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Abstract

We consider multi-dimensional cost-bounded
reachability probability objectives for partially ob-
servable Markov decision processes (POMDPs).
The goal is to compute the maximal probability to
reach a set of target states while simultaneously
satisfying specified bounds on incurred costs. Such
objectives generalise well-studied POMDP object-
ives by allowing multiple upper and lower bounds
on different cost or reward measures, e.g. to nat-
urally model scenarios where an agent acts under
limited resources. We present a reduction of the
multi-cost-bounded problem to unbounded reach-
ability probabilities on an unfolding of the original
POMDP. We employ a refined approach in case
the agent is cost-aware—i.e., collected costs are
fully observed—and also consider a setting where
only partial information about the collected costs is
known. Our approaches elegantly lift existing res-
ults from the fully observable MDP case to POM-
DPs. An empirical evaluation shows the potential
of analysing POMDPs under multi-cost-bounded
reachability objectives in practical settings.

1 INTRODUCTION

Partially observable Markov decision processes (POMDPs)
are a powerful modelling formalism for sequential decision
making in uncertain domains where non-determinism is
present. They extend Markov decision processes (MDPs)
[Puterman, 1994] for agents that in addition to uncertain
transitions also only have incomplete information about
the state of the environment [Smallwood and Sondik, 1973,
Russell and Norvig, 2020]. POMDPs have applications in a
plethora of domains, including robotics [Spaan and Vlassis,
2004], ecology [Chades et al., 2012], and cyber security
[Miehling et al., 2018].

The classical planning problem in POMDPs is to com-
pute a policy—a plan for resolving non-determinism in the
system—that optimises a given objective. This problem is
notoriously difficult for many kinds of objectives. Various
approaches consider finite horizons, where the objective
has to be satisfied in a finite amount of steps [Smallwood
and Sondik, 1973], or discounting, where events in later
stages become less relevant [Smith and Simmons, 2004,
Kurniawati et al., 2008, Shani et al., 2013].

In recent years, work focusing on objectives without dis-
counting over an infinite time horizon has emerged [Norman
et al., 2017, Horák et al., 2018, Bork et al., 2022, Andri-
ushchenko et al., 2022, 2023, Ho et al., 2024]. One com-
monly considered objective is to compute the maximal prob-
ability to reach a set of target states. In the field of probabil-
istic model checking, this maximal reachability probability
objective is the basis for the analysis of models with respect
to more involved logical specifications such as linear time
temporal logic [Baier and Katoen, 2008].

Expected Costs vs. Cost-Bounded Reachability In many
practical scenarios, the objective to reach a target is subject
to hard constraints on resources. For example, an autonom-
ous vehicle navigating towards a goal position has to con-
sider its fuel level and emission levels of pollutants. A policy
minimising the expected fuel and emission costs does not
take the resource limits into account which may lead to the
vehicle running out of fuel with unnecessarily high probab-
ility. In such scenarios, a policy that maximises the probab-
ility of a successful run—where the vehicle reaches the goal
without running out of fuel and within pollution limits—is
preferable. Thus, objectives that constrain the expected costs
fail to capture scenarios where satisfying hard constraints
on actually incurred costs is key for a run to be successful.

(Multi-)cost-bounded reachability probability objectives
characterise such scenarios where a strict adherence to cer-
tain resource constraints is crucial. Numerical costs (or re-
wards) are assigned to transitions in the POMDP. The goal
of the agent is to maximise its probability to reach the target

mailto:<alexander.bork@cs.rwth-aachen.de>?Subject=Your UAI 2025 paper


Figure 1: Hallway Cleaning Task

states while satisfying all bounds on the actual accumu-
lated costs. In the most general setting, both upper and
lower bounds on multiple cost measures can be considered
simultaneously. Cost-bounded reachability objectives have
mainly been studied for (fully observable) MDPs [Hahn
and Hartmanns, 2016, Klein et al., 2018, Hartmanns et al.,
2020].

Motivating Example Consider the scenario depicted in
Figure 1. A robot is tasked with cleaning a hallway con-
sisting of 6 tiles, all initially dirty. The robot starts in the
left-most tile with an energy level of 60 units. In every step,
the robot can either attempt to clean the current tile or move
to the next tile. A cleaning attempt can fail with a probability
of 0.2, leaving the tile dirty. The robot, however, is not able
to observe if it has successfully cleaned a tile. Moving to the
next tile always consumes one unit of energy. A cleaning
attempt consumes either 2 or 4 units of energy, each with
probability 0.5. The robot is successful if it cleans all 6 tiles
and reaches the target position by moving in the right-most
tile of the hallway without running out of energy.

Our goal is to find a policy for the robot that schedules in
each step the best action based on the available information
in order to maximise the probability that the task succeeds.
We can model the scenario as a POMDP with two cost
measures Cenergy and Cclean (the latter assigning a cost of 1
when a tile is successfully cleaned and 0 otherwise), and the
cost-bounded reachability query “maximise the probability
to reach the target while accumulating at most 60 cost units
for Cenergy and at least 6 cost units for Cclean.”

Usual POMDP objectives fail to capture the objective we are
interested in. In particular, minimising the expected energy
use or maximising the expected number of cleaned tiles
fails to consider the respective other constraint and does not
accurately reflect the hard requirements on incurred costs.
A multi-cost-bounded objective with cost bounds on both
measures, however, adequately reflects our objective.

Contributions We formalise the problem of multi-cost-
bounded reachability probability objectives on POMDPs
and observe undecidability of its decision variant. We then
consider three variations of this problem that all differ in the
degree of observability of the accumulated cost so far. (As
usual, we assume that the observations in the POMDP are
visible to the decision-making agent.) For the extreme case
in which the accumulated costs are completely invisible, we
provide a transformation to an equivalent unbounded reach-
ability problem on an often larger POMDP. The key concept
is to encode cost collection in the state space. The resulting

cost-unfolding POMDP can then be analysed using exist-
ing approximation methods for unbounded infinite-horizon
reachability problems.

We then consider the other extreme case in which the ac-
cumulated cost is fully observable by the agent and can be
used in its decision making. We show that the sequential
approach of Hartmanns et al. [2020] for multi-cost-bounded
reachability in MDPs, i.e., fully observable POMDPs, can
be readily lifted to this setting of cost-aware POMDPs. Fur-
thermore, we consider the novel setting where the agent
cannot observe the exact costs gathered so far, but only cer-
tain cost levels (e.g. high, mid and low). We show that this
setting can often be reduced to the analysis of a cost-aware
POMDP.

Our algorithmic solutions are designed such that they lever-
age strengths of existing and (time- and space-)efficient
techniques, and are thus able to directly profit from future
advancements in unbounded reachability in POMDPs and
cost-bounded reachability in MDPs.

We provide detailed proofs for main theoretical results and
additional technical information in the appendix.

1.1 RELATED WORK

Multi-cost-bounded reachability objectives for (fully observ-
able) MDPs are well-studied [Ohtsubo, 2004, Baier et al.,
2014, Randour et al., 2017, Hahn and Hartmanns, 2016,
Klein et al., 2018, Hartmanns et al., 2020]. We focus on
related research dedicated to partially observable models.

Most closely related to our paper is the work on risk-
sensitive POMDPs [Hou et al., 2016] where a special case
of a cost-bounded reachability objective is considered. In
particular, the authors present an unfolding of cost-bounds
on the level of beliefs, similar to our unfolding on the level
of the POMDP. They also consider the case of observable
costs. However, our framework is more general by allowing
for multiple bounds over different cost measures as well as
mixtures of upper and lower bounds. In addition, our un-
folding allows the use of non-belief-based solution methods
for the problem.

Wu et al. [2019] consider an unfolding that encodes cost
and step bounds in the belief space to solve a classification
problem for hidden model MDPs, which are a special class
of POMDPs. In that setup, the goal of an agent is to find
out in which specific instance of structurally similar MDP
environments it is located while not exceeding certain costs.

Another related formalism are constrained POMDPs
(CPOMDPs) [Isom et al., 2008, Poupart et al., 2015, Santana
et al., 2016]. In a CPOMDP, the objective is to maximise the
expected sum of rewards subject to a bound on the expected
cumulative costs. While classically, the setting considers dis-
counted values with upper bounds on expected costs, there



are extensions to an undiscounted setting [Kalagarla et al.,
2025]. Furthermore, Undurti and How [2010] consider a
setting where violation of bounds for expected and actual
costs coincide. In contrast, our work considers mixtures of
different bound types on the actual incurred costs and does
not make assumptions on the POMDP or the cost bounds.

Chatterjee et al. [2016] consider the setting of minimising
expected costs over all strategies in a POMDP that reach
a target almost surely, i.e., with probability 1. This can be
considered a related problem where a strict bound is placed
on the reachability probability rather than the incurred costs.

2 PRELIMINARIES

We briefly outline the theoretical background for POMDPs.
Further details can be found in Russell and Norvig [2020].
Baier and Katoen [2008, Chapter 10] gives an introduction
to MDPs from a formal methods perspective.

Let X ̸= ∅ be a countable set. A (probability) distribution
over X is a function µ : X → [0, 1] with

∑
x∈X µ(x) = 1.

Dist(X ) is the set of distributions over X . We write x ∈ µ
if µ(x) > 0. The support of µ is supp(µ) := {x | x ∈ µ}.
For k ∈ N and vector x = ⟨x1, . . . , xk⟩ ∈ Xk, we write
x[i] = xi for the i-th element (1 ≤ i ≤ k).

MDP A Markov decision process (MDP) is a tuple M =
⟨S,Act ,P, sinit⟩ with a (finite or countably infinite) set S
of states, a finite set Act of actions, a transition function
P : S × Act → Dist(S ), and an initial state sinit ∈ S. In
every state s, an agent making decisions in the MDP chooses
an action a ∈ Act and the state is updated to state s′ with
probability P(s, a)(s′). If s′ ∈ P(s, a), we call (s, a, s′) a
transition and write s

a−→ s′.

POMDP A partially observable MDP (POMDP) is a
tuple M = ⟨M,Z,O⟩, where M is the underlying MDP
with |S| ∈ N, i.e., S is finite, Z is a finite set of observations,
and O : S×Act×S → Dist(Z ) is an observation function.

In a POMDP, the agent does not have complete access
to the current state of the system to base its decisions
on. Instead, upon taking a transition s

a−→ s′ the agent re-
ceives an observation z with probability O(s, a, s′)(z).
A (finite, initial) path in an MDP or POMDP is a se-
quence π̂ = s0a1s1 . . . ansn with s0 = sinit such that
for all 0 < i ≤ n we have si ∈ P(si−1, ai). We de-
note by |π̂| := n the length, by π̂[i] := si the i-th state,
and by last(π̂) := sn the last state of π̂. An observa-
tion trace of a POMDP is a sequence of observations
τ = z1 . . . zn ∈ Z∗. Given a path π̂ = s0a1s1 . . . ansn,
the probability of observing trace τ = z1 . . . zn in M is
PM(τ |π̂) =∏n−1

i=0 O(si, ai+1, si+1)(zi+1).

Policies resolve the non-determinism of POMDPs by de-
termining the next action to play after observing an ob-

servation trace τ . Formally, a policy for M is a function
σ : Z∗ → Act . We denote the set of policies for POMDP
M by ΣM.

Belief MDP A belief is a tuple b = ⟨z, µb⟩ of an observa-
tion z ∈ Z ⊎ {zinit}, where zinit /∈ Z is a dedicated initial
observation, and a probability distribution µb ∈ Dist(S )
over POMDP states. 1 The distribution captures the evolu-
tion of an agent’s information about its current state given
histories of actions and observations, while the observation
represents the last observation made in such a history.

An agent starts with the initial belief binit = ⟨zinit , µbinit ⟩,
with µbinit (sinit) = 1. Beliefs are updated when an action is
played and a new observation is received. The probability to
observe z ∈ Z after playing action a in belief b = ⟨ẑ, µb⟩ is

P (z|b, a) =
∑
s∈µb

µb(s) ·
∑
s′∈S

P(s, a)(s′) ·O(s, a, s′)(z).

The successor belief of b after playing a and observing z is
succ(b, a, z) = ⟨z, µsucc

b,a,z⟩ where µsucc
b,a,z is given by

µsucc
b,a,z(s

′) := P (s′|b, a, z)

=

∑
s∈µb

µb(s) ·P(s, a)(s′) ·O(s, a, s′)(z)

P (z|b, a)

if P (z|b, a) > 0 and undefined otherwise. Successive com-
putation of successor beliefs yields an infinite-state fully ob-
servable MDP capturing the POMDP dynamics. This belief
MDP [Åström, 1965] is the basis for many solution methods
for analysis problems on POMDPs. Let Bn

M be the set of
beliefs reachable in n steps, given by B0 := {binit} and
Bn+1
M := Bn

M ∪ {succ(b, a, z) | b ∈ Bn
M, a ∈ Act, z ∈ Z}.

BM := limn→∞ Bn
M is the set of reachable beliefs.

The belief MDP of POMDP M is bel(M) =
⟨BM,Act ,PB , binit⟩ where PB(b, a)(b′) := P (z|b, a) if
b′ = succ(b, a, z) and PB(b, a)(b′) := 0 otherwise.

Costs We annotate POMDPs with costs (also referred to
as rewards). Let k ∈ N. A (k-dimensional) cost structure for
M is a function C : S ×Act × S → Nk. When taking the
transition s

a−→ s′, the cost values C(s, a, s′) = ⟨c1, . . . , ck⟩
are collected. A cost structure allows the encoding of dif-
ferent, independent cost measures in its dimensions. For
example, one dimension can model the expired time, while
another models energy consumption. The cumulative cost
of a finite path π̂ in M with respect to C is costC(π̂) :=∑|π̂|

i=1 C(si−1, ai, si). The set of all distinct cost vectors
occurring in C is ΓC := {C(s, a, s′) | s, s′ ∈ S, a ∈ Act}.

