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Abstract

Human-AlI Value Alignment has emerged as a
central challenge in the rapid deployment of Ar-
tificial Intelligence (AI). In many applications
like Large Language Models (LLMs), the goals
and constraints for the Al model’s desired be-
havior are known only to a (potentially very
small) group of humans. The objective then is
to develop mechanisms that allow humans to
communicate these goals both efficiently and
reliably to Al models like LLMs prior to their
deployment. This requires explicitly reasoning
about human strategies for shaping the behav-
ior of Al agents, and how these strategies are
derived from the humans’ prior beliefs about
the AI’s own learning process. In this posi-
tion paper, we argue that it is natural to view
the alignment problem from the perspective of
multiagent systems (MAS). We briefly survey
open alignment challenges in the finetuning of
large language models and in zero-shot learn-
ing with LLMs. We then connect these open
questions to concepts developed for multiagent
problems (particularly for ad hoc coordination),
and discuss how these ideas may be applied to
address mis-alignment in LLMs.

1 Introduction

Until recently, most works on machine learning
have sidestepped the alignment problem, and as-
sumed that the goals of an Al model are well de-
fined. With the advent of large language models
(LLMs) finetuned with human feedback (Ouyang
et al., 2022; OpenAl, 2023), the process by which
designers and/or users communicate their goals to
Al has assumed immediate practical importance.
Typically, the interpretation of human-generated
data has been based on simple, fixed models of
the data generation processes representing assump-
tions about human behavior that, if mistaken, may
lead us to train LLMs, that are mis-aligned with
human goals. Fixed models therefore encourage
practitioners to limit themselves to unambiguous

feedback that admit safe(r) generative assumptions
but convey little information with each example.

In this paper, we argue that recent methods and
theory for multiagent reinforcement learning can
be applied to human-AlI alignment to finetuning
LLMs. Previously, alignment problems have been
thought of as cooperative games (Hadfield-Menell
et al., 2016; Jeon et al., 2020) which does not ad-
dress the fundamental question of what strategy
a human follows when teaching an Al. Recently,
however, there has been substantial progress on
the problem of ad hoc coordination (Mirsky et al.,
2022), particularly in the context of multiagent rein-
forcement learning (Carroll et al., 2019; Treutlein
et al., 2021; Strouse et al., 2021). These meth-
ods address the problem of cooperating with an
agent whose strategy is unknown a priori. By ap-
plying these methods to the alignment problem,
rather than committing to a fixed model of human
feedback, we may be able to autonomously learn
strategies that are robust to the different approaches
that humans may take when teaching an AI model.

We first review alignment approaches to fine-
tuning LL.Ms, followed by multiagent formaliza-
tions of the finetuning problem, with examples of
how specific alignment failures may be addressed
using ad hoc coordination. We conclude with a
discussion of the potential challenges of applying
existing methods, and the open research questions
surrounding multiagent approaches to alignment
while finetuning LLMs.

2 Alignment of LLMs
2.1 RL from AI Feedback

The most common approach to finetuning LL.Ms
is Reinforcement Learning from Human Feedback
(RLHF) which can be expensive for data collec-
tion and also introduce bias and noise challenges
(Casper et al., 2023). LLMs and other Al mod-
els can be finetuned with Reinforcement Learn-



ing from Al Feedback (RLAIF) (Bai et al., 2022)
for self-supervised alignment and to mitigate chal-
lenges of scaling RLHF to finetune LLMs (Lee
et al., 2023). Scaling supervision may be helpful to
oversee the behavior of LLM agents if the supervi-
sor agents’ capabilities scale better or similar to the
actor agents’ capabilities and the supervisor agents
are aligned to a problem’s goals. A Chain of Hind-
sight approach to Al Alignment (Liu et al., 2023)
transforms different feedback modalities into a se-
quence of sentences to finetune LLMs capitalizing
on their language comprehension skills.

