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ABSTRACT

Training on Chain-of-Thought (CoT) traces has empirically shown to dramati-
cally improve the capabilities of Large Language Models (LLMs), yet a formal
understanding of its power remains limited. In this work, we investigate the role
of training on such computational traces from the perspective of language learn-
ability. We introduce a new learning model, identification in the limit with trace,
which augments Gold’s classic paradigm (Gold, [1967)) by providing the learner
not only with examples from a target language but also with computational traces
from the machine that accepts them.

Our results reveal that access to these traces dramatically enhances the power of
the learner. We first prove that with perfect computational traces, the class of all
computable languages (those recognizable by Turing Machines) becomes identi-
fiable in the limit. This stands in sharp contrast to Gold’s famous impossibility
result, which holds even for the simple class of languages that are recognizable
by deterministic finite automata. We then analyze the more challenging scenario
where the learner has only partial information regarding the computational traces,
which are also subject to adversarial corruptions. In this setting, we establish a set
of trichotomic results on the amount of error that can be tolerated for the success-
ful identification of language classes across the Chomsky hierarchy.

1 INTRODUCTION

Large Language Models (LLMs) have demonstrated remarkable capabilities across a vast array of
complex tasks, yet they can still falter on seemingly elementary problems. A fascinating empirical
discovery is that their performance on such tasks often improves dramatically when they are trained
on a corpus of data that contain not only input-output pairs, but also a “chain-of-thought” (CoT), i.e.,
a step-by-step explanation of the reasoning process (Wei et al., 2022} |Chung et al., 2024). Despite
these important practical successes, a comprehensive theoretical understanding of the benefits of
reasoning traces in the training of LLMs remains elusive.

Prior work has begun to formalize the usefulness of different types of CoT traces in the training
process through theoretical models that are primarily statistical in nature (Malach, 2023} Joshi et al.,
2022; |Altabaa et al.| [2025). In our work, we adopt a perspective that is complementary to these
statistical approaches and seeks to understand if CoT training helps LLMs learn the correct world
model (Vafa et al.| 2024), i.e., the correct “rules” that describe the environment they operate in.
In order to make progress on this question, we need to first give a mathematical definition of the
world model. For that, we rely on a classical work from Gold (Gold, [1967)) who introduced the
notion of language identification in the limit. In Gold’s model there is a countable collection of
strings X" (e.g., the set of all finite-length binary strings) and a countable collection of languages
L, where each language L is defined as a (potentially infinite) subset of X'. Every language can be
thought of as representing all the “facts” within some world. For instance, building on the ideas of
Li et al.| (2023)); Nanda et al.| (2023) who used the task of learning rules of board games to test if
LLMs are capable of learning world models, we can think of different languages in £ as representing
the valid states of different board games. Gold’s model formalizes learning as a two-player game
where an adversary chooses some K € L and presents an enumeration of it to the learner, who
must eventually converge to a correct description of that language, after making a finite number of
mistakes. It is well-established that under this paradigm, most of the interesting classes of languages
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are not identifiable (Angluin, [1980). Thus, it is natural to ask: if we augment the Gold—Angluin
model with a notion of chain-of-thought, can we expand the class of languages that are identifiable
in the limit? We introduce a new model, identification in the limit with traces, where the learning
algorithm observes not only examples from the target language but also a computational trace, which
in our model is defined as the sequence of computational steps (i.e., “trace”) that a fixed machine
takes to accept them.

Our first result shows that, perhaps surprisingly, the class of all languages accepted by Turing Ma-
chines (TMs) is identifiable with traces. This is in striking contrast to the negative results in Gold’s
setting, who showed that the much simpler class of regular languages, i.e., those that are recogniz-
able by DFAs, is not identifiable in the limit (Gold, [1967).

Informal Theorem 1 (Informal statement of Theorem [3.1). The class of languages recognized by
Turing machines is identifiable in the limit with traces.

Having established these strong positive results, we turn to a crucial question of robustness: how
resilient are these learning guarantees to imperfections in the provided traces? To model these
imperfections, we consider scenarios where the computational traces are corrupted—this includes
traces that are only partially observable, skip important steps, or contain errors. As a unified metric,
we measure this corruption as the deviation from the true computational trace, quantified by the edit
distance. In this setting, we establish tight bounds on the amount of error a learner can tolerate while
still successfully identifying regular languages (recognizable by DFAs), context-free languages (rec-
ognizable by Deterministic Pushdown Automata, DPDAs), and recursively enumerable languages
(recognizable by TMs).

Informal Theorem 2 (Informal statement of Theorem [.1|d.3|4.5). Consider the task of language
identification in the limit with traces:

* For languages recognizable by DFAs, identification is possible even with a constant fraction
of corruption (for any constant rate less than 1).

* For languages recognizable by DPDAs, identification is impossible for any constant frac-
tion of corruption, but becomes possible when the corruption rate is diminishing.

 For languages recognizable by TMs, identification is possible if and only if the total number
of errors per trace is bounded.

Formal definitions of our corruption model are provided in and 3]

[rem 2] reveals a varied landscape of identifiability corresponding to the error rate and the language’s
complexity. For the most powerful model (TMs), identification can only be achieved if the number
of errors present in an example is finite. In contrast, for the weakest model (DFAs), identification
remains possible even when a 0.999 fraction of the computational trace is corrupted (per example).
The intermediate model (DPDAs) occupies a middle ground: it cannot tolerate even a 0.01 fraction
of error, but identification becomes possible when the corruption rate diminishes with the length of
the computational trace.

