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Abstract

The Collaborative Research Cycle (CRC) is a National Institute of Standards and
Technology (NIST) benchmarking program intended to strengthen understanding
of tabular data deidentification technologies. Deidentification algorithms are vul-
nerable to the same bias and privacy issues that impact other data analytics and
machine learning applications, and it can even amplify those issues by contami-
nating downstream applications. This paper summarizes four CRC contributions:
theoretical work on the relationship between diverse populations and challenges
for equitable deidentification; public benchmark data focused on diverse popula-
tions and challenging features; a comprehensive open source suite of evaluation
metrology for deidentified datasets; and an archive of more than 450 deidentified
data samples from a broad range of techniques. The initial set of evaluation results
demonstrate the value of the CRC tools for investigations in this field.

1 Introduction

Deidentification algorithms take records linked to individuals and attempt to produce data that is
dissociated from individuals but remains useful for analysis. Effective deidentification permits
organizations to safely share useful information from potentially sensitive data. Such data can be used
to train machine learning algorithms; expose fraud, waste, and abuse; improve health outcomes; and
much more. Many approaches are available to deidentify data. Some approaches, such as statistical
disclosure control, redact or suppress information that is deemed particularly identifying. Other
approaches, such as synthetic data algorithms leverage generative models to reproduce sensitive data
distributions using new, synthetic records. Differential privacy strengthens deidentification with a
rigorous mathematical definition of privacy, producing synthetic data with quantifiable bounds on the
influence of any real individual. While deidentification release algorithms may (but not necessarily)
improve privacy, they can also distort data by introducing artifacts and bias. Identifying and resolving
these issues is important, but it is not trivial to do.

Intuitively, individuals with many unusual values in the data are easier to identify than those with
relatively common demographic characteristics. Consider data with two subpopulations of equal
size: group A, who are internally homogeneous and have highly-correlated features; and group
B, who are internally heterogeneous with relatively independent features. We can infer that group
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B will have more uniquely identifiable individuals. Heavy handed deidentification will eliminate
or perturb group B to a greater extent than A, at the likely expense of reducing or meaningfully
altering the representation of group B. We use subpopulation dispersal to refer to the sparsification
of subpopulations, such as that caused by increased feature independence. We believe work on
benchmarks containing subpopulation dispersal is imperative to overcoming these risks. Further,
we advocate for evaluation metrics that explore the effects of subpopulation dispersal and other
challenges induced by real-world data.

In this work we introduce the Collaborative Research Cycle (CRC) a benchmarking effort to compare
deidentification methods hosted by the National Institute of Standards and Technology (NIST). The
CRC includes target data, evaluation metrics, and a repository containing community-created dei-
dentified data and their evaluation results. Our benchmark dataset contains examples of challenging,
real-world conditions, such as subpopulation dispersal (Section 3.1). Together this program supports
unprecedented rigorous exploration of deidentification algorithm behavior.

There are several existing synthetic data evaluation libraries, such as SDMetrics and YData (see
Table 2 for a larger selection). These tools are focused on evaluating deidentified data with arbitrary
schema and providing application-specific feedback. Our effort distinguishes itself by providing
specific benchmarking data and a venue to contribute directly comparable samples of deidentification
algorithm outputs and their evaluation results. We believe that shared benchmark data alongside
common evaluation metrics promote understanding and exploration of a problem by providing
common resources, vocabulary, and analytic framework. Thus, we have created the CRC as an arena
to test, compare, and discuss varying approaches on equal footing.

We begin with a formal analysis of subpopulation dispersal. This concept underlies one source of
tension between diversity, equity, and privacy that impacts all deidentification algorithms operating in
real-world conditions. Specifically we show that subpopulations with greater feature independence
leads to smaller cell counts in tabular data. We believe benchmark tabular data for deidentification
technologies must present subpopulation dispersal to provide a realistically challenging target.

Next, we introduce a benchmark dataset of real demographic data, the NIST Diverse Communities
Data Excerpts [1] (the Excerpts). The data are curated from the American Community Survey from
the U.S. Census Bureau with 24 features and three geographic samples. We introduce a suite of
benchmark software, the SDNist Deidentified Data Report Tool [2], which provides metrology and
visualization functions comparing groundtruth and deidentified data. We use SDNist to demonstrate
the presence of subpopulation dispersal within the Excerpts.

