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ABSTRACT

Time series forecasting plays a critical role in numerous real-world applications.
Recent advances in Time Series Foundation Models (TSFMs) have achieved
strong performance by modeling historical dependencies; however, they fre-
quently neglect the impact of exogenous covariates. Existing methods either train
from scratch, losing the advantages of TSFMs, or design plugin modules that are
tightly coupled with specific architectures. To address these limitations, we pro-
pose FLUG, a One-for-All framework where independently trained modules com-
plement TSFMs. We design an Endogenous Series Filter (EFit) module guided
by the Hurst Exponent to separate exogenous components from the time series,
thereby enabling TSFMs to focus on modeling and forecasting endogenous pat-
terns. In parallel, we introduce a Covariate Plugin (CPin) module that employs
Multi-Scale Patchify fusion and a Causal-Aware Masking strategy based on Gra-
dient Reversal Layer to capture the exogenous information of the target variable.
By decomposing endogenous and exogenous dependencies, FLUG enables inte-
gration of covariate information across a variety of TSFMs. To supplement exist-
ing publicly available covariate time series data, we curate and release four addi-
tional datasets. Extensive experiments on real-world business and supplementary
data demonstrate the framework’s effectiveness and scalability.

1 INTRODUCTION

Time series forecasting(TSF) tasks aim to predict the future based on given historical series. Accu-
rate forecasting supports decision-making processes, making TSF crucial in various domains such
as energy Qiu et al. (2024), finance Mei et al. (2025), and environment Tian et al. (2025).

In recent years, Foundation Models have achieved remarkable success in fields like natural lan-
guage processing Touvron et al. (2023); Brown et al. (2020) and computer vision Dosovitskiy et al.
(2021); Liu et al. (2021). By utilizing various data and large-scale parameter architectures, these
models exhibit outstanding generalization abilities and demonstrate impressive performance even in
zero-shot tasks. Inspired by these achievements, researchers have begun to explore the potential of
time series foundation models (TSFMs) Das et al. (2024); Ansari et al. (2024); Wang et al. (2025).
Existing TSFMs focus on modeling historical series to capture trends, periodicity, and specific pat-
terns within the data for forecasting future values. This approach operates under the fundamental
assumption that time series exhibit complete dependence on historical data, with recurring or similar
characteristics consistently appearing over time.

However, the time series data in real-world production often relies not only on historical depen-
dencies but also on external interventions by exogenous variables or covariates. For example, in
photovoltaic power generation, while daily power generation can be inferred from historical power
patterns, it directly depends on the real-time irradiation level. Currently, there are two paradigms
for incorporating exogenous variables into time series forecasting models. Most methods Wang
et al. (2024b); Liu et al. (2025a), as shown in Figure 1(a), adopt an end-to-end training paradigm
from scratch. This approach sacrifices the powerful forecasting capabilities of TSFMs. Methods
like ChronosX Pineda-Arango et al. (2025) introduce plugin modules into TSFMs to enable exoge-
nous variables modeling, as shown in Figure 1(b). Existing covariate plugins are designed around
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forecasting capabilities of TSFMs, merely supplementing them with covariate information, making
these plugins inherently dependent on specific TSFMs.

End-to-End
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Covariate
Plugin

Foundation
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Covariate
Plugin
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Covariate
Plugin
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Figure 1: Illustration of existing methods for
TSF with covariates.

This motivates us to design independently train-
able modules that can easily adapt to various
TSFMs without fine-tuning, as shown in Fig-
ure 1(c). To independently train this module, it is
necessary to decompose the dependency patterns
in time series data, separating endogenous and
exogenous dependency information. The TSFM
is utilized to forecast endogenous dependency in-
formation, while the plugin serves to supplement
exogenous covariate information, as illustrated in
Figure 1(c). However, it is a challenge to extract
endogenous information from the target variable
time series. Existing time series decomposition
methods, such as DFT Zhou et al. (2022) and
wavelet decomposition Chen et al. (2025), do not
explicitly decompose the endogenous information in time series data. Meanwhile, there are time
delays and multi-scale impacts between different variables due to the dynamic nature of time series
data. This means that not all covariates exhibit causal relationships with the target variable at every
time step. Such challenges make it difficult to accurately capture and model the causal relationships
between covariates and the target variable.

To address these challenges, we propose FLUG, a One-for-All framework realized by independently
training two modules alongside the TSFMs. We first propose an Endogenous Series Filter module
guided by Hurst Exponent Mandelbrot & Wallis (1969) constraints, which extracts endogenous in-
formation with historical dependencies from the target variables. The Hurst Exponent quantifies the
long-term memory of a time series, where a higher value indicates stronger historical dependency.
Fractional Brownian Motion (FBM) Mandelbrot & van Ness (1968), governed by the Hurst Expo-
nent, exhibits stationarity and multi-scale self-similarity. Through a multi-scale discriminator, the
representation of target variables is reconstructed into a time series that shares similar multi-scale
natures with the generated FBM. Simultaneously, a Hurst Exponent-based loss is applied to enforce
the reconstructed time series to exhibit the desired historical dependency. Through this reconstructed
time series within this module, we filter out the historical dependency components from the target
time series. In addition, we propose a causal-based multi-scale Covariate Plugin module that cap-
tures exogenous information dependent on covariates within the target variable. In causal inference,
covariates that significantly influence the target variable are often termed as its causes Pearl (2022).
We design a causal-aware masking module based on the Gradient Reversal Layer (GRL), which
identifies the most impactful covariates to determine the causes of the target variable. Additionally,
we employ time-aware attention and a multi-scale patch fusion strategy to model temporal lag ef-
fects and multi-scale correspondences between covariates and the target variables. By training the
Filter and Plugin modules independently from the TSFMs, we achieve a One-for-All framework that
integrates covariate information.