1.1 RELATED WORK

Identification and Generation in the Limit. The paradigm of language identification in the limit
was introduced in the pioneering work of |Gold| (1967) and learnability in this setting was fully
characterized by |Angluin| (1979} [1980). Gold’s setting has been very influential both in learning
theory and in computational linguistics; we refer the interested reader to [Lange et al.[(2008) for a
comprehensive survey of results in this area. Inspired by this line of work, Kleinberg & Mullainathan
(2024) recently introduced the notion of generation in the limit: instead of having to exactly identify
the target language, like in Gold’s setting, the learner here is required to eventually start producing
valid unseen elements of the language, i.e., elements of the target language that have not appeared in
the input it has witnessed so far. The finding of Kleinberg & Mullainathan|(2024) is rather surprising:
under this modified objective all countable collections of languages become generatable in the limit.
This result has led to a flurry of follow-up work. |Li et al.|(2024)) further developed this notion using
learning-theoretic tools and studied a hierarchy of notions of generation. Moreover, several works
have formalized and studied trade-offs between breadth and hallucinations in language generation
(Kalavasis et al.l 2024bga; |(Charikar & Pabbarajul 2024; Peale et al.| 2025; Kleinberg & Wei, |2025).
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Raman & Raman| (2025); Bai et al.| (2025) studied notions of noisy language generation, while
Hanneke et al.| (2025); [Bai et al.| (2025) showed that generation is not closed under finite unions[]
Inspired by these lines of work, Karbasi et al.[(2025) formalized and studied a setting of automated
hallucination detection.

Learning Algorithms in the Limit. The most closely related setting to ours is the very recent
work of [Papazov & Flammarion| (2025). They consider a different version of the identification
problem where the goal is to learn recursive functions in the limit, and the learner receives as input
a stream of evaluations of the target function on every point of the domain. In the context of binary
functions, this means that the learner observes both positive and negative examples, of the target
language, whereas in our setting it receives only positive examples. This difference is subtle yet
critical; in the presence of negative examples, identification in the limit becomes trivial as one
can simply output the smallest-indexed language that is consistent with the enumeration so far.
Nevertheless, there exist classes of languages such that the above task is undecidable. The work of
Papazov & Flammarion|(2025) focuses on the computability of the task and proves that with certain
side information (such as the computation time of the target machines), the identification task also
becomes decidable. These results are derived with the presence of negative examples so they are so
they are fundamentally different from our work.

Theory of CoT. Recent theoretical work has advanced our understanding of chain-of-thought
(CoT) reasoning by grounding it in formal statistical learning frameworks. [Malach| (2023) studies
autoregressive next-token prediction in a PAC-style setting, showing that even linear models trained
on i.i.d. examples can approximate any Turing-computable function when allowed to emit suffi-
ciently long intermediate sequences. This introduces a new statistical complexity measure—length
complexity—which captures the tradeoff between reasoning depth and learnability. Joshi et al.
(2022) extend this perspective by formalizing a time-invariant autoregressive learning setup, where
reasoning steps are repeated applications of a shared predictor. Their analysis provides generaliza-
tion bounds and sample complexity guarantees for learning with and without intermediate super-
vision, showing that sample complexity can remain independent of the CoT length under certain
conditions. |Altabaa et al.[(2025) adopt an information-theoretic approach, quantifying the statistical
advantage of CoT supervision via a new measure called CoT information. Their results demonstrate
that observing intermediate reasoning steps can provably reduce sample complexity, with matching
upper and lower bounds. Since these works study statistical settings, they are orthogonal to the focus
of our paper. On a related note, a recent line of work (Liu & Moitral [2025; |Gaitonde et al., 2025
Wen et al., [2025) also shows that, with the presence of computation trace, one could circumvent
computational lower bounds in various statistical learning settings.

2 MODEL

We begin by recalling the classic paradigm of language learnability, followed by our main definition
which augments this model with computational traces.

Definition 1 (Identification in the Limit (Gold, [1967)). Let L be a countable class of languages
over a finite alphabet . An infinite sequence of strings E = (x1,x2,...) is an enumeration of a
language K € L if the set {xt}ien is equal to K. The class L is identifiable in the limit if there
exists an algorithm I that, for any K € L and any enumeration E of K, converges to a correct
representation of K. That is, there exists a time t* such that for all t > t*, the algorithm’s guess
Li(x1,...,x¢) is constant and correct.

Below, we give a concrete instantiation of this definition inspired by Vafa et al.[(2024) who evaluated
LLMs on the task of reconstructing maps of cities.

Example 1. We instantiate by interpreting languages as city maps, where each lan-
guage represents all valid routes within a city. Let X be a (finite) set of vertices representing inter-
sections, and X the set of all finite sequences of elements of X.. We let G be the set of all graphs over
3, where each graph G = (V, E) € G models a city layout, with edges representing roads. The class
of languages is then L = {Lg | G € G}. A specific language L¢ consists of all valid routes (paths)
in the graph G; formally, a string w = o102 ...0, € X isin Lg if and only if (0;,0;41) € E for

"This result holds for uncountable collections of languages, which are outside the scope of our work.
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all 1 < j < k. Finally, for a target city K € L, an enumeration E = (r1,79,...) is an infinite
sequence of observed valid routes such that the set {ri}:cn equals K.

We consider a set of canonical models of computation: Deterministic Finite Automata, Determin-
istic Pushdown Automata, and Turing Machines. These are standard textbook models of computa-
tion (Sipser}, |1996) and they capture an increasing complexity of the underlying languages (regular
language, deterministic context free grammar and recursively enumerable languages) and the corre-
sponding identification tasks. We present a brief introduction to these models in Definition [2} for
a comprehensive overview, we refer to the textbook of |Sipser| (1996)). In the following definition,
each machine is formalized as a tuple comprising several core components. () denotes a finite set
of states representing the machine’s possible internal configurations. X is the input alphabet, i.e.,
a finite set of symbols that form the input strings. Computation begins at a designated start state,
qo € Q. A subset of states, F' C @), is defined as the set of final (or accepting) states. The behavior
of the machine is governed by a transition function, §, which dictates how the machine changes state
and manages its memory in response to the input it reads. The distinctions of DFAs/DPDAs/TMs
lie in their specific memory structures and the definition of §. To implement memory, models utilize
an additional alphabet I' (representing the stack or tape contents). They may also employ specific
constants such as Zj for the initial stack symbol, B for the blank tape symbol, and directions {L, R}
to indicate the movement of the tape head.