1In the literature, beliefs are typically considered to only be the
distribution µb. We extend this definition by the explicit inclusion
of the observation that yields the belief to simplify later definitions.



3 PROBLEM STATEMENT

The cost-bounded reachability (CBR) problem asks for the
maximal probability to reach a set of states in the POMDP
via paths that respect (multi-dimensional) bounds on the
cumulative costs. Formally, for a k-dimensional cost struc-
ture C, relations ▷◁ ∈ {≤, >}k and threshold t ∈ Nk, we
call (C ▷◁ t) a (k-dimensional) cost bound over C. Cost
bounds represent constraints on the cumulative cost of paths
with respect to the corresponding cost structure. For a fi-
nite path π̂, bound (C ▷◁ t) is active in dimension i iff
costC(π̂)[i] ▷◁[i] t[i]. Moreover, (C ▷◁ t) is active for π̂ iff
it is active in all dimensions 1 ≤ i ≤ k, i.e., costC(π̂) ▷◁ t,
where the relations in ▷◁ are applied element-wise. As we
consider only natural values for costs, relations ≥ and <
are supported by adapting the thresholds in t. Non-negative
rational costs are supported by suitable scaling of C and t.

We fix a POMDP M and a k-dimensional cost bound
(C ▷◁ t). Given a policy σ, the cost-bounded reachabil-
ity probability for a state set T ⊆ S is

PrMσ (♢C▷◁t T ) := PrMσ
{
π ∈ Cyl(π̂)

∣∣ last(π̂) ∈ T and

(C ▷◁ t) is active for π̂
}
,

where Cyl(π̂) is the set of infinite extensions of finite
path π̂ and PrMσ denotes the standard probability meas-
ure for M under policy σ [Puterman, 1994]. We call
PrMσ (♢C▷◁t T ) the value of policy σ. The maximal cost-
bounded reachability probability is PrMmax (♢C▷◁t T ) :=
supσ∈ΣM PrMσ (♢C▷◁t T ) . Similar to related problems in
POMDPs, a policy realising the maximal cost-bounded
reachability probability is not guaranteed to exist. We formu-
late our problem in terms of a two-sided ϵ-approximation.

Problem 1 ((Multi-)Cost-Bounded Reachability (CBR)).
For POMDP M, T ⊆ S, cost bound (C ▷◁ t), and ε ∈
[0, 1], compute V U ∈ [0, 1] and a policy σ̃ ∈ ΣM, such that
V U − ε ≤ PrMσ̃ (♢C▷◁t T ) ≤ PrMmax (♢C▷◁t T ) ≤ V U .

Theorem 1. The decision variant of CBR is undecidable.

Proof. By considering 0-dimensional cost structures, CBR
subsumes unbounded, undiscounted indefinite-horizon
reachability, which is undecidable [Madani et al., 2003].

We write PrMmax (♢ T ) for the unbounded problem as a spe-
cial case of CBR with 0-dimensional costs. Methods to
tackle unbounded reachability using two-sided approxima-
tions have been described in the literature (see Section 1).

Decidability of several subclasses of CBR can be established.
For example, finite-horizon reachability probabilities—
which can be computed exactly [Smallwood and Sondik,
1973]—are a special instance of cost-bounded reachabil-
ity probabilities, where each transition induces exactly a
cost of 1 and the costs are bounded upwards by the horizon.

Lifting this to arbitrary, but strictly positive costs yields
the risk sensitive setup from Hou et al. [2016], which—as
mentioned by the authors—is still decidable. Our setting is
more general since we allow transitions with 0 costs in any
dimension as well as queries with only lower bounds.

4 FROM COST-BOUNDED TO
UNBOUNDED REACHABILITY

We present an extension of the unfolding approach [Andova
et al., 2003, Ohtsubo, 2004] for the cost-bounded reachabil-
ity problem in MDPs to the partially observable domain.

Definition 1 (Cost Epoch). A (cost) epoch of dimension k
is a tuple e = ⟨e1, . . . , ek⟩ ∈ (N ∪ {⊥})k. We denote the
domain of all k-dimensional epochs by Ek := (N ∪ {⊥})k.

Each entry e[i] of an epoch keeps track of the costs that can
be accumulated until the bound (C ▷◁ t) changes its status
in dimension i (active to inactive or vice versa).

The initial epoch is defined by the threshold vector t. To
evolve cost epochs, we subtract the costs collected in each
dimension. For values below 0, we use the dedicated symbol
⊥ to indicate that the bound changed its status from the ini-
tial one. Formally, this is captured by the monus operation.

Definition 2 (Monus for Epochs). The monus operator for
cost epochs ⊖ : Ek ×Nk → Ek is given component-wise as

(e⊖ c)[i] :=

{
e[i]− c[i] if ⊥ ≠ e[i] ∧ e[i] ≥ c[i],

⊥ otherwise.

We lift the notion of being active to epochs. The indicator
function actvC▷◁t : Ek → {0, 1} is 1 iff bound (C ▷◁ t)
is active in a given epoch, i.e., actvC▷◁t(e) := 1 if for all
1 ≤ i ≤ k, ▷◁[i] = ≤ implies e[i] ̸= ⊥ and ▷◁[i] = >
implies e[i] = ⊥, and actvC▷◁t(e) := 0 otherwise.

Using the idea of epochs, we construct a POMDP that en-
ables us to reason about the activation of a bound on the
level of states instead of the path level. We first recap the
construction for an MDP as it is described in the literat-
ure, e.g. in Hartmanns et al. [2020]. Let the (finite) set of
reachable epochs from an epoch e be given by

Ek(e) := {e′ ∈ Ek | ∃c ∈ Nk : e′ = e⊖ c}.

Definition 3 (Bound Unfolding MDP). For MDP
M = ⟨S,Act ,P, sinit⟩ and cost bound (C ▷◁
t), the bound unfolding MDP is unC▷◁t(M) :=
⟨S × Ek(t),Act ,Pun, ⟨sinit , t⟩⟩, and for se := ⟨s, e⟩,
s′e′ := ⟨s′, e′⟩, and a ∈ Act:

Pun(se, a)(s
′
e′) :=

{
P(s, a)(s′) if e′ = e⊖C(s, a, s′),

0 otherwise.



Definition 4 (Bound Unfolding POMDP). Given a
POMDP M = ⟨M,Z,O⟩ with underlying MDP M =
⟨S,Act ,P, sinit⟩ and cost bound (C ▷◁ t), the bound un-
folding POMDP is unC▷◁t(M) := ⟨unC▷◁t(M), Z,Oun⟩
where for se := ⟨s, e⟩, s′e′ := ⟨s′, e′⟩, and a ∈ Act:
Oun(se, a, s

′
e′) := O(s, a, s′).

Finally, we lift the notion of an active bound to states of
the unfolding POMDP which enables us to reason about
conformance to the bound on states instead of paths.

Definition 5 (Active States). A state of the unfolding
⟨s, e⟩ ∈ S × Ek(t) is active iff actvC▷◁t(e) = 1. Given
T ⊆ S, the set of active T -states is actvC▷◁t(T ) =
{⟨sT , e⟩ ∈ S × Ek(t) | sT ∈ T ∧ actvC▷◁t(e) = 1}.

As M and unC▷◁t(M) share the set Z of observations,
their possible policies coincide, i.e., ΣM = ΣunC▷◁t(M). We
formalise the relationship between the original POMDP and
its unfolding POMDP regarding cost-bounded reachability.

Theorem 2. Given a POMDP M, set T ⊆ S and cost
bound (C ▷◁ t), it holds that for all policies σ ∈ ΣM:
PrMσ (♢C▷◁t T ) = PrunC▷◁t(M)

σ (♢ actvC▷◁t(T )) .

Proof Sketch. Let f be the mapping from paths of
unC▷◁t(M) to paths of M obtained by dropping the epochs
from the states. f is bijective and PrMσ ({f(π) | π ∈ Π}) =
PrunC▷◁t(M)

σ (Π) for any policy σ and set Π of paths in
unC▷◁t(M). The claim follows by taking Π as the set of
paths that reach actvC▷◁t(T ). The corresponding paths in
M reach T while the bound is active.

We get the following result about maximal probabilities.

Corollary 1. For POMDP M, T ⊆ S and (C ▷◁ t):
PrMmax (♢C▷◁t T ) = PrunC▷◁t(M)

max (♢ actvC▷◁t(T )) .

Thus, to tackle CBR as in Problem 1, we can consider the
unbounded indefinite-horizon reachability problem on the
unfolding POMDP. Solution methods for this problem in-
clude smart exploration of the belief space [Norman et al.,
2017, Bork et al., 2022, Ho et al., 2024] or the policy space
[Andriushchenko et al., 2022].

5 COST-(LEVEL-)AWARE POMDPS

The general cost bound framework assumes that an agent’s
decisions are solely based on environmental observations
the agent receives. However, costs might reflect quantities—
such as the level of a battery—that the agent observes. We
refine our cost-bounded analysis for the special case where
the observation model captures the additional information
provided by costs. This cost-awareness notion is related to
the reward-based belief updates in Izadi and Precup [2005].

Definition 6 (Cost-Aware POMDP). A POMDP M =
⟨M,Z,O⟩ with M = ⟨S,Act ,P, sinit⟩ is cost-aware with
respect to a k-dimensional cost structure C if for all z ∈ Z
there is cz ∈ Nk such that for any transition s

a−→ s′ with
z ∈ supp(O(s, a, s′)) we have C(s, a, s′) = cz .

In a cost-aware POMDP, all observations z can be assigned
a cost vector cz . An observation z only occurs at transitions
that yield costs equal to cz , effectively guaranteeing that
the collected costs are observable. Cost-awareness implies
that, given an observation trace z1 . . . zn ∈ Z∗, an agent
can derive the costs

∑n
i=1 czi that have been accumulated

so far. Thus, in the bound unfolding POMDP, an agent can
always be certain about the cost epoch it is currently in as
it has access to the history. This is reflected in the belief
space: if the POMDP M is cost-aware, all reachable beliefs
in the belief MDP of its unfolding bel(unC▷◁t(M)) only
contain states that belong to the same epoch. Formally, if
M is cost-aware, then for every reachable belief b = ⟨z, µ⟩
of bel(unC▷◁t(M)) there is an epoch e ∈ Ek such that
supp(µb) ⊆ S ×{e}. This enables an optimised analysis of
bel(unC▷◁t(M)) as discussed in the sequel.

5.1 SEQUENTIAL EPOCH ANALYSIS

Our approach so far is to analyse unbounded reachability for
the unfolding POMDP unC▷◁t(M), e.g. via (abstractions of)
its belief MDP bel(unC▷◁t(M)). However, such an analysis
operates on the potentially large unfolding POMDP.

Recent works on fully observable MDPs avoid the construc-
tion of a large unfolding MDP by considering epochs one
after another in a dynamic programming fashion [Hahn and
Hartmanns, 2016, Klein et al., 2018, Hartmanns et al., 2020].
This sequential epoch analysis is based on the epoch de-
pendency graph

〈
Ek(t),

{
⟨e, e⊖ c⟩

∣∣ c ∈ ΓC

}〉
which has

an edge from epoch e to epoch e′ iff a transition of the
form ⟨s, e⟩ a−→ ⟨s′, e′⟩ exists in the unfolding POMDP. Since
costs are non-negative, the epoch graph is acyclic (except
for self-loops). The idea is to process epochs in a reversed
topological order e0, e1, . . . , en with e0 = ⊥k and en = t.
For each considered epoch ei, an epoch MDP—which essen-
tially is the restriction of the bound unfolding MDP to states
with epoch e—is constructed and analysed while propagat-
ing results from previous epochs e0, . . . , ei−1. Implementa-
tions can exploit similarities between different epoch MDPs.
This way, the approach efficiently analyses properties of the
large unfolding MDP without an explicit construction.

We lift sequential epoch analysis to POMDPs. In the general
case, the POMDP dynamics do not allow a clear separation
of epochs. In particular, when considering belief-based solu-
tion methods, beliefs may have states representing several
different epochs in their support. We therefore focus on
cost-aware POMDPs. Our approach is to perform sequential
epoch analysis on the belief MDP—or a finite abstraction



thereof. To this end, we lift cost bounds to the belief space.
We fix a POMDP M and cost bound (C ▷◁ t) such that M
is cost-aware with respect to C.

Definition 7 (Cost-Aware Belief Cost Bound). The be-
lief cost structures for bel(M) is CB where for s ∈ µb,
s′ ∈ µb′ , CB((z, µb), a, (z

′, µb′)) := C(s, a, s′). The be-
lief cost bound is bel(C ▷◁ t) = (CB ▷◁ t).

CB is well-defined as cost-awareness guarantees that
C(s, a, s′) = C(q, a, q′) for all s, q ∈ µb and s′, q′ ∈ µb′ .
For cost-aware POMDPs, applying the cost unfolding and
then constructing the belief MDP is equivalent to first con-
structing the belief MDP and then applying cost unfolding.
For MDPs M1 and M2 we write M1

∼= M2 iff the reachable
fragments are isomorphic, i.e., equal up to renaming.

Theorem 3. bel(unC▷◁t(M)) ∼= unbel(C▷◁t)(bel(M)).

Proof Sketch. Let ⟨z, µb⟩ be a state of bel(unC▷◁t(M)).
Since M is cost-aware, there is an epoch e with supp(µb) ⊆
S × {e}. ⟨z, µb⟩ is isomorphic to state ⟨⟨z, µ′⟩, e⟩ of
unbel(C▷◁t)(bel(M)), where µ′(s) = µb(⟨s, e⟩).