Specifically, our contributions can be summarized as follows:

• We propose FLUG, a novel paradigm of the One-for-All framework with Time Series Foundation
Models, achieving a training paradigm independent of the TSFMs.

• We design a novel Endogenous Series Filter module based on the Hurst Exponent, capable of
extracting historically dependent components from time series. The extracted series can then be
modeled by TSFMs to capture temporal dependencies for TSF tasks.

• We develop a Covariate Plugin Module that utilizes causal-aware masking to capture causal rela-
tionships between covariates and the target variable. Furthermore, leveraging time-aware attention
and multi-patch fusion, we model the time delay and multi-scale relationships between covariates
and the primary variable.

• We release a real-world dataset based on business scenarios and conduct extensive experiments on
both proprietary business data and publicly available covariate datasets to validate the framework’s
effectiveness and scalability.
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2 RELATED WORK

2.1 TIME SERIES FOUNDATION MODELS

Foundation models pre-trained on large-scale datasets have achieved remarkable success in natural
language processing Lewis et al. (2020); Raffel et al. (2020); Touvron et al. (2023) and computer
vision Dosovitskiy et al. (2021); Liu et al. (2021). In recent years, time-series foundation mod-
els Woo et al. (2024); Liu et al. (2025b); Wang et al. (2024a) have also shown outstanding progress.
These pre-trained models have demonstrated strong performance across various downstream fore-
casting tasks, excelling in few-shot fine-tuning and even zero-shot scenarios. However, due to the
heterogeneity of time-series data across different domains, existing foundation models often adopt
a channel-independent training strategy Nie et al. (2023) to facilitate unified training. While this ap-
proach focuses on modeling dependencies within individual time series, it neglects the interactions
and relationships between different variables. This limitation can lead to poor performance on tasks
where cross-variable interactions play a critical role.

2.2 TIME SERIES FORECASTING WITH COVARIATES

Modeling the relationship between covariates and target variables differs fundamentally from mod-
eling inter-channel dependencies. Covariates typically refer to future-known variables that, based
on prior knowledge, are related to the target variables. Existing methods for covariate modeling
can also be broadly categorized into two types. The first category integrates covariate information
directly into forecasting models through end-to-end training. For example, TimeXer Wang et al.
(2024b) employs cross-attention between covariate and target variables to effectively incorporate
covariate information. Similarly, Timer-XL Liu et al. (2025a) uses causality-based time attention to
model the relationships between covariates and target variables. While these methods embed covari-
ate information during training, they often suffer from limited generalization because they do not
fully exploit the predictive power of pre-trained TSFMs. The second category focuses on extending
TSFMs by designing covariate integration plugins, allowing TSFMs initially trained on univariate
time-series data to leverage covariates effectively. For example, ChronosX Pineda-Arango et al.
(2025) introduces plugins to enable covariate fusion, which augments the capabilities of TSFMs to
handle covariates. However, such plugins are usually tightly coupled with specific TSFMs, making
them less flexible and harder to adapt to different TSFMs.

To address these limitations, we propose FLUG, a novel framework that can be trained independently
of any specific TSFM. This independence allows FLUG to seamlessly adapt across various TSFM
architectures with minimal effort, enabling rapid integration of covariate information.

3 METHODOLOGY

In times series forecasting with covariates, the objective is to predict YT+1:T+H ∈ RH×1 by uti-
lizing both context series Y1:T ∈ RT×1 and covariates X1:T+H ∈ R(T+H)×N where the N is
the numbers of covariates. Time Series Foundation Models (TSFMs) are designed to capture the
temporal dependencies within time series for forecasting, but are weak at modeling the correlation
between the target variable and covariates. The Covariate-aware adaptation method incorporates a
covariate modeling module into TSFMs, enabling TSFMs to leverage covariate information. The
formulation of this paradigm can be expressed as follows: Given a TSFM f(·), the objective is to
build a new forecasting model based on the pre-trained model:

ỸT+1:T+H = g ◦ f(Y1:T ,X1:T+H), (1)

where g(·) is the adaptation plugin, and g ◦ f(·) is the composition model after adaptation.

3.1 OVERALL ARCHITECTURE

We propose FLUG, as shown in Figure 2, a novel paradigm of the One-for-All framework with
Time Series Foundation Models (TSFMs), which enhances various TSFMs with the ability to model
covariates for auxiliary forecasting through a set of independently trained, plug-and-play modules.
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Figure 2: Overall of FLUG.