Definition 2 (Computational Models). A Deterministic Finite Automaton (DFA) is a 5-tuple
(Q,%,9,qo, F) with a transition function § : Q X ¥ — Q. Here Q denotes the set of states, 2.
is the set of input symbols, qq is the initial state, and F' C @ are the accepting (final) states.

A Deterministic Pushdown Automaton (DPDA) is a 7-tuple (Q, X%, T, 6, qo, Zo, F') that includes a
set of states @), an input alphabet Y., a stack alphabet T, the initial state qo, an initial stack symbol
Zy €T, a set of accepting states F C @Q and a transition function 6 : Q X (XU {e}) x T — Q x T'*.

A Turing Machine (TM) is a 7-tuple (Q, X, T, 0, qo, B, F) that includes a set of states @, an input
alphabet 3, a tape alphabet I' O 3, the initial state qq, a blank symbol B € T'\ %, a set of accepting
states F' C Q and a transition function § : Q x I' = Q x T’ x {L, R}.

We now introduce our primary object of study, which equips the learner with step-by-step computa-
tional traces (like CoT).

Definition 3 (Identification in the Limit with Traces). Let L be a class of languages and M be a
class of machines. For a machine M € M and an input © € L(M), let cp;(x) be the accepting
sequence of computational steps of M on x. An enumeration of K with traces from M is a sequence
Erace = ((x1,ep(x1)), (22, epr(x2)), . . .) where (x1) is an enumeration of K = L(M). The class
L is identifiable in the limit with traces from M if there exists an algorithm I that converges to a
correct representation of K when given any such Eiqce.

When the underlying machine and the input x are clear from context, we write ¢ for cps(z). Let us
briefly elaborate on the notion of trace we consider in our work. At every timestep of its execution,
every computational machine we are considering can be described by a set of parameters (e.g., its
current state, memory tape, position on the tape etc.). A computational trace simply describes the set
of (changing) parameters of the underlying machine in every timestep. Thus, the length of the trace
is the number of computational steps the machine needs to accept the given string. For a concrete
example in the case of DFAs we refer the reader to|Example 2

Example 2 (DFA Computational Trace). To illustrate the concept of a computational trace (CoT)
as defined in we provide a concrete example using a Deterministic Finite Automaton
(DFA). For a DFA, the machine’s configuration at any point in time is entirely determined by its
current state. Thus, the computational trace is simply the sequence of states visited. Let us de-
finea DFA M = (Q, %, 6, qo, F) over the alphabet ¥ = {0, 1} that recognizes the language L
consisting of all strings containing an even number of 1s. Here, Q = {qeven, Qoad}, the starting
state is o = Qeven, and the accepting state is F' = {qeen}. The transition function 0 is defined as
5(Qevena 0) = {even; §(QUdd70) = dodd; 5(Qeven7 1) = qud76(q0dd) 1) = Yeven- Pictorially, the DFA is
shown in[Figure 1} Suppose the learner is presented with the input string © = 1010. The execution
of M on x proceeds as follows: start in state Qeyen, transition to Quaq, Sty in Qodq, transition to Qeyen,
and, finally, stay in Qeven. Thus, the computational trace cpr(x) is the complete sequence of states
visited during this execution: ¢pr(1010) = (qevens Godd, Godd, Qevens Qeven) -
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Figure 1: DFA M accepting strings with an even number of 1s.

Lastly, we provide the notion of robust identification in the limit with CoT, where we allow for
imperfect traces that differ from the correct one in edit distance.

Definition 4 (Robust Identification in the Limit with Traces). The task of robust identification has
a similar setup as language identification with traces, except that now the ¢y () the algorithm
observes_is noisy, i.e., it is a corrupted version of the true trace cy;(x;) with edit distance error
enm (a:t) The criterion for identification is the same as in where the true trace is
replaced with the corrupted one.

Assumption 1 (States in the Corrupted Trace). We assume that ¢; (the corrupted trace) does not
introduce non-existent states of the machine, i.e., if Q) is the set of states of the machine, the corrupted
trace does not introduce states that are not in Q.

To give a concrete example of the notion of error we allow for, consider the DFA in[Example 2|where
the string is © = 1010 and the true trace i (Gevens Jodd, Jodd, Gevens even ) Corrupted traces for that
string can be (among others) (Geven, Gevens Jodds Jevens Jeven)» Which has edit distance 1 to the original
(we need to replace the second element of the trace), (Gevens Godd; Gevens Jeven ), Which also has edit dis-
tance 1 to the original one (we need to insert an element), and (geven, Godd;s Jodds Godd Godds Jeven Jeven )
which has edit distance 2 to the original one (we need to delete two elements).

It is clear that whether language identification can be done depends on the edit distance error. On the
one hand, if the error is always zero, then it is equivalent to the language identification with traces
(Definition 3). On the other hand, if the edit distance error is equal to or greater than the length of
the actual trace, the trace presents no useful information and it goes back to the original language
identification task (Definition I). Our goal is to understand the intermediate settings between these
two extremes, which we divide into three regimes:

Definition 5 (Error regime). We consider the following three error regimes:

* Constant error rate: There is a fixed constant o € (0, 1), such that the edit distance error
rate is bounded by o asymptotically. Formally, there exists a pair of constants o, £, such
that for any input string x with length at least {,, (|x| > {,,), its corruption error is at most
an a-fraction of actual computation trace, i.e., epr(x)/|cpr(x)] < a.

* Diminishing error rate: The edit distance error rate is o(1) asymptotically. Formally, for
any constant o € (0,1) there exists a constant £, (depending on the value of «) such that
for any input string x of length at least {,, (|x| > £,), the corruption error is at most an
a-fraction of the actual computation trace, i.e., epr(x)/|ear ()] < au.

