al. (2022); Xu et al. (2024).
Specifically, we use a filtered version of LVIS, where annotations for rare categories are removed, but
the images containing these rare objects are kept. This reduced dataset, referred to as LVIS-filtered
and denoted as DDET, allows the model to learn from common and frequent categories while being
evaluated on rare categories. Additionally, for image-level data (DIMG), a subset of ImageNet-21K
Deng et al. (2009) is used that overlap with the LVIS vocabulary. This subset is referred to as IN-LVIS,
covering 997 of the 1203 classes in the LVIS dataset. The model’s performance is evaluated on the
LVIS validation set (LVIS-val), which includes all categories, but rare classes are treated as novel
categories since no annotations for them were provided during training. We also conduct transfer
experiments to show the generalization ability of our approach, evaluating our LVIS-trained model
on the COCO Lin et al. (2014) and Objects365 Shao et al. (2019) validation sets. We report two
evaluation metrics, Novel-AP and mAP. These metrics show that our model not only performs well
on unseen categories (Novel AP) but also maintains strong overall performance (mAP).

Implementation details. For open-vocabulary LVIS experiments, we adopt CenterNet2 Zhou et al.
(2021) with ResNet50 backbone He et al. (2016), pre-trained on ImageNet-21k-P Ridnik et al. (2021).
The learning rate is warmed up to 2e-4 over the first 1000 iterations. The model is trained on the LVIS-
filtered DDET, for 90,000 iterations using Adam optimizer with batch size 64. When incorporating
additional image-labeled data from ImageNet-21K (IN-LVIS), we perform joint training on both
DDET and DIMG, with a sampling ratio of 1:4. The batch size for this joint training is set to 64 for
DDET and 256 for DIMG, with image resolutions of 640 × 640 for DDET and 320 × 320 for DIMG.
We also set α = 0.5, and λ = 0.5. All experiments are run on 4 NVIDIA 32GB GPUs.

Constructing textual and visual classifiers. For the textual classifier (Algorithm 1), we use GPT-3
from OpenAI to generate five descriptions for each class in the LVIS dataset. These descriptions
are processed through the CLIP ViT-B/32 text encoder Radford et al. (2021), and the final token
embedding from each input text is used to construct the classifier. To construct the vision-based
classifier, we leverage CLIP ViT-B/32 as the visual encoder, pre-trained on ImageNet-21K-P Ridnik
et al. (2021), a curated subset of ImageNet-21K containing around 11 million images from 11,000
classes. For each category, we use K visual exemplars {xci}Ki=1, which are processed by the CLIP
ViT-B/32 to produce visual embeddings. We apply adaptive image augmentation (AIA), augmenting
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Table 1: Open-vocabulary detection performance on LVIS. Rows for our models are highlighted
in green and yellow, representing results from text, vision, and multimodal classifiers. Models are
divided into those trained only on LVIS-filtered (top) and those incorporating additional images
(bottom). Due to computing limitations, we compare to models which use ResNet-50 He et al. (2016)
or similar architectures.

Method Detector backbone Extra data Novel AP AP

Detic Zhou et al. (2022) RNet-50 - 16.5 30.0
PromptDet Feng et al. (2022) RNet-50 - 19.0 21.4
OVDETR Zang et al. (2022) DETR+RNet-50 - 17.4 26.6
DetPro Du et al. (2022) RNet-50 - 19.8 25.9
ViLD Gu et al. (2022) RNet-50 - 16.6 25.5
MMOVD Kaul et al. (2023) RNet-50 - 19.3 30.6
BARON Wu et al. (2023) RNet-50 - 19.2 26.5
F-VLM Kuo et al. (2023) RNet-50 - 18.6 24.2
DVDet Jin et al. (2024) RNet-50 - 21.3 28.1
VLDet Lin et al. (2023) RNet-50 - 21.7 30.1
OVMR Ma et al. (2024b) RNet-50 - 21.2 30.0
OVMR- T Ma et al. (2024b) RNet-50 - 19.0 29.6

