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ABSTRACT

Model-based reinforcement learning improves sample efficiency by using learned
world models to simulate experiences for training agents. Recent world models
that leverage transformers demonstrate high quality simulations, leading to better
agent performance. However, transformer world models underutilize spatial rela-
tionships between visually adjacent tokens, which are critical when interacting in
visual environments. Additionally, current models rely on sampling methods for
transformer decoding that do not leverage visual similarities among subsequent
frames. To address these limitations, we introduce TWISTED, a transformer world
model with 3D spatio-temporal positional encoding and a graph-based optimal
decoding strategy specific to visual environments. Our experiments show state-
of-the-art performance on the Craftax-classic, Craftax, and MinAtar benchmarks,
challenging visual environments requiring long-horizon object recall and interac-
tion. The proposed method achieves a return of 72.5% and a score of 35.6% on
Craftax-classic, significantly surpassing the previous best of 67.4% and 27.9%.
We plan to release our source code on GitHub upon acceptance.

1 INTRODUCTION

Reinforcement learning (RL) provides a framework for training agents to interact with their environ-
ment through reward signals (Sutton & Barto, 2018). To avoid heavy reliance on costly environment
interactions, model-based RL learns a predictive model of the environment dynamics, enabling the
agent to simulate future trajectories called “imaginations” (Hafner et al., 2023; Micheli et al., 2022).
Recently, transformers have emerged as powerful world models (Micheli et al., 2022; Dedieu et al.,
2025). They treat sequences of past states and actions as token streams and predict the next state
token-by-token. However, adapting transformers to world modeling faces challenges that have not
been fully explored. First, transformers typically rely on one-dimensional positional encodings to
capture token order, which may be insufficient for visual environments. Second, effective token
decoding strategies tailored to world models have yet to be investigated.

The standard choice for positional encoding is Rotary Position Embedding (RoPE), which captures
the relative distance between tokens (Su et al., 2024). While effective in text domains, RoPE is less
suited to visual environments, where data is naturally structured in three dimensions—two spatial
(within frames) and one temporal (across frames). RoPE encodes only one-dimensional relation-
ships, leading to a loss of fine-grained spatio-temporal structure when applied naively to vision-
based tasks.

For transformer decoding, common practice is to sample tokens from the output probabilities in par-
allel or sequentially (Micheli et al., 2022; Dedieu et al., 2025). Parallel decoding, while efficient, ig-
nores dependencies between output tokens, often leading to hallucinations in complex environments
such as duplicated objects. On the other hand, sequential decoding incurs higher computational
costs and has been shown to degrade generation quality due to auto-regressive drift (Dedieu et al.,
2025). Moreover, neither decoding scheme leverages the fact that sequential frames in visual envi-
ronments are highly similar (see Figure 1(a)). Meanwhile, exploiting similarities between images
has been studied extensively in computer vision, leading to the development of optical flow-based
techniques. (Brox et al., 2004; Vedula et al., 2005; Perazzi et al., 2016).
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Figure 1: (a) Sequential frames in visual environments like Craftax-classic preserve most of the
information from the previous frame. (b) Our proposed world model enhances next state prediction
by solving an optimal transport problem with previous state tokens (st, blue) and the transformer’s
output for candidate next-state tokens (s̃t+1, green) to generate the final next-state tokens (ŝt+1).
Optimal transport defines an affinity matrix from the st and s̃t+1 tokens to the positions for ŝt+1. A
solver takes the affinity matrix and produces a transport plan, assigning a token from st or s̃t+1 to
each final next-state token in ŝt+1. This approach enables effective reuse of relevant past tokens.

In this regard, we propose TWISTED (Transformer World model with Informed Spatio-Temporal En-
coding and Decoding), a transformer world model designed for visual RL environments. TWISTED
introduces two key innovations:

1. A 3D spatio-temporal positional encoding that combines absolute and relative encodings
across space and time, preserving both spatial structure and temporal structure.

2. A graph-based optimal decoding scheme grounded in optimal transport, which formulates
decoding as a transport problem between the previous frame’s optimally decoded tokens
and the transformer’s predictions for next tokens. This enables partial reuse of previous
tokens, reducing hallucinations and improving object persistence over time.

We evaluate TWISTED on the Craftax-classic, Craftax, and MinAtar benchmarks. Craftax-classic is
a challenging 2D open-world game featuring long-horizon tasks and dynamic enemies (Matthews
et al., 2024). TWISTED achieves a return of 72.5% and a score of 35.6%, setting a new state-of-the-art
and outperforming the previous best results of 67.4% and 27.9%, respectively (Dedieu et al., 2025).
Craftax is a harder environment based on Craftax-classic, in which TWISTED also exceeds baselines
(Matthews et al., 2024). MinAtar is a suite of 4 Atari games with simplified representations, which
tests generality across different game dynamics (Young & Tian, 2019). TWISTED surpasses the
previous state of the art for model-based RL in all 4 games (Dedieu et al., 2025).

2 PRELIMINARIES

2.1 MODEL-BASED REINFORCEMENT LEARNING

Reinforcement learning considers a Partially Observable Markov Decision Process, characterized
by (S,A,Ω, T,O,R, γ), where S is a set of states, A is a set of discrete actions, Ω is a set of
observations, T gives the transition probabilities between states T (s′ | s, a), O gives the observation
probabilities O(o | s), and R is a reward function R(s, a) (Sutton & Barto, 2018). The goal is to
find a policy π which chooses actions for each state that maximizes the expected discounted return
Eπ

[∑
t≥0 γ

trt

]
, where γ is a discount factor. A world model takes an input of previous state st and

action at, then returns a predicted output of next state ŝt+1, reward rt, and done signal dt, similar to
the real environment. The agent collects real environment trajectories during training by interacting
with the environment using the policy π. Then the world model trains on the trajectories saved in
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Figure 2: Use of positional encoding in (a) original RoPE vs. (b) our method. Original RoPE
makes vertically adjacent (A and C) and temporally adjacent (A and E) tokens far from each other,
while our method brings them together along two out of three axes. Moreover, original RoPE makes
spatially distant tokens (D and E) adjacent, while our method separates them across all axes.

the replay buffer. Over the course of training, the agent is trained on both the trajectories collected
from the real environment and generated trajectories from the world model, called imaginations.