* Finite error: The edit distance is bounded by an absolute constant C asymptotically. For-
mally, there exists a constant length {c such that for any input string x of length at least
Lo (|z| > Le), the edit distance error is bounded by C, i.e., epr(x) < C.

For all the results of this paper, we assume the algorithm knows which error regime it operates in.
Moreover, for the constant error rate regime, the constant « and ¢, are known in advance; for the
diminishing error rate regime, (a, £,,) are known for all & € (0, 1), while for the finite error, the
algorithm knows the the constant C' and /.

Edit distance is the minimum number of single-character insertions, deletions, or substitutions required to
transform one string into another.
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2.1 USEFUL FACTS

Below we state some facts from prior work that are useful for our derivations.

Fact 2.1 ((Gold, [1967)). Language identification (without CoT) can be done when the class of
languages L is finite.

Proof Sketch. At any time step ¢, the identification algorithm outputs the index Zg of a language in
L that is consistent with the input x1,...,z,; and is minimal with respect to the subset ordering.
To see why this leads to identification in the limit, first notice that after some finite timestep ¢* all
the languages that are consistent with the input are the target language K and its supersets (this is
because L is finite, so any language that is not a superset of K will eventually be contradicted by
the input). Thus, outputting a minimal language after ¢* leads to correct identification. O

The next result illustrates the difficulty of identification of countable collections in the absence of
CoT. We describe a simple collection of regular languages that is not identifiable in the limit. The
crux of the difficulty is that the algorithm never receives information about strings that are not in the
target K, i.e., it receives only positive examples.

Fact 2.2 ((Gold, [1967)). Language identification (without CoT) is impossible for the language col-
lection L = {N, Ly, Lo, ...} ,where L; = {1,2,...,i}.

Proof Sketch. Assume towards contradiction that there exists some algorithm that identifies £ in the
limit. Consider the adversary that starts enumerating 1 for multiple timesteps. Since the algorithm
identifies in the limit, there must be some timestep ¢; that it identifies L; (otherwise the algorithm
fails since the adversary can keep enumerating 1 indefinitely). Now at timestep ¢1 + 1 the adversary
enumerates 2 and keeps doing so until the algorithm identifies L. The construction continues in
this fashion. Hence, the adversary ends up enumerating N and it constructs an infinite sequence of
timesteps t1, ts, . . . , in which the algorithm makes a mistake. O

3 IDENTIFICATION WITH PERFECT TRACE

We start with the result of identification in the limit with traces that does not contain any noise.

Theorem 3.1. Let M be the collection of all TMs and L = {Ly, Lo, ...} where every L € L is
recognized by some M € M. Then, L is identifiable in the limit with trace from M.

As a warm-up, it is instructive to prove the result for the simpler setting where M is the set of all
DFAs. It is worth highlighting that without access to computational trace, i.e., in the original model
of Gold, this collection is not identifiable in the limit (see [Fact 2.2). Due to space constraints, we

present the proof of the theorem for Turing machines in

Identification of DFAs (sketch). Fix a binary alphabet ¥ = {0, 1}. Let M* = (Q*, %2, §*, qo, F'™*)
be a DFA for the unknown target regular language K. For z € K, let ¢(x) be the (unique) accepting
state sequence visited by M* on z, including the final accepting state.

Learner. At every step ¢t maintain a DFA M; = (Q¢, X, &, qo, F}) with a reject sink r ¢ Fj.

1. Initialization: Qg = {qo,7}, Fo = 0, and §p(q,a) = r forall ¢ € Qop, a € {0,1}.

2. Upon receiving (x4, c(x4)), let Q; be the set of states occurring in c(z;) and set Qy <

Qi_1UQ;. For every newly observed state q € Q: \Q:-1 and a € {0, 1}, set provisionally
0t(q, a) < r. If the last state of c(z) is ¢*°, then set F} + Fy_1 U {¢*°°}.

3. Traverse ¢(z;), z; and for each observed transition (g, a, ¢'), set d;(q, a) < ¢'.

Invariant (subset property). For all ¢, the language recognized by the constructed DFA satisfies
L(M,;) C K. By construction, M, differs from M* in two conservative ways: (i) it may omir states
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that have not yet appeared on any accepting trace (so runs that would visit those states in M* are
simply unavailable in M; and lead to rejection), and (ii) for any g € Q; and a € 3 whose outgoing
edge has not been witnessed, it maps (g, a) to the non-accepting sink ; on witnessed pairs it copies
0* exactly. Hence every accepting run of M; from gq stays within (; and uses only witnessed edges,
which coincide with the corresponding edges of M*. Moreover, the run can end only in a state in
F, C F* (accepting states are added only when witnessed). Therefore the same input is accepted
by M*,and L(M;) C L(M*) = K.

Eventual completeness. Let QT C Q* and Et C Q* x X be the states and labeled edges that
lie on at least one accepting computation of M*. For every ¢ € QV there exists some x € K
whose accepting trace visits ¢; hence each ¢ € QT appears in some c(x) and is added to @, after
finitely many steps. Likewise, for each (g, a) € E™ there exists some z € K whose accepting trace
uses that transition, so d;(g, a) is eventually overwritten to 6*(q,a). Since E7 is finite, there is a
finite time ¢* after which d;(q,a) = §*(q, a) for all (¢,a) € E* and Q; contains all of Q. Thus,
after some time t*, every accepting path of M™* is also an accepting path of M;, and by the subset
invariant, M, accepts no string outside K. Hence L(M;) = K for all t > t*.