At the training stage, we input the target variable and covariates into the Endogenous Series Filter
(EFit) and Covariate Plugin (CPin) modules, respectively. We use the EFit to extract the endogenous
dependency information from the target variable. We generate FBM with a given Hurst Exponent
and use a Time Series Encoder to extract target representations. A Multi-Scale Discriminator ensures
the extracted series captures endogenous multi-scale dependencies, while a Hurst Loss constrains its
Hurst Exponent. Meanwhile, the CPin module captures multi-scale relationships between covariates
and the target through patchification and gating mechanisms.. From the perspective of causal root
reasoning, we design a data-adaptive masking strategy based on a gradient reversal layer (GRL) to
capture the causal relationship between the covariates and the target variable. Finally, we fuse the
endogenous information extracted from the target variable with the exogenous information from the
covariates to obtain the complete series.

At the forecasting stage, we use the trained EFit to filter the context series of the target variable and
use the TSFMs to perform zero-shot forecasting on the filtered series. Through the trained CPin
module, the exogenous information from future covariate series is supplemented into the TSFM’s
prediction results, resulting in the final forecast series.

3.2 ENDOGENOUS SERIES FILTER

Time series often exhibit periodic and regular patterns—stable endogenous information at a macro-
scopic scale, which makes time series forecasting possible. The outstanding performance of TSFMs
on a wide range of forecasting tasks has already demonstrated their effectiveness in capturing steady-
state endogenous information within time series data. However, in certain complex scenarios, time
series data can be heavily influenced by various external factors. To extract time-dependent steady-
state endogenous information and better utilize the modeling capabilities of TSFMs for such infor-
mation, we propose an EFit module along with an endogenous information extraction strategy.

Firstly, we use a TS encoder to extract representations from the target time series data and generate
a series. A Hurst-based loss constrains the extracted series to be temporally dependent and en-
dogenous. Meanwhile, we generate FBM based on a given Hurst exponent. Subsequently, a Multi-
Scale Discriminator extracts endogenous information from the TS representations to approximate
the multi-scale characteristics of FBM. This yields a EFit module capable of extracting endogenous
information from the target time series.

Hurst-based Loss. The Hurst Exponent Mandelbrot & Wallis (1969) is used to measure the tem-
poral dependence of time series. When the Hurst Exponent exceeds 0.5, the series shows strong
temporal dependence; a detailed description of the Hurst Exponent is provided in the Appendix C.1.
Such sequences tend to exhibit more pronounced trends and periodicity, resulting in higher pre-
dictability. In the generated time series Ŷ, there is a power-law relationship between the time scale
t and the variance of the series fluctuations σ2 = Var[Ŷ] that is related to the Hurst Exponent H .
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The power-law relationship can be formalized as:

σ2(t) ∝ t2H . (2)

By taking the logarithm of the above formula, we can derive:

lnσ2(t) = 2H ln t+ C, (3)

where C is a constant. Temporal dependence requires a power-law relationship to hold across multi-
ple time scales. Hence, based on the least-squares method, we construct the Hurst-based loss defined
as:

Lhurst =

∣∣∣∣∣
∑K

k=1 (ln tk − ln t)
(
lnσ2

k − lnσ2
)∑K

k=1 (ln tk − ln t)
2

− 2H

∣∣∣∣∣ , (4)

where tk represents the k-th time scales, and ln t = 1
K

∑K
k=1 ln tk represents the average across

the k scales. Likewise σ2
k represents the variance of different series fluctuations, and lnσ2 =

1
K

∑K
k=1 lnσ

2
k.

Multi-scale Discriminative Loss. Using Hurst-based loss can preliminarily ensure the temporal
dependence of the extracted sequence, but constraints based on a single metric are not sufficient to
guarantee the temporal dependence of the extracted sequence. Fractional Brownian Motion (FBM)
is a sequence based on the Hurst Exponent that satisfies temporal dependence across multiple time
scales. With an FBM Generator, an FBM M can be obtained from a Hurst Exponent greater than 0.5.
To further constrain the temporal dependence of the generated sequence, we expect the generated
sequence to be multi-scale, similar to FBM. Specifically, we obtain the multi-scale decomposition
information of FBM and the generated sequence Y through wavelets. A macro-multiscale approxi-
mation is performed by a Moment-based loss as:

Lmoment =
∥∥∥Ψ(Ŷ)−Ψ(M)

∥∥∥2
2
. (5)

where Ψ(·) denotes multi-scale statistical moment features. To further constrain the multi-scale
approximation of FBM and the generated sequence at the microscopic scale, we designed a Multi-
Scale Discriminator D(·). The discriminator is used to extract multi-scale features of both the FBM
and the generated sequence, and they are constrained by a Feature-based loss, defined as:

Lfeat =

K∑
k=1

∥∥∥D(Ŷ)−D(M)
∥∥∥2
2
. (6)

By applying the constraints of the two losses above, we are able to train the EFit module that extracts
the endogenous information sequence within the target sequence. The full loss is as follows:

LMD = αLmoment + (1− α)Lfeat, (7)

where α is the given hyperparameter.

3.3 COVARIATES PLUGIN

The dynamic nature of time series data leads to time delays and multi-scale causal relationships
between covariates and the target variable, making it challenging to model these relationships. In
scenarios with multiple covariates, the impact of different covariates on the main variable can vary
across different time periods. To enable data-adaptive multi-scale modeling of the dynamic causal
relationships between various covariates and the target variable, we design the Covariates Plugin
(CPin) module.