2.2 ROPE

Rotary Position Embedding (RoPE) is a positional encoding method that injects positional informa-
tion into a transformer’s attention mechanism by applying rotations to query and key vectors (Su
et al., 2024). These rotations cause the attention operation to naturally encode relative offsets be-
tween tokens. Concretely, each input token embedding is partitioned into pairs of coordinates, with
each pair forming a 2D subspace where a rotation is applied according to the token’s 1D position
index. Owing to its simplicity and scalability, RoPE has become the standard positional encoding in
modern transformer architectures.

2.3 OPTIMAL TRANSPORT

Optimal transport is a family of optimization problems that compares and aligns probability dis-
tributions based on a given cost of moving mass between elements (Peyré & Cuturi, 2019). Op-
timal transport considers probability distributions a ∈ ∆n−1 and b ∈ ∆m−1 over the source
and target domains, respectively. It seeks a transport plan Π ∈ Rn×m

+ that minimizes the cost
⟨Π,C⟩ =

∑n
i=1

∑m
j=1 ΠijCij , subject to the marginal constraints Π1m = a and Π⊤1n = b.

To solve optimal transport problems efficiently, regularized variants of optimal transport have been
proposed. One popular approach introduces an entropic regularization term to the objective, leading
to the Sinkhorn distance, which can be computed efficiently using iterative matrix scaling (Cuturi,
2013). The Sinkhorn algorithm solves the regularized problem in O(n2/ϵ2) time for a desired
approximation error ϵ, making it practical for large-scale problems.

3 METHOD

Based on the concepts presented in Section 2, our method centers around a transformer world model
that exploits spatial relationships within frames and temporal relationships between frames. First,
states and actions are converted into tokens using a tokenizer. Then, the token embeddings are
augmented with positional encodings that capture spatio-temporal information, before being fed
into a transformer. Finally, the transformer output tokens are used by an optimal transport solver
to produce the next state tokens, as shown in Figure 1(b). Through this process, the world model
generates imagined trajectories for policy training.

3.1 TOKENIZER

Following the practice in Dedieu et al. (2025), we represent states and actions as discrete tokens to
interface with the transformer, using a tokenizer that converts the visual observation to tokens using

3
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(a) (b)

Figure 3: Attention pattern comparison between (a) original RoPE and (b) our relative positional
encoding. The heatmaps show a normalized attention score given identical query and key matrices,
with respect to the top left query at (x, y, t) = (0, 0, 0), marked with red boxes. Original RoPE tends
to attend to x-adjacent tokens more than y-adjacent and t-adjacent tokens. Our spatio-temporal
positional encoding preserves adjacency of all three axes.

nearest neighbor patch lookup. Each token represents a particular visual patch of the image state.
First, each frame is divided into a grid of L visual patches {p1, . . . , pL}, where pi ∈ [0, 1]h×w×3

with height h and width w. The tokenizer maintains a codebook C = {c1, . . . , cK}, consisting of
K codes ci ∈ [0, 1]h×w×3. Each patch p is mapped to a token q by finding its nearest neighbor in
the codebook:

q = enc(p) = argmin
1≤i≤K

∥p− ci∥22 .

The codebook is constructed by sampling patches from the replay buffer. A patch is added if it is
sufficiently far away from all existing codes: when min1≤i≤K ∥p− ci∥22 > τ for a chosen threshold
τ . To convert tokens back to images, the tokenizer retrieves the corresponding code for each token
dec(q) = cq and reassembles the grid into the full image.

3.2 SPATIO-TEMPORAL POSITIONAL ENCODING

After converting image frames into tokens, positional encodings are added to the token embeddings
for input to the transformer. Previous transformer world models employ Rotary Position Embedding
(RoPE) for positional encoding (Su et al., 2024). However, RoPE uses a single-dimensional posi-
tion index, which is unable to distinguish between temporal differences (i.e., tokens from different
time steps) and spatial differences (i.e., tokens from different positions within the same frame). To
incorporate both spatial and temporal information into the model, our method employs a two-fold
positional encoding strategy that uses both absolute position and relative position (see Figure 2).
First, each token receives a trainable embedding according to its absolute spatial coordinates (x, y)
in the grid of patches. This embedding is added to the original token embedding, anchoring each
token to a specific semantic location in the observation.

To capture relative positional relationships, our method applies RoPE across spatial and temporal
axes. Each token’s embedding is divided into three sub-vectors corresponding to its temporal, ver-
tical, and horizontal coordinates. RoPE is then applied independently along each axis, enabling the
attention mechanism to capture localized relational structure across both space and time. This for-
mulation allows the model to generalize over local interactions (e.g., neighboring pixels or frames),
regardless of absolute location. It preserves adjacency in both spatial and temporal dimensions,
while original RoPE loses the adjacency of the y-axis and temporal axis, as visualized in Figure 3.

A special indexing strategy handles action tokens, since actions do not have inherent spatial coor-
dinates. To apply relative spatio-temporal encoding, the action at timestep t is assigned the spatial
coordinates (t, t). This simplifies action representation to a 1D RoPE formulation, while placing
an action token adjacent to the state tokens in the same timestep. Additional indexing details are
described in Appendix C.
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Figure 4: TWISTED achieves state-of-the-art return and score in Craftax-classic, with significantly
faster convergence (Matthews et al., 2024). Shading indicates standard deviation among seeds.
*Baselines with reported results at 1M steps are displayed with horizontal lines from 900K to 1M
steps. DART does not report score, and IRIS and ∆-IRIS do not report standard deviation for score.

3.3 OPTIMAL TRANSPORT-BASED DECODING

Having established the spatio-temporal positional encoding for transformer inputs, the next key
mechanism involves decoding the transformer outputs. In existing approaches, the output of the
transformer world model is directly used to predict each token in the next frame (Micheli et al.,
2022; 2024; Agarwal et al., 2024; Dedieu et al., 2025). However, in most visual environments,
two adjacent frames are often very similar, e.g. the same tiles but shifted when the player moves
right. Our intuition is closely related to the notion of optical flow from classic computer vision
tasks (Brox et al., 2004; Vedula et al., 2005; Perazzi et al., 2016). This relation allows tokens to
be taken directly from the previous frame into the next frame, rather than offloading the burden
of regenerating all next-state tokens to the transformer. To exploit this, the final next-state token
predictions are formulated as an optimal transport problem.