VOCAL- T RNet-50 - 21.7 30.3
VOCAL- V RNet-50 - 21.2 29.7
VOCAL- MM RNet-50 - 22.8 30.8

OWL-ViT Minderer et al. (2022) ViT-B/32 LiT 19.7 23.5
RegionCLIP Zhong et al. (2022) RNet-50 CC3M 17.3 28.3
PromptDet Feng et al. (2022) RNet-50 LAION 21.4 25.3
Detic Zhou et al. (2022) RNet-50 IN-LVIS 24.6 32.5
POMP Ren et al. (2023) ViT-B/32 IN-LVIS 26.8 36.2
CoDet Ma et al. (2024a) RNet-50 CC3M 23.4 30.7

VOCAL- T RNet-50 IN-LVIS 26.9 33.0
VOCAL- V RNet-50 IN-LVIS 25.1 31.6
VOCAL- MM RNet-50 IN-LVIS 28.5 33.7

Fully-Supervised Zhou et al. (2022) RNet-50 - 25.5 31.1

each exemplar five times before passing them through the CLIP encoder, resulting in 5K augmented
visual embeddings per class. These augmented embeddings are refined using our prototype discovery
method (as described in 3.3), which ensures that the most representative features are aggregated
into the final classifier. The refined embeddings are then processed through 4 transformer blocks,
each with an output dimension of 512, and an MLP with a dimension of 2048. These blocks
aggregate the refined embeddings into a cohesive classifier representation. The vision-based classifier
is trained using visual exemplars from the ImageNet-21K-P. LVIS-filtered data is used to train the
open-vocabulary object detector, and IN-LVIS serves as an additional source of weak supervision.
Figure 2 shows an example of our model detecting the rare categories from the LVIS validation set.

Multi-modal classifier generation. To construct the multi-modal classifier, we combine both
text-based and vision-based classifiers to capture complementary information from both modalities.
Text embeddings are generated from category descriptions, while vision embeddings are generated
from augmented visual exemplars. These embeddings are aligned at both the feature level and the
relational level, and the final multi-modal classifier is built by aggregating the aligned embeddings
from both modalities, allowing the model to effectively handle open-vocabulary object detection
tasks. Additionally, for comparison, we test the effectiveness of our visual classifier by combining
our text-based classifiers with the baseline vision-based classifiers, as described in the ablation study.

4.1 MAIN RESULTS

Open-Vocabulary LVIS benchmark. Table 1 shows the performance comparisons on the open-
vocabulary LVIS object detection using Novel AP (for rare categories) and AP (for overall per-
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Table 2: Cross-datasets transfer detection from LVIS to COCO and Objects365.
Method Target Dataset: COCO Target Dataset: Objects365

AP AP-50 AP-75 AP AP-50 AP-75

DetPro Du et al. (2022) 34.9 53.8 37.4 12.1 18.8 12.9
ViLD Gu et al. (2022) 36.6 55.6 39.8 11.8 18.2 12.6
Detic Zhou et al. (2022) 38.8 56.0 41.9 13.9 19.7 15.0
F-VLM Kuo et al. (2023) 32.5 53.1 34.6 11.9 19.2 12.6
BARON Wu et al. (2023) 36.6 55.7 39.1 13.6 21.0 14.5
CoDet Ma et al. (2024a) 39.1 57.0 42.3 14.2 20.5 15.3

VOCAl (Ours) 40.3 57.9 43.5 15.0 20.7 16.1

Table 3: Ablation study evaluating the performance of our vision-based, text-based, and multimodal
classifiers on the LVIS OVDet benchmark. Vision-based classifiers ( red rows) are compared to a
baseline that uses a simple mean of visual embeddings (V-Mean), demonstrating the effectiveness
of our prototypical embedding strategy. Multimodal classifiers ( orange rows) outperform both
vision-only and text-only classifiers ( gray row), emphasizing the advantage of combining visual
and textual information for detecting rare and unseen categories. The left half of the table shows
results from models trained on LVIS-filtered, while the right half incorporates extra image data
(LVIS-filtered + IN-LVIS), illustrating how additional data further enhances performance.