Firstly, we employ a Multi-Scale Causal Encoder to model the covariate series. Covariates are
segmented into patches of three different scales, and a Causal-Aware Masking strategy is utilized to
retain the covariates that exert the greatest influence on the target variable, thereby fully exploiting
the causal relationships between the target variable and the covariates. Then, we use the Gating
mechanism to fuse the series obtained at different scales, resulting in an exogenous information
series for the target variable. Finally, the exogenous information series is added to the endogenous
information series extracted by the EFit module to obtain the final output.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Multi-Scale Modeling. The influence of covariates on the main variables is multi-scale. Taking a
photovoltaic power generation scenario as an example, irradiance impacts power generation instan-
taneously, while humidity effects often manifest over longer time scales. When multiple covariates
exist simultaneously, multi-scale modeling and fusion are essential. Therefore, we implement multi-
scale modeling through a Multi-Scale Patchify strategy and a Gating mechanism. Previous work Nie
et al. (2023) has highlighted the significance of patch strategies in sequential modeling. We capture
information at three scales—coarse, medium, and fine—by using patches of three sizes to map co-
variates XN , where N is the number of covariates, to the corresponding target variable at different
scales. Position embeddings are added to the three patch embeddings, and time-aware attention
models the temporal relationships across the same scale patches. By mapping the N covariates XN

to the corresponding times of the target variable Y, we obtain the exogenous information sequences
for the target variable at three scales. After fusing the three sequences with a gating mechanism,
they are added to the endogenous information sequence filtered by the EFit module, yielding the
final estimated target variable sequence Ỹ. The mean squared error (MSE) loss Lmse between the
estimated sequence Ỹ and the original target variable Y is constructed as:

Lmse =
∥∥∥Ỹ −Y

∥∥∥2
2
. (8)

Through the MSE loss, we have constructed the multiple-scale relationship between covariates and
the target variable.
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Figure 3: Illustration of Causal-Aware Masking.

Causal-Aware Masking. The impact of covari-
ates on the target variable extends beyond multi-
scale challenges, and establishing their causal re-
lationship with the target variable is equally cru-
cial. If perturbing one variable leads to a signif-
icant change in another, the perturbed variable is
likely the cause of the latter. Based on this, we
designed a Covariate-Aware Masking strategy, as
shown in the Figure 3. By initially masking the
representations of these covariates, we can ob-
tain a more robust relation extractor. The Gra-
dient Reversal Layer (GRL) Ganin & Lempitsky
(2015) operates as an identity function during for-
ward propagation, while reversing the gradients
during backpropagation. This makes the mask
generator’s objective opposite to the feature ex-
tractor, as it seeks to mask certain covariates. To satisfy the overall optimization objective while
having to mask certain covariates, the mask generator identifies and preserves the most influential
covariates during training. This way, we obtain a dynamic masking strategy that can mask non-
causal covariates while preserving causal covariates.

4 EXPERIMENTS

4.1 EXPERIMENTAL DATASETS

Open-source Datasets. To verify the generality of our method, we selected some open-
source datasets containing covariates, including PDB Yeafi (2021), GFC14 Hong et al. (2016),
BDG2Cockatoo Lago et al. (2020a), and EPFPJM Lago et al. (2020b). These datasets generally
come from public data and algorithm competitions, making the authenticity of the data difficult to
verify. These four selected datasets are sampled at a frequency of one observation per hour.

Ningxia, Jinlin Photovoltaic and Wind Power Datasets. Most publicly available datasets con-
tain few covariates and often suffer from mismatched or aggregated information, limiting their use-
fulness for exploring covariate effects. To provide supplementary data and improve quality, we
processed and released an industrial dataset. We process and release datasets on power generation
efficiency from several photovoltaic and wind power stations located in Ningxia province and Jilin

6
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Table 1: Details of Datasets

Region Type Freq. Subsets Points (million) Covar.Obs. Covar.

Jilin PV
15-min

22 14.6 351.2 24
Wind 20 13.9 334.5 24

Ningxia PV 58 14.8 357.6 24
Wind 40 10.1 244.3 24

province, China. We select the weather data forecast for the most recent report time from meteoro-
logical stations as the weather data for that moment. According to the station location information,
we use the corresponding local weather forecast data as covariates. Detailed information is shown
in the following Table 1. The sampling frequency of the generation efficiency and weather data is
denoted under Freq. To avoid the impact of prolonged missing segments on the analysis, we split
the data at both ends of each long missing segment. A total of 140 sub-datasets were extracted from
the four data types, with each sub-dataset containing 24 covariate variables and one target variable.
Altogether, the four datasets comprise approximately 1.3 billion data points.

4.2 EXPERIMENTAL SETTINGS

We conduct a one-day-ahead prediction using one week of historical data. For hourly public datasets,
this corresponds to 24 future points from 168 past observations, while for the 15-minute Ningxia
and Jilin datasets, we predict 96 future points from 672 past observations. We selected some of the
latest and classic state-of-the-art algorithms as baselines, including TSFMs such as TimesFM Das
et al. (2024) and Chronos Ansari et al. (2024), end-to-end models considering covariate modeling
like Timer-XL Liu et al. (2025a) and TimeXer Wang et al. (2024b), and multivariate relationship-
aware models such as iTransformer Liu et al. (2024a) and channel-independent PatchTST Nie et al.
(2023). All the experiments are implemented with PyTorch on four PPU-ZW810E 90GB GPUs.
Experimental results are averaged over five runs with different seeds.