Let L be the number of tokens for each frame state. Our method constructs a graph G = (V, E),
where the vertices V = VS ∪ VD consist of source vertices VS that correspond to previous state
tokens and candidate next-state tokens, and destination vertices VD that represent the finalized next-
state tokens (|VS | = 2L and |VD| = L). The edges E = {(u, v) | u ∈ VS , v ∈ VD} connect all
sources to all destinations. We now define affinities on these edges for transport.

Let K be the size of the codebook. Given transformer predictions pj ∈ [0, 1]K for the next state
tokens, and previous state tokens ui ∈ {0, 1}K for all i, j ∈ {0, . . . , L − 1}, we define an affinity
matrix A(prev) ∈ RL×L that scores the affinity between previous state tokens and predicted next-
state tokens. Each entry is computed as:

A
(prev)
ij = ⟨pj ,ui⟩ − cdD ((xi, yi), (xj , yj)) ,∀i, j ∈ {0, . . . , L− 1}, (1)

where cd is a coefficient of cost for distance, D(·) is a distance function for 2D coordinates, and
(xi, yi) and (xj , yj) are the 2D coordinates of the i-th and j-th tokens, respectively. To allow the
model to generate new content not present in the previous frame, the graph includes wildcard tokens.
The matrix A(gen) ∈ RL×L scores the bonus of admitting newly generated tokens instead of reusing
the previous ones, using diagonal entries:

A
(gen)
kj =

{
∥pj∥∞ − cw, if k = j,

−∞ otherwise,
∀k, j ∈ {0, . . . , L− 1}, (2)

where cw is a constant penalty for using a wildcard token. With the matrices defined above, an
optimal transport plan P (prev) and P (gen) is computed by optimizing the following equation:
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minimize
P (prev)∈[0,1]L×L

P (gen)∈[0,1]L×L

〈
−
(
A(prev)

A(gen)

)
,

(
P (prev)

P (gen)

)〉

subject to P (prev)1L ≤ 1L,
P (gen)1L ≤ 1L,(
P (prev) + P (gen)

)⊤
1L = 1L.

(3)

Solving the optimal transport problem yields a partial transport plan, represented by a matrix with
continuous values in the range [0, 1]. However, our application requires a strict one-to-one mapping
between discrete tokens. To address this, we convert the partial transport plan into a binary assign-
ment matrix with values {0, 1} using a greedy binarization procedure based on column-wise argmax.
Specifically, for each column in the transport matrices P (prev) and P (gen), we identify the row with
the highest transport weight, selecting that row in either P (prev) or P (gen), whichever yields the
larger value. In the event of a conflict where multiple columns select the same row, we retain the
assignment corresponding to the column with the higher transport value and reassign the conflict-
ing column using argmax again, excluding rows that have already been assigned. The complete
binarization procedure is described in Algorithm 3 in Appendix D.

Let Π(prev) ∈ {0, 1}L×L and Π(gen) ∈ {0, 1}L×L denote the binarized versions of P (prev) and
P (gen), respectively. The j-th token of the next state is determined by copying the i-th token of the
previous state where Π

(prev)
ij = 1. If no such i exists, which occurs only when Π

(gen)
jj = 1, the

model instead samples from the transformer’s predicted distribution. The overall decoding rule is
thus defined as

u′
j =

{
ui, where Π

(prev)
ij = 1,

sample(pj) where Π
(gen)
jj = 1,

∀j ∈ {0, . . . , L− 1}. (4)

Solving this optimization problem involves the Sinkhorn algorithm. By default, the Sinkhorn al-
gorithm minimizes the objective given by a cost matrix rather than an affinity matrix, so the cost
matrix is set as the negative of the computed affinity matrix. The end-to-end decoding process is
characterized in Algorithm 1 in Appendix D, which also contains additional algorithmic details.

4 EXPERIMENTS

4.1 CRAFTAX-CLASSIC

Environment We evaluate our method on the Craftax-classic environment (Matthews et al., 2024).
Craftax-classic is a fast implementation of Crafter, a challenging procedurally generated, partially
observable environment featuring stochastic transitions and a complex hierarchy of achievements
(Hafner, 2021). These attributes demand both strong generalization and the ability to model object
interactions across time.

Experiment configuration Each method is trained on Craftax-classic for 1M environnment steps,
using 10 different seeds per method. The baseline methods consist of DreamerV3 (Hafner et al.,
2023), IRIS (Micheli et al., 2022), ∆-IRIS (Micheli et al., 2024), DART (Agarwal et al., 2024),
and Dedieu et al. (2025)1, which had the previous state-of-the-art return on Craftax-classic. Each
experiment runs on a single Nvidia RTX 3090 GPU for 57.7 hours. See Appendix B for all hyper-
parameters and Appendix G for details on compute time.

Results Figure 4 shows that our proposed world model leads to substantially higher return and
score, along with faster convergence compared to baseline methods.2 Return and score are reported

1We use the (fast) variant from Dedieu et al. (2025), as the (slow) variant is prohibitively expensive to train.
2Score is a metric defined as the geometric mean of the success rates for each achievement (Hafner, 2021).

Score puts more emphasis on unlocking a variety of achievements, in contrast to return, which is simply the
sum of rewards for each episode.
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Table 1: Results on Craftax-classic after 0.5M and 1M environment interactions. Return is averaged
over episodes of the final 50,000 environment interactions to smooth out variance. The final value
for Score is reported directly, as it is already a cumulative metric and does not require additional
smoothing. Metrics not reported by baselines are marked as —. † uses hyperparameters of TWISTED.