Finally, we introduce the CRC Data and Metrics Archive, a repository of crowd-sourced, deiden-
tified instances of the Excerpts, all of which are benchmarked with SDNist. Members of industry,
academia, and government have contributed more than 450 fully-evaluated entries to the repository,
spanning many different deidentification approaches including differentially private techniques [3],
cell suppression based k-anonymity[4], GAN-based synthetic data, and many others. We use SDNist
and the archive to illustrate the impact of subpopulation dispersal on deidentification performance.

The CRC is a comprehensive effort to equip algorithm developers, data owners, and theoreticians
the tools to evaluate and compare tabular deidentification technologies. All of the data (ground truth
and deidentified instances) and evaluation software are open-sourced to allow transparent analysis.
Further, the archived data has extensive, standardized metadata to facilitate parsing and comparing
approaches, such as by feature subset, algorithm type, etc.

2 Distributional Diversity and Subpopulation Dispersal

We use the term diverse populations to refer to populations containing two or more subpopulations
which differ from each other in terms of their feature correlations. By feature correlation we mean
the predictive power of a feature value on other feature values for a given record. Intuitively, weaker
feature correlations are more challenging for deidentification algorithms to model accurately. Here,
we provide a robust formal analysis of these dynamics which helped inspire the Diverse Community
Excerpts benchmark data.

Consider data represented in a histogram, with bins counting the number of occurrences of each
record type (formally defined below). Individuals in bins with small counts are more uniquely
identifiable–there are fewer people like them. Many privacy approaches focus on protecting these
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Figure 1: Boxes represent partition of observations by an increasing number of categorical features.
Blue group features are highly correlated and orange group features are more independent. The
orange group is, therefore, dispersed into small-count bins (in grey). The percentage label shows the
relative representation of each group if small count bins were suppressed to protect privacy.

individuals. Traditional statistical disclosure control techniques like k-anonymity operate by per-
turbing or redacting records in small bins. Randomization approaches that rely on additive noise,
such as differential privacy or subsampling, have much larger relative impact on these small bins.
Non-differentially private synthetic data generators may have difficulty modeling sparser areas of the
distribution. Thus, deidentified data fidelity is more challenging for individuals in small bins. How-
ever these individuals are not necessarily unimportant outliers. Depending on feature independence it
is possible for a large subpopulation to become dispersed into small bins.

In diverse data the same schema may disperse one subpopulation and preserve the other, causing
the first to potentially be erased by deidentification while the maintaining the second (see Figure 1).
Therefore, it is vital to use diverse data to study algorithm behavior. We first introduce two relevant
information theoretic tools and our notation. We then formally define dispersal ratio and derive
bounds on the relationship between diversity and dispersal.
Definition 2.1 (Entropy). The entropy of a discrete random variable X is defined as:

H(X) = −
∑
x∈X

p(x) log p(x)

where X denotes the range of X [5]. For this paper, we will be considering the empirical definition
of entropy or observed entropy from the probability distribution corresponding to a histogram.
Definition 2.2 (Uncertainty Coefficient). The uncertainty coefficient U(X|F ) is an information
theoretic metric for quantifying the entropy (H) correlation between two random variables X and
F (in our case an existing feature set F and a new added feature X) [6]. It is a normalized form of
mutual information. Note that 0 ≤ U(X|F ) ≤ 1. It is defined as:

U(X|F ) =
H(X)−H(X|F )

H(X)

An uncertainty coefficient of 1 implies that the random variable X can be completely predicted
by knowing the value of F , and an uncertainty coefficient of 0 implies that the random variable
X is independent of F . Thus, U(X|F ) inversely correlates with the independence of X for some
F . Note that this metric is asymmetric and may not be be equal if the variables are exchanged, i.e.
U(X|F ) ̸= U(F |X). This metric can be used only for categorical data, which makes it useful for a
table-based partition schema where the data is distributed into cells with categorical feature labels.