4.3 EXPERIMENTAL RESULTS

Table 2: Model performance on four datasets (PDB, GFC14, BDG2Cockatoo, EPFPJM)

Model Metric PDB GFC14 BDG2Cockatoo EPFPJM Avg.

FLUG+TimesFM MSE 0.067 0.119 0.134 0.077 0.099 (-3.9%)
MAE 0.193 0.233 0.264 0.176 0.216 (-3.2%)

FLUG+Chronos MSE 0.061 0.109 0.102 0.074 0.087 (-5.1%)
MAE 0.173 0.226 0.234 0.173 0.202 (-4.6%)

TimesFM MSE 0.093 0.198 0.176 0.085 0.138
MAE 0.206 0.302 0.300 0.183 0.248

Chronos MSE 0.078 0.192 0.164 0.086 0.130
MAE 0.173 0.300 0.296 0.183 0.238

Timer-XL MSE 0.146 0.276 0.247 0.089 0.190
MAE 0.270 0.378 0.367 0.187 0.301

TimerXer MSE 0.433 0.567 1.054 0.088 0.536
MAE 0.530 0.499 0.755 0.188 0.493

iTransformer MSE 0.082 0.159 0.160 0.097 0.125
MAE 0.200 0.280 0.297 0.197 0.244

PatchTST MSE 0.065 0.159 0.196 0.106 0.132
MAE 0.173 0.276 0.320 0.209 0.245

For TSFMs models, we use pre-trained models to perform zero-shot prediction on the test set. For
end-to-end models, we conduct separate training and prediction on different datasets. Our method
is trained independently on the training set and adapted to two TSFMs models, respectively, for
prediction, with the TSFMs model parameters frozen.

We use MSE and MAE as evaluation metrics, where lower values indicate better performance.
For the four public energy datasets, each containing multiple sub-datasets, we compute the met-

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 3: Model performance on energy datasets (Jilin and Ningxia).

Model Metric Jilin Ningxia Avg.
PV Wind PV Wind

FLUG+TimesFM MSE 0.279 0.762 0.213 1.452 0.676(-11.7%)
MAE 0.302 0.653 0.264 0.662 0.470(-2.5%)

FLUG+Chronos MSE 0.247 0.786 0.213 1.477 0.681(-22.3%)
MAE 0.275 0.679 0.268 0.703 0.481(-5.4%)

TimesFM MSE 0.420 0.992 0.281 1.478 0.793
MAE 0.311 0.713 0.271 0.704 0.495

Chronos MSE 0.302 1.133 0.247 1.935 0.904
MAE 0.235 0.782 0.271 0.850 0.535

Timer-XL MSE 0.291 1.032 0.241 1.761 0.831
MAE 0.302 0.795 0.288 0.853 0.560

TimerXer MSE 0.695 1.155 0.477 1.876 1.051
MAE 0.621 0.839 0.519 0.898 0.719

iTransformer MSE 0.308 0.966 0.275 1.931 0.870
MAE 0.282 0.755 0.322 0.873 0.558

PatchTST MSE 0.272 0.899 0.254 1.792 0.804
MAE 0.298 0.726 0.309 0.832 0.541

rics per sub-dataset and average them. Results are shown in Tables 2 (public datasets) and 3
(Ningxia and Jilin). Blue bold indicates the best, underlined bold the second-best, and red bold
shows improvements from applying FLUG. Overall, TSFMs exhibit stronger generalization and
prediction ability than end-to-end models, with zero-shot TSFMs often outperforming fully trained
models, demonstrating their necessity. FLUG consistently improves TSFMs. On the four public
datasets, Chronos+FLUG achieves the best performance, with TimesFM+FLUG ranking second
on most datasets. On the Ningxia and Jilin energy datasets, TimesFM+FLUG often ranks first,
while Chronos+FLUG ranks second, demonstrating FLUG’s universal value and practical feasibil-
ity. These results also highlight that different TSFMs suit different domains and underscore the
importance of comprehensive covariate modeling for accurate time series forecasting.

Table 4: Performance of Other Contributions

baseline wo/ Hurst-based Loss wo/ MD Loss wo/ Masking
MSE 0.762 0.787(+2.5%) 0.862(+10.0%) 0.819(+5.7%)
MAE 0.653 0.664(+1.1%) 0.681(+1.7%) 0.663(+1.0%)

4.4 ABLATION STUDY

We conduct ablation studies on the EFit and CPin modules to verify their effectiveness. We use
TimesFM as the TSFM part within the FLUG framework for our experiments. All experiments were
conducted on 20 datasets of Jilin wind power, and we calculated the average MSE and MAE across
each dataset as the final result.

0.776

0.756 0.762 0.763

0.738

0.66
0.652 0.653

0.66

0.644

0.62

0.64

0.66

0.68

0.7

0.72

0.74

0.76

0.78

0.8

1 2 3 4 5

MSE

MAE

Figure 4: Performance of Multi-Scale
Patchify.