Relying extensively on feedback to finetune
LLMs can still be challenging to solve for many
open-ended problems having ambiguous goal rep-
resentations where exploration based on internal
and external knowledge can be helpful. Such chal-
lenges include mis-aligned feedback providers ag-
gravated by over-optimization on human feedback,
task misgeneralization, distributional challenges,
oversight issues, lack of diverse feedback among
other issues (Casper et al., 2023). RLHF Alignment
also does not help in securing against jail-breaking
using adversarial prompts (Mehrotra et al., 2023).
There are alternative alignment approaches without
feedback like LIMA (Zhou et al., 2023) which fine-
tunes a 65B LLaMA LLM (Touvron et al., 2023) us-
ing a supervised loss on just 1000 curated prompts
with curation effort challenges.

2.2 Imitation Learning

Value Alignment of Al agents has been modeled
as a Cooperative Inverse Reinforcement Learning
(CIRL) (Hadfield-Menell et al., 2016) partial in-
formation game having a human and an Al agent.
The Al agent has no knowledge about the human’s
reward, leading to communication of the reward
model among both agents. Optimal Joint CIRL
policies can be calculated using a Partially Observ-
able Markov Decision Process (POMDP) to gen-
erate agent behavior like active teaching, helping
to ensure Alignment. Real-time imitation learning
without collecting human feedback can be helpful
to align Artificial General Intelligence (AGI).

The Bayesian Inverse Reinforcement Learning
(IRL) framework can be generalized to inverse con-
textual bandits where the expert policy may change
over time as the expert learns about the task do-
main (Hiiyiik et al., 2022). Giles and Chan (2020)
pursues experimental research on Bayesian IRL in
settings where the expert is learning in the environ-
ment. Reward inference in such settings can actu-

ally be more efficient when the expert is learning
than when they are simply noisily rational against
a known reward function and environment.

2.3 Multi-Agent Reward Guided Alignment

An important aspect of communicating reward
models during the LLLM finetuning would be to
look into sparse rewards for real world applications.
To overcome challenges of training multi-agent co-
operative Al in a decentralized manner with sparse
rewards, a self supervised intrinsic reward function
ELIGN Expectation Alignment (Ma et al., 2022)
can be used to train agents for matching their neigh-
bor’s expectations better than curiosity-driven ex-
ploration. Learning of such internal rewards can
be helpful to guide agents’ behavior across differ-
ent modalities of language and vision (Kim et al.,
2023), Return-conditioned policies lead to better
goal generalization than text-conditioned policies
which can be improved further with finetuning,
highlighting the importance of agents’ internal re-
ward representations. Outside rewards or demon-
strations, policies of Al agents can be alternatively
with iterative corrective steps using meta-learning
(Co-Reyes et al., 2019).

3 Alignment as a Cooperative Game

Most approaches to learning from human feedback
assume about the generative process from which
such data arises, and which depends on the LLM’s
goals.! We argue that many alignment challenges
may be addressed by treating the generative pro-
cess as a strategy chosen by the human teacher(s)
to shape the AI’s behavior. This approach consists
of two key features: 1) explicitly reasoning about
plausible human strategies, and 2) assuming that
human strategies are (at least approximately) ratio-
nal vis-a-vis their goals. Previous works (Loftin
et al., 2016a; Hadfield-Menell et al., 2016; Jeon
et al., 2020) have explicitly reasoned about human
strategies in interactive learning.

We use the Cooperative Inverse Reinforce-
ment Learning (CIRL) formalism (Hadfield-Menell
et al., 2016), modeling interactive learning as a
two-player, fully cooperative game with imperfect
information. An instance of CIRL is defined by a
tuple M = {S, A" AAl T,©,R, Py, H}, where
S is the joint state space, A7 and A4! are the
action spaces available to the human and Al re-

'In RLHEF, this would be the reward-dependent likelihood
over pairwise preferences.



spectively and T : S x AT x AAT — A(S)
is the transition kernel. The key feature of the
CIRL model is the space © of possible reward
function parameters. The joint reward function
R:Sx AH x AAT x © — R is parameterized by
the current type 6 € ©, which is only ever directly
observed by the human. At the start of the game
M, the initial state and type 6 are sampled from the
prior Py with H time steps of players interactions’.
Here we refer to a specific instance M of the CIRL
model as a cooperative alignment game, and let
7 and 74! correspond to the human and Al re-
spective strategies. We assume that each player’s
strategy depends on the entire history of states and
actions to address strategic uncertainty.