Model V-CLS V-Mean T-CLS Extra APr AP Model V-CLS V-Mean T-CLS Extra APr AP

X-A ✓ 21.2 29.7 X-F ✓ ✓ 25.1 31.6
X-B ✓ 17.6 28.5 X-G ✓ ✓ 22.7 31.2
X-C ✓ 21.7 30.3 X-H ✓ ✓ 26.9 33.0
X-D ✓ ✓ 22.8 30.8 X-I ✓ ✓ ✓ 28.5 33.7
X-E ✓ ✓ 21.6 39.5 X-J ✓ ✓ ✓ 27.9 33.2

formance). In OVDet, Novel AP is critical, as it measures the model’s ability to detect unseen
objects. In the LVIS-filtered setup, where no additional image data is used, our multi-modal model
(VOCAL-MM) achieves a Novel AP of 22.8, establishing new benchmarks in detecting unseen and
rare categories. This marks a +1.1 improvement over VLDet (21.7) and +1.6 over OVMR (21.2). Our
text-based (VOCAL-T) and vision-based (VOCAL-V) classifiers also demonstrate strong results with
Novel APs of 21.7 and 21.2, respectively. When incorporating additional image-level data, our results
are even more striking, with a 28.5 Novel AP, outperforming Detic by +16% and PromptDet by
+33% in Novel AP. The standout performance of our models, especially in detecting rare and unseen
categories is attributed to the seamless integration of textual and visual information. The alignment
between two complementary modalities at both the feature level and relational level ensures that the
classifier captures not just the visual appearance of objects, but also their semantic context, leading to
superior performance in open-vocabulary detection tasks. Some works like RO-ViT and DITO use
larger backbones (e.g., Swin-B/L Liu et al. (2021)), but due to limited computational resources, we
focus on comparisons with models using ResNet-50 He et al. (2016) backbones or similar.

Transfer to other datasets. We evaluate our model’s ability to generalize across different domains
using cross-dataset transfer detection, where the detector trained on LVIS is applied to COCO and
Objects365 without fine-tuning. As shown in Table 2, among the open-vocabulary models, our
approach achieves the strongest transfer performance, an AP of 40.3/15.0 on COCO/Objects365,
outperforming CoDet by +1.2/+0.8, and BARON by +3.7/+1.4. These results highlight the robustness
and generalization ability of our model in handling object detection tasks across diverse domains.

Ablation study. In OVDet methods, the focus is often on text-based classifiers, with vision-based
classifiers receiving less attention. To address this gap, we compare our proposed vision-based
classifier, as detailed in Section 3.3, to a baseline classifier that uses a straightforward mean of
visual embeddings generated by the CLIP visual encoder ( 1

K

∑K
i=1E

c
i ), and does not incorporate our

prototype discovery strategy. The red rows in Table 3 highlight the comparison between our complete
vision classifier and its baseline. When trained without additional image data (left-half of the table),
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Figure 3: Vision-based classifiers using different numbers of image exemplars per class (K =
1, 2, . . . , 10), on the LVIS OVOD. Optimal performance is achieved with K = 5.

our refined vision classifier (X-A) achieves a +3.6 APr improvement for rare categories over the
baseline model (X-B). When extra data is used (IN-LVIS), our model (X-F) further outperforms
its baseline counterpart (X-G) by +2.4 APr. These results demonstrate the effectiveness of our
prototypical embedding strategy in constructing effective vision-based classifiers, as opposed to
simply averaging the visual exemplars. All results were based on K = 5. Similarly, the orange rows
in Table 3 show the performance of our multimodal (MM) classifiers. Without additional image-level
data, the MM classifier (X-D) achieves a +1.2 APr gain over its baseline (X-E). When using additional
data, we see a smaller improvement of +0.6. We also note that for constructing our MM classifier, as
detailed in (3.4), we used the description embeddings {sj}Mj=1. Interestingly, when comparing the use
of raw text embeddings to the refined emax, the raw descriptions result in a +0.8 gain with extra data,
whereas emax provides a +0.6 gain in scenarios without additional data. Lastly, by comparing the
text-based classifier (gray row) with the multimodal classifiers (yellow rows), we observe that in all
cases, adding visual examples improves performance. This clearly demonstrates that the combination
of visual and text embeddings in multimodal classifiers significantly boosts performance, particularly
in detecting unseen categories.