Analysis of Multi-Scale Patchify. To demonstrate the
necessity of the multi-scale modeling strategy, we exper-
iment with multiple scales to investigate their impact on
prediction results. We test modeling with a single patch
length as well as with up to five different patch lengths
on this dataset, and record the MSE and MAE for each
method. The results are shown in the Figure 4. The num-
bers on the x-axis indicate the number of patch lengths
used for modeling, ranging from a single patch length to
multiple scales: [32], [16, 32], [4, 16, 32], [4, 8, 16, 32],
and [4, 8, 16, 32, 48]. Overall, multi-scale modeling sig-
nificantly improves model performance. As the number
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of modeling scales increases, both MSE and MAE show a downward trend, and the model achieves
the best results when five scales are used. This not only demonstrates the effectiveness of our pro-
posed multi-scale modeling and gated fusion strategy, but also highlights the importance of multi-
scale modeling for time-series data.

Analysis of Other Contributions. We design experiments to compare other innovative points in
the paper. We separately verify the necessity of the Hurst-based Loss and Multi-scale Discriminative
Loss used for training the EFit module, as well as the importance of the Causal-Aware Masking
mechanism in the CPin module. The specific experimental results are shown in the Table 4. The
baseline shows results of the complete model, while green values indicate performance drops after
removing corresponding components. It can be seen from the table that the best results are achieved
when the complete method is used. After removing the MD Loss, the model performance showed
severe degradation on both MSE and MAE metrics. This experiment verifies the important role of
our proposed components in endogenous information extraction from target variables and covariate
information fusion.

4.5 ADDITIONAL EXPERIENCE

Analysis on endogenous series. We conduct experiments using data from Jinlin wind power, as
shown in Figure 5. Figure 5(a) shows the original series with sharp fluctuations caused by multiple
covariates, making prediction difficult. Figure 5(b) presents the endogenous series from our EFit
module, which is smoother with subtler variations, similar to the generated FBM in Figure 5(c).
Calculating the Hurst Exponent of the original series, endogenous series, and FBM shows that the
EFit yields an endogenous series with the Hurst Exponent > 0.5. The endogenous series retains
original patterns but is more stable, easing TSFM modeling and prediction.

(a) Original Series

sharp changes

jitter

Hurst Exponent：0.264

(b) Endogenous Series

subtle changes

smooth

Hurst Exponent：0.528

(c) FBM

Hurst Exponent：0.758

Figure 5: Visualization of the endogenous series.

Masking

Pearson

Spearman

strong correlation

weak correlation

Figure 6: Visualization
of Masking.

Analysis on Causal-Aware Masking. We analyze the proposed Causal-Aware Masking using the
Jilin wind power dataset, and the results are shown in Figure 6. We mask variable representa-
tions, with higher mask ratios shown as darker heatmap colors. We compute Pearson and Spearman
coefficients between covariates and the target as baselines, with darker colors indicating stronger
correlations. As shown in the Figure 6, variables with stronger correlations have lower mask ratios,
while variables with weaker correlations are masked at higher proportions. This confirms that our
method effectively identifies and preserves important covariates for the target variable, capturing the
causal relationships between covariates and the target variable.

5 CONCLUSION

This paper presented FLUG, a One-for-All framework that enhances Time Series Foundation Mod-
els (TSFMs) with exogenous covariates. By disentangling endogenous and exogenous dependen-
cies, FLUG employs a Hurst-guided Endogenous Series Filter module to extract endogenous pat-
terns and a Covariate Plugin module with Multi-Scale Patchify fusion and Causal-Aware Masking
to capture exogenous information of the target variable. To mitigate the limitations of existing co-
variate time series data, we further curated and released four supplementary datasets. Extensive
experiments on real-world business and supplementary data demonstrate the effectiveness and scal-
ability of our framework.

9
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A DETAILS OF DATASETS

A.1 DETAILS OF OPEN-SOURCE DATASETS

Our study utilizes 4 open-source datasets. Table 5 provides detailed information on each dataset,
including target variables, covariates, and sources, while Table 4 summarizes key dataset statistics.
Specifically, several electricity load forecasting datasets—EPF-PJM, BDG-2 Cockatoo, GFC14, and
PDB are included. EPF contains day-ahead electricity prices from five major power markets with
load forecasts and wind generation as covariates Lago et al. (2020b). BDG-2 Cockatoo, collected
from Cornell University, includes air temperature as a covariate Lago et al. (2020a). GEF14, span-
ning seven years of load series from the Global Energy Forecasting Competition 2014, provides the
averaged temperature from the raw temperature series Hong et al. (2016). PDB comprises historical
electric power load data with air temperature as a covariate Yeafi (2021).

Table 5: Dataset Descriptions

Dataset
Name

Descriptions Covariates Source

EPF Day-ahead electricity prices
from five major power

markets: PJM

load forecasts, wind
generation

Lago
et al.

(2020b)

BDG-2
Cockatoo

BDG-2 dataset collected from
Cornell University.

air temperature Lago
et al.

(2020a)

GFC14 Seven years of load series
data from the Global Energy

Forecasting Competition
2014

Averaged temperature
from the raw 25
temperature data

series

Hong
et al.