Consider a population P of individuals i distributed in a table-based partitioned schema S. The
proportion of the population P , with a given assignment of feature values corresponding to a bin in
the schema S, is calculated as p(binS(i)) =

|{i|binS(i)}|
|P | . Let the multivariate distribution of the initial

feature set be described by F in the schema S, and the univariate distribution of the new feature be
described by X in the schema (S+X). The observed entropy H(X) is dependent on the distribution
of X , which remains the same over this operation for any added feature. We assume the size of the
population is much larger than the number of bins, i.e., |P | >> |Range(F +X)|.
Definition 2.3. (Dispersal Ratio) Let the dispersal ratio for a population P with the addition of
feature X be defined as:

Disperse(S,X, P ) = |bin(S+X)(P )|/|binS(P )|
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where binS(P ) is defined as the set of all bins in the histogram corresponding to P distributed in the
schema S.

Real-world tabular survey data is often comprised primarily of non-ordinal, categorical features
(multiple choice answers) that fall neatly into histogram bins. For a sub-population of a fixed size,
definition 2.3 ratio captures the increase in the number of histogram bins for the population when a
new feature is introduced. Thus, it captures the resulting reduction of the average count per bin and
increases to the number of small-count bins. The lemma below provides some basic intuition behind
the choice. The main result of this section is given in Theorem 2.3.
Lemma 2.1. An uncertainty coefficient of 1 is equivalent to a dispersal ratio of 1.

U(X|F ) = 1 ⇐⇒ Disperse(S,X, P ) = 1

Lemma 2.2. An uncertainty coefficient of 0 leads to the maximum dispersal ratio.
U(X|F ) = 0 =⇒ Disperse(S,X, P ) = |Range(X)|

The above lemmas provide good intuition for our main argument in this section. Let’s call these
the trivial bounds for dispersal ratio on adding a feature X to the schema. Moreover, we are also
interested in quantifying how different patterns of feature correlations, represented by the uncertainty
coefficient, impact the dispersal ratio for values within these bounds. The following theorem allows
us to establish bounds on dispersal ratio as a function of the uncertainty coefficient or independence.
Theorem 2.3. Dispersal Ratio is bounded from above and below as function of the independence of
the added feature as follows

|P | · f(u)
log(|P |)|Range(F )|

≥ Disperse(S,X, P ) ≥ 2f(u)

|Range(F )|
where f(u) := (1− u)H(X) +H(F ) with u = U(X|F ).

Proof. The following is a short sketch of the proof. The complete proof is detailed in Appendix C.2.

Let some arbitrary u = U(X|F ). Applying the well-known upper bound on entropy [5],
H(X,F ) ≤ log2(|Range(X,F )|) (1)

provides a lower bound on dispersal ratio. Similarly, the observed entropy can be lower bounded by
observing that each record in S discretely contributes to the histogram. This provides an upper bound
on the dispersal ratio.

Theorem 2.3 shows that, for some fixed value of entropy of the added feature, the non-trivial upper and
lower bounds for the dispersal ratio decrease as the uncertainty coefficient increases, and vice-versa,
according to the described behaviour of f(u).

Now, we want to compare the effect of adding a new feature X1 or X2 to the schema. Let us assume
that X1 is more "independent" than X2 of the distribution of P in S (note that this is equivalent to
considering a single feature X and two diverse subpopulations P1, P2 with differing relationships to
X). We can then say that the uncertainty coefficient u1 = U(X1|F ) is lesser for X1 as compared to
u2 corresponding to X2. We can use our results from the above theorem to make this comparison as
follows in Theorem 2.4. We define a couple of terms first for ease of notation.

Let the non-trivial lower bound for the dispersal ratio (>1) on adding feature X be denoted as

LB(Disperse(S,X, P )) =
2(1−u)H(X)+H(F )

|Range(F )|
(2)

Let the non-trivial upper bound for the dispersal ratio (<|Range(X)|) on adding feature X be denoted

UB(Disperse(S,X, P )) =
|P | · (1− u)H(X) +H(F )

log(|P |)|Range(F )|
(3)

Theorem 2.4. Consider two features X1 and X2, identical in terms of entropy, that can be added to
the schema. If X1 has higher independence than X2 with respect to F , it is equivalent to X1 having
a higher LB and higher UB for the dispersal ratio.