@ 0.5M @ 1M

Method Return (%) Score (%) Return (%) Score (%)

Human expert — — 65.0 ± 10.5 50.5 ± 6.8

DreamerV3 (Hafner et al., 2023) — — 53.2 ± 8.0 14.5 ± 1.6
IRIS (Micheli et al., 2022) — — 25.0 ± 3.2 6.66
∆-IRIS (Micheli et al., 2024) — — 35.0 ± 3.2 9.30
DART (Agarwal et al., 2024) — — 55.45 ± 3.39 —
Dedieu et al. (2025) — — 67.42 ± 0.55 27.91 ± 0.63

Dedieu et al. (2025) (reproduced) 48.17 ± 0.82 10.22 ± 0.20 68.14 ± 0.42 24.89 ± 0.74
Dedieu et al. (2025) (reproduced)† 54.32 ± 0.60 13.06 ± 0.39 68.55 ± 0.72 27.24 ± 0.86

TWISTED (ours) 63.10 ± 1.24 20.12 ± 0.80 72.46 ± 0.45 35.60 ± 0.92

in Table 1, as the mean and standard error over 10 seeds. After 1M environment interactions, our
method achieves a final return and score surpassing all baselines. It also outperforms the previ-
ous best baseline during training at 0.5M environment interactions, demonstrating superior sample
efficiency in a more data-constrained setting.

Table 2: Ablations on Craftax-classic with 1M interac-
tions. † uses hyperparameters of TWISTED.

Method Return (%) Score (%)

Dedieu et al. (2025)† 68.55 ± 0.72 27.24 ± 0.86

Relative PE only 69.26 ± 0.50 29.37 ± 0.80
STPE only 71.85 ± 0.63 33.94 ± 1.10
Optimal transport only 69.77 ± 0.65 31.08 ± 0.88

TWISTED (ours) 72.46 ± 0.45 35.60 ± 0.92

Ablations To further understand our
method’s performance, we conduct abla-
tion studies to evaluate the individual con-
tributions of the spatio-temporal positional
encoding (STPE) and the optimal trans-
port mechanism. Table 2 shows that both
components make independent improve-
ments to policy return and score, but us-
ing them together leads to the best re-
sult. Furthermore, for spatio-temporal po-
sitional encoding, including absolute spa-
tial embeddings improves the performance
compared to only using relative encoding
(Relative PE only).

Accuracy evaluation To assess the contribution of optimal transport to world model prediction,
we measure the prediction accuracy with and without the transport mechanism. Our evaluation
uses 10,000 environment transitions and counts how many next states are predicted perfectly (where
every predicted token is correct). Table 3 shows that adding optimal transport improves accuracy.
The transformer alone has particularly low accuracy in cases involving randomly moving creatures,
which optimal transport helps with. By improving the accuracy of world model prediction, optimal
transport decoding leads to higher quality imaginations and improved policy performance as seen in
the ablations.

Qualitative analysis Figure 5 compares imaginations generated by our method vs. Dedieu et al.
(2025). Our method excels in situations where tiles in the generated frame are correlated. For
example, a creature in Craftax-classic can move to adjacent tiles, but it should only move to one
destination tile and should not be duplicated to multiple destination tiles. However, because the
transformer generates output tokens for a state in parallel, it cannot capture this constraint naturally.
Therefore, during imagination, duplication or disappearance of creatures occurs, which is a critical
defect of modeling environment dynamics. Optimal transport-based decoding eliminates this issue
by capturing the appropriate constraint between output tiles. Solving this issue is particularly impor-
tant because similar hallucinations arise in non-transformer world models as well (see Appendix A).
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Table 3: Prediction accuracy on a dataset of 10,000 transitions. The first column reports overall accu-
racy, while the latter two break down accuracy based on whether the input state contains a randomly
moving creature. Applying the optimal transport mechanism to the STPE-only transformer outputs
increases accuracy by 3.39%. The transformer accuracy is especially low for transitions involving
creatures, which optimal transport improves by 3.45%. † uses hyperparameters of TWISTED.

Method Accuracy (%) w/ creatures (%) w/o creatures (%)

Dedieu et al. (2025)† 46.94 33.83 61.03
STPE only 47.74 34.92 62.13

TWISTED (ours) 51.13 38.37 65.46

(a) True rollout (b) Dedieu et al. (2025)

(c) STPE only (d)                     (ours)

Figure 5: Comparison of imagined rollouts from different world models. (a) shows the ground-truth
environment trajectory, while (b), (c), and (d) illustrate imagined rollouts generated by the baseline,
the baseline with spatio-temporal positional encoding (STPE only), and TWISTED, respectively.
All rollouts begin from the same initial state s0 (left of the yellow dashed line). TWISTED fixes
inaccurate dynamics (red boxes) and duplication errors (blue boxes) produced by the baseline.

4.2 CRAFTAX

Table 4: Results on Craftax after 1M environment
interactions. Simulus does not report Score (—).

Method Return (%) Score (%)

Dedieu et al. (2025) 5.44 ± 0.25 1.53 ± 0.10
Simulus 6.59 —

TWISTED (ours) 7.09 ± 0.20 2.40 ± 0.04

We also evaluate our method on Craftax, a more
complex and difficult environment that builds
on Craftax-classic (Matthews et al., 2024).
Craftax features a larger screen, more items,
more enemies, and more levels compared to
Craftax-classic (details in Appendix E). We
compare against Simulus (Cohen et al., 2025)
and Dedieu et al. (2025)3, which set the previ-
ous best return and score, respectively. Table 4
reports return and score on Craftax, as the mean
and standard error over 5 seeds. TWISTED
achieves a return of 7.09% and a score of 2.40%, surpassing the baselines. These results demonstrate
that TWISTED can generalize to more difficult environments.

4.3 MINATAR

To further validate the generalization performance of our approach, we also evaluate on the MinAtar
benchmark (Young & Tian, 2019; Lange, 2022). MinAtar consists of 4 Atari games with simplified
symbolic observations of size 10× 10. We compare against the previous state of the art for model-
based RL, Dedieu et al. (2025), and the recent model-free Artificial Dopamine (AD) agent (Guan
et al., 2023). Each method is trained on each game in MinAtar for 1M environment steps (except
AD uses 5M steps), using 10 seeds per game. Table 5 shows that TWISTED outperforms the

3We report the (fast) variant from version arXiv:2502.01591v1 of Dedieu et al. (2025).
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Table 5: Returns on MinAtar after 1M environment interactions (or 5M for AD). Return is evaluated
on 1,000 evaluation episodes at the end of training.