5 USING IMAGE EXEMPLARS

This section presents the results of different numbers of K image exemplars per class used for
our visual classifiers. Figure 3 illustrates the detection results on the LVIS OVOD benchmark for
rare categories with K = {1, 2, . . . 10}. We compare our method, which incorporates prototype
embeddings (green dashed line), against a simple vector mean of the embeddings (blue line) for
the K exemplars. Across all values of K, our classifier consistently improves performance on rare
classes, demonstrating its ability to effectively extract and combine the most relevant information
from the exemplars. The optimal performance is achieved with K = 5, and even for K = 1, our
model provides a +2.5 APr boost over the baseline.

6 CONCLUSION

In this paper, we address the challenges of open-vocabulary object detection (OVDet) by focusing on
the integration of text and image data to generate robust classifiers. Unlike other methods that rely on
simple class names, our approach leverages large language models to generate rich, context-aware
descriptions for each object category. We further enhance the detection capabilities by incorporating
visual exemplars, enabling our model to capture fine-grained visual details that are often difficult to
express in text. By aligning the feature and relational structures between text and image embeddings,
our method achieves a more accurate and flexible detection framework. The resulting classifiers
outperform existing approaches in identifying unseen categories, pushing the boundaries of OVDet.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

REFERENCES

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Zhaowei Cai and Nuno Vasconcelos. Cascade r-cnn: Delving into high quality object detection. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 6154–6162,
2018.

Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and Sergey
Zagoruyko. End-to-end object detection with transformers. In European conference on computer
vision, pp. 213–229. Springer, 2020.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

Yu Du, Fangyun Wei, Zihe Zhang, Miaojing Shi, Yue Gao, and Guoqi Li. Learning to prompt for
open-vocabulary object detection with vision-language model. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 14084–14093, 2022.

Chengjian Feng, Yujie Zhong, Zequn Jie, Xiangxiang Chu, Haibing Ren, Xiaolin Wei, Weidi Xie,
and Lin Ma. Promptdet: Towards open-vocabulary detection using uncurated images. In European
Conference on Computer Vision, pp. 701–717. Springer, 2022.

Xiuye Gu, Tsung-Yi Lin, Weicheng Kuo, and Yin Cui. Open-vocabulary object detection via vision
and language knowledge distillation. 2022.

Agrim Gupta, Piotr Dollar, and Ross Girshick. Lvis: A dataset for large vocabulary instance
segmentation. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 5356–5364, 2019.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc Le, Yun-Hsuan Sung,
Zhen Li, and Tom Duerig. Scaling up visual and vision-language representation learning with
noisy text supervision. In International conference on machine learning, pp. 4904–4916. PMLR,
2021.

Sheng Jin, Xueying Jiang, Jiaxing Huang, Lewei Lu, and Shijian Lu. Llms meet vlms: Boost open
vocabulary object detection with fine-grained descriptors. ICLR, 2024.

Aishwarya Kamath, Mannat Singh, Yann LeCun, Gabriel Synnaeve, Ishan Misra, and Nicolas Carion.
Mdetr-modulated detection for end-to-end multi-modal understanding. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pp. 1780–1790, 2021.

Prannay Kaul, Weidi Xie, and Andrew Zisserman. Multi-modal classifiers for open-vocabulary object
detection. In International Conference on Machine Learning, pp. 15946–15969. PMLR, 2023.

Weicheng Kuo, Yin Cui, Xiuye Gu, AJ Piergiovanni, and Anelia Angelova. F-vlm: Open-vocabulary
object detection upon frozen vision and language models. ICLR, 2023.

Liunian Harold Li, Pengchuan Zhang, Haotian Zhang, Jianwei Yang, Chunyuan Li, Yiwu Zhong,
Lijuan Wang, Lu Yuan, Lei Zhang, Jenq-Neng Hwang, et al. Grounded language-image pre-training.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
10965–10975, 2022.