U(X1|F ) ≤ U(X2|F ) ⇐⇒ LB(Disperse(S,X1, P ) ≥ LB(Disperse(S,X2, P )

U(X1|F ) ≤ U(X2|F ) ⇐⇒ UB(Disperse(S,X1, P ) ≥ UB(Disperse(S,X2, P )

Proof. This follows from Theorem 2.3. The complete proof is detailed in Appendix C.2.
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3 Introducing the Diverse Community Excerpts

The Excerpts are in the public domain and were designed to explore algorithm behavior on realistic
data with diverse subpopulations (see Figure 2). We selected these data to be tractable, in light of a
recurring problem identified in the NIST Differential Privacy Synthetic Data Challenge [7], NIST
Differential Privacy Temporal Map Challenge, and the UNECE High-Level Working Group for the
Modernisation of Statistics (HLG-MOS) Synthetic Data Test Drive [8], where the target data was too
large or complex to identify, diagnose and address shortcomings in the deidendified data. This is a
serious problem; consumers of deidentified government data cannot afford to overlook even subtle
introductions of bias, artifacts, or privacy leaks. But data properties like subpopulation dispersal can
induce defects that are not visible in aggregate utility metrics used by most privacy researchers and
data competitions. And deeper exploration is intractable when considering hundreds of features and
millions of records. Addressing these issues requires tools designed to make them accessible.

The Excerpts consist of a curated geography and feature set derived from the significantly larger 2019
American Community Survey (ACS) Public Use Microdata Sample (PUMS) [9], a product of the U.S.
Census Bureau. The Census Bureau applies privacy measures to the data[10], and no independent
privacy risks of this subset of the data. The Excerpts serve as benchmark data for two currently
active, open source projects at the National Institute of Standards and Technology (NIST)–SDNist
Deidentified Data Report Tool and the 2023 Collaborative Research Cycle (CRC).

The Excerpts’ feature set was developed with input from U.S. Census Bureau experts in adaptive
sampling design (see [11]). To identify a small set of communities with challenging, diverse
distributions, the Excerpts leverage previous work on geographical differences in CART-modeled
synthetic data (see [12, Appendix B]). The open source SDNist library which accompanies the
excerpts was developed with input from HLG-MOS participants and synthetic data contractors
working with the U.S. Census. In this section we provide an overview of the Excerpts; in the next
section we demonstrate their ability to identify and diagnose problems in deidentification algorithms.

3.1 Data Overview

Figure 2: Effect of feature addition to dispersal
rate of the Excerpts data (National sample).

Feature Selection The original ACS schema
contains over four hundred features, which
poses difficulties for diagnosing shortcomings
in deidentification algorithms. The Excerpts
use a small but representative selection of 24
features, covering major census categories: de-
mographic, household and family, geographic,
financial, work and education, disability, and sur-
vey weights (discussed in the ‘Challenges’ be-
low). Several Excerpts’ features were not in the
original ACS features and were designed to pro-
vide easy access to certain information. Popula-
tion DENSITY allows models to distinguish rural
and urban geographies, INDP_CAT aggregates
industry codes into categories, PINCP_DECILE
aggregates incomes into percentile bins relative
to the record’s state, and EDU simplifies school-
ing to focus on milestone grades and degrees. The Excerpts’ repository has detailed information
including several recommended feature subsets for use in diverse subpopulation analyses.

Recommended Feature Subsets To support algorithms that require smaller schema and explore the
impact of different types and combinations of features, we provide recommended subsets of the 24
features (see Appendix D). Algorithm performance may differ significantly between feature subsets
(see Appendix E.4).

Subpopulation Dispersal Figure 2 shows subgroup dispersal by race in the Excerpts data; as new
features are added that are more independent for one group and more tightly correlated for other
groups, the independent group becomes dispersed across the features space. The experiments in
Section 5.1 use the CRC archive to demonstrate the impact of this on algorithm performance for
the largest four race + sex subgroups. However, we note there’s nothing ‘magic’ about this choice
of demographic subgroups, other population partitions exhibit similar behavior (e.g., partitions by
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sex + disability, employment sector). A rigorous multidimensional understanding of the relationship
between variation in patterns/strength of feature correlations, variations in distribution density, and
pitfalls for deidentification is the future research this benchmarking program is designed to support.