The sequential epoch analysis for MDPs outlined above
can readily be applied to bel(M) to show proper-
ties for its unfolding unbel(C▷◁t)(bel(M)). Due to The-
orem 3, analysis results immediately carry over to
bel(unC▷◁t(M)). Approaches like the ones described in
Norman et al. [2017], Bork et al. [2020, 2022] handle large
or even infinite belief MDPs through abstraction, yield-
ing a finite MDP abstr(bel(M)) which over- or under-
approximates the behaviour of bel(M). If bound unfold-
ing retains the abstraction—i.e., abstr(bel(unC▷◁t(M))) ∼=
unbel(C▷◁t)(abstr(bel(M)))—the sequential epoch ana-
lysis is compatible with such techniques. In our experiments,
we use this observation for the cut-off abstraction of Bork
et al. [2022] and the discretisation of Bork et al. [2020].

5.2 COST LEVEL AWARENESS

In many problem instances, neither full cost-awareness nor
absolute unawareness are realistic. For example, a robot can
have a rough estimate of its energy level (high, medium, low,
empty) while not being aware of exactly how much energy
it has spent yet. We capture this notion of cost levels using
functions that assign in each dimension a level according
to the collected cost. We assume uniform levels, i.e., we
change the level in dimension i whenever an additional cost
of some fixed d[i] > 0 is collected. Moreover, 0 cost is its
own level.

Definition 8 (Level Function). For d ∈ (N\{0})k, the level
function lvld : Nk → Nk is given by lvld(c)[i] :=

⌈
c[i]
d[i]

⌉
.

We fix a POMDP M, cost bound (C ▷◁ t), target states T
and a level function lvld and define a level-aware instance of
CBR where in addition to the observations in M, the agent
can use information about the current cost level to make
decisions. This level-aware instance is in general not equi-
valent to the CBR instance M with cost bounds (C ▷◁ t).
It introduces new observations that provide additional in-
formation which is not observable in the original model.
However, the level-aware instance may more accurately cap-
ture the scenario we are interested in as an agent may have
access to such information. Our definition of a level-aware
instance decouples the modelling of observations arising
from the environment and those arising from possible cost
observation. This simplifies the modelling of such instances
and allows, for example, the comparison of different degrees
of cost levels. By choosing d = ⟨1, . . . , 1⟩, we can define
a variant of the original POMDP with full cost-awareness
which we call the cost-aware variant. d = t means that only
activeness of bounds and the first collection of a non-zero
cost can be observed for each dimension.

To incorporate cost level awareness into our framework, we
present a transformation of M, C and lvld into a new cost-
aware POMDP (cf. Def. 6). The transformation encodes the
cost that can still be collected until a new level is reached in
the state space of the POMDP and introduces fresh observa-
tions to mark transitions in which one or more level changes
occur. This way, an observation trace suffices to deduce the
current level. Appendix B provides further details.

Definition 9 (Level Unfolding POMDP). The level un-
folding with respect to lvld is the POMDP lvld(M) =
⟨Mlvld , Zlvld ,Olvld⟩ and the cost structure Clvld with

• Mlvld = ⟨Slvld ,Act ,Plvld , ⟨sinit , ⟨0, . . . , 0⟩⟩⟩,
• Slvld = S × {ℓ ∈ Nk | ∀i : ℓ[i] < d[i]},

• Zlvld = Z ×
{
c ∈ Nk | ∀i : c[i] ≤

⌈
cmax
i /d[i]

⌉}
,

where cmax
i = maxs,s′∈S,a∈Act C(s, a, s′)[i],

• Plvld(⟨s, ℓ⟩, a, ⟨s′, ℓ′⟩) = P(s, a, s′) if for all i:
ℓ′[i] = ℓ[i]−C(s, a, s′)[i] mod d,

• Olvld(⟨s, ℓ⟩, a, ⟨s′, ℓ′⟩)(⟨z, c⟩) = O(s, a, s′)(z) if for
all i: c[i] =

⌈(
C(s, a, s′)[i]− ℓ[i]

)
/d[i]

⌉
,

• Clvld(⟨s, ℓ⟩, a, ⟨s′, ℓ′⟩) = C(s, a, s′),

and Plvld and Olvld are zero in all other cases.

The CBR instance with POMDP lvld(M), bounds (Clvld ▷◁
t) and target states Td = (T ×Nk)∩Slvld is the level-aware
variant (w.r.t. lvld) for M, (C ▷◁ t), and T ⊆ S.

When assuming that a level function captures when a bound
becomes (in-)active—e.g. if an energy limit is exceeded—
the level-aware instance can be reduced to an equivalent
CBR instance on a fully cost-aware POMDP which can then
be solved using the sequential approach. Mathematically,
this is the case if for all i, d[i] divides t[i] (written d[i]

∣∣ t[i]).



Theorem 4. Let lvld(M) such that ∀i : d[i]
∣∣ t[i] and

let (L ▷◁ td) be a cost bound for lvld(M) with ∀i:
L(⟨s, ℓ⟩, a, ⟨s′, ℓ′⟩)[i] :=

⌈(
C(s, a, s′)[i]− ℓ[i]

)
/d[i]

⌉
and

td[i] := t[i]/d[i]. Then, lvld(M) is cost-aware w.r.t. L and

Prlvld(M)
max

(
♢Clvld

▷◁t Td

)
= Prlvld(M)

max

(
♢L▷◁td Td

)
.

Proof Sketch. L captures the number of level jumps that
occur when a transition in lvld(M) is taken. Since d[i]

∣∣ t[i],
the bound changes its activeness in dimension i after exactly
t[i]/d[i]+1 level jumps occurred. We can then show that for
a path π̂, costClvld

(π̂) ▷◁ t if and only if costL(π̂) ▷◁ td.

6 EMPIRICAL EVALUATION

We evaluate the practicality of cost-bounded reachability
analysis in POMDPs to answer the following questions:

(Q1) Are the presented approaches suitable for solving cost-
bounded reachability problems in practice?

(Q2) How is this influenced by cost (level) awareness?

(Q3) Does applying the sequential approach on cost-aware
belief MDPs improve performance compared to redu-
cing the problem to unbounded reachability?

Implementation We extended the probabilistic model
checking tool STORM [Hensel et al., 2022] to support CBR
queries for POMDPs. STORM can analyse unbounded reach-
ability in POMDPs via finite abstractions of the belief
MDP [Bork et al., 2020, 2022] as well as cost-bounded
reachability in (fully observable) MDPs via the sequential
approach from Hartmanns et al. [2020]. On top of that, we
implemented the construction of bound unfolding and level
unfolding POMDPs, along with the exploration of cost-
aware belief MDPs with belief cost bounds. Both construc-
tions are integrated into the existing POMDP verification
framework of STORM, enabling us to tackle CBR problems
in three different configurations:

• UNFOLD: transform to an unbounded reachability prob-
lem on the unfolding POMDP (see Section 4), then
verify (finite abstractions of) its belief MDP.

• CA-UNFOLD: Construct a cost-aware variant of the
POMDP (see Section 5.2), then analyse it as in UN-
FOLD.

• CA-BEL-SEQ: Construct a cost-aware variant of the
POMDP, then construct (a finite abstraction of) its cost-
aware belief MDP and analyse CBR on this fully ob-
servable MDP using the sequential epoch approach see
Section 5.1).

CA-UNFOLD and CA-BEL-SEQ both first construct a cost-
aware variant based on the input POMDP, extending it with

Table 1: Information on Benchmark Instances

Model |S| |Z| ▷◁ |E|
clean6 37 2 ≤, >† 413
clean12 73 2 ≤, >† 1508
incline 25 9 ≤,≤ 497
obstcl 25 10 ≤,≤ 83
resrc 721 155 >,>,≤ 2107/4·104
rover 16 9 >,≤,≤ 7·105/2·107
serv 8·104 6016 ≤ 40/68

walk40 84 44 ≤ 82
walk120 244 124 ≤ 82

water 34 5 ≤, > 3·104/3·105

additional observations which in general changes the op-
timal achievable value. We opt for this method of defining
cost-aware instances to decouple the modelling of environ-
mental observations and those observations stemming from
costs. CA-UNFOLD and CA-BEL-SEQ differ in the underly-
ing solution approach. Instead of full cost-awareness, they
can also be used with cost level awareness by applying a
level unfolding first. Moreover, cost-awareness can also be
induced for only a subset of the dimensions I ⊆ {1, . . . , k}.
STORM uses a state-based observation model O : S → Z.
We transform our observation model into such a state-based
one by encoding observations in the state space [Chatterjee
et al., 2016]. For CA-UNFOLD and CA-BEL-SEQ, this results
in larger state spaces compared to the original POMDP due
to the additional observations.

For each of the three configurations, we can either use the
cut-off approach of Bork et al. [2022] or the discretisa-
tion approach of Bork et al. [2020] to obtain a finite ab-
straction of the belief MDP yielding sound lower or upper
bounds for the optimal cost-bounded reachability probabil-
ities. Both abstractions—noted below as CUT and DISCR—
have a hyper-parameter that controls the size of the obtained
belief MDP abstractions.

Our implementation is publicly available as part of the sup-
plementary material of this paper [Bork et al., 2025].2

Benchmarks Since there is no established benchmark set
for CBR problems, we use partially observable variants
of some cost-bounded reachability problems from Hart-
manns et al. [2020] (resrc, rover, serv). In addition, we
consider three variants of grid world examples where reach-
ing a goal is made difficult by either an incline (incline),
obstacles (obstcl), water levels (water), or uncertain move-
ments (walk40, walk120). Finally, we consider our motivat-
ing example (clean6) and a version with 12 tiles (clean12).
The benchmarks are given in the guarded command lan-
guage of PRISM [Kwiatkowska et al., 2011]. Appendix D

2https://zenodo.org/records/15642233

https://zenodo.org/records/15642233


Table 2: Overview of Obtained Value Bounds and Runtimes

Model |E| |Sun| UNFOLD: CUT / DISCR CA-UNFOLD: CUT / DISCR CA-BEL-SEQ: CUT / DISCR

clean6 413 3809 0.86 (<1s) 1 (713s) 0.929 (3.9s)∗ 0.971 (299s) 0.929 (2.2s) 0.949 (<1s)
clean12 1508 3·104 0.77 (262s) 1 (61.9s) 0.708 (240s) 1 (128s) 0.88 (381s) 0.957 (4.8s)
incline 497 2094 0.989 (21.5s) 0.989 (<1s) 0.989 (1.1s) 0.989 (<1s) 0.989 (<1s) 0.989 (<1s)
obstcl 83 741 0.87 (<1s)∗ 0.87 (<1s) 0.87 (<1s) 0.87 (<1s) 0.87 (<1s) 0.87 (<1s)
resrc 2107 2·105 7·10-15 (360s) 0.0312 (2.7s) 7·10-15 (345s) 0.0312 (3.6s) 0.0312 (<1s) 0.0312 (<1s)
resrc 4·104 6·106 2·10-73 (400s) 3·10-5 (81.1s) 2·10-73 (427s) 3·10-5 (101s) 3·10-5 (16.3s) 3·10-5 (4.4s)
rover 7·105 1·107 0.353 (337s) 0.853 (237s) 0.861 (462s)∗ 0.861 (406s) 0.861 (12.2s)∗ 0.861 (12.4s)
rover 2·107 ? - - - - 0.951 (466s)∗ 0.951 (456s)
serv 40 10·104 0.0474 (111s) 0.378 (1.9s) 0.0474 (107s) 0.378 (6.4s) - 0.378 (15.4s)
serv 68 3·105 0.172 (282s) 0.636 (158s) 0.169 (281s) 0.636 (528s) - 0.637 (139s)

walk40 82 6847 0.916 (97.3s)∗ 0.932 (1603s) 0.916 (174s)∗ 0.935 (1431s) 0.916 (<1s) 0.93 (1295s)
walk120 82 2·104 0.867 (846s) 0.931 (542s) 0.869 (1681s) 0.931 (1309s) 0.895 (11.0s)∗ 0.926 (727s)

water 3·104 6·105 3·10-123 (327s) 1 (144s) 0.166 (17.9s)∗ 0.166 (17.5s) 0.166 (<1s)∗ 0.166 (<1s)
water 3·105 5·106 - - 0.181 (268s)∗ 0.181 (269s) 0.181 (4.2s)∗ 0.181 (4.3s)

provides further details.

Table 1 outlines the benchmark instances we consider, in-
cluding the number of POMDP states |S|, the number of
distinct observations |Z|, the relation of the cost bounds
▷◁ (also indicating the dimensionality k), and the number
of reachable epochs |E| indicating the magnitude of the in-
volved cost thresholds t = ⟨t1, . . . , tk⟩. We consider two
different thresholds for resrc, rover, serv, and water. The
symbol † for the clean instances denotes that the second cost
dimension remains unobservable, even for the cost-aware
configurations. While some of the considered POMDPs have
small state spaces, a high number of relevant epochs leads
to intricate cost-bounded reachability queries. We emphas-
ise that the complexity of the considered instances stems
from the inclusion of cost bounds—the unbounded problem
variants with the same target states we consider result in a
maximal probability of 1 for all instances.

Setup We conducted experiments on Intel Xeon 8468
Sapphire systems (2.1 GHz) with memory limited to 64 GB.
STORM runs on a single core. For each combination of
benchmark instance, configuration, and abstraction type,
we considered 25 different hyper-parameter assignments to
capture different trade-offs between approximation accuracy
and computational tractability. A time limit of 1800 seconds
(walltime) was applied for the individual runs. A detailed
setup description is provided in Appendix E.

Results Table 2 lists the best value bounds obtained within
the time and memory limit as well as the time it took to ob-
tain these bounds. CUT yields a lower bound on the optimal
value, and DISCR yields an upper bound V U (see Prob-
lem 1). Table entries are bold-faced when they depict the
tightest lower or upper bound obtained within the fastest
runtime. This does not include UNFOLD as it computes a

different measure. A dash (-) indicates that no non-trivial
bound was obtained within the time limit. Column |Sun|
denotes the number of reachable states in the unfolding
POMDP (if known). For CUT, an asterisk (∗) indicates that
the belief MDP was fully explored.