Yanghao Li, Yuntao Chen, Naiyan Wang, and Zhaoxiang Zhang. Scale-aware trident networks for
object detection. In Proceedings of the IEEE/CVF international conference on computer vision,
pp. 6054–6063, 2019.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Chuang Lin, Peize Sun, Yi Jiang, Ping Luo, Lizhen Qu, Gholamreza Haffari, Zehuan Yuan, and
Jianfei Cai. Learning object-language alignments for open-vocabulary object detection. ICLR,
2023.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In Computer Vision–
ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings,
Part V 13, pp. 740–755. Springer, 2014.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the
IEEE/CVF international conference on computer vision, pp. 10012–10022, 2021.

Chuofan Ma, Yi Jiang, Xin Wen, Zehuan Yuan, and Xiaojuan Qi. Codet: Co-occurrence guided
region-word alignment for open-vocabulary object detection. Advances in neural information
processing systems, 36, 2024a.

Zehong Ma, Shiliang Zhang, Longhui Wei, and Qi Tian. Ovmr: Open-vocabulary recognition with
multi-modal references. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 16571–16581, 2024b.

Sachit Menon and Carl Vondrick. Visual classification via description from large language models.
arXiv preprint arXiv:2210.07183, 2022.

Matthias Minderer, Alexey Gritsenko, Austin Stone, Maxim Neumann, Dirk Weissenborn, Alexey
Dosovitskiy, Aravindh Mahendran, Anurag Arnab, Mostafa Dehghani, Zhuoran Shen, et al. Simple
open-vocabulary object detection. In European Conference on Computer Vision, pp. 728–755.
Springer, 2022.

Sarah Pratt, Ian Covert, Rosanne Liu, and Ali Farhadi. What does a platypus look like? gener-
ating customized prompts for zero-shot image classification. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 15691–15701, 2023.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748–8763. PMLR, 2021.

Joseph Redmon and Ali Farhadi. Yolov3: An incremental improvement. arXiv preprint
arXiv:1804.02767, 2018.

Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only look once: Unified,
real-time object detection. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 779–788, 2016.

Shuhuai Ren, Aston Zhang, Yi Zhu, Shuai Zhang, Shuai Zheng, Mu Li, Alexander J Smola, and
Xu Sun. Prompt pre-training with twenty-thousand classes for open-vocabulary visual recognition.
Advances in Neural Information Processing Systems, 36:12569–12588, 2023.

Tal Ridnik, Emanuel Ben-Baruch, Asaf Noy, and Lihi Zelnik-Manor. Imagenet-21k pretraining for
the masses. arXiv preprint arXiv:2104.10972, 2021.

Shuai Shao, Zeming Li, Tianyuan Zhang, Chao Peng, Gang Yu, Xiangyu Zhang, Jing Li, and Jian
Sun. Objects365: A large-scale, high-quality dataset for object detection. In Proceedings of the
IEEE/CVF international conference on computer vision, pp. 8430–8439, 2019.

Mingxing Tan, Ruoming Pang, and Quoc V Le. Efficientdet: Scalable and efficient object detection.
In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp.
10781–10790, 2020.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Zhao Wang, Aoxue Li, Fengwei Zhou, Zhenguo Li, and Qi Dou. Open-vocabulary object de-
tection with meta prompt representation and instance contrastive optimization. arXiv preprint
arXiv:2403.09433, 2024.

Size Wu, Wenwei Zhang, Sheng Jin, Wentao Liu, and Chen Change Loy. Aligning bag of regions
for open-vocabulary object detection. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 15254–15264, 2023.

Yifan Xu, Mengdan Zhang, Chaoyou Fu, Peixian Chen, Xiaoshan Yang, Ke Li, and Changsheng Xu.
Multi-modal queried object detection in the wild. Advances in Neural Information Processing
Systems, 36, 2024.

Yuhang Zang, Wei Li, Kaiyang Zhou, Chen Huang, and Chen Change Loy. Open-vocabulary detr
with conditional matching. In European Conference on Computer Vision, pp. 106–122. Springer,
2022.

Alireza Zareian, Kevin Dela Rosa, Derek Hao Hu, and Shih-Fu Chang. Open-vocabulary object
detection using captions. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 14393–14402, 2021.