4 ROBUST IDENTIFICATION IN THE LIMIT

We next present our results on robust identification in the limit. Our results demonstrate a trichotomy
on the tolerance of error. In Section we prove that for DFAs, robust identification can be done
in the constant error-rate regime. In Section f.2] we show that robust identification is impossible
for DPDAs in the constant error rate regime, but plausible in the diminishing error regime. Finally,
for the set of TMs, robust identification is impossible even with diminishing error, but for a finite
number of errors, there is a robust identification algorithm; see Section @

Overview of technique At a high level, the algorithms in this Section are very different from the
algorithm in section[3] Instead of reconstructing the state transition from the (corrupted) traces, we
use them as evidence on the target function class. In particular, we maintain the set of states that are
observed in the computational trace and we prove that either (1) the number of states keeps growing,
or (2) the target function class contains not so many states (compared to the observed states). The
first case can only occur for a finite number of times so eventually we can reduce the task to finite
class language identification. All algorithms in this section follow the same template, and the main
technical step is to establish the size bound of (2). While this is not so hard for DFAs and TMs,
the size bound for DPDAs is quite tricky and we need to analyze DPDAs through the Chomsky
Normal Form (CNF) decomposition and bound the size of the corresponding CNF tree. Due to
space constraints, we only sketch the main idea of the proofs and the formal proofs can be found at

Appendix
4.1 DETERMINISTIC FINITE AUTOMATA

Theorem 4.1. For the task of robust identification in the limit with the set of machines as DFAs, there
is a robust identification algorithm that guarantees to succeed in the constant error rate regime.

Notation We use M™ to denote the target DFA and Q* the set of states in M*. Let Q3 .,y € Q™ be
the set of states that have ever appeared in the computation trace of an accepted string = € L(M™*).
Without loss of generality, we assume the alphabet size is 2 (|X| = 2).

Algorithm. Attime ¢, let Q; be the set states that appear in the noisy traces ¢z« (1), . . . , Car= (24).
Let

By = |Qy] - 221@el/(A=e)tla 4 7

At step t the algorithm outputs a minimal DFA M, that is (i) consistent with the history x1, ..., x;
(i.e., z; € L(M;) for all i < t) and (ii) has at most B; states.

We state a few simple facts. First, the set of (); must stabilize after some finite time step.
Fact 4.1. There exists t' such that Q; = Qy forallt > t'.
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Fix ¢’ from Fact[4.1]and define U := Q. For any accepted string 2 € L(M*) with trace cpz«(z),

write
m(x) := |{] sem(x); ¢ U}| .
That is, m(x) is the number of states that are not in U.
Fact 4.2. For every accepted x € L(M*) with length |x| > £, we have m(z) < «|z|.

For a state ¢ € Q*, define its graph distance to U (along DFA transitions) as
disty(¢) = min{m > 0: 3¢ € U and a path of length m from ¢’ to q},

The key step is to prove that every accepting state is not from from the set U = Q.

Lemma 4.2. For any state q € @ we have

*
accept’

2
1S < - . .
disty (¢) < max { i—a) U|,€a}

(1-a)
from U = Q. We have assumed the alphabet size Y| = 2, so the size of ;.. i at most
2 1|+
|Q:ccept‘ < |Qt'| : 2(1_a)‘Qt | = |Bt/| — L

Therefore, from time ¢’ onward, the hypothesis class considered by the algorithm is a fixed finite
family that contains L(M™*). Applying the finite-class identification argument (Fact , the algo-
rithm will identify the target language in the limit. This completes the proof. O

Proof of Theorem By Lemma every ¢ € Qfecept lies within distance at most 2 |U| + £

4.2 DETERMINISTIC PUSHDOWN AUTOMATA

Theorem 4.3. Consider the task of robust language identification in the limit with the set machines
as DPDAs, then

e There is an algorithm that guarantees to succeed in the diminishing error rate regime;

* Robust language identification is impossible in the constant error rate regime, for any con-
stant o > 0.

Notation We use M™ to denote the target DPDA and Q* the set of states in M™. Let Q;cepy © QF
be the set of states that have ever appeared in the computational trace of an accepted string x €
L(M™). We assume the alphabet for input string and stack string are binary. For each operation of
DPDA, it reads one input symbol, then pushes or pops or pushes-then-pops one symbol on top of
the stack. A string is accepted if and only if the stack is empty at the end — for this to be true, we
allow the DPDA to pop stack symbols when it reaches to the end of the string.

Algorithm Let Q; be the set of states observed in the traces ¢+ (1), - . ., Car+ (2¢) up to time ¢.
|6

Let oy = 27219:" Let M, be the set of DPDAs with number of states at most
7
By = [Q4] - (322|Q” M‘*t) +1

The algorithm outputs the minimal DPDA M, € M, that accepts x1, ..., z;. As before, we show:

Fact 4.3. The set Q; is monotone non-decreasing and QQ; C Q*. Therefore, there exists time tg,
such that Qy = Qy, for any t > t.

We write S = Qy,, s = |Qy,| and @ = oy, = 2725 from now on.

Definition 6 (Transition graph). Define the transition graph with the node set being the state set
Q*. There is a directed edge from a state q € Q* to another state ¢ € Q*, if and only if there is
a one step transition from q to ¢, i.e., there exists input symbol iy € [2], top stack symbol is € [2],
operation j € [3], write symbol u € [2], such that §(q,i1,i2) = (¢', j,u). For any state ¢ € Qjccepr
define its distance dists(q) to S as the length of the minimum path that starts from a state in S and
ends at q.
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Our main result here is as follows.

Lemma 4.4. For any state q € () one has

*
accept’

dists(q) < max {éa, 257} .

The proof of Lemmal4.4]can be found at Appendix The key idea is to convert DPDA computa-
tion trace to its corresponding Chomsky Normal Form (CNF), and then prove that the CNF tree can
not be too large, otherwise there are too many unobserved states in the CNF tree.

Proof Sketch of Theorem We first prove the correctness of our algorithm in the diminishing
error regime. By Lemma , all acceptable states are at most max {Ea, 257} far from the set .S.