The plots at the top of Figure 2 show the obtained value
bounds over analysis time for two selected instances. A data
point ⟨x, y⟩ for configuration Z means that (lower or upper)
value bound y was established within x seconds using con-
figuration Z and appropriate hyper-parameters. Similarly,
the plots at the bottom show obtained value bounds for our
motivating example clean6, on the left when increasing the
number of observable energy levels (intuitively providing
more information for a policy) and on the right when increas-
ing the energy budget. Tables containing additional details
on the results and further plots are given in Appendix F.

Discussion Concerning (Q1), we see that all considered
approaches produce non-trivial bounds on the optimal value
for the majority of benchmark instances. Towards (Q2), we
observe that the true optimal values in cost-(level-)aware
variants of POMDPs is always at least as good as in the
original POMDP. Our results show that cost-awareness does
not affect the obtained upper value bounds for many of our
benchmarks. However, the obtained lower bounds are often
larger with cost-awareness enabled, resulting in tighter gaps
between lower- and upper bounds. As we expect the max-
imal value to increase under cost-awareness, this indicates
that the discretisation method works better for obtaining
tight approximations when having more information about
incurred costs. This is also indicated by the data shown in
the bottom left of Figure 2. With an increasing number of
observable cost levels within the cost threshold t[0], the ob-
tained upper bounds decrease, while we expect the actual
(unknown) maximal probability to increase when more in-
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Figure 2: Value bounds obtained over time (top left: clean12,
|E|=1508; top right: serv, |E|=40), for different observation
levels (bottom left: clean6, |E|=413), and for increasing
cost thresholds (bottom right: clean6, 168 ≤ |E| ≤ 658).

formation is available for the policy, pointing towards tighter
upper bounds. In addition, we see that with increasingly finer
levels, the obtained values indeed increase, hinting at an in-
creasingly higher true optimal value. An exception to our
general observation is clean12 where CA-UNFOLD yields
a smaller value than UNFOLD for CUT. This is a result of
the state space increase for cost-aware variants caused by
STORM’s state-based observation model. The exploration
of the cost-aware variant’s belief space appears to be not
as thorough as for the original POMDP within our given
time limit. This results in a worse approximation (smaller
lower bound) of a larger optimal value. Regarding (Q3),
CA-BEL-SEQ often yields better approximations in less time
compared to CA-UNFOLD. A notable exception is the serv
case study. Here, the unfolding POMDP has similar size
compared to the original POMDP (|Sun| ≈ |S|) as we have
comparably few reachable epochs.

7 CONCLUSION

We proposed a general framework for the analysis of reach-
ability probability objectives under multiple cost constraints
on POMDPs. These objectives can be tackled by considering
an unbounded objective on an unfolding of the POMDP. Ob-
servation of incurred costs enables an advanced technique
based on a sequential analysis of cost epochs on the belief
MDP. Awareness of cost levels provides a more realistic
way to model certain scenarios and can often be reduced to

the cost-aware setting. Our experiments using a prototype
implementation in STORM indicate the suitability of cost-
bounded reachability analysis for practical applications.

As future research, we propose the extension of our frame-
work towards cost-bounded expected reward objectives and
a more flexible notion of cost levels. Additionally, devel-
oping approximation methods tailored towards the cost-
bounded setting is useful for increasing scalability.

Data Availability The supplementary material contains
detailed proofs for our theoretical results and additional data
from our evaluation. The artifact accompanying this paper
[Bork et al., 2025] contains the source code of our imple-
mentation, model files used for the experimental evaluation
and logfiles created during our experiments.
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A EXAMPLE

We illustrate the unfolding of cost bounds for POMDPs to treat cost-bounded reachability probability problems by an
example. Consider the POMDP M and 2-dimensional cost structure C depicted in Figure 3.

M contains 4 states and 2 actions α and β. The left-hand side of Figure 3 depicts the state-transition diagram of M. For
example, we have P(s0, a)(s0) = 1/2. Observations after a transition are deterministic, and the single possible observation
after a transition is given next to the transition probability, so for example we have O(s0, a, s1)(z0) = 1. The way the
observations are chosen means that we always observe z0 if we enter s0 or s1, z1 if we enter s2 and z2 if we enter t.

The cost vector of each transition is given on the right-hand side of Figure 3. In particular, we only have two transitions that
do not have a cost of ⟨0, 0⟩, namely C(s1, α, s1) = ⟨1, 0⟩ and C(s0, α, s0) = ⟨0, 1⟩.
Consider the cost bound bnd = (C ⟨≤, >⟩ ⟨1, 0⟩), i.e., in dimension 1, we want to collect at most 1 unit of cost, while
in dimension 2, we want to collect more than 0 units. We are interested in the cost-bounded reachability probability
PrMmax(♢bnd{t}). Satisfying the cost bounds requires to take transition s0

α−→ s0 at least once while taking the self-loop
s1

α−→ s1 at most once.

The state-transition diagram of the fragment of the unfolding POMDP unbnd(M) reachable from the initial state is given
in Figure 4. For illustration of the transitions in unbnd(M), we consider an example. Due to the bound thresholds, we
get that the initial epoch t of the unfolding is ⟨1, 0⟩. Thus, the initial unfolding state is ⟨s0, ⟨1, 0⟩⟩. Consider transition
s0

α−→ s0 in M. We have C(s0, α, s0) = ⟨0, 1⟩, thus the corresponding transition starting in ⟨s0, ⟨1, 0⟩⟩ changes the epoch
to ⟨1, 0⟩ ⊖ ⟨0, 1⟩ = ⟨1,⊥⟩, resulting in the transition ⟨s0, ⟨1, 0⟩⟩ α−→ ⟨s0, ⟨1,⊥⟩⟩ with probability

Pun(⟨s0, ⟨1, 0⟩⟩, α)(⟨s0, ⟨1,⊥⟩⟩) = P(s0, α)(s0) = 1/2.

The observations resulting from ⟨s0, ⟨1, 0⟩⟩ α−→ ⟨s0, ⟨1,⊥⟩⟩ have the same probability as for s0
α−→ s0 in the original POMDP,

i.e., z1 is observed with probability 1.

To analyse PrMmax(♢bnd{t}), we need to identify the active {t}-states. The active epochs in unbnd(M) are ⟨1,⊥⟩ and ⟨0,⊥⟩.
Therefore, we have

actvbnd({t}) = {⟨t, ⟨1,⊥⟩⟩, ⟨t, ⟨0,⊥⟩⟩}.

We can now consider the unbounded reachability probability

Prunbnd(M)
max (♢actvbnd({t})) = Prunbnd(M)

max (♢{⟨t, ⟨1,⊥⟩⟩, ⟨t, ⟨0,⊥⟩⟩})

and solve the problem using methods known from the literature.

This results in a value of Prunbnd(M)
max (♢actvbnd({t})) = 3/8, achieved by a policy that chooses α in the first 3 steps (in which

only z0 is observed) and then β.
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β
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s0 s1

s2 t
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β
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β
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α

⟨1, 0⟩
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α, β

⟨0, 0⟩

Figure 3: Example POMDP M and corresponding cost structure C
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Figure 4: Reachable fragment of the cost-bounded unfolding unbnd(M) for example POMDP M with respect to cost bound
bnd = (C ⟨≤, >⟩ ⟨1, 0⟩)

By Theroem 2 we therefore get that

PrMmax(♢bnd{t}) = Prunbnd(M)
max (♢actvbnd({t})) = 3/8.

This example also showcases why a naïve unfolding approach that directly encodes the collected costs in the state space
(and not the costs that remain until the bound changes its status) is inappropriate. In such a naïve unfolding, we have
infinitely many copies of every state in the POMDP, and in particular there are infinitely many reachable target states for the
unbounded reachability problem. In contrast, our unfolding results in a finite POMDP which can be treated with standard
methods.

B DETAILED EXPLANATION OF LEVEL UNFOLDING POMDP

We explain the construction of the level unfolding POMDP (Def. 9). For the remainder of this section, fix a POMDP
M = ⟨M,Z,O⟩ with M = ⟨S,Act ,P, sinit⟩, k-dimensional cost bound (C ▷◁ t) and level function lvld : Nk → Nk with
d ∈ (N \ {0})k.

The core idea of the level unfolding is that we keep track of jumps in the level using the observations of the unfolding
POMDP. An observation also stores by how many levels we jump up when taking a transition. To keep track of when an
incurred cost causes a level jump, we need to do bookkeeping in between jumps. We do this by storing the remaining cost
until the next jump in the state space.

The state space Slvld is defined such that for there is a copy of each state for each possible combination of costs with which
we stay in the current level in any dimension. We keep track of this using a set of vectors ℓ ∈ N where each entry ℓ[i]
indicates the amount of cost which is allowed to be collected to stay in the current level of dimension i. We call this cost the



remainder. Formally, the state space is defined as:

Slvld := S × {ℓ ∈ N | ∀1 ≤ i ≤ k : 0 ≤ ℓ[i] < d[i]}

The transitions Plvld of the unfolding are defined such that for two states in the unfolding, the transition probability is the
same as for the corresponding states in the original POMDP if their remainder vectors are compatible. In particular, that
means that the transition models the correct transformation of the remainder. This is the case if for each dimension, the new
remainder is the old remainder minus the cost of the transition, modulo d[i], effectively modelling that a level jump occurs
every time a total of d[i] costs has been incurred and the remainder stores the progress in the current level. We get:

Plvld(⟨s, ℓ⟩, a, ⟨s′, ℓ′⟩) :=
{
P(s, a, s′) if ∀1 ≤ i ≤ k : ℓ′[i] = ℓ[i]−C(s, a, s′)[i] mod d[i],

0 otherwise.

In the unfolding, the observations are defined such that in addition to the observations of the original POMDP, we keep track
of the level changes that occur when taking transitions. Thus, we consider copies of the original observations for each vector
j of possible level changes in one step. In particular, we observe that in dimension i, in one step a transition s

a−→ s′ can
increase the level by at most

⌈
C(s,a,s′)[i]

d[i]

⌉
. Thus it suffices to consider vectors j where the value in each dimension is at

most
⌈
maxs,s′∈S,a∈Act C(s,a,s′)[i]

d[i]

⌉
, resulting in a finite set of observations. In particular, we get:

Zlvld := Z ×
{
j ∈ Nk | ∀1 ≤ i ≤ k : 0 ≤ j[i] ≤

⌈
maxs,s′∈S,a∈Act C(s, a, s′)[i]

d[i]

⌉}

Olvld , i.e., the observation function of the unfolding, is defined such that for every transition, the probability of observing a
new observation ⟨z, j⟩ after a transition is the same as the probability to observe z after taking the corresponding transition
in the original POMDP exactly if j corresponds to the correct jumps in level in all dimensions. To ensure this, in addition to
the costs of the transition, we need to consider the remainders ℓ in the origin state ⟨s, ℓ⟩ as the smaller the the value ℓ[i],
i.e., the deeper we already are in the current level, the fewer costs we need to collect to jump to the next level. This results in
the following definition:

Olvld(⟨s, ℓ⟩, a, ⟨s′, ℓ′⟩)(⟨z, j⟩) :=
{
O(s, a, s′)(z) if ∀1 ≤ i ≤ k : j[i] =

⌈
C(s,a,s′)[i]−ℓ[i]

d[i]

⌉
,

0 otherwise.

Finally, as the initial state we consider the copy of the original initial state sinit where all remainders are 0, i.e.,
⟨sinit , ⟨0, . . . , 0⟩⟩. This captures the behaviour of the level function lvld where if we consider the input to be a vec-
tor of total incurred costs, as soon as some non-zero cost is collected in a dimension, the level jumps from 0 to a higher
value.

Using the above components, we can define a level unfolding POMDP with respect to lvld as lvld(M) = ⟨Mlvld , Zlvld ,Olvld⟩
with Mlvld = ⟨Slvld ,Act ,Plvld , ⟨sinit , ⟨0, . . . , 0⟩⟩⟩.

C PROOFS FOR MAIN RESULTS

C.1 DETAILS ON PATH PROBABILITY MEASURE

As a basis for further theoretical results, we recap the definition of the probability measure for paths.

Given POMDP M = ⟨M,Z,O⟩ with underlying MDP M = ⟨S,Act ,P, sinit⟩ and a policy σ ∈ ΣM, we define the
functions

σa(τ) :=

{
1 if σ(τ) = a,

0 otherwise

indicating if policy σ chooses action a ∈ Act when trace τ is observed.



Towards the probability measure for paths, we observe that the probability of a path π̂ = s0a1 . . . sn and an observation
trace of compatible length τ = z1 . . . zn occurring under a policy σ is

PM
σ (π̂ ∧ τ) =

n∏
i=1

P(si−1, ai, si) · σai
(τ [..(i− 1)]) ·O(si−1, ai, si)(zi)

where

τ [..k] :=

{
z1 . . . zk if k > 0,

ε otherwise.

The overall probability of a a path is then the probability that it occurs with any observation trace. We get that overall for a
finite path π̂ = s0a1 . . . sn ∈ PathsMfin , the probability of π̂ under policy σ is

PrMσ ({π̂}) =
∑

z1...zn∈ObsTracesM

PM
σ (π̂ ∧ z1 . . . zn)

Using the probability for a finite path, the probability measure for infinite paths and by extension (measurable) sets of
infinite paths is defined using the standard cylinder set construction. We refer to Baier and Katoen [2008] for details.

In the following, we identify LTL-like formulae for reachability with the sets of path they describe, i.e., for a set T ⊆ S and
(C ▷◁ t), we define

♢C▷◁tT :=
{
π ∈ Cyl(π̂)

∣∣ last(π̂) ∈ T and (C ▷◁ t) is active for π̂
}

where Cyl(π̂) is the set of infinite extensions of finite path π̂.