3.1 Cooperative Alignment for LLMs

In our motivating context of finetuning LLMs,
the AI's strategy 7/ captures the entire learning
pipeline, including the generation of candidate re-
sponses, and the training of both the relevant re-
ward model and the LLM itself. The problem of
designing an algorithm learning from human inter-
actions then corresponds to that of finding a “good”
strategy for the LLM in the cooperative alignment
game, supplanting an online version of RLHF with
a single teacher. Here the type space 6 would be
the parameter space of the reward model, while
the state space S would consist of possible prompt
strings, sampled i.i.d. from some fixed distribution.
The AI’s action space A4/ would consist of the
space of k-tuples over response strings, while the
human’s action space A would consist of possible
preference orderings over the latest set of responses.
The shared goal for both the human and Al is to
maximize the quality of the AI’s responses over a
series of H prompts. The standard RLHF (Chris-
tiano et al., 2017) paradigm makes the implicit
assumption that the human’s strategy 7/ ranks re-
sponses based purely on their quality under the re-
ward model R(-; 0). Given the complexity of the re-
sponse space, however, humans might find it more
efficient to rank responses based on how well they
address some known deficiency of the model (e.g.,
consistency of past vs. present tense) rather than
their overall quality. If the Al knows the human is
using such a strategy, it can not only resolve these
apparent contradictions, but also actively cooperate
with the human teacher by providing responses that
vary along a single dimension about which the Al
is uncertain. Human "preferences" may depend on
their teaching strategy as empirically demonstrated

when human subjects are asked to teach Al using
feedback (MacGlashan et al., 2017; Loftin et al.,
2016b) or demonstration (Ho et al., 2016) showing
that humans often provide sub-optimal yet more
informative demonstrations to the Al.

3.2 LLM Alignment as Ad Hoc Coordination

The central challenge with the strategic approach
to alignment is our uncertainty to what strategy the
human employs when teaching the LLM. Methods
for zero-shot ad hoc coordination seek strategies
to cooperate with agents having unknown a priori
strategies (Mirsky et al., 2022). In reinforcement
learning, many techniques train cooperative poli-
cies that are robust to possible strategies a human
or an Al agent could follow (Carroll et al., 2019).
A lot of these methods build a “population” of part-
ner strategies to train the AI’s policy against, with
an emphasis on maximizing the diversity of this
population (Strouse et al., 2021; Lupu et al., 2021;
Charakorn et al., 2023; Cui et al., 2023). Different
strategies in the agents population can correspond
to different approaches in interpreting LLM finetun-
ing feedback. Other works, focusing on modeling
players’ mutual uncertainty about one-another’s
strategies (Treutlein et al., 2021), seek joint strate-
gies that are only rational assuming that there is no
prior coordination between the agents (Hu et al.,
2020). Ad-hoc multiagent coordination can be help-
ful to automatically generate examples of human-
like interactions that can improve the interpretation
of feedback by rapidly deployed LLMs in a large
scale. Our goal is to highlight how recent advances
in ad hoc coordination can address strategic uncer-
tainty and improve reward model communication
while aligning the finetuning of LLMs.

4 Alignment Examples

4.1 Grounding Linguistic Feedback

We illustrate the utility of strategic approaches to
alignment by grounding abstract evaluative feed-
back, like user-defined labels or natural language
utterances. An example to teach a warehouse robot
about pallet placement can be modeled as a cooper-
ative alignment game, representing the warehouse
as a 2D grid, and letting the world state correspond
to the pallet-carrying robot’s position. At the start
of each “interaction”, the human teacher observes
the reward vector defined over the robot’s possible
positions. In each “episode”, a pallet is placed ran-
domly, and the robot takes H actions, e.g. moving



one step in the four cardinal directions based on
the human’s feedback signal from the set £ = {
"Up", "Down", "Left", "Right" }, or remaining in
its current position. At each episode’s end, the
human-robot team receives a reward corresponding
to robot’s final position. The robot may not know a
priori the relationship between the utterances and
its environment, and has no “ground truth” signal
from the human. The human may be viewing a
top-down image of the warehouse, unknown to the
robot. The human teacher can employ a simple
grounding strategy, standing in a fixed location and
moving in each of the four directions in turn, pro-
viding the utterance for the previous action. This
can allow the robot to infer the correct meaning of
each utterance. If we are to replace E with the set
of possible natural language utterances, such a strat-
egy can become intractable to hand-code. Ad hoc
coordination, however, can learn such grounding
strategies for complex scenarios like the “other-
play” algorithm (Hu et al., 2020) that finds such
a strategy as a solution to the corresponding label
free coordination problem (Treutlein et al., 2021).

