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Abstract

Human-AI Value Alignment has emerged as a001
central challenge in the rapid deployment of Ar-002
tificial Intelligence (AI). In many applications003
like Large Language Models (LLMs), the goals004
and constraints for the AI model’s desired be-005
havior are known only to a (potentially very006
small) group of humans. The objective then is007
to develop mechanisms that allow humans to008
communicate these goals both efficiently and009
reliably to AI models like LLMs prior to their010
deployment. This requires explicitly reasoning011
about human strategies for shaping the behav-012
ior of AI agents, and how these strategies are013
derived from the humans’ prior beliefs about014
the AI’s own learning process. In this posi-015
tion paper, we argue that it is natural to view016
the alignment problem from the perspective of017
multiagent systems (MAS). We briefly survey018
open alignment challenges in the finetuning of019
large language models and in zero-shot learn-020
ing with LLMs. We then connect these open021
questions to concepts developed for multiagent022
problems (particularly for ad hoc coordination),023
and discuss how these ideas may be applied to024
address mis-alignment in LLMs.025

1 Introduction026

Until recently, most works on machine learning027

have sidestepped the alignment problem, and as-028

sumed that the goals of an AI model are well de-029

fined. With the advent of large language models030

(LLMs) finetuned with human feedback (Ouyang031

et al., 2022; OpenAI, 2023), the process by which032

designers and/or users communicate their goals to033

AI has assumed immediate practical importance.034

Typically, the interpretation of human-generated035

data has been based on simple, fixed models of036

the data generation processes representing assump-037

tions about human behavior that, if mistaken, may038

lead us to train LLMs, that are mis-aligned with039

human goals. Fixed models therefore encourage040

practitioners to limit themselves to unambiguous041

feedback that admit safe(r) generative assumptions 042

but convey little information with each example. 043

In this paper, we argue that recent methods and 044

theory for multiagent reinforcement learning can 045

be applied to human-AI alignment to finetuning 046

LLMs. Previously, alignment problems have been 047

thought of as cooperative games (Hadfield-Menell 048

et al