C.2 PROOF OF THEOREM 2

Theorem 2. Given a POMDP M, set T ⊆ S and cost bound (C ▷◁ t), it holds that for all policies σ ∈ ΣM:

PrMσ (♢C▷◁t T ) = PrunC▷◁t(M)
σ (♢ actvC▷◁t(T ))

Proof. Let M = ⟨M,Z,O⟩ with M = ⟨S,Act ,P, sinit⟩. Furthermore, unC▷◁t(M) = ⟨unC▷◁t(M), Z,Oun⟩ with
unC▷◁t(M) = ⟨S × Ek(t),Act ,Pun, ⟨sinit , t⟩⟩. We define a mapping

f : PathsunC▷◁t(M) → PathsM

with
f(⟨s0, e0⟩a1⟨s1, e1⟩ . . . ⟨sn, en⟩) := s0a1 . . . sn,

i.e., f(π̂) is the path resulting from dropping the epoch component from π̂. We show that f is bijective:

• f is injective: Consider two (finite, initial) paths

π̂ = ⟨s0, e0⟩a1⟨s1, e1⟩a2 . . . ⟨sn, en⟩
and

π̂′ = ⟨s′0, e′0⟩a′1⟨s′1, e′1⟩a′2 . . . ⟨s′m, e′m⟩
of unC▷◁t(M) with π̂ ̸= π̂′. By definition, both paths start at the initial state ⟨sinit , t⟩. We distinguish two cases:

– If π̂ and π̂′ have different lengths (n ̸= m), then |f(π̂)| = |π̂| ≠ |π̂′| = |f(π̂′)| and thus f(π̂) ̸= f(π̂′).
– Otherwise, let 0 < i ≤ n = m be the first index where the paths disagree, i.e., ⟨si−1, ei−1⟩ = ⟨s′i−1, e

′
i−1⟩ and

ai ̸= a′i, si ̸= s′i, or ei ̸= e′i. If ai = a′i and si = s′i, we get ei = ei−1 ⊖C(si−1, ai, si) = e′i. Therefore, either
ai ̸= a′i or si ̸= s′i must hold and we immediately get f(π̂) ̸= f(π̂′).

• f is surjective: we show that for all π̃ ∈ PathsM, there exists π̂ ∈ PathsunC▷◁t(M) such that f(π̂) = π̃. Let π̃ =

s0a1s1a2 . . . sn ∈ PathsM. Consider

π̂ = ⟨s0, t⟩a1⟨s1, t⊖C(s0, a1, s1)⟩ . . . ⟨sn, (. . . (t⊖C(s0, a1, s1))⊖ . . .)⊖C(sn−1, an, sn)⟩

where π̂ ∈ PathsunC▷◁t(M) by definition of the unfolding MDP.
We have f(π̂) = π̃, thus f is surjective.



Therefore, f is bijective. Next, recall that M and unC▷◁t(M) share the same set of policies ΣM = ΣunC▷◁t(M).

We show that f preserves the probability of measurable sets of (infinite) paths under a given policy σ ∈ ΣM. As those sets
can be constructed from cylinder sets of finite paths, we can focus on finite paths.

We show that
PrunC▷◁t(M)

σ ({π̂}) = PrMσ ({f(π̂)})

PrunC▷◁t(M)
σ ({π̂}) =

∑
z1...zn∈ObsTracesunC▷◁t(M)

P unC▷◁t(M)
σ (π̂ ∧ z1 . . . zn)

=
∑

z1...zn∈ObsTracesunC▷◁t(M)

n∏
i=1

Pun(⟨si−1, ei−1⟩, ai, ⟨si, ei⟩)·

σai
(τ [..(i− 1)]) ·O(⟨si−1, ei−1⟩, ai, ⟨si, ei⟩)(zi)

=
∑

z1...zn∈ObsTracesM

n∏
i=1

P(si−1, ai, si)·

σai(τ [..(i− 1)]) ·O(si−1, ai, si)(zi)

=
∑

z1...zn∈ObsTracesM

PM
σ (f(π̂) ∧ z1 . . . zn)

= PrMσ ({f(π̂)})

It remains to show that f correctly transforms the set of paths ♢ actvC▷◁t(T ), i.e., ♢C▷◁t T = {f(π) | π ∈ ♢ actvC▷◁t(T )}.

Let π ∈ ♢ actvC▷◁t(T ), i.e., π ∈ Cyl(π̂) for a π̂ = ⟨s0, e0⟩a1 . . . ⟨sn, en⟩ such that last(π̂) = ⟨sn, en⟩ ∈ actvC▷◁t(T ) =
{⟨t, e⟩ ∈ S × Ek(t) | t ∈ T ∧ actvC▷◁t(e) = 1}. Consider f(π̂) = s0a1 . . . sn. By definition we have sn ∈ T .

Consider further an arbitrary, but fixed dimension 1 ≤ j ≤ k of bound (C ▷◁ t). We distinguish two cases:

▷◁[j] = (≤): as ⟨sn, en⟩ ∈ actvC▷◁t(T ), we have actvC▷◁t(en) = 1. Thus, en[j] ∈ N and in particular en[j] ̸= ⊥. By

definition of Pun, we then know that for all transitions ⟨si, ei⟩
ai+1−−−→ ⟨si+1, ei+1⟩ along π̂, ei[j]−C(si, ai+1, si+1)[j] ≥ 0

and therefore also that t[j]−∑n
i=1 C(si−1, ai, si)[j] ≥ 0. Furthermore,

t[j]−
n∑

i=1

C(si−1, ai, si)[j] = t[j]− costC(f(π̂))[j]

so t[j]− costC(f(π̂))[j] ≥ 0 and t[j] ≥ costC(f(π̂))[j], so bound (C ▷◁ t) is active in dimension j for f(π̂).

▷◁[j] = (>): as ⟨sn, en⟩ ∈ actvC▷◁t(T ), we have actvC▷◁t(en) = 1. Thus, en[j] = ⊥. By definition of Pun, we then know

that there is a transition ⟨si, ei⟩
ai+1−−−→ ⟨si+1, ei+1⟩ along π̂ such that ei[j]−C(si, ai+1, si+1)[j] < 0.

Therefore also t[j] −∑n
i=1 C(si−1, ai, si)[j] < 0 holds. Furthermore, by the argument from before, we then get t[j] <

costC(f(π̂))[j], so bound (C ▷◁ t) is active in dimension j for f(π̂).

Thus, for f(π̂), we have last(f(π̂)) ∈ T and for all 1 ≤ j ≤ k, (C ▷◁ t) is active for f(π̂) in dimension j, so for all
f(π) ∈ Cyl(f(π̂)), f(π) ∈ ♢C▷◁t T .

Now let πM ∈ ♢C▷◁t T . By bijectivity of f and with similar arguments as before, we get f−1(πM) ∈ ♢ actvC▷◁t(T ).

Overall we get ♢C▷◁t T = {f(π) | π ∈ ♢ actvC▷◁t(T )}.

We conclude that
PrMσ (♢C▷◁t T ) = PrunC▷◁t(M)

σ (♢ actvC▷◁t(T ))

for all policies σ ∈ ΣM.



C.3 PROOF OF THEOREM 3

Theorem 3. For cost bound (C ▷◁ t) and cost-aware POMDP M we have

bel(unC▷◁t(M)) ∼= unbel(C▷◁t)(bel(M)).

Let M = ⟨M,Z,O⟩ with M = ⟨S,Act ,P, sinit⟩ be a cost-aware POMDP with respect to k-dimensional cost structure C.

Furthermore, let
bel(unC▷◁t(M)) = ⟨BunC▷◁t(M),Act ,P

B
un, ⟨zinit , µinit⟩⟩

with µinit(⟨sinit , t⟩) = 1 and

unbel(C▷◁t)(bel(M)) = ⟨BM × Ek(t),Act ,P
bel(M)
un , ⟨binit , t⟩⟩.

To show that bel(unC▷◁t(M)) ∼= unbel(C▷◁t)(bel(M)), we will show that we can identify each belief ⟨z, µ⟩ over state-epoch
tuples in bel(unC▷◁t(M)) with a belief-epoch tuple ⟨⟨z, b⟩, e⟩ in unbel(C▷◁t)(bel(M)) by moving the probability distribution
inside and the epoch out of the belief and vice versa.

We define a mapping f : BunC▷◁t(M) → BM × Ek(t) with

f(⟨z, µ⟩) := ⟨⟨z, µf ⟩, e⟩

where µf (s) := µ(⟨s, e⟩) and e is the epoch of some ⟨s, e⟩ ∈ µ.

For f to be well-defined, the epoch e must be unique for a fixed belief ⟨z, µ⟩. As already stated in the main paper, this is
indeed the case. We formalise the claim in the following lemma.

Lemma 1. Given a belief b = ⟨z, µ⟩ ∈ BunC▷◁t(M), for all states ⟨s, e⟩, ⟨s′, e′⟩ ∈ µ it holds that e = e′, i.e., the epoch for
all states in b is unique.

Proof. We show the claim by induction over the structure of

BunC▷◁t(M) = lim
n→∞

Bn
unC▷◁t(M).

For n = 0, we have B0
unC▷◁t(M) = {⟨zinit , µinit⟩} with µinit(⟨sinit , t⟩) = 1, so the claim holds.

Assume the claim holds for an arbitrary but fixed n ∈ N. We show that then the claim also holds for n + 1. Consider
b = ⟨z, µ⟩ ∈ Bn+1

unC▷◁t(M). If b ∈ Bn
unC▷◁t(M), the claim holds by assumption. Otherwise we have that b = ⟨z, µ⟩ ∈

Bn+1
unC▷◁t(M) \ Bn

unC▷◁t(M). Thus, b = succ(b′, a, z) for some b′ = ⟨z′, µ′⟩ ∈ Bn
unC▷◁t(M) and a ∈ Act .

Towards a contradiction, assume that there are two states ⟨s, e⟩, ⟨s′, e′⟩ ∈ µ such that e ̸= e′. Let ⟨q, ẽ⟩, ⟨q′, ẽ⟩ ∈ µ′ where ẽ
denotes the unique epoch of b′ and

Pun(⟨q, ẽ⟩, a, ⟨s, e⟩) > 0, Pun(⟨q′, ẽ⟩, a, ⟨s′, e′⟩) > 0,

Oun(⟨q, ẽ⟩, a, ⟨s, e⟩)(z) > 0, Oun(⟨q′, ẽ⟩, a, ⟨s′, e′⟩)(z) > 0,

i.e., the states ⟨q, ẽ⟩ and ⟨q′, ẽ⟩ respectively contribute to the probability of ⟨s, e⟩ and ⟨s′, e′⟩ in µ.

By definition of the unfolding, we also get O(q, a, s)(z) > 0 and O(q′, a, s′)(z) > 0. As e ̸= e′, we also have that
ẽ⊖C(q, a, s) ̸= ẽ⊖C(q′, a, s′), implying that C(q, a, s) ̸= C(q′, a, s′). This, however, contradicts the cost-awareness of
M.

Therefore the claim also holds for n+ 1.

We conclude the uniqueness of the epoch in belief b.

Lemma 2. The mapping f : BunC▷◁t(M) → BM × Ek(t) as defined above is well-defined.



Proof. By Lemma 1, we have that the epoch e used in the mapping is non-ambiguous.

It remains to show that indeed f(b) ∈ BM × Ek(t) for all b ∈ BunC▷◁t(M).

We use induction over the structure of BunC▷◁t(M). In particular, we show that if for a belief b ∈ BunC▷◁t(M), f(b) ∈
BM × Ek(t) holds, then for all successors b′ ∈ PB

un(b, a) for some a ∈ Act , f(b′) ∈ P
bel(M)
un (f(b), a).

As the base case, consider ⟨zinit , µinit⟩ ∈ BunC▷◁t(M) with

µinit(⟨sinit , t⟩) = 1.

We get f(⟨zinit , µinit⟩) = ⟨binit , t⟩.
⟨binit , t⟩ ∈ BM × Ek(t) by definition of BM and Ek(t), thus

f(⟨zinit , µinit⟩) ∈ BM × Ek(t).

Now let b = ⟨z, µ⟩ ∈ BunC▷◁t(M) such that the claim holds, i.e.,

f(b) ∈ BM × Ek(t).

Let e denote the unique epoch of all ⟨s, e⟩ ∈ µ and let f(b) = ⟨⟨z, µf ⟩, e⟩ with µf (s) = µ(⟨s, e⟩). Let β = ⟨z, µf ⟩.
We first show that P (z′|b, a) = P (z′|β, a).

P (z′|b, a) =
∑

⟨s,e⟩∈µ

µ(⟨s, e⟩) ·
∑

⟨s′,e′⟩∈S×Ek(t)

Pun(⟨s, e⟩, a)(⟨s′, e′⟩) ·Oun(⟨s, e⟩, a, ⟨s′, e′⟩)(z′)

=
∑

⟨s,e⟩∈µ

µ(⟨s, e⟩) ·
∑

⟨s′,e′⟩∈S×Ek(t)

Pun(⟨s, e⟩, a)(⟨s′, e′⟩) ·O(s, a, s′)(z′)

=
∑

⟨s,e⟩∈µ

µ(⟨s, e⟩) ·
∑
s′∈S

P(s, a)(s′) ·O(s, a, s′)(z′)

=
∑
s∈µf

µf (s) ·
∑
s′∈S

P(s, a)(s′) ·O(s, a, s′)(z′)

= P (z′|β, a)

Let b′ = ⟨z′, µ′⟩ ∈ PB
un(b, a) for some a ∈ Act with z′ ∈ Z.

Then by definition of the belief MDP, b′ = succ(b, a, z′) and the unique epoch e′ of all states ⟨s′, e′⟩ ∈ µ′ is
e′ = e⊖C(s, a, s′) for some s ∈ µ and s′ ∈ µ′. Cost vector C(s, a, s′) is guaranteed to be unique as M is cost-aware.