Method Asterix Breakout Freeway SpaceInvaders

AD (Guan et al., 2023) 21.05 ± 0.65 27.78 ± 0.16 57.68 ± 0.07 140.36 ± 1.70
Dedieu et al. (2025) 44.81 ± 3.54 93.92 ± 1.44 71.12 ± 0.13 186.16 ± 1.25

TWISTED (ours) 50.04 ± 2.98 99.53 ± 2.31 71.34 ± 0.07 188.85 ± 0.62

baselines in all 4 games. Return graphs for each game can be found in Appendix F. By improving
in every game, TWISTED demonstrates that spatio-temporal encoding and optimal transport-based
decoding confer robust benefits across a variety of environments.

5 RELATED WORKS

Transformer world models Transformer architectures have been effectively utilized in model-
based RL. The concept of transformer world models was first introduced by IRIS (Micheli et al.,
2022). Building upon IRIS, ∆-IRIS proposed an agent architecture that encodes stochastic deltas
between time steps, enhancing token efficiency by exploiting similarities between adjacent frames
(Micheli et al., 2024). TWM, STORM, DART, and TWISTER also utilized the transformer architec-
ture for world models, demonstrating its efficacy across different benchmarks (Robine et al., 2023;
Zhang et al., 2023; Agarwal et al., 2024; Burchi & Timofte, 2025). Transformer world models fur-
ther advanced with techniques including nearest neighbor tokenization and block teacher forcing,
achieving state-of-the-art performance on Craftax-classic (Dedieu et al., 2025). Outside of trans-
formers, other world models have used GRUs (DreamerV3), diffusion (DIAMOND), decoder-free
latent spaces (TD-MPC2), and discrete codebook latent spaces (DC-MPC) (Hafner et al., 2023;
Alonso et al., 2024; Hansen et al., 2024; Scannell et al., 2025).

Positional embeddings in video modeling Positional encoding for multi-dimensional informa-
tion has been developed in the context of video modeling. The Qwen2-VL series introduced Mul-
timodal Rotary Position Embedding (M-RoPE), decomposing positional embeddings into compo-
nents capturing 1D textual and 3D video information (Wang et al., 2024). Complementing this,
VideoRoPE proposed enhancements such as Low-frequency Temporal Allocation and Adjustable
Temporal Spacing to improve video rotary position embeddings, demonstrating superior perfor-
mance in video understanding tasks Wei et al. (2025).

Optimal transport in RL Optimal transport theory has been applied to RL in other contexts,
specifically for curriculum and offline reinforcement learning. CurrOT framed curriculum gener-
ation as a constrained optimal transport problem between task distributions (Klink et al., 2022).
GRADIENT formulated curriculum reinforcement learning as an optimal transport problem with
a tailored distance metric between tasks (Huang et al., 2022). Additionally, Achievement Distilla-
tion introduced a contrastive learning method using optimal transport to enhance the discovery of
hierarchical achievements, leading to improved sample efficiency (Moon et al., 2023).

6 CONCLUSION

In this paper, we present TWISTED, a transformer world model tailored for visual RL environments.
TWISTED captures the inherent structure of visual environment inputs by encoding both spatial and
temporal dimensions using a combination of absolute and relative positional encodings. By selec-
tively reusing tokens from preceding frames with optimal transport-based decoding, it effectively
leverages frame-to-frame similarities to model next-state tokens instead of solely relying on the
transformer to regenerate each one. These innovations enable TWISTED to achieve new state-of-the-
art performance on the challenging Craftax-classic, Craftax, and MinAtar benchmarks.
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REPRODUCIBILITY STATEMENT

For full reproducibility, all source code is included in the supplementary materials. The source
code will also be released on GitHub upon acceptance. All implementation details are described
in Appendix B for the world model and policy, Appendix C for spatio-temporal encoding, and
Appendix D for optimal transport. All hyperparameters are listed in Appendix B for Craftax-Classic,
Appendix E for Craftax, and Appendix F for MinAtar.
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(a) True rollout

(b) DreamerV3

Figure 6: An imagination rollout of DreamerV3 compared to the ground-truth trajectory. Dream-
erV3’s imagination includes disappearance of trees (red boxes) and duplication of trees (blue boxes)
over time, similar to duplication issues shown in Figure 5 for Dedieu et al. (2025)

A ADDITIONAL QUALITATIVE ANALYSIS

The qualitative analysis in Section 4.1 discusses how parallel decoding in baseline transformer world
models leads to duplication and disappearance of objects during imagination. However, this issue is
not isolated to transformers and can also be observed in non-transformer world models, like Dream-
erV3 (Hafner et al., 2023). Figure 6 shows duplication and disappearance artifacts in an imagina-
tion rollout generated by DreamerV3, demonstrating that this issue occurs across different types of
world models. Thus, by eliminating these hallucinations, optimal transport-based decoding resolves
a problem that is widespread among world models.

B AGENT TRAINING AND IMPLEMENTATION

B.1 TRAINING LOOP

This section outlines the training procedure for the world model and the policy, which are trained
concurrently through alternating update steps. The overall training loop is composed of the follow-
ing steps:

1. Environment interaction: Execute the current policy in the real environment and store the
resulting experiences in a replay buffer.

2. Policy update on real data: Update the policy using the most recent real environment
experiences collected in Step 1. The policy is trained on the data over Eenv epochs, with
each batch split into Bpolicy minibatches due to memory constraints.

3. Tokenizer training: Sample experiences from the replay buffer to train the nearest neigh-
bor tokenizer. The tokenizer is updated on Utokenizer batches of sample trajectories.

4. World model training: Sample experiences from the replay buffer to train the transformer
world model. The world model is updated on UWM batches of sample trajectories, using
BWM minibatches.