Yiwu Zhong, Jianwei Yang, Pengchuan Zhang, Chunyuan Li, Noel Codella, Liunian Harold Li,
Luowei Zhou, Xiyang Dai, Lu Yuan, Yin Li, et al. Regionclip: Region-based language-image pre-
training. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 16793–16803, 2022.
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A APPENDIX

The proposed algorithms for vision, text, and multimodal classifiers.

Algorithm 1 Text-based Classifier with Weighted Contextual Embeddings
Require: C: Set of categories {ci}Ni=1, fCLIP-T: Pre-trained CLIP text encoder, M : Number of descriptions per

category, LLM: Large language model (e.g., GPT-3)
Ensure: wc

TEXT: Text-based classifier for category c
1: Step 1: Generate Descriptions
2: for each category c do
3: {sci}Mi=1 ← LLM(Prompts for category c) ▷ Generate M descriptions per category using the LLM
4: end for
5: Step 2: Compute Element Similarities
6: for each category c do
7: for each description sci do
8: for each descriptive element eij in sci do
9: Ec

ij ← fCLIP-T(eij) ▷ Compute embedding of descriptive element
10: scij ← cos(Ec

ij , fCLIP-T(c)) ▷ Calculate similarity between element and category embedding
11: end for
12: ecmax,i ← argmaxj s

c
ij ▷ Select the most relevant element with highest similarity score

13: end for
14: Step 3: Construct Classifier
15: wc

TEXT ← 1
M

∑M
i=1 fCLIP-T(e

c
max,i) ▷ Average embeddings of the most relevant elements

16: end for
17: return wc

TEXT ▷ Return the text-based classifier for each category
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Algorithm 2 Vision-based Classifier with Prototype Discovery
Require: {xci}Ki=1: Visual exemplars for category c, fCLIP-IM: Pre-trained (Frozen) CLIP visual encoder,, ψ:

Two-layer MLP, S: Similarity matrix, tCLS: [CLS] token, λ
Ensure: wc

IMG: Vision-based classifier for category c
1: Step 1: Embedding Extraction
2: for each exemplar xci do
3: Ec

i ← fCLIP-IM(x
c
i ) ▷ Extract embeddings

4: end for
5: Step 2: Similarity Matrix Calculation
6: S[i, j]← cos(Ec

i , E
c
j ) ▷ Compute similarity between exemplar embeddings

7: Step 3: Prototype Discovery
8: p← softmax(ψ(S)) ▷ Process the similarity matrix through MLP ψ
9: fc

p ←
∑K

i=1 pi · E
c
i ▷ Compute prototype embedding for category c

10: Step 4: Adaptive Refinement
11: for each exemplar embedding Ec

i do
12: Êc

i ← λi · Ec
i + (1− λi) · fc

p ▷ Refine embedding using prototype fc
p

13: end for
14: Step 5: Vision Classifier
15: wc

IMG ← Transformer({Êc
i }Ki=1, tCLS) ▷ Generate classifier with [CLS] token from Transformer

16: Step 6: Contrastive Learning
17: Apply contrastive learning with InfoNCE loss to improve discrimination:
18: return wc

IMG

Algorithm 3 Multi-modal Classifier Generation with Feature and Relational Alignment

Require: {Êc
i }Ki=1: Visual embeddings, {scj}Mi=1: Text embeddings, α

Ensure: wc
MULTI: Multi-modal classifier for category c

1: Step 1: Feature-level Alignment
2: Compute the correspondence matrix Aij ▷ Align individual text and image embeddings (sec3.4)
3: Step 2: Relational Alignment
4: Compute RTXT and RIMG ▷ Refer to sec3.4
5: Minimize the difference between text and image embeddings ▷ Ensure relationships between text and visual

embeddings are consistent
6: Step 3: Joint Objective
7: Combine feature and relational alignment ▷ Refer to Eq. 6
8: Step 4: Construct Multi-modal Classifier
9: Combine aligned text and visual embeddings ▷ Refer to Eq. 7

10: return wc
MULTI
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