By the definition of the transition graph (Definition [6)), each state has constant out degree (actually
at most 32), so the total number of acceptable states is bounded by B; — 1. The correctness of our
algorithm then follows directly from Fact[2.T] for finite class language identification.

In the constant error rate regime, fix any constant o € (0, 1), and consider the following set of lan-
guages £ = U;enL; UL, where forany i € N, L; := {a”bzn/o‘, n <i}and Lo, := {a”b%/Q7 n e
N}. Tt is possible to construct DPDAs { M, };cn U M such that M; recognizes L; (1 € NU {oco}).
For any string 2 = a"b*"/“, the adversary would remove the first n steps such that the computa-
tional trace reveals zero information regarding the core mechanism of {M; };en U M, except the
membership of z. Then, from the learner’s perspective, the problem essentially reduces to the hard
instance of Fact[2.2l O

4.3 TURING MACHINES

Theorem 4.5. Consider the task of robust language identification in the limit with the set machines
as Turing machines, then

 There is an algorithm that guarantees to succeed when the number of errors is finite;

* Robust language identification is impossible even in the diminishing error regime.

The algorithm, analysis and the hard instance for Theorem[4.5]are quite similar to Theorem[4.3} due
to space constraints we defer the full proof to Appendix [B.3]

5 CONCLUSION AND FUTURE WORK

In this work we have studied the problem of identification in the limit augmented with a notion of
chain of thought. Our results show a strong theoretical benefit of utilizing CoT: while in Gold’s
original setting almost every interesting collection of languages is not identifiable in the limit, in
our setting all collections of languages that are recognizable by Turing machines are identifiable in
the limit with CoT. Moreover, our results show that, depending on the complexity of the machines
that underlie the collection of languages, there are identification algorithms that can handle varying
amounts of noise in the CoT. There are several interesting follow-up questions related to our work.
Firstly, our results are asymptotic in nature. It is, thus, natural to try to find conditions under which
one can prove quantitative bounds on the amount of time that is needed in order to identify the
target language with CoT information. A similar question can be asked in the setting of generation
in the limit. While Kleinberg & Mullainathan| (2024) showed that, asymptotically, every collection
is generatable, it is known that achieving correct generation might take arbitrarily long for several
collections (Li et al., 2024)). Hence, it would be interesting to see how CoT information can speed
up the generation process. Relatedly, several works have studied trade-offs between generation with
breadth and hallucinations |Kleinberg & Mullainathan| (2024); [Kalavasis et al.| (2024bjal)); |Charikar,
& Pabbarajul (2024); Peale et al.|(2025); Kleinberg & Weil|(2025). It is intriguing to understand how
the landscape of these trade-offs changes in the presence of CoT information.
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A OMITTED PROOF FROM SECTION

Below, we give the proof of [Theorem 3.1

Proof of[Theorem 3.1] We now show that access to perfect traces suffices to identify in the limit
any language recognized by a deterministic Turing machine. We maintain a working TM M, =
(Qt, X, T4, 8¢, qo, B, Fy) together with a designated non-accepting reject sink state r. Intuitively,
any transition entry not yet witnessed on an accepting trace is pessimistically set to jump to r;
witnessed entries are overwritten to match 6*.

Initialization. Set Q)9 = {qo,7}, Fo = 0, and 'y = {B} U X. Define dy(q,v) = (r,~, R) for all
q € Qo and v € Ty (and, say, do(r,v) = (r,7, R) to keep dy total).

Update on a positive example (z;, c(z;)). Parse the trace and:

1. Add to Q; every state that appears in c¢(x;); add to I'; every tape symbol that appears in
c(xy).

2. If the last configuration is in some accepting state ¢*°¢, set F}; < Fy_1 U {¢**°}.

3. For each revealed step (¢,7) — (¢',~/, D) of the trace, overwrite 6,(q,v) + (¢',7, D).
For any newly added pair (g, ) still undefined after this pass, set d;(q,y) = (r,7, R) to
keep §; total.

Determinism of M * implies no conflicts can arise when overwriting previously set entries.

Subset invariant. For all ¢, L(M,;) C K. Indeed, any accepting run of M, uses only (i) transitions
copied verbatim from §* because they appeared on some accepting trace, or (ii) default entries to 7,
which cannot lie on an accepting computation. Hence M; never accepts a string outside K.

Eventual completeness on the accepting support. Let
St = {(g,7) € Q" xI'*: 6*(¢,v) is used on at least one accepting computation of M* }.

Since @* and I'* are finite, ST is finite. For every (¢,7) € S* fix a witness string w(, ,) € K
whose accepting trace uses (g,y). Each wy, ) appears at some finite time, after which the update
step overwrites &;(q,~y) to 6*(q,~y). Let t* be the latest such time over all (¢,y) € S*. Then for all
t >t

0¢(g,7) = 6"(q,7) forevery (¢,7) € S7,
and all states/symbols/accepting states that ever occur on accepting runs have been added to
Qt7 Ft7 Ft'

Convergence. Fix any © € K and consider its accepting computation under M*. Every step of
that computation uses an entry in S*. Therefore, for ¢ > t*, the same sequence of steps is a
valid accepting computation under M, yielding K C L(M;). Combined with the subset invariant,
we obtain L(M;) = K for all ¢ > t*. No further changes occur after t* (determinism prevents

conflicting overwrites), so the hypothesis stabilizes, as required by and[3] O

B OMITTED PROOF FROM SECTION [4]

B.1 OMITTED PROOF FROM SECTION [4.1]

Proof of Fact.1] The sequence ()1 C Q2 C - - - is monotone increasing and bounded above by the
finite set Q*; hence it stabilizes. O

Proof of Fact|.2] The edit distance between ¢/« (x) and the actual trace cpz- () is at most a|z|.
By the definition of ¢/, ¢pz+ (x) only contains states in U, while there are m(x) states of cpz« () that
are not in U. By the finite error rate assumption, we must have m(z) < alz|.