5. Policy update in imagination: For training steps t > Twarmup, generate Uimag batches of
imagined trajectories using the world model and the current policy, and update the policy
on these synthetic rollouts. During the initial Twarmup real environment interactions, this
step is skipped to allow the world model to reach sufficient accuracy before generating

12
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Figure 7: Comparison between the causal attention mask and the block causal attention mask. The
token sit denotes the i-th state token at timestep t, at denotes the action, r̂t denotes the predicted
reward, and d̂t denotes the predicted done signal. Only two state tokens are shown per state for
simplicity. (left) In the causal mask, each token attends to the tokens preceding it. The output
embeddings of state token sit are used to predict the subsequent state token si+1

t . The reward r̂t and
done signal d̂t are predicted from at, and the output of sLt is unused. (right) In the block causal
mask, all state and action tokens in the same timestep attend to each other, and they are used to
predict the corresponding token in the next timestep (at predicts r̂t and d̂t). This allows each frame
to be predicted in parallel rather than token-by-token.

imaginations. At the start of each imagination rollout, the policy uses Tburn frames from the
replay buffer to initialize its RNN hidden state.

The overall training loop is repeated until the agent has performed a total of Ttotal real environment
interactions.

B.2 WORLD MODEL ARCHITECTURE AND LOSS

Our transformer world model follows the GPT-2 architecture (Radford et al., 2019). The model
operates over tokenized sequences that encode states and actions over T consecutive frames. These
tokens are first mapped to 128-dimensional embeddings via a learned embedding layer. Absolute
positional embeddings are then added, followed by an initial dropout layer. The resulting embed-
dings are processed through a stack of three transformer blocks. Each block consists of the following
components:

1. Layer normalization
2. Multi-head attention module, comprising:

(a) Self-attention with a block causal mask. In the block causal mask, tokens within the
same timestep are decoded in parallel (see Figure 7) (Dedieu et al., 2025).

(b) A linear projection to the 128-dimensional embedding space
(c) Dropout

3. Residual connection with the block input
4. Layer normalization
5. Feed-forward multilayer perceptron (MLP) composed of:

(a) A hidden layer of dimension 512
(b) GeLU activation
(c) Dropout

After processing through the final block, the output undergoes a final layer normalization and is then
passed to three separate prediction heads: one for the next state tokens, one for the reward signal,
and one for the done signal. We denote the output embeddings as

(E1
1 , . . . , E

L+1
1 , E1

2 , . . . , E
L+1
2 , . . . , E1

T , . . . , E
L+1
T ).
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where L represents the number of state tokens per frame, and Ei
t corresponds to the i-th output

embedding at timestep t. These embeddings are routed to prediction heads as follows:

1. For i ≤ L, the embedding Ei
t is input to the observation head, an MLP comprising a

128-dimensional linear layer, a ReLU activation, and a final linear layer projecting to the
codebook size K. The output logits define a categorical distribution over the K possible
values of the predicted state token sit+1.

2. The embedding EL+1
t , corresponding to the position of the action token, is passed to both

the reward and done heads. Each head is an MLP consisting of a 128-dimensional linear
layer, a ReLU activation, and a final linear layer projecting to two output classes. Although
the Craftax-classic environment defines reward values of −0.1, 0.1, and 1.0, we follow
Dedieu et al. (2025) and binarize the reward signal to improve stability, ignoring the −0.1
and 0.1 cases.

The model is trained on trajectories of length TWM sampled from the replay buffer. The total loss is
the sum of three components:

1. Cross-entropy loss over next-state token predictions (across K classes).

2. Cross-entropy loss for binary reward classification (0 or 1).

3. Cross-entropy loss for done signal prediction.

Optimization is performed using the Adam optimizer with gradient norm clipping to stabilize train-
ing (Kingma & Ba, 2015). Hyperparameters for architecture and training are provided in Table 6.

Table 6: World model hyperparameters. Sweep range indicates the values tried per hyperparameter,
with the final Value being chosen based on highest return.

Area Hyperparameter Value Sweep range

Architecture Sequence length TWM 20
State tokens per frame L 81
Number of blocks 3
Number of attention heads 8
Embedding dimension 128
MLP hidden layer dimension 512
Dropout rate 0.1
Attention mask Block causal
Inference with key-value caching True

Optimal transport Distance cost coefficient cd 0.6 16 values in [0, 1]
Wildcard cost cw 0.3 9 values in [0.2, 1]
Sinkhorn regularization parameter ϵ 0.00001 {0.00001, 0.0001}

Training Number of updates UWM 500
Number of minibatches BWM 3
Replay buffer size 128,000

Optimization Optimizer Adam
Learning rate 0.001
Max norm for gradient clipping 0.5

Tokenizer Codebook size K 4096
Single patch shape 7× 7× 3
New code threshold τ 0.75
Number of updates Utokenizer 25

14
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Table 7: Policy hyperparameters. Sweep range indicates the values tried per hyperparameter, with
the final Value being chosen based on highest return.

Area Hyperparameter Value Sweep range

Environment Environment interactions Ttotal 1,000,000
Warmup interactions Twarmup 50,000 {50k, 100k, 200k}
Number of environments (batch size) 48
Rollout horizon in environment 96
Rollout horizon in imagination TWM 20
Burn-in horizon for RNN in imagination Tburn 5

Training Number of updates in imagination Uimag 300 {150, 300, 600, 1200}
Number of epochs in environment Eenv 4
Number of epochs in imagination 1
Number of minibatches in environment Bpolicy 8
Number of minibatches in imagination 1

PPO Discount factor γ 0.925
TD weight λ 0.625
Clipping value ϵ 0.2
TD loss coefficient λTD 2.0
Entropy loss coefficient λent 0.01
PPO target discount factor α 0.95

Optimization Optimizer Adam
Learning rate 0.00045
Max norm for gradient clipping 0.5

B.3 POLICY NETWORK ARCHITECTURE AND LOSS

B.3.1 ARCHITECTURE

We adopt the policy network architecture introduced in Dedieu et al. (2025), which comprises three
primary components: a convolutional encoder, a recurrent neural network (RNN), and separate MLP
heads for action and value prediction.

The convolutional encoder consists of three convolutional blocks with channel sizes [64, 64, 128].
Each block contains an instance normalization layer, a 3×3 convolutional layer with stride 1, a 3×3
max-pooling layer with stride 2, and two ResNet-style sub-blocks. Each ResNet block includes a
ReLU activation, instance normalization, a 3×3 convolution with stride 1, and a skip connection to
preserve the input. The encoder produces an output of shape 8 × 8 × 128, which is flattened into
a 8192-dimensional vector, denoted by z. The vector z is then projected into a 256-dimensional
representation through a ReLU activation, a linear layer, and layer normalization. This projected
representation serves as input to a GRU recurrent module, which outputs a vector y ∈ R256 along
with the updated hidden state h ∈ R256.