(2016)

PDB The years of PDB electric
power load history data from
the Kaggle data competition.

air temperature Yeafi
(2021)

A.2 DETAILS OF NINGXIA, JINLIN PHOTOVOLTAIC AND WIND POWER DATASETS

We processed and released an industrial dataset on power generation efficiency from photovoltaic
and wind power stations in Ningxia and Jilin, China. We use the latest local weather forecasts as co-
variates based on station locations. Table 1 provides detailed information, with sampling frequency
indicated under Freq. Long missing segments are split at both ends to reduce their impact. In total,
140 sub-datasets were extracted, each containing 24 covariates and one target, comprising roughly
1.3 billion data points. The meanings of the weather covariates are listed in the Table 6.

B COMPARED METHODS

Here, we present an overview of the baseline methods used in our experiments, emphasizing their
methodological frameworks and approaches to handling covariates. We examine each method with
respect to how it incorporates homogeneous covariates, highlighting the strengths and limitations in
capturing external dependencies.

B.1 PRETRAINED METHOD

TimesFM Das et al. (2024). TimesFM adopts a decoder-only Transformer architecture. In tok-
enization, the series undergoes preprocessing, fixed-length patching, and normalization using mean
and standard deviation. Each patch is enriched with mask features and mapped into the embed-
ding space, optionally with positional encodings. Contextual representations are learned through
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Table 6: Details of Covariates

Variable Description Unit
T Temperature °C

momf Momentum flux
sin direction32 Wind direction at 30m degrees

ws30 Wind speed at 170m m/s
ws31 Wind speed at 100m m/s
ws32 Wind speed at 30m m/s
ws10 Wind speed at 10m m/s
ws10s Wind speed at 10m m/s

sin direction30 Wind direction at 170m degrees
sin direction31 Wind direction at 100m degrees

sin dir10 Wind direction at 10m degrees
sin dir10s Wind direction at 10m degrees

mslp Mean sea level pressure hPa
clc Fraction of clouds [0-1]
senf Sensible heat flux W/m2

latf Latent heat flux W/m2

swr Shortwave radiation W/m2

lwr Longwave radiation W/m2

ps Surface pressure hPa
prt Total precipitation (PRT) mm
prl Large-scale precipitation mm
prc Convective-scale precipitation mm

T2m 2m temperature °C
RH2m Humidity %

multi-layer self-attention, while the decoder generates future values in an auto-regressive manner.
The model outputs both mean and quantile forecasts, which are de-normalized to the original scale.
Additionally, TimesFM incorporates frequency-based conditioning and hybrid-frequency modeling
to enhance multi-scale forecasting.

Chronos-Bolt Ansari et al. (2024). Chronos-Bolt is built on a T5-based encoder–decoder archi-
tecture. The input time series is first processed with instance normalization and then divided into
patches, accompanied by its mask; these two streams are concatenated before embedding. An op-
tional [REG] token can be included to enable regression-style outputs. The encoder applies stacked
T5 layers to produce contextualized hidden states, which are passed to the decoder. The decoder
generates sequences conditioned on attention masks, producing multi-quantile forecasts. For ex-
tended horizons, decoding extrapolation is used. Finally, all predictions are rescaled using the stored
normalization parameters.

B.2 SPECIALIZED METHOD

Timer-XL Liu et al. (2025a). Timer-XL is a decoder-only Transformer designed for unified time
series forecasting with long contexts. It generalizes next-token prediction from 1D to multivari-
ate settings, enabling one model to handle univariate, multivariate, and covariate-informed tasks.
The core innovation is TimeAttention, which disentangles fine-grained intra- and inter-series de-
pendencies while preserving temporal causality and permutation-equivalence across variables. By
enlarging the context to thousands of tokens, Timer-XL captures both local and global dynamics
more effectively. Extensive experiments show state-of-the-art performance in supervised forecast-
ing, covariate-informed prediction, and long-context benchmarks, while large-scale pre-training fur-
ther yields strong zero-shot generalization, positioning Timer-XL as a versatile backbone for foun-
dation models in time series.

TimeXer Liu et al. (2024b). TimeXer is a Transformer-based model that represents time series as
sequences of patches. It employs a hierarchical design with patch embedding, temporal encoding,
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and attention to capture both short- and long-term dependencies. To incorporate covariates, TimeXer
introduces variate-level embedding, where external covariates are embedded and fused into the target
series’ patch representations. This integration enables the model to learn how external factors affect
internal dynamics at the patch level, thereby improving predictions with exogenous information.

iTransformer Liu et al. (2024a). iTransformer rethinks the role of Transformers in multivariate
time series forecasting by inverting the architecture without altering native components. Instead of
forming temporal tokens by merging variates at each timestamp, iTransformer treats each variate
as a token. Self-attention is then applied to capture multivariate correlations, while feed-forward
networks model series representations for each variate. This inversion mitigates issues of noisy at-
tention maps and poor scalability in long lookback windows. Extensive experiments across diverse
real-world datasets show that iTransformer achieves state-of-the-art performance, improves gener-
alization to unseen variates, and scales effectively with longer histories, positioning it as a strong
backbone for time series forecasting.