4.2 Interpreting Corrective Feedback

We investigate Alignment Failure Modes of LLMs
for Mathematical Reasoning and find that LLMs
find it hard to multiply 3 digit numbers 2. The LLM
makes mistakes in the intermediate steps, but is un-
able to correct its answer on receiving feedback.
A mis-aligned human-AlI conversation to multiply
two 3 digit numbers in Figure 1 is helpful to repre-
sent the LLLM alignment problem as a cooperative
game on receiving corrective human feedback. We
illustrate mis-alignment in mathematical reasoning
and how to correctly interpret such feedback, incen-
tivized by solving a cooperative alignment game.
We observe the LLM’s tendency to give wrong an-
swers to 482 * I which is a simple mathematical
reasoning step that it can correctly do solo, indicat-
ing that the LLM agent is unable to leverage hu-
man’s remedial feedback. A multiagent approach
to aligned LLM finetuning can help the model in
applying its own knowledge correctly while being
guided by another experienced agent like a human.

5 Challenges and Open Questions

The modeling of human-AI alignment as an in-
stance of human-AlI cooperation can leverage the-
oretical results for the latter problem to derive

2Here is the interaction of a human with ChatGPT3.5

Multiply: 482*721 ey s sk coun e iptotonf 452 72165 60

Figure 1: Human-LLM conversation on 3 digit multipli-
cation starting on the left and continuing on the right

new guarantees for sample complexity and long-
term consistency of different alignment paradigms.
Ramponi and Restelli (2022) have provided upper
sample complexity bounds for learning Stackelberg
equilibria in general-sum Markov games, of which
fully cooperative alignment games are a special
case. LLM finetuning can occur over extended
time periods with significant human adaptation to
the AI’s behavior, for which theoretical results are
available on the problem of optimal long-term co-
operation with adaptive partners (Poland and Hut-
ter, 2006; Loftin and Oliehoek, 2022). An open
question is whether these results are applicable to
cooperatively aligned LLMs with partial observ-
ability of its own reward. In cooperative alignment
settings, human behavior is not always fully ra-
tional when interacting with Al agents (Yang and
Wang, 2021). Flexible models of humans’ bounded
rationality (such as the “rational inattention” model
of (Mu et al., 2022)) are critical to achieving robust
alignment in LLM applications like Recommender
Systems (Bandyopadhyay et al., 2023).

6 Conclusion

Human-AI Value Alignment can be modeled as
cooperative games to leverage recent advances in
multiagent Al and address many of the forms of
mis-alignment, allowing humans to communicate
their goals both efficiently and reliably to LLMs.
Here we have discussed various alignment issues
that arise in the finetuning of LL.Ms, which can be
addressed by explicitly reasoning humans’ teach-
ing strategies. We have highlighted some of the
open problems in multiagent systems research that
are most relevant to the alignment problem, and
finally we have set out an agenda for development
of existing work on human-Al cooperation into a
new paradigm of strategic human-Al alignment.


https://chat.openai.com/share/ee3f899c-c5e4-45a9-bb88-ba2db0c140b9

7 Limitations and Risks

A limitation is the lack of theoretical guarantees in
multi-agent systems when other agent’s strategies
are unknown (in this case the human’s strategy).
The evolving environment due to non-stationarity
of agents and fair credit assignment to individual
agents can pose significant challenges. Also, Multi-
agent Al can pose challenges of exponential action
space complexity of AV where A is the number
of actions and N is the number of agents. Lan-
guage based Al agents can pose a challenge of
large action spaces which can lead to interpreting
important actions that can impact corrective learn-
ing from feedback, provided for alignment.

The formulation of the LLM finetuning problem
as a cooperative alignment game could in princi-
ple pose a risk of manipulative behavior in LLMs
for the wrong definition of alignment as a game
theoretic solution concept.
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