The action and value heads share an identical structure except for the final output projection. Each
head takes the concatenated vector [z, y] as input and applies a sequence of transformations: ReLU
activation, layer normalization, a linear projection to 2048, another ReLU activation, and a residual
block composed of two linear layers with ReLU activations. The output is passed through a final
layer normalization, followed by the task-specific output projection—either to action logits or a
scalar value estimate.

B.3.2 TRAINING

We follow the policy training procedure described in Dedieu et al. (2025), using Proximal Policy
Optimization (PPO) (Schulman et al., 2017) as the underlying policy gradient algorithm.

Let the trajectory be denoted as τ = (o1:T+1, a1:T , r1:T , d1:T , h0:T ), where ot represents the obser-
vations, at the actions, rt the rewards, dt the done signals, and ht the hidden states of the RNN. At
each timestep, PPO computes the value estimates v1:T+1 = VΦold(o1:T+1) and the action probabili-
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ties πΦold(at|ot) under the current fixed parameters Φold. The policy is optimized by minimizing the
following PPO objective:

LPPO(Φ) =
1

T

T∑
t=1

{
−min (pt(Φ)At, clip(pt(Φ))At)

+ λTD(VΦ(ot)− qt)
2

− λentH (πΦ(.|ot))
}

where pt(Φ) is the probability ratio πΦ(at|ot)
πΦold (at|ot) and clip(x) is the clipping function min(max(x, 1−

ϵ), 1 + ϵ). Here, At denotes a generalized advantage estimation, qt is a temporal difference (TD)
target, and H is the entropy operator. The advantages At and targets qt are computed as

At = δt + (1− donet)γλAt+1,

qt = At + vt,

where δt = rt + (1− donet)γvt+1 − vt.

We incorporate two modifications to the standard PPO implementation:

• Generalized advantage estimates At are standardized across training batches to stabilize
learning.

• We track the moving average of the mean and standard deviation of qt, with discount factor
α, and train the value function to predict the standardized targets.

All policy training hyperparameters are shown in Table 7.

C RELATIVE SPATIO-TEMPORAL ENCODING IMPLEMENTATION

Our implementation of relative spatio-temporal encoding extends Rotary Position Embedding
(RoPE) by adapting it to both spatial and temporal contexts (Su et al., 2024). While RoPE ro-
tates pairs of embedding dimensions using frequencies based on a 1D position index, our method
modulates the rotation amount based on three indices, two spatial and one temporal. Our method
divides dimension pairs in a 3:1 ratio between spatial and temporal encoding, following the design
principle of VideoRoPE (Wei et al., 2025). Pairs associated with lower rotation frequencies are used
for temporal encoding and are rotated based on the temporal index. In contrast, pairs with higher
rotation frequencies are used for spatial encoding. Given the 2D nature of spatial positions, spatial
pairs are further split evenly between the horizontal and vertical axes. These are interleaved across
the embedding dimension to ensure balanced representation. As a result, the axes contributing to
rotation follow the pattern (x, y, x, y, . . . , x, y, t, t, . . . , t), ordered by decreasing rotation frequency.

As action tokens lack inherent spatial coordinates, assigning them fixed spatial positions would
limit the effectiveness of relative positional encoding across the majority of embedding dimensions.
To address this, spatial coordinates for action tokens are defined along the diagonal, (t, t), where t
represents the temporal index. State tokens are assigned spatial coordinates offset from this diagonal,
(x+ t, y + t), ensuring temporal alignment with action tokens while preserving spatial variation.

To avoid positional collisions between state and action tokens, they are given different temporal
indices. That is, the state and action tokens s1t , . . . s

L
t , at, s

1
t+1, . . . , s

L
t+1, at+1 are given temporal

indices 2t, . . . , 2t, 2t + 1, 2(t + 1), . . . 2(t + 1), 2(t + 1) + 1. This staggered assignment ensures
that each token occupies a unique spatio-temporal location, maintaining positional distinctiveness
throughout the sequence.

D OPTIMAL TRANSPORT IMPLEMENTATION

This section details various components of our optimal transport implementation. Algorithm 1 char-
acterizes the end-to-end decoding process. Algorithm 2 describes the Sinkhorn algorithm (Cuturi,
2013). Algorithm 3 describes the process of converting the transport plan’s continuous values into
binary values. It is adapted from Kim et al. (2020).
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Algorithm 1 Decoding with optimal transport
Input: transformer prediction p,

previous tokens u,
number of tokens per frame L,
Sinkhorn regularization parameter ϵ,
Number of Sinkhorn iterations T

Output: Generated tokens for next frame u′

Compute A(prev), A(gen) from Equations 1 and 2

A = concatenate
(
A(prev) 0 ∈ RL×L

A(gen) 0 ∈ RL×L

)
∈ R(2L)×(2L) ▷ Concatenate for Sinkhorn input

P = SINKHORN(−A, ϵ, T )
P (prev) = P1:L,1:L

P (gen) = PL+1:2L,1:L

Π(prev), Π(gen) = BINARIZATION(P (prev), P (gen))

for j = 0 to L− 1 do ▷ Finalize the state prediction
if Π

(prev)
ij = 1 for some i then
u′
j = ui ▷ Take a token from the previous state

else if Π
(gen)
jj = 1 then

u′
j = sample(pj) ▷ Use a generated token from the transformer

end if
end for
return u′

Algorithm 2 SINKHORN implementation
Input: Cost matrix C,

Sinkhorn regularization parameter ϵ,
Number of Sinkhorn iterations T

Output: Optimal transport plan P

K = exp(C/ϵ)
Set uniform marginals: r = 1

rows(C) , c = 1
cols(C)

Initialize dual variables: u = 1, v = 1
for t = 1 to T do

u = r⊘ (Kv) ▷ ⊘ denotes element-wise division
v = c⊘ (K⊤u)

end for
return P = diag(u) ·K · diag(v)

Distance cost For the affinity matrix A(prev) in Equation 1, we include a distance penalty
D((xi, yi), (xj , yj)). This choice of distance cost can be adapted based on the environment. For
our environments, we impose a movement constraint by defining the distance cost as

D((xi, yi), (xj , yj)) =

{
d, if d ≤ 4

+∞ otherwise,

where d = ∥(xi, yi)− (xj , yj)∥22.