PatchTST Nie et al. (2023). PatchTST converts time series into patches that serve as Trans-
former input tokens for forecasting. It relies on two key ideas: Patching, which segments series
into subseries-level patches to capture local temporal patterns and reduce attention complexity for
longer histories, and Channel Independence, which applies shared embeddings and Transformer
weights to treat multivariate inputs as parallel sequences. Notably, PatchTST does not utilize co-
variate information in its predictions.

C HURST EXPONENT AND FRACTIONAL BROWNIAN MOTION

C.1 HURST EXPONENT

The Hurst exponent Mandelbrot & Wallis (1969) is a widely used statistical metric for analyzing
the long-term memory, self-similarity, and fractal characteristics of time series data. Originally
introduced by H.E. Hurst in hydrology to study the Nile River’s water levels, it has since been
applied in diverse fields, including finance, geophysics, climate science, and signal processing.

The Hurst exponent quantifies the tendency of a time series to either persist in its trend, revert to the
mean, or behave like a purely random process. Its values range from 0 to 1:

• H = 0.5 indicates a pure random walk, suggesting no long-term correlation between observations.
• H > 0.5 signifies persistence, meaning that increases (or decreases) are likely to be followed by

further increases (or decreases), indicating long-range positive correlation.
• H < 0.5 implies anti-persistence, meaning that an increase is likely to be followed by a decrease

and vice versa, indicating long-range negative correlation.

A common method for estimating H is the rescaled range (R/S) analysis, which evaluates the vari-
ability of cumulative deviations from the mean relative to the standard deviation:

H =
log

(
R(n)
S(n)

)
log(n)

(9)

where n is the window size, R(n) is the range of cumulative deviations from the mean within the
window, and S(n) is the standard deviation of the data within the same window. By performing
this calculation over multiple window sizes and applying regression on a log-log plot of R(n)/S(n)
versus n, the slope yields the Hurst exponent.

The Hurst exponent provides insight into the degree of long-range dependence in a time series, help-
ing to distinguish between random, trending, and mean-reverting behaviors. This makes it a valuable
tool for predicting future trends, assessing market volatility, modeling environmental processes, and
analyzing any system exhibiting temporal correlations.

C.2 FRACTIONAL BROWNIAN MOTION

Fractional Brownian Motion (FBM) Mandelbrot & van Ness (1968) is a continuous-time Gaussian
process that generalizes standard Brownian motion by incorporating long-range dependence and
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self-similarity. Introduced by Mandelbrot and Van Ness in 1968, FBM is widely used in fields such
as finance, hydrology, geophysics, and signal processing to model time series exhibiting memory ef-
fects. An FBM process BH(t) is characterized by the Hurst exponent H ∈ (0, 1), which determines
the correlation structure of its increments. Its key properties include:

• Self-similarity: For any a > 0, BH(at)
d
= aHBH(t), where d

= denotes equality in distribution.

• Stationary increments: The increments ∆BH(t) = BH(t + τ) − BH(t) are stationary but
generally correlated.

• Covariance function: The covariance between two points t and s is

Cov(BH(t), BH(s)) =
1

2

(
t2H + s2H − |t− s|2H

)
. (10)

The Hurst exponent H determines the persistence of the process:

• H = 0.5 corresponds to standard Brownian motion with independent increments.

• H > 0.5 indicates persistence, where positive (or negative) increments are likely to be followed
by increments of the same sign.

• H < 0.5 indicates anti-persistence, where positive increments are likely to be followed by nega-
tive increments, and vice versa.

FBM is particularly useful for modeling natural and financial processes with long-range correlations,
allowing for the analysis and prediction of systems exhibiting temporal dependencies.

D EXPERIMENT DETAILS

D.1 TRAIN-TEST SPLITTING

For all datasets, we reserve 10% of the total data as the test set to evaluate model performance. To
generate multiple training and evaluation samples, we employ a sliding window approach, where
a fixed-length window moves along the time series with a step size of 1. This allows the model
to be tested on overlapping sequences and provides a more robust assessment of its forecasting
ability. Additionally, within the training data, we further set aside a portion as a validation set to
tune hyperparameters and prevent overfitting, ensuring that the model generalizes well to unseen
data.

D.2 EVALUATION METRICS

We evaluate the forecasting performance using four metrics: Mean Absolute Error (MAE) and Mean
Squared Error (MSE) to assess point prediction accuracy.

MAE MAE is a standard metric in time series forecasting that measures the average magnitude of
errors between predicted values and actual observations, ignoring their direction. It provides a direct
assessment of prediction accuracy. Formally, MAE is defined as:

MAE =
1

N

N∑
i=1

|ŷi − yi| (11)

where N denotes the total number of observations, yi represents the true value, and ŷi is the
predicted value at time step i. MAE computes the mean absolute deviation between predictions
and ground truth, offering an interpretable metric that is less sensitive to large errors compared to
squared-error-based measures.

MSE MSE is a widely used metric in time series forecasting that quantifies the average of the
squared differences between predicted values and actual observations. By squaring the errors, MSE
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penalizes larger deviations more heavily, making it sensitive to outliers. Formally, MSE is defined
as:

MSE =
1

N

N∑
i=1

(ŷi − yi)
2 (12)

where N denotes the total number of observations, yi represents the true value, and ŷi is the pre-
dicted value at time step i. MSE provides a measure of overall prediction accuracy with an emphasis
on larger errors.
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