As b′ = succ(b, a, z′), we have for ⟨s′, e′⟩ ∈ µ′

µ′(⟨s′, e′⟩) =
∑

⟨s,e⟩∈µ µ(⟨s, e⟩) ·Pun(⟨s, e⟩, a)(⟨s′, e′⟩) ·Oun(⟨s, e⟩, a, ⟨s′, e′⟩)(z′)
P (z′|b, a)

=

∑
⟨s,e⟩∈µ µf (s) ·Pun(⟨s, e⟩, a)(⟨s′, e′⟩) ·O(s, a, s′)(z′)

P (z′|b, a)
e′=e⊖C(s,a,s′)

=

∑
s∈µ µf (s) ·P(s, a)(s′, e′) ·O(s, a, s′)(z′)

P (z′|b, a)

=

∑
s∈µ µf (s) ·P(s, a)(s′) ·O(s, a, s′)(z′)

P (z′|β, a)

Let β′ = succ(β, a, z′) = ⟨z′, µ′
f ⟩ be the successor belief of β in bel(M).

We have that CB(β, a, β′) = C(s, a, s′). So in unbel(C▷◁t)(bel(M)), we have that

Pbel(M)
un (⟨β, e⟩, a)(⟨β′, ẽ⟩) = Pbel(M)(β, a)(β′) > 0



if and only if ẽ = e⊖CB(β, a, β′).

CB(β, a, β′) = C(s, a, s′) yields e ⊖ CB(β, a, β′) = e ⊖ C(s, a, s′) = e′ holds and we get that
⟨β′, e′⟩ ∈ P

bel(M)
un (⟨β, e⟩, a).

Additionally, we have that

µ′
f (s

′) =

∑
s∈µ µf (s) ·P(s, a)(s′) ·O(s, a, s′)(z′)

P (z′|β, a) = µ′(⟨s′, e′⟩)

for all s′ ∈ µ′
f and we conclude that f(b′) = ⟨β′, e′⟩.

Thus, we have shown that for an arbitrary successor b′ of b, if f(b) ∈ BM × Ek(t), then also f(b′) ∈ BM × Ek(t).

We conclude that f(b) ∈ BM × Ek(t) for all b ∈ BunC▷◁t(M).

Therefore, f is well-defined.

Lemma 3. The mapping f : BunC▷◁t(M) → BM × Ek(t) as defined above is a bijection.

Proof. f is injective: We show that ⟨z, µ⟩ ≠ ⟨z′, µ′⟩ implies

f(⟨z, µ⟩) = ⟨⟨z, µf ⟩, e⟩ ≠ f(⟨z′, µ′⟩) = ⟨⟨z′, µ′
f ⟩, e′⟩.

If z ̸= z′, ⟨⟨z, µf ⟩, e⟩ ≠ ⟨⟨z′, µ′
f ⟩, e′⟩ directly follows.

If z = z′, then µ ̸= µ′ must hold for ⟨z, µ⟩ ≠ ⟨z′, µ′⟩ to hold. Recall that e and e′ are the unique epochs of states in µ′ and
µ′ respectively. We distinguish two cases:

• e ̸= e′. Then ⟨⟨z, µf ⟩, e⟩ ≠ ⟨⟨z′, µ′
f ⟩, e′⟩ follows directly.

• e = e′. As µ ̸= µ′, if z = z′ and e = e′, there exists an ⟨s, e⟩ such that µ(⟨s, e⟩) ̸= µ′(⟨s, e⟩). Therefore, we have
µf (s) ̸= µ′

f (s), establishing
⟨⟨z, µf ⟩, e⟩ ≠ ⟨⟨z′, µ′

f ⟩, e′⟩.

Thus f is injective.

f is surjective: we show that for all ⟨⟨z, µf ⟩, e⟩ ∈ BM × Ek(t), there exists a ⟨z, µ⟩ ∈ BunC▷◁t(M) such that f(⟨z, µ⟩) =
⟨⟨z, µf ⟩, e⟩.
Given ⟨⟨z, µf ⟩, e⟩ ∈ BM × Ek(t), let b = ⟨z, µ⟩ with

µ(⟨s, e′⟩) :=
{
µf (s) if e′ = e,

0 otherwise.

b ∈ BunC▷◁t(M) can be established analogous to the proof for Lemma 2.

We have f(b) = ⟨⟨z, µf ⟩, e⟩.
As f is surjective and injective, f is a bijection.

We can now proof the theorem.

Proof of Theorem 3. The bijective function f is the isomorphism establishing

bel(unC▷◁t(M)) ∼= unbel(C▷◁t)(bel(M)).

It remains to show that f indeed preserves transition probabilities, i.e.,

PB
un(b, a)(b

′) = Pbel(M)
un (f(b), a)(f(b′))



Let b = ⟨z, µ⟩, b′ = ⟨z′, µ′⟩ ∈ BunC▷◁t(M) and let a ∈ Act . Furthermore, let f(b) = ⟨⟨z, µf ⟩, e⟩ = ⟨β, e⟩ and f(b′) =
⟨⟨z′, µ′

f ⟩, e′⟩ = ⟨β′, e′⟩.
We distinguish three cases:

• b′ ̸= succ(b, a, z′) and P (z′|b, a) = 0. Then for all ⟨s, e⟩ ∈ µ and ⟨s′, e′⟩ ∈ Pun(⟨s, e⟩, a), we have

Oun(⟨s, e⟩, a, ⟨s′, e′⟩)(z′) = 0

and thus already
O(s, a, s′)(z′) = 0

for all s ∈ µf . Therefore, in belief MDP bel(M), β′ = ⟨z′, µ′
f ⟩ is already not a successor of β = ⟨z, µ⟩ and thus

Pbel(M)
un (f(b), a)(f(b′)) = Pbel(M)(β, a)(β′) = 0 = PB

un(b, a)(b
′).

• b′ ̸= succ(b, a, z′) and P (z′|b, a) > 0. Then there exists a ⟨s′, e′⟩ ∈ µ′ such that

µ′(⟨s′, e′⟩)

̸=
∑

⟨s,e⟩∈µ µ(⟨s, e⟩) ·Pun(⟨s, e⟩, a)(⟨s′, e′⟩) ·Oun(⟨s, e⟩, a, ⟨s′, e′⟩)(z′)
P (z′|b, a)

=

∑
⟨s,e⟩∈µ µ(⟨s, e⟩) ·Pun(⟨s, e⟩, a)(⟨s′, e′⟩) ·O(s, a, s′)(z′)

P (z′|b, a)

First consider the case if e′ = e⊖C(s, a, s′). Then∑
⟨s,e⟩∈µ µ(⟨s, e⟩) ·Pun(⟨s, e⟩, a)(⟨s′, e′⟩) ·O(s, a, s′)(z′)

P (z′|b, a)

=

∑
⟨s,e⟩∈µ µ(⟨s, e⟩) ·P(s, a)(s′) ·O(s, a, s′)(z′)

P (z′|b, a)

=

∑
s∈µf

µf (s) ·P(s, a)(s′) ·O(s, a, s′)(z′)

P (z′|β, a)
̸=µ′(⟨s′, e′⟩) = µ′

f (s
′)

If e′ ̸= e⊖C(s, a, s′), then ∑
⟨s,e⟩∈µ µ(⟨s, e⟩) ·Pun(⟨s, e⟩, a)(⟨s′, e′⟩) ·O(s, a, s′)(z′)

P (z′|b, a)

=

∑
⟨s,e⟩∈µ µ(⟨s, e⟩) · 0 ·O(s, a, s′)(z′)

P (z′|b, a)
=0 ̸= µ′(⟨s′, e′⟩) = µ′

f (s
′)

Thus in both cases, β′ is already not a successor belief of β, meaning that

Pbel(M)
un (f(b), a)(f(b′)) = 0 = PB

un(b, a)(b
′).

• b′ = succ(b, a, z′): The proof of Lemma 2 already establishes that in this case Pbel(M)
un (f(b), a)(f(b′)) = PB

un(b, a)(b
′)

holds.

In all cases, f indeed preserves transition probabilities, i.e.,

PB
un(b, a)(b

′) = Pbel(M)
un (f(b), a)(f(b′))

holds. We conclude that f establishes the isomorphism between bel(unC▷◁t(M)) and unbel(C▷◁t)(bel(M)), i.e., we get that

bel(unC▷◁t(M)) ∼= unbel(C▷◁t)(bel(M)).



C.4 PROOF OF THEOREM 4

Fix a POMDP M = ⟨M,Z,O⟩ with M = ⟨S,Act ,P, sinit⟩, cost structure C, and a level function lvld. Further-
more, let lvld(M) be the level unfolding POMDP according to Def. 9 and define the level jump (cost) structure
L : Slvld ×Act × Slvld → Nk as

L(⟨s, ℓ⟩, a, ⟨s′, ℓ′⟩)[i] :=
⌈
C(s, a, s′)[i]− ℓ[i]

d[i]

⌉
.

We will first show three lemmata that will help with the proof of Theorem 4.

Lemma 4. Let π̂ = ⟨s0, ℓ0⟩a1⟨s1, ℓ1⟩a2 . . . an⟨sn, ℓn⟩ ∈ Paths
lvld(M)
fin and π̃ = π̂an+1⟨sn+1, ℓn+1⟩ with

Plvld(⟨sn, ℓn⟩, an+1, ⟨sn+1, ℓn+1⟩) > 0 an extension of π̂. Then it holds that

d[i] · costL(π̃)[i]− ℓn+1[i] = C(sn, an+1, sn+1)[i] + d[i] · costL(π̂)[i]− ℓn[i]

Proof. In the following, we use the facts that (x mod y) = x− y ·
⌊
x
y

⌋
and ⌊−x⌋ = −⌈x⌉. We get:

d[i] · costL(π̃)[i]− ℓn+1[i]

=d[i] ·
n+1∑
h=1

⌈
C(sh−1, ah, sh)[i]− ℓh−1[i]

d[i]

⌉
− ℓn+1[i]

=

(
d[i] ·

n+1∑
h=1

⌈
C(sh−1, ah, sh)[i]− ℓh−1[i]

d[i]

⌉)
− ℓn+1[i]

=

(
d[i] ·

n+1∑
h=1

⌈
C(sh−1, ah, sh)[i]− ℓh−1[i]

d[i]

⌉)
− (ℓn[i]−C(sn, an+1, sn+1)[i] mod d[i])

=d[i] ·
⌈
C(sn, an+1, sn+1)[i]− ℓn[i]

d[i]

⌉
+

(
d[i] ·

n∑
h=1

⌈
C(sh−1, ah, sh)[i]− ℓh−1[i]

d[i]

⌉)
− (ℓn[i]−C(sn, an+1, sn+1)[i] mod d[i])

=d[i] ·
⌈
C(sn, an+1, sn+1)[i]− ℓn[i]

d[i]

⌉
+ d[i] · costL(π̂)−(

ℓn[i]−C(sn, an+1, sn+1)[i]− d[i] ·
⌊
ℓn[i]−C(sn, an+1, sn+1)[i]

d[i]

⌋)
=d[i] ·

⌈
C(sn, an+1, sn+1)[i]− ℓn[i]

d[i]

⌉
+ d[i] · costL(π̂)

−
(
ℓn[i]−C(sn, an+1, sn+1)[i] + d[i] ·

⌈−ℓn[i] +C(sn, an+1, sn+1)[i]

d[i]

⌉)
=d[i] ·

⌈
C(sn, an+1, sn+1)[i]− ℓn[i]

d[i]

⌉
+ d[i] · costL(π̂)

− ℓn[i] +C(sn, an+1, sn+1)[i]− d[i] ·
⌈
C(sn, an+1, sn+1)[i]− ℓn[i]

d[i]

⌉
=C(sn, an+1, sn+1)[i] + d[i] · costL(π̂)− ℓn[i]

The following lemma formalises the relationship between the cost structure on the level unfolding and the level jump
structure.

Lemma 5. Given π̂ = ⟨s0, ℓ0⟩a1⟨s1, ℓ1⟩a2 . . . an⟨sn, ℓn⟩ ∈ Paths
lvld(M)
fin , we have that

costClvld
(π̂)[i] = d[i] · costL(π̂)[i]− ℓn[i].



Proof. We proof the claim by induction over the length of π̂. We denote by π̃ the prefix of π̂ without the last transition,
i.e., π̃ = ⟨s0, ℓ0⟩a1 . . . a|π̂|−1⟨s|π̂|−1, ℓ|π̂|−1⟩
Let |π̂| = 0. Then

d[i] · costL(π̂)[i]− ℓn[i] = d[i] · costL(π̂)[i]− ℓ0[i]

= d[i] · 0− ⟨0, . . . , 0⟩[i]
= 0

= costClvld
(π̂)[i]

Assume the claim holds for an arbitrary, but fixed n ∈ N.

Let |π̂| = n+ 1

costClvld
(π̂)[i] =

n+1∑
h=1

Clvld(⟨sh−1, ℓh−1⟩ah⟨sh, ℓh⟩)[i]

= Clvld(⟨sn, ℓn⟩an+1⟨sn+1, ℓn+1⟩)[i] +
n∑

h=1

Clvld(⟨sh−1, ℓh−1⟩ah⟨sh, ℓh⟩)[i]

= Clvld(⟨sn, ℓn⟩an+1⟨sn+1, ℓn+1⟩)[i] + costClvld
(π̃)[i]

(IH)
= Clvld(⟨sn, ℓn⟩an+1⟨sn+1, ℓn+1⟩)[i] + d[i] · costL(π̃)[i]− ℓn[i]

= C(sn, an+1, sn+1)[i] + d[i] · costL(π̃)[i]− ℓn[i]

(Lem. 4)
= d[i] · costL(π̂)[i]− ℓn+1[i]

Thus the claim is shown for all lengths of π̂.