This constraint reflects the fact that in environments like Craftax-classic, Craftax, and MinAtar, a
token’s spatial displacement between consecutive frames is limited to a maximum of two positions
in any direction. For Craftax-classic and Craftax, this accounts for the potential movement of one
by the player and one by a creature token, if applicable.
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Algorithm 3 BINARIZATION of partial transport plan

Input: Partial transport plans P (prev), P (gen),
large value v

Output: Binarized transport plans Π(prev), Π(gen)

P in = concatenate
(
P (prev),P (gen)

)
Initialize P (0) = P in, t = 0
repeat

target = argmax(P (t), dim = 1)
Πinitial = 0n×m

for i = 0 to n− 1 do
Πinitial[i, target[i]] = 1

end for
C = P (t) ⊙Πinitial − v(1−Πinitial)
source = argmax(C, dim = 0)
Πout = 0n×m

for j = 0 to m− 1 do
Πout[source[j], j] = 1

end for
Πout = Πout ⊙Πinitial

R = (1−Πout)⊙Πinitial

P (t+1) = P (t) − vR
t = t+ 1

until Πout = Πinitial

Π(prev) = Πout[1 : L, 1 : L]
Π(gen) = Πout[L+ 1 : 2L, 1 : L]
return Π(prev), Π(gen)

Choosing between transformer and optimal transport output Optimal transport provides an
effective mechanism for reusing tokens from the previous frame. However, it is less effective in
scenarios where novel tokens must be introduced, such as when the agent moves to a previously
unexplored area. In such cases, optimal transport may fail to consistently route wildcard entries
to the appropriate newly generated tokens. Conversely, the transformer world model is capable of
freely generating new tokens as needed, but lacks a mechanism for directly reusing tokens from prior
frames. Rather than committing to a single output modality, we adopt a hybrid strategy for Craftax-
classic and Craftax that selects between optimal transport and transformer outputs based on spatial
position. In Craftax-classic and Craftax, new visual content appears along the screen boundaries as
the player explores previously unseen regions. Additionally, the inventory interface—fixed at the
bottom of the screen—requires updates to token values without positional shifts. To accommodate
these patterns, we apply the optimal transport output to the central region of the screen, where
token reuse is most appropriate, while using the transformer’s predictions for the screen edges and
inventory regions, where new content is more likely. For MinAtar, which does not have special
behavior at the edges, the optimal transport output is used directly for the entire screen.

Table 8: Hyperparameter differences between Craftax-classic and Craftax.

Area Hyperparameter Craftax-classic Craftax

Environment Observation shape 63× 63× 3 130× 110× 3
Number of possible actions 17 43
Number of possible achievements 22 226
Number of environments (batch size) 48 16

Tokenizer Single patch shape 7× 7× 3 10× 10× 3

Architecture State tokens per frame L 81 143

Training Replay buffer size 128, 000 48, 000
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Figure 8: An example observation of Craftax.

E CRAFTAX DESCRIPTION AND HYPERPARAMETERS

Craftax is a complex environment inspired by Craftax-classic, featuring a larger screen, more ene-
mies, more items, and multiple underground levels. An example observation is shown in Figure 8.
Following Dedieu et al. (2025), we change some hyperparameters for Craftax, as shown in Table 8.
In particular, to accommodate the larger screen and additional tokens in memory, the batch size and
replay buffer size are reduced.

F MINATAR RETURN CURVES AND HYPERPARAMETERS

Figure 9 shows the return curves of TWISTED and baseline Dedieu et al. (2025) for each game
in MinAtar. TWISTED outperforms the baseline in every game. Table 9 lists the hyperparameters
for MinAtar with different values compared to Craftax-classic. All hyperparameter changes fol-
low Dedieu et al. (2025), except the hyperparameters specific to optimal transport. Also following
Dedieu et al. (2025), the policy encoder uses layer normalization and the Swish activation func-
tion, and actor and value networks share weights except in their final linear layers (Ba et al., 2016;
Ramachandran et al., 2017).
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Figure 9: Return curves for MinAtar. Shading indicates standard error among multiple seeds. The
vertical dashed lines indicate the start of training in imagination after Twarmup interactions.
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Table 9: Hyperparameter differences between Craftax-classic and MinAtar. K is the number of
object types for each game (4 for Asterix, 4 for Breakout, 7 for Freeway, and 6 for SpaceInvaders).
The number of actions A is 5 for Asterix, 3 for Breakout, 3 for Freeway, and 4 for SpaceInvaders.

Area Hyperparameter Craftax-classic MinAtar

Environment Observation shape 63× 63× 3 10× 10×K
Number of possible actions 17 A
Warmup interactions Twarmup 50,000 200,000

Tokenizer Single patch shape 7× 7× 3 2× 2×K

Architecture State tokens per frame L 81 25

Optimal transport Distance cost coefficient cd 0.6 0.2
Wildcard cost cw 0.3 0.05

Training Number of world model updates UWM 500 2000
Number of policy updates in imagination Uimag 300 2000
Coefficient for reward prediction loss 1 10
Coefficient for done prediction loss 1 10

PPO Discount factor γ 0.925 0.95
TD weight λ 0.625 0.75
Entropy loss coefficient λent in imagination 0.01 0.05
PPO target discount factor α 0.95 0.925

Table 10: Running times on a single Nvidia RTX 3090 GPU. WM training measures one epoch of
world model training. Imagination measures one epoch of policy training in imagination. Total time
represents end-to-end training time for 1M environment steps.

Method WM training (s) Imagination (s) Total time (hrs)

Baseline 8.08 4.48 46.3
TWISTED (ours) 8.19 7.69 57.7

G COMPUTE TIME

Table 10 reports the running time of TWISTED and its baseline Dedieu et al. (2025) using the same
hyperparameters. Spatio-temporal positional encoding introduces neglible overhead, increasing
world model training time by only 1%. Optimal transport-based decoding increases latency for
policy training in imagination. Since imagination accounts for only one-third of total training time,
the overall end-to-end training time increases by 25%.
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