12
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Proof of Lemma[d.2] Consider any state ¢ € Qjccepr and take the shortest accepted string . It
suffices to consider the case that |z| > || (otherwise disty (¢) < ¢,). Consider its computation
trace cpr+ () := Cpre © ¢ © Csuf, both the prefix cpre and the suffix cq of the position ¢ is a simple
path (otherwise the string can be shortened), therefore, one has

{7 err(2); € U} < 2[UJ.

By Fact[4.2] we have
—2|U 2
s o) el =2 2] < Ul
|| |z l—a
Hence, we have disty(q) < |z] < (ﬁa) - |U], this completes the proof. O

B.2 OMITTED PROOF FROM SECTION [4.2]

Definition 7 (CNF tree). For any two states p,q € Q*, we introduce a non-terminal Ay, , intended
to generate precisely the strings that the DPDA reads, starts with state p, ends with state q, and
leaving the original stack untouched. This is similar to the standard conversion to Chomsky normal
form and generates grammar rules of

s Ay A A, TEQRT
* Ap.,q - aAr,sb; a e [2], be [2] U {6}

Given an accepted string x, we can generate a unique trinary tree according to the the grammar,
and we denote this tree as T'(z).

Proof of Lemmad.4} Let v € Qaccept be any acceptable state. Among all accepted strings whose
computation visits the state v, pick one of minimum length and denote the string by z. If |z| < 4,
then it holds trivially that distg(v) < {,. Hence, it suffices to consider the case that || > ¢,. By
our assumption the edit distance between cps+ () and ¢ps+ () is at most a|cp« (x)|. Let T' = I'(x)
be the CNF derivation tree of string = under Definition [/} Define the principal path as any root-
to-internal-node path ending at the node N, labeled by some A, , with v € {p,¢}. Let H be the
number of internal nodes on this path and |T"| be the size of the tree.

Lemma B.1 (Non repetition). Consider any path ‘P in the tree (not necessary from leaf to the root),
then there is no repetition for P, if

* the path ‘P has no intersection with the principle path

* P is the principle path.
Here no repetition means for any A, ¢, Ap oo € P, Ap g # Ap g

Proof. We prove by contradiction. Suppose there are two states Ay, ; = Ay o, Ap.q, Apr.g0 € P,
then consider the string 2’ that removes the A, , \ A,/  (suppose A, , is closer to the root), 2’
is an accept string shorter than x, moreover, 4, , \ A, , does not contain IV,,. This is because,
(1) when P is the principle path, N, € A, 4, (2) when P has no intersection with the principle
path, N, ¢ A, ,. Therefore, the string 2’ is shorter than x and also contains the state v. This is a

contradiction. O

We now treat two cases based on the size of I'.

13
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Case 1. The tree is relatively small comparing to the principle path: [I'| < 25" H. By Lemma
along the principal path, at most s® nodes can be labeled by variables A,, , whose both endpoints
p, q lie in S; therefore at least H — s2 nodes involve a new state in their endpoints. Here we say a
state g is a new state if ¢ € Q}ccepr \ S- Each such node forces a visit to a new state in the accepting
computation.

If H > s3 then,
# new-state visits _ H — s2 < H/2
leas= (@) 7 2T] T 2-2°H
which contradicts the fact that ¢/« () has at most a|cps+ ()| edit distance error, as it is impossible
to remove all these new states.

6
> 272 = q

Therefore, in case 1, we must have H < s3, and thus

dists(v) < |z| < |T| < 2" H < 25°s% < 2°

Case 2. The tree is relatively large comparing to the principle path: |T'| > 2°H . We prove
this can not happen. Call a leaf off-path if its distance to the principal path is at least d = s°. In a
trinary tree, the number of leaves within distance d of a path of length H is at most 3% H, hence the
number of off-path leaves is at least

1 1 5 1 5 1
§\F|—3dH=§|F|—3S H>§|F|—3S 275D 21|r|. (1)

For each off-path leaf u, let (u) be the truncated chain of the last d edges on the leaf-to-root path.
By definition 7(u) is disjoint from the principal path. By Lemma there is no repetition on any
7(u). Along 7(u), at most s? nodes have both endpoints in S, hence at least d — s? > d/2 = s°/2
nodes involve a new state.

By Eq. equation |1} there are at least i|1"\ such length d path, each path contains s°/2 new states,
5 .
and each states can be counted for at most 3¢ = 3°" times, so there are at least

1 5 5
im - 59/2-37% > 47| > ol

new states appear in the computation trace, this violates the edit distance error assumption. Hence
this case can not happen.

Combining the above two cases, we conclude that dists(¢) < max{f,,2% } and complete the
proof. O

Proof of Theorem[.3] Part 1. By Lemma[#.4] every state ¢ € Qjccep lies within distance at most

lo + 25" from the set Q)+, - By the definition of the transition graph (see Definition EI), the out-degree
for each state is at most 32, hence, we have

. 7 1Qeq |7
|Qaccept‘ < ‘S| : 326(,—&-2 = ‘Qto‘ : 32[0_‘—2 © = Bto -1

where the second step follows from the definition that S = @), and s = |S|. Therefore, from time
to onward, the hypothesis class considered by the algorithm is a fixed finite family that contains
L(M™). Applying the finite-class identification argument (Fact , the algorithm would identify
the target set of languages in the limit. This completes the proof. O

We next prove that robust language identification is impossible for DPDAs in the constant error
regime.

Proof of Theorem{.3| Part 2. Fix any constant & € (0, 1), consider the following set of language
L = UjenK; U Ko, where forany ¢« € N,

K; = {a"b®"/® n < i}

14
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and
Koo = {a"b®* n € N}

Consider the set of DPDAs M = {M;};en U M, and we would construct them such that M;
recognize exactly the set of language K; (: € NU {oo}).