Three Excerpts Data Sets Data sets of differing sizes, reflecting different types of communities,
induce different algorithm behavior. To prevent overfitting research conclusions to a particular type
of community, the Excerpts contains three target data sets. The “Massachusetts” data contains 7634
records drawn from five Public Use Microdata Areas (PUMAs) of demographically homogeneous
communities from the North Shore to the west of the greater Boston area; the “Texas” data with
9276 records is drawn from six racially diverse PUMAs of communities surrounding Dallas-Fort
Worth, Texas area. The “National” data with 27254 records is drawn from 20 diverse PUMAs across
the United States; it is an expansion of a challenging PUMA set used during the design of the 2020
Decennial Census Disclosure Avoidance System algorithm [12]. The experiments in this paper use
the National Excerpts data.

Metadata and Documentation: The Diverse Community Excerpts include JSON data dictionaries
with complete feature definitions, a github readme with detailed usage guidance, and illustrative
“postcard” introductions to the real-world communities in the data.

Challenges: The Excerpts have been designed to be representative of real-world survey data condi-
tions. In addition to diversity, these include other challenging properties: logical constraints between
features (e.g., AGE = 6 places a constraint on MARITAL STATUS) that can be difficult for synthetic
data generators (see Figure 6). Additional modeling challenges include heterogeneous feature types
and cardinalities (e.g., DEYE has two categorical values while INDUSTRY has 271, INCOME is an
integer while POVERTY INCOME RATIO is continuous). Uneven feature granularity can amplify
problems with unequal subpopulation dispersal (ACS 2019 RAC1P uses one code for Asian, but four
detailed codes for Native American). We also include the sampling weights that survey data users
need to simulate a full population; these lose their original meaning after deidentification changes the
data sample, and this is a largely unsolved problem.

Limitations: Although ACS data consumers generally assume the data remains representative of
the real population, the ACS PUMS data has had basic statistical disclosure control deidentification
applied (as noted above), which may impact its distribution. Additionally, there are shortcomings
in the Diverse Community Excerpts that we plan to address in future versions: the Excerpts do not
currently include the ACS Household IDs (which would support joining individuals in the same
households for social network synthesis), Individual IDs (relevant for reidentification research), or a
clear training/testing partition (important for differential privacy research).

4 Introducing the SDNist Deidentified Data Report Tool

The SDNist Deidentified Data Report Tool is a Python library that is undergoing active development.
SDNist evaluates fidelity, utility, and privacy of a given set of deidentified instances of the Excerpts
and generates human- and machine-readable summary quality reports enumerated and illustrated
for each utility and privacy metric. It is comprised largely of fidelity metrics drawn from data
stakeholders through the HLG-MOS Synthetic Data Test Drive, and aims to provide a comprehensive
view of algorithm behavior. Examples of complete reports, including detailed metric definitions, are
linked in the Appendix E. A metric overview is below; usage is demonstrated in Section 5.

Univariate and Correlation Metrics The SDNist report covers univariate feature distributions as
well as pairwise feature correlations with Pearsons and Kendall Tau Coefficients.

Higher Order Similarity Metrics (k-marginal, equivalent subsample) Data analysts often use
more than two features. SDNist provides higher order distributional similarity comparison using the
k-marginal edit distance similarity score [7, 12, 13]. This compares the target data and deidentified
data densities across k-marginal queries, with a maximum score of 1000 indicating identical data sets.
The report provides overall and and per-PUMA 3-marginal scores. To aid interpretation, the report
includes an Equivalent Subsample (ES) table that provides a comparison to edit distance induced by
sampling error. A k-marginal score with an ES of 15% is about as dissimilar from the target data as a
data set created by uniformly randomly discarding 85% of the target data.

Task Comparison Metrics (propensity, linear regression) The report includes two machine learning
task-based metrics. The propensity metric (Figure 6) trains a classifier to predict whether a record
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belongs to the target or deidentified data. The classifier’s per-record prediction confidence (propensity
distribution) is plotted for both data sets; when the classifier finds it impossible to distinguish the
two, the traces will match with a spike at 50 %. The linear regression metric focuses on a task very
relevant to the subpopulation dispersal problem (see Figure 6). It uses linear regression to summarize
the relationship between educational attainment and income decile for race + sex subgroups. The
target regression line is given in red, the deidentified line is in green. Correlation strength differs
for different subgroups; this causes dispersal and introduces challenges for deidentification. Some
deidentification approaches artificially weaken the correlation, and others strengthen it.