The following lemma shows that in the case that d[i] | t[i] for all 1 ≤ i ≤ k, we can define a bound on the jump structure
such that for an arbitrary finite path, the new bound is active if and only if the original cost bound is active.

Lemma 6. Let lvld(M), cost bound (Clvld ▷◁ t) and Td such that d[i] | t[i] for 1 ≤ i ≤ k. Furthermore, define td with
td[i] :=

t[i]
d[i] for all 1 ≤ i ≤ k. Then for π̂ ∈ Paths

lvld(M)
fin , (Clvld ▷◁ t) is active for π̂ if and only if (L ▷◁ td) is active for π̂.

Proof. Fix a path π̂ ∈ Paths
lvld(M)
fin . To show that (Clvld ▷◁ t) is active for π̂ if and only if (L ▷◁ td) is active for π̂, we

need to show for all dimensions i that (Clvld ▷◁ t) is active in dimension i for π̂ if and only if (L ▷◁ td) is active in i for π̂.
Thus, we need to show that costlvld(π̂)[i]▷◁[i]t[i] if and only if costL(π̂)[i]▷◁[i]td[i] for all 1 ≤ i ≤ k.

Fix an arbitrary dimension 1 ≤ i ≤ k. We get

costlvld(π̂)[i]▷◁[i]t[i]

⇐⇒ costlvld(π̂)[i]

d[i]
▷◁[i]

t[i]

d[i]

Lem. 5⇐⇒ d[i] · costL(π̂)[i]− ℓn[i]

d[i]
▷◁[i]

t[i]

d[i]

⇐⇒ d[i] · costL(π̂)[i]
d[i]

− ℓn[i]

d[i]
▷◁[i]

t[i]

d[i]

⇐⇒ costL(π̂)[i]−
ℓn[i]

d[i]
▷◁[i]

t[i]

d[i]

(∗)⇐⇒ costL(π̂)[i]▷◁[i]
t[i]

d[i]



It remains to show that equivalence (∗) holds. Observe that by definition of Slvld it always holds that 0 ≤ ℓn[i]
d[i] < 1.

Furthermore, as d[i] | t[i], we get that t[i]
d[i] ∈ N. Also observe that costL(π̂)[i] ∈ N.

We distinguish the two cases for ▷◁[i].

▷◁[i] = (>): As 0 ≤ ℓn[i]
d[i] , it follows directly that

costL(π̂)[i]−
ℓn[i]

d[i]
>

t[i]

d[i]
⇒ costL(π̂)[i] >

t[i]

d[i]
.

For

costL(π̂)[i]−
ℓn[i]

d[i]
>

t[i]

d[i]
⇐ costL(π̂)[i] >

t[i]

d[i]
,

observe that

costL(π̂)[i] >
t[i]

d[i]

⇒ costL(π̂)[i] ≥
t[i]

d[i]
+ 1

⇒ costL(π̂)[i]− 1 ≥ t[i]

d[i]

⇒ costL(π̂)[i]−
ℓn[i]

d[i]︸ ︷︷ ︸
<1

>
t[i]

d[i]
.

Therefore, we conclude that

costL(π̂)[i]−
ℓn[i]

d[i]
>

t[i]

d[i]
⇐⇒ costL(π̂)[i] >

t[i]

d[i]

▷◁[i] = (≤): By contraposition of the previous case, it follows that

costL(π̂)[i]−
ℓn[i]

d[i]
≤ t[i]

d[i]
⇐⇒ costL(π̂)[i] ≤

t[i]

d[i]

Thus, we have shown that for all options for ▷◁[i], it holds that

costL(π̂)[i]−
ℓn[i]

d[i]
▷◁[i]

t[i]

d[i]
⇐⇒ costL(π̂)[i]▷◁[i]

t[i]

d[i]
.

We conclude that (Clvld ▷◁ t) is active in dimension i for π̂ if and only if (L ▷◁ td) is active in i for π̂ for all 1 ≤ i ≤ k and
thus (Clvld ▷◁ t) is active for π̂ if and only if (L ▷◁ td) is active for π̂.

Finally, we prove Theorem 4.

Theorem 4. Let lvld(M) such that for all 1 ≤ i ≤ k : d[i]
∣∣ t[i] and let (L ▷◁ td) be a cost bound for lvld(M) with for

all 1 ≤ i ≤ k: L(⟨s, ℓ⟩, a, ⟨s′, ℓ′⟩)[i] :=
⌈(
C(s, a, s′)[i]− ℓ[i]

)
/d[i]

⌉
and td[i] := t[i]/d[i]. Then, lvld(M) is cost-aware

w.r.t. L and
Prlvld(M)

max

(
♢Clvld

▷◁t Td

)
= Prlvld(M)

max

(
♢L▷◁td Td

)
.

Proof. For the cost-awareness, we define for each observation ⟨z, j⟩ the vector c⟨z,j⟩ = j. Fix an arbitrary transition

⟨s, ℓ⟩ a−→ ⟨s′, ℓ′⟩. We have by definition that ⟨z, j⟩ ∈ supp(Olvld(⟨s, ℓ⟩, a, ⟨s′, ℓ′⟩)) if and only if j[i] =
⌈
C(s,a,s′)[i]−ℓ[i]

d[i]

⌉
(and Olvld(s, a, s

′))(z) > 0). Additionally, we have that L(⟨s, ℓ⟩, a, ⟨s′, ℓ′⟩)[i] =
⌈
C(s,a,s′)[i]−ℓ[i]

d[i]

⌉
= j[i] for all 1 ≤ i ≤ k

and thus L(⟨s, ℓ⟩, a, ⟨s′, ℓ′⟩) = j = c⟨z,j⟩. Therefore, lvld(M) is cost-aware w.r.t. L.



Table 3: Overview of Benchmarking Instances

Model |S| Bounds |E|
clean6 37 C[1] ≤ 60,C[2] > 5 413

clean12 73 C[1] ≤ 120,C[2] > 11 1508

incline 25 C[1] ≤ 75,C[2] ≤ 21 497

obstcl 25 C[1] ≤ 25,C[2] ≤ 7 83

resrc
721 C[1] > 4,C[2] > 4,C[3] ≤ 60 2107
721 C[1] > 14,C[2] > 14,C[3] ≤ 180 4 · 104

rover 16
C[1] > 199,C[2] ≤ 360,C[3] ≤ 200 7 · 105
C[1] > 599,C[2] ≤ 1080,C[3] ≤ 600 2 · 107

serv 8 · 104 C[1] ≤ 570 40
C[1] ≤ 1000 68

walk40 84 C[1] ≤ 80 82

walk120 244 C[1] ≤ 80 82

water 34
C[1] ≤ 590,C[2] > 49 3 · 104

C[1] ≤ 1790,C[2] > 149 3 · 105

We now show that Prlvld(M)
max

(
♢Clvld

▷◁t Td

)
= Prlvld(M)

max

(
♢L▷◁td Td

)
by showing that the two sets of paths are equal, i.e., that

♢Clvld
▷◁t Td = ♢L▷◁td Td.

♢Clvld
▷◁t Td ⊆ ♢L▷◁td Td

Let π ∈ ♢Clvld
▷◁t Td. Then π ∈ Cyl(π̂) for a π̂ ∈ Paths

lvld(M)
fin where last(π̂) ∈ Td and (Clvld ▷◁ t) is active for π̂. Then,

by Lemma 6, also (L ▷◁ td) is active for π̂ and thus also π ∈ ♢L▷◁td Td.

♢Clvld
▷◁t Td ⊇ ♢L▷◁td Td

Let π ∈ ♢L▷◁td Td. Then π ∈ Cyl(π̂) for a π̂ ∈ Paths
lvld(M)
fin where last(π̂) ∈ Td and (L ▷◁ td) is active for π̂. Then, by

Lemma 6, also (Clvld ▷◁ t) is active for π̂ and thus also π ∈ ♢Clvld
▷◁t Td.

We conclude that ♢Clvld
▷◁t Td = ♢L▷◁td Td and therefore Prlvld(M)

max

(
♢Clvld

▷◁t Td

)
= Prlvld(M)

max (♢L▷◁td Td) holds.

D BENCHMARK PROBLEMS

We give a short overview over the models we use in our experimental evaluation. Table 3 contains more information about
the specific instances we consider, in particular the bounds on the different cost structures and the resulting number of epochs
|E|. The bounds are chosen such that the resulting instances are challenging for the implementation while still resulting in
non-trivial values for most configuration.

The files containing the models encoded in the PRISM language are part of the code & data appendix, located in the folder
models. For an explanation of the format, we refer to the PRISM manual.1

clean This model is a generalised version of the cleaning robot scenario described in Section 1. A robot is placed in
position 0 of a hallway consisting of N tiles, all initially dirty. In each step, it can decide between moving to the next tile,
increasing its position by 1, or attempting to clean the tile at the current position. A cleaning attempt is successful with
probability 0.8. The robot can repeatedly attempt to clean the same tile. Moving always consumes 1 unit of energy, while a
cleaning attempt requires either 2 or 4 units, each with probability 0.5. If the robot moves to position N , i.e., out of the

1https://www.prismmodelchecker.org/manual/ThePRISMLanguage/Introduction



H

Figure 5: Resource Gathering Scenario

hallway, it has reached its target position. The robot can observe its position, but generally does not observe how many tiles
it has already cleaned.

We use two cost dimensions to model the energy consumption of the robot and the amount of tiles it has successfully cleaned.
The objective is to reach the target position with a specified bound on the energy while successfully cleaning at least a
specified amount of tiles. We consider two sizes, N = 6 and N = 12.

incline The agent has to reach a target in a 5× 5 grid of cells. The agent can move in any of the four cardinal directions.
Each move is either uphill, downhill or neither (flat). With probability 0.5, an attempted move fails due to slipping. If the
attempted move is uphill, the agent is staying in place if it slips. Similarly, slipping downhill causes the agent to overshoot
and move a cell further in the chosen direction. With a flat move, slipping has no effect. In case a move would lead out of
bounds, the agent moves as far as possible in the direction and then stays in place. The agent does not observe its current
position, but knows its starting position in the south-west corner of the grid. We consider a map where the incline is such
that all moves north and east are uphill and all moves south and west are downhill.

We consider a cost model where downhill steps consume 1 unit of energy, flat moves 2 units and uphill moves 3 units. The
objective is to reach the target in the north-east corner of the grid. We are interesting in reaching the goal within the energy
budget (modelled in the first dimension) and a maximum number of steps (modelled in the second dimension).

obstcl Similar to incline, the agent is supposed to reach a target in a 5× 5 grid of cells. Only the outermost ring of cells
can be traversed freely, the inner ring contains light forest and the center cell is dense forest. The agent cannot observe its
position and it slips, i.e., stays in place when executing a move from light forest or dense forest with probability 0.25 or
0.5 respectively. Moves from free tiles, light forest tiles and dense forest tiles consume 1, 2 or 3 units of energy each. Like
before, the objective is to reach the goal within the energy budget and a maximum number of steps (modelled by a bound on
C[1] and C[2] respectively).

resrc This benchmark is a variant of the resource gathering model from Barrett and Narayanan [2008]. The scenario is
similar to a problem arising in many strategy games. We provide a depiction of the setting in Figure 5. An agent, starting in
a home base marked by H , is tasked with collecting two kinds of resources–gold (depicted by the coin) and gems (depicted
by the gem)–in a grid environment. In any step,The agent can move in any of the four cardinal directions. When it reaches
either the gold or the gem location, it picks up one unit of the respective resource. To collect it, the agent needs to return the
resource to the base. The agent can hold at most one unit of each resource.

An enemy patrols the diagonal of the grid. It starts in the south-west corner and changes its position to one of the adjacent
locations on the diagonal with each step of the agent. If the enemy is in one of the corners, it will certainly move to the
adjacent location. When the agent and the enemy enter the same location at the same time, the agent loses all currently
held resources and is teleported home without collecting anything. The objective is to maximise the probability to collect a
minimum amount of each resource (lower bounds on C[1] for gold and C[2] for gems) within a given step bound (upper
bound on C[3]).

rover A partially observable version of the Mars rover task scheduling problem described in Hartmanns et al. [2020]
based on Bresina et al. [2005]. The problem models the scheduling of a variety of experiments on Mars. Experiments have
differing time and energy consumption and success probabilities. Upon success of an experiment, a certain scientific value is



Table 4: Values of the Tasks in the rover Problem

Task Time Energy Sci. Value Success Prob.
1 10 {3, 5} 10 1/2
2 5 {5, 7} 10 3/5
3 5 3 2 4/5
4 10 7 30 1/10

E

N

W

S

Energy Cost

Tile High Normal

Deep Water 10 6

Shallow Water 6 2

Bridge 1 1

Land 1 1

Figure 6: Robot Navigation Task with Water Obstacles

collected. Energy consumption for some tasks is subject to uncertainty; the consumed energy has a high or low value with
probability 0.5 each. The specific parameters for each task are given in Table 4.

The agent can schedule several experiments each day. It does not directly observe whether a task has been successful or not.
The objective is to maximise the probability of achieving at least a certain cumulative scientific value without exceeding
both time and energy limits. Scientific values is modelled in C[1], while time and energy are modelled in C[2] and C[3]
respectively.

serv The service domain is a partially observable variant of the care home scenario described in Lacerda et al. [2017]. A
robot is navigating a care home environment consisting of a central hallway with rooms adjacent to each side of the hallway.
Overall, the map consists of 21 locations. The robot does not observe its location and each location change to an adjacent
location can fail with probability 0.01.

The robot’s routine consists of the main task of checking whether three occupants of specified rooms want water and deliver
it if it is desired. The robot can collect bottles of water at a central kitchen area. At any point, it can only carry at most
two bottles. For delivery, the robot first has to check whether the occupant wants the water. With a probability of 0.2, the
occupant actually wants the water and the robot can deliver it. In addition, the robot has the secondary task of interacting
with four designated occupants. Each action of the robot requires a certain amount of time. The central area, where the
robot starts and which it has to cross to get to the kitchen, is crowded with a probability of 0.2 every time the robot enters it,
causing an additional time cost.