For i € N, the DPDA M; has i + 2/a + O(1) states. Given an input string , it first reads all the a
symbol in the beginning. It pushes all a symbol to the stack, and at the same time, it uses the first
1 states to perform counting. If the number of a is greater than ¢, then it goes to a reject state after
reading the (¢ + 1)-th 1. Upon reading the first 0 symbol, the DPDA moves to a temporary accept
state if the number of a it has read is at most 7. After this, the DPDA starts to pop out the a symbol
in the stack. In particular, it pops out one a symbol after reading 2/« symbol b (counting can be
done using 2/« states). The DPDA M; would accept the string if it is in the temporary accept state
and the stack is empty at the end.

The DPDA M, has 2/« + O(1) states. It has the same transition function except it is always in the
temporary accept state when reading the a symbol at the beginning.

It is easy to prove that M; recognize exactly the set K, i.e., K; = £(M;). For the corruption, given
a string = a"b*"/“, the adversary would remove the first n state transitions, so the algorithm sees
only the popping operations starting from the temporary accept state or the reject state. The number
of deletion is n, so the edit distance error rate between the corrupt computation trace and the actual
trace is n/(n 4+ 2n/a) < a. The corrupted string reveals zero information regarding the DPDA,
except the membership of the string. Hence, by a simple reduction from the hard instance of Fact
[2.2 it is impossible for language identification in the constant error rate regime. O

B.3 OMITTED PROOF FROM SECTION [4.3]

Notation We use M* to denote the target Turing machine, Q* be the set of state in M*. Let

accept & Q" be the set of states that have ever appeared in the computation trace of an accepted
string x € L(M*). We assume the alphabet for both input string and the writing tape are binary.
We assume Turing machine has an input tape (read-only) and one write-tape, our results extend to
multiple write-tapes easily. The transition function ¢ takes an input state g, tape value r,w € [2],
and outputs the transition state ¢/, head movement mq, mg € {—1,0,1} and write value w’ € [2],
aka d:Q x[2] x[2] = @ x [3] x [3] x [2].

Algorithm Recall in the finite-error regime, there exist a pair of constants C' € N and /¢ € N,
such that for any example (x, ¢ps+ ) with input length at least || > £, the edit distance between the
actual trace ¢z~ (x) and the corrupted trace ¢ps+ () is at most C.

For any time step ¢, let Q; be the set of states that appears in the noisy traces ¢« (1), - . ., Caz+ (T¢).
Let M be the set of Turing machines that have at most

Bt _ |Qt| . 72C+1+€C +1

states . The algorithm at step ¢ selects the minimal Turing machine in M, that accepts the strings
T1y.e..o, Tt

Similar as before, we have

Fact B.1. The set Q; is monotone non-decreasing and Q; C Q*. Therefore, there exists time tg,
such that Q; = @y, for any t > t.

From now on, we write S = Qy,, s = |Q+,|. Next, we define the state transition graph over states
Q*. For any state ¢,q' € Q*, there is a directed edge from ¢ to ¢’ if and only if there is a one
step transition from ¢ to ¢’. More formally, there is an edge from g to ¢’ if there exists r,w € [2],
my,mg € [3], w’ € [2], such that §(q, 7, w) = (¢',m1,ma,w’). For any state ¢ € Q}ep» define its
distance to S as the length of the minimum path that starts from a state in .S and ends in g, i.e.,

distg(q) = min{mz(): dgo—>q = —qgn=gq, q €U, ql,...,qm¢U},
We have
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Lemma B.2. Forany q € Q3cepr, We have

dists(¢) < max{¢c,C}.

Proof. Consider an arbitrary accept string  whose computation path visits the state g. If the compu-
tation path cps+ () < £, then we already have distg(q) < £c. On the other hand, if cpz+ () > 4¢,
we have the edit distance between ¢~ (x) and cpz« () is at most C. We note that all states that
appear in ¢ps~ () must be in .S, hence there are at most C states in ¢z () that are not in S (due to
the bound on edit distance). This implies that dists(q) < C and completes the proof. [

Now we can wrap up the first part of Theorem .5]

Proof of Theorem{.3] Part 1. By Lemma every state ¢ € Qe lies within distance at most
{c + C from the set ()¢, . By the definition of the transition graph, the out-degree for each state is at
most 72, hence, we have

|Qiecept| < S| 726 = |Qy | - 72¢ T = B, — 1

Therefore, from time ¢, onward, the hypothesis class considered by the algorithm is a fixed finite
family that contains L(M™*). Applying the finite-class identification argument (Fact , the algo-
rithm would identify the target set of language in the limit. This completes the proof. O

Next, we prove that robust language identification for TM is impossible in the diminishing error
regime

Proof of Theorem Part 2. We construct a hard family of target languages and Turing machines.
For i € N, define K; := {a,aa,...,a'} and K, := a*. Consider the following set of Turing
machines {M;};enu{oo}- We would use a padding approach. For any i € N, the Turing machine
M; has i + O(1) states. It first counts the number of « in the input string and compares with i, if the
number of a is greater than 4, then it enters a reject state, otherwise, it enters the accept states. This
takes at most |x| steps in total. After this, M; would cycle in this state for |=|? steps. The definition
of M is similar, except it skips the first stage, it always enter the accept state (as long as all symbol
in the input are a).

It is easy to see that K; is exactly the set of string accepted by M;, i.e., K; = L(M;) (i € NU{oco}).
Consider the following adversary, for each accepted string, the corrupted trace ¢ps+ () would delete
all state transition in the first stage and contain only |z|? cycle steps. We note the corrupt ratio
is 1/|x| the error rate is diminishing. On the other hand, the corrupted trace ¢j;- (x) reveals zero
information about the state transitions of the TM, except the membership of x. Hence, by a simple
reduction from the hard instance of Fact[2.2] it is impossible for robust language identification in the
diminishing error regime. O
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