Visual Diagnosis Metrics (PCA, regression heatmap) To help diagnose the causes of low similarity
scores, and identify bias/artifacts introduced during deidentification, the SDNist report includes
several visualizations. Pairwise Principle Component Analysis (PCA) supports direct comparison
of the target and deidentified data distribution using scatterplots across principle component axes.
An interactive PCA exploration tool is available. In Figure 6, the target data (ground truth) PCA
scatterplot is shown on the left in blue, the deidentified data plot is shown on the right, in green.
For additional insight, records with marital status = N/A (indicating children < 15) are highlighted
in red in both plots. Algorithms that provide good privacy and utility will reproduce the shape of
the target scatterplot using new points (i.e., deidentified records). The linear regression heatmaps
(Figure 5) provide another resource for identifying artifacts. The target data distribution is shown
as a red-blue heatmap of distribution densities (normalized by educational attainment level). The
deidentified heatmaps show deviation from the target distribution: brown indicates the deidentified
data contains too many individuals in that category, purple indicates it contains too few. Artifacts
and bias are identifiable as large ares of blue or brown blocks, indicating where privacy techniques
systematically erase or over emphasize parts of the distribution.

Empirical Privacy Metrics (Unique Exact Match) Privacy protection can be considered empir-
ically, or formally. For techniques with parameterized guarantees (such as differential privacy or
k-anonyimity) we include parameter values in their metadata. However, any technique (including
DP) may have catastrophic privacy failures. The Unique Exact Match (UEM) metric is a measure
of unambiguous privacy leakage applicable to all deidentification techniques; it simply counts the
percentage of unique individuals in the target data who remain present unaltered in the deidentified
data. Being unique, these individuals are more vulnerable to reidentification; being unaltered, this
reidentification may not be difficult. As Table 1 (and Appendix E.3) shows, a simple differentially
private hisotgram technique with weak guarantee ϵ = 10 can reproduce its input data nearly exactly
without violating DP. The UEM metric allows us to identify when one technique is performing very
badly on privacy, or identify when one technique is performing significantly worse than another.
Because UEM doesn’t test non-trivial reidentification attacks, it cannot be used to determine whether
a technique provides good privacy, or which of two similarly performing techniques is best. We plan
to expand the SDNist privacy metrics; however, this starting point provides valuable insights.

5 The Collaborative Research Cycle Data and Metrics Archive

The CRC Data and Metrics Archive is comprised of deidentified data samples generated by applying
deidentification algorithms to the Diverse Community Excerpts, using varied techniques, feature
subsets, and parameters. It opened collection in March 2023 and is still actively accepting submissions;
at time of writing it includes 453 samples of 33 techniques from 18 deidentification libraries. Below
we provide a brief overview of its contents, based on meta-data available in the archive index file.

Privacy Types. We delineate three basic types: 56 samples use Statistical Disclosure Control
Techniques that use perturbation or redaction to anonymize the target data while leaving it substantially
intact; 139 are non-differentially private synthetic data techniques which generate new records to
fit the target distribution; and 258 are Differentially Private techniques which add randomization to
satisfy a formally private guarantee limiting an individual record’s influence on the relative probability
of possible outputs. [3]

Algorithm Types. To support meta-analysis, we provide a high-level categorization of approaches.
All approaches can be implemented with or without formal privacy guarantees. In the archive, 166
deidentified samples use neural network modeling approaches, 143 fit traditional statistical models,
67 iteratively update a naive distribution to mimic query results on the target data, 56 use statistical
disclosure control anonymization, 12 are simple histogram techniques that alter counts of record
occurrences, and nine select new points using geometric interpolation between target records.
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Exploring Diverse Subgroup Dispersal in the Archive. In Section 2 and Figure 1 we discussed
the impact subpopulation dispersal and resulting small count cells can have on performance after
deidentification. In the analyses below we look at how this impact plays out in practice in the archive.
These deidentified samples used the National Excerpts target data and demographic-focused feature
set. To compare subgroup utility, we use the k-marginal metric across 4-marginals including the race
+ sex features. Only samples with 15% subsample equivalence or greater are included.