We are interested in the probability that the robot delivers water to where it is required within the time limit (bound on C[1]).

water The water problem considers an amphibious robot starting in the south-west corner of a regular grid consisting of
nine cells. In every step, the robot moves in any of the four cardinal directions, where a move out of bounds makes the robot
stay in place. The task is to visit the flag in the north-west corner and then return to the initial position multiple times. A river
runs through the center row of the map, modelled as one tile of deep water, one tile of shallow water, and one bridge tile.
All other tiles are land tiles. With a probability of 0.5, there are high water conditions, making crossing the river without the
bridge more difficult. The robot is not able to observe the water conditions. The energy consumption for each move depends
on the current tile and the water conditions as outlined on the right of Figure 6. A move out-of-bounds still consumes the
respective energy.

The agent collects one unit of cost/reward (modelled in dimension C[2]) every time it reaches the target position. The
objective is to compute the probability that a minimum number of trips (bound on C[2]) is completed within the given
energy budget (bound in dimension 1).

walk An agent is starting at position 0 of a hallway consisting of N+1 positions. In each step, it can decide to either
attempt to move to the adjacent position i+1, observe its current position i for a cost of 1 unit, or completely stop the process.



A move action fails with probability 0.5, resulting in the agent staying at position i. In position N , a move will always
make the agent stay in place. The agent is only able to observe its current position if it executes an observe action. However,
observe actions are unreliable and fail with probability 0.9.

The goal of the agent is to stop the process exactly in position N−1, leading to a target state. If it stops the process in any
other position, it is trapped and cannot fulfil its goal any more.

The cost-bounded objective is to reach the target state, i.e., stopping in position N−1, while using at most a specified
number of observe actions. We consider to sizes, N=40 and N=120.

E CONSIDERED HYPER-PARAMETERS AND DETAILED SETUP INFORMATION

For the experimental evaluation we consider 25 different hyper-parameter assignments each for CUT and DISCR. As described
in the main paper, both methods are applied to yield finite abstractions of the belief MDP we analyse for the respective
configuration UNFOLD, CA-UNFOLD or CA-BEL-SEQ.

We have chosen the hyper-parameter values such that we expect them to result in MDPs that STORM can handle in a
reasonable amount of time, with larger values included optimistically.

The considered hyper-parameters are:

• CUT

– Considered hyper-parameter: size-threshold
– Description: The number of states up to which the belief MDP is explored. After the limit is reached, cut-offs are

applied to approximate the dynamics of the belief MDP beyond that point. Larger values result in more accurate
approximations, but exploration and analysis of the resulting MDP typically take longer. For more information,
we refer to Bork et al. [2022].

– Considered values: 28, 29, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227,
228, 229, 230, 231, 232

• DISCR

– Considered hyper-parameter: resolution
– Description: The resolution of the belief grid used for discretisation. The resolution describes how coarse the

belief space is approximated. With a resolution of r, the space is discretised to beliefs only containing probabilities
that are multiples of 1/r. Typically, the higher the resolution, the better the approximation gets, at the cost of
increased runtime. For more information, we refer to Bork et al. [2020].

– Considered values: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 24, 25, 28, 30, 35, 36, 42, 49

We elaborate on the setup used for our experimental evaluation.

E.1 IMPLEMENTATION

• based on STORM 1.9.0

• built using CMake 3.26.3 and GCC 12.3.0

• relevant dependency: Boost 1.82

• for all relevant computations, in particular solving MDP queries, we use native implementations in STORM, i.e., no
external libraries are used.

E.2 SYSTEM

We used several identical systems to conduct the benchmarking. We used the Slurm workload manager, version 22.05.4 for
enforcing number of used cores and memory limits per instance.

• CPU: Intel Xeon 8468 Sapphire 2.1 GHz, limited to 4 cores per instance. The implementation runs single-threaded.

• RAM: limited to 64 GB per instance



Table 5: Further Details for Experiments (UNFOLD)

UNFOLD: CUT UNFOLD: DISCR

Model |S| |Z| k |E| |Sun| |Bcut| time result r |Bdiscr| time result

clean6 37 2 2 413 3809 2·104 <1s ≥ 0.86 8 9·107 713s ≤ 1
clean12 73 2 2 1508 3·104 4·106 262s ≥ 0.77 4 2·107 61.9s ≤ 1
incline 25 9 2 497 2094 4·106 21.5s ≥ 0.989 1 2005 <1s ≤ 0.989
obstcl 25 10 2 83 741 1·104 <1s = 0.87 1 725 <1s ≤ 0.87
resrc 721 155 3 2107 2·105 7·107 360s ≥ 7·10-15 2 2·105 2.7s ≤ 0.0312
resrc 721 155 3 4·104 6·106 7·107 400s ≥ 2·10-73 2 6·106 81.1s ≤ 3·10-5

rover 16 9 3 7·105 1·107 8·106 337s ≥ 0.353 2 3·107 237s ≤ 0.853
rover 16 9 3 2·107 ? - - - - - - -
serv 8·104 6016 1 40 1·105 2·107 111s ≥ 0.0474 1 2·104 1.9s ≤ 0.378
serv 8·104 6016 1 68 3·105 3·107 282s ≥ 0.172 3 1·107 158s ≤ 0.636

walk40 84 44 1 82 6847 4·105 97.3s = 0.916 36 3·107 1603s ≤ 0.932
walk120 244 124 1 82 2·104 1·106 846s ≥ 0.867 24 2·107 542s ≤ 0.931

water 34 5 2 3·104 6·105 3·107 327s ≥ 3·10-123 2 3·107 144s ≤ 1
water 34 5 2 3·105 5·106 8198 114s ≥ 0 1 5·106 162s ≤ 1

• OS: Rocky Linux 8.10

• no GPUs are used for our experiments

F ADDITIONAL RESULTS

Detailed Result Tables Tables 5, 6, and 7 extend our experimental data provided in the main paper. For each table, the
first five columns are as in Table 1, except that column ‘k’ depicts the dimension of the cost bound. The columns ‘time’ and
‘result’ in the CUT and DISCR sections of the individual tables repeat the information from Table 2, where each of the three
tables consider a different configuration—UNFOLD in Table 5, CA-UNFOLD in Table 6, and CA-BEL-SEQ in Table 7. The
remaining columns provide additional information concerning

• the number of states of the transformed POMDP after incorporation of cost-awareness and/or unfolding (Columns
‘|Sun|’, ‘|Sca

un|’, and ‘|Sca|’),
• the number of states of the considered belief MDP abstraction (Columns ‘|Bcut|’ and ‘|Bdiscr|’), and

• used hyper parameter for discretization (Column ‘r’, see also Section E).

Comparing unfolding and sequential epoch analysis on cost-aware POMDPs (CA-UNFOLD vs. CA-BEL-SEQ), we observe
that the latter handles significantly smaller state spaces while usually achieving similar or tighter approximations in less
time.

Additional Plots Figure 2 in the main paper shows the evolution of value bounds obtained over time for two benchmarks.
We provide similar plots for the remaining benchmarks in Figures 7 to 13.

Log Files As part of the supplementary material, we provide all raw log files generated for our experimental evaluation in
the folder

code_data_appendix/logs/raw.

They document runs of our implementation for all settings UNFOLD, CA-UNFOLD and CA-BEL-SEQ for both CUT and DISCR
with the hyper-parameters described in Section E. In addition to the raw log files (.log) there are also JSON files containing
the relevant information extracted from the logs.

The files are named according to the scheme:

storm. CONFIG︸ ︷︷ ︸ C/D︸︷︷︸PARAM︸ ︷︷ ︸ .EXPERIMENT︸ ︷︷ ︸ _ INSTANCE︸ ︷︷ ︸
where CONFIG is one of



Table 6: Further Details for Experiments (CA-UNFOLD)

CA-UNFOLD: CUT CA-UNFOLD: DISCR

Model |S| |Z| k |E| |Sca
un| |Bcut| time result r |Bdiscr| time result

clean6 37 2 2 413 5907 9·105 3.9s = 0.929 30 3·107 299s ≤ 0.971
clean12 73 2 2 1508 4·104 3·107 240s ≥ 0.708 7 2·107 128s ≤ 1
incline 25 9 2 497 5092 3·105 1.1s ≥ 0.989 1 4966 <1s ≤ 0.989
obstcl 25 10 2 83 1081 4087 <1s ≥ 0.87 2 1560 <1s ≤ 0.87
resrc 721 155 3 2107 2·105 7·107 345s ≥ 7·10-15 2 2·105 3.6s ≤ 0.0312
resrc 721 155 3 4·104 6·106 7·107 427s ≥ 2·10-73 2 6·106 101s ≤ 3·10-5

rover 16 9 3 7·105 2·107 1·107 462s = 0.861 30 1·107 406s ≤ 0.861
rover 16 9 3 2·107 ? - - - - - - -
serv 8·104 6016 1 40 4·105 2·107 107s ≥ 0.0474 1 6·104 6.4s ≤ 0.378
serv 8·104 6016 1 68 1·106 3·107 281s ≥ 0.169 3 4·107 528s ≤ 0.636

walk40 84 44 1 82 1·104 8·105 174s = 0.916 30 3·107 1431s ≤ 0.935
walk120 244 124 1 82 3·104 2·106 1681s ≥ 0.869 24 4·107 1309s ≤ 0.931

water 34 5 2 3·104 1·106 1·106 17.9s = 0.166 42 1·106 17.5s ≤ 0.166
water 34 5 2 3·105 1·107 1·107 268s = 0.181 42 1·107 269s ≤ 0.181

Table 7: Further Details for Experiments (CA-BEL-SEQ)

CA-BEL-SEQ: CUT CA-BEL-SEQ: DISCR

Model |S| |Z| k |E| |Sca| |Bcut| time result r |Bdiscr| time result

clean6 37 2 2 413 62 1·105 2.2s ≥ 0.929 42 2·104 <1s ≤ 0.949
clean12 73 2 2 1508 122 3·107 381s ≥ 0.88 36 3·105 4.8s ≤ 0.957
incline 25 9 2 497 68 516 <1s ≥ 0.989 1 69 <1s ≤ 0.989
obstcl 25 10 2 83 43 8194 <1s ≥ 0.87 3 204 <1s ≤ 0.87
resrc 721 155 3 2107 746 4098 <1s ≥ 0.0312 2 660 <1s ≤ 0.0312
resrc 721 155 3 4·104 746 4098 16.3s ≥ 3·10-5 2 660 4.4s ≤ 3·10-5

rover 16 9 3 7·105 29 23 12.2s = 0.861 21 30 12.4s ≤ 0.861
rover 16 9 3 2·107 29 23 466s = 0.951 28 28 456s ≤ 0.951
serv 8·104 6016 1 40 4·105 262 1.7s ≥ 0 1 4·105 15.4s ≤ 0.378
serv 8·104 6016 1 68 4·105 262 1.7s ≥ 0 2 3·106 139s ≤ 0.637

walk40 84 44 1 82 126 8195 <1s ≥ 0.916 42 2·106 1295s ≤ 0.93
walk120 244 124 1 82 366 6·104 11.0s = 0.895 30 1·106 727s ≤ 0.926

water 34 5 2 3·104 67 84 <1s = 0.166 8 84 <1s ≤ 0.166
water 34 5 2 3·105 67 84 4.2s = 0.181 10 84 4.3s ≤ 0.181



• unf : UNFOLD,

• caunf : CA-UNFOLD,

• belseq : CA-BEL-SEQ,

and C/D indicates whether the run uses CUT (c) or DISCR (d), followed by the considered hyper-parameter PARAM where
for (c) the parameter is the exponent, i.e., we apply a size threshold of 2PARAM. EXPERIMENT ∈ {main, lvls, bnds}
denotes the kind of experiment the logfile is referring to, where the latter two refer to the runs for the plots at the bottom of
Figure 2. All other results belong to ‘main’. Instances are named by the model identifier, followed by an (internally used)
identifier of the bounded reachability query and the considered bound values. Note that the implementation uses non-strict
inequalities for >.

Interactive Table As a more convenient way to view all results obtained during our experiments, we provide interactive
tables.

The tables are given in the HTML files

• code_data_appendix/logs/table/table.html (for the main experiments)

• code_data_appendix/logs/lvlstable/table.html (for the data used in the plot at the bottom left of
Figure 2)

• code_data_appendix/logs/bndstable/table.html (for the data used in the plot at the bottom right of
Figure 2)

and can be viewed in a web browser. The columns of the tables are named similar to the naming scheme for the log files. In
addition, we provide columns indicating the best result obtained within 10, 100, 1000 and 1800 seconds. The latter coincides
with the values considered in the main paper. Columns can be hidden for a more clearly arranged view. A result cell contains
the computed approximation values (also indicating if it is an under- or over-approximation) and the runtime (walltime) in
seconds. Clicking on a result shows an overview as well as the raw log used to obtain the result.
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Figure 7: Value bounds obtained for clean6, |E|=497 (left) and clean12, |E|=1508 (right).
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Figure 8: Value bounds obtained for incline, |E|=497 (left) and obstcl, |E|=83 (right).
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Figure 9: Value bounds obtained for resrc, |E|=2·2107 (left) and |E|=4·104 (right).
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Figure 10: Value bounds obtained for rover, |E|=7·105 (left) and |E|=2·107 (right).
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Figure 11: Value bounds obtained for serv, |E|=40 (left) and |E|=68 (right).
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Figure 12: Value bounds obtained for walk40, |E|=82 (left) and walk120, |E|=82 (right).
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Figure 13: Value bounds obtained for water, |E|=3·104 (left) and |E|=3·105 (right).
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