Figure 3: 4-marginal edit distance similarity, by
demographic subgroup, from the CRC Data and
Metrics Archive

Figure 3 shows the distribution of k-marginal
scores for the four largest race + sex subpopula-
tions; the more dispersed group in general has
poorer performance, but some deidentified data
samples show good performance overall. Un-
derstanding what distinguishes deidentification
algorithms that are more or less impacted by sub-
group dispersal is a key goal of this benchmark-
ing project, and identifying them is a first step.
Figure 4a provides further breakdown, showing
how subgroup performance varies with overall
data fidelity. We see that the expected difference
in performance appears regularly but not con-
stantly, some algorithms overcome it and pro-
vide similar performance for all groups. Figure
4b supplements this with privacy leak informa-
tion using the UME metric (Section 4). Some
high performing algorithms are actually identi-
cally reproducing the target data, providing very little privacy, while others are able to maintain
distributional fidelity for all subgroups using substantially new records. The CRC benchmarking
program is designed to support the research that leads to a formal understanding of this behavior,
and the development of high fidelity, equitable deidentification techniques with negligible privacy
leaks. The detailed metrics for all samples appearing in these charts are provided in Appendix E2; no
current archive algorithm fully satisfies all three requirements for this feature set.

(a) k-marginal similarity performance. (b) UEM privacy performance.
Figure 4: Subgroups utility/privacy performance, ordered by total population 4-marginal performance.

5.1 Exploration of Selected Algorithms

Table 1 uses seven interesting Archive contributions to demonstrate the Excerpts’ efficacy as a tool
for exploring and understanding the behavior of deidentification algorithms.

The regression metric (Figure 5) allows us to explore the impact of variable subpopulation dispersal.
Very poor performing algorithms show little impact (ADSGAN, PACSynth), while others have worse
performance on the more dispersed subpopulation (black women). CART and MST perform well,
but introduce a slight bias that strengthens the correlation between high educational attainment and
high income in the dispersed group (brown artifact in upper right of heatmap). This could obscure
the real disparity between the groups.
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Library and Algorithm Privacy Type Algorithm Type Priv. Leak (UEM) Utility (ES)
DP Histogram (ϵ = 10) differential privacy (DP) simple histogram 100% ∼ 90% (988)

R synthpop CART model [14] non-DP synthetic data
multiple imputation

decision tree 2.54% ∼40% (935)

MOSTLY AI SDG [15] [16] non-DP synthetic data
proprietary pre-trained

neural network 0.03% ∼30% (921)

SmartNoise MST (ϵ = 10) [17] DP
probabilistic graphical

model (PGM) 13.6% = 10% (969)

SDV CTGAN [18] [19] non-DP synthetic data
generative adversarial

network (GAN) 0.0% ∼5% (775)
SmartNoise PACSynth (ϵ = 10) [20] DP + k-anonymity constraint satisfaction 0.87% ∼1% (551)
synthcity ADSGAN [21] [22] custom noise injection GAN 0.0% < 1% (121)

Table 1: Performance of selected deidentification algorithms, see Appendix E.1 for additional details.

Figure 5: Linear regression metric showing how well the selected algorithms maintain the relationship
between educational attainment (x). and income decile (y) for different demographic groups.

Considering privacy, all algorithms in the left column guarantee differential privacy with an identical
privacy parameter setting ϵ=10 (weak privacy protection). However we see in Table 1 that techniques
with the same formal guarantee can produce widely varied results in terms of both privacy and
utility. PACSynth has additional k-anonymity protection which eliminates rare, dispersed records;
this provides good privacy, but has much poorer utility with unusual impacts on the distribution that
can be identified in this and other metrics. Meanwhile, the simple DP Histogram provides almost no
privacy protection at all, reproducing the target data nearly exactly. MST is possibly good compromise
of privacy and utility (and would provide better privacy at smaller ϵ), but non-differentially private
techniques CART and MostlyAI have significantly less trivial privacy leakage (by UEM metric,
Section 4) and better utility.

In figure 6 we present two more SDNist metrics: The PCA metric uses scatterplots along principle
component axes to compare the shapes of distributions. The propensity metric trains a classifier
to distinguish between real and synthetic data; if the data are indistinguishable the propensity
distributions will peak at the center (indicating the classifier can only make a ‘50/50 guess’ whether a
given record is from the target data or deidentified data). If the deidentified data contains artifacts or
bias these will be visible as mismatches in the shape of the scatterplot. This figure compares the three
neural network synthesizers in our selection, and provides further explanation for the utility values
noted in Table 1. CTGAN is not preserving constraints that hold for child records (highlighted in
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Figure 6: Propensity and PCA metrics.

red), and is missing a constraint on housing features (visible as the three well-separated clusters in
the target data, but blurred together in the CTGAN data). Examples of records violating constraints
might be a 7-year-old widow or an inmate who owns her jail; these can be confidently classified as
synthetic by the propensity metric. Meanwhile, the ADSGAN data contains no children at all, and
has retained none of the structure of the target data. Note that these results are more informative than
simple edit distance utility scores. We are able to identify and diagnose specific algorithm behaviors
induced by the real world challenges in the Excerpt data.

Tool
name

Univariate /
Correlations

Higher Order
Simililarity

Task
Comparison

Visual
Diagnosis

Privacy
analysis

Built-in
synthesizer(s)

Anonymeter[23] ✓
Data Responsibly[24] ✓ ✓ ✓
NHS Synthetic Data Pipeline ✓ ✓ ✓ ✓ ✓ ✓*
OpenDP[25] ✓ ✓*
R Synthpop[14] ✓ ✓ ✓ ✓ ✓
SDGym / SDMetrics[18] ✓ ✓ ✓ ✓ ✓
SDNist ✓ ✓ ✓ ✓ ✓
Synthcity[22] ✓ ✓ ✓ ✓ ✓
Table Evaluator ✓ ✓ ✓ ✓
TAPAS ✓
YData ✓ ✓ ✓ ✓ ✓

Table 2: Synthetic data evaluation tools

6 Related Works

Table 2 provides a broad survey of comparable tools for benchmarking and evaluating synthetic
data, including both library links and research citations. Libraries annotated with ‘*’ are specifi-
cally configured to evaluate data from their built-in synthesizer models. Visual diagnosis refers to
tools that visualize and explore data within a high dimensional space (e.g., principal component
analysis). Privacy analysis specifically refers to comparison of output records to input records (e.g.,
re-identification, replication). Many of these tools have built in data and all of them also have
‘bring-your-own-data’ capabilities. SDNist, and the CRC program in general, distinguish themselves
with a more extensive evaluation set, and a specific goal to promote the state of research in the
deidentification field as a whole, aiming at rigorously well understood high performance on diverse,
real-world data. Unlike the CRC, none of these resources are designed to focus energy on improving
synthetic data specifically by comparing algorithm performance on unified data with common metrics.

7 Conclusion

Rather than focus on evaluating arbitrary data, we present tools that are tailored to a specific dataset.
We are motivated by previous evaluations of differentially private [26] and of GAN-based synthetic
data [27] generators that show surprising differences in algorithm performance. The Excerpts,
partnered with SDNist and theory presented here, provide a compact vehicle to address diverse
subpopulations, which we show is a persistent problem facing deidentification technologies.
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https://github.com/statice/anonymeter
https://github.com/DataResponsibly/DataSynthesizer
https://nhsx.github.io/skunkworks/synthetic-data-pipeline
https://github.com/opendp/opendp
https://www.synthpop.org.uk
https://github.com/sdv-dev/SDGym
https://github.com/usnistgov/SDNist
https://github.com/vanderschaarlab/synthcity
https://github.com/Baukebrenninkmeijer/table-evaluator
https://github.com/alan-turing-institute/privacy-sdg-toolbox
https://github.com/ydataai


Disclaimer. The Collaborative Research Cycle (CRC), the Data and Metrics Archive, and SDNist
are intended as tools to encourage investigation and discussion of deidentification algorithms, and
they are not intended or suitable for product evaluation. The National Institute of Standards and
Technology does not endorse any algorithm included in these resources. No mention of a commercial
product in this paper or any CRC resource constitutes an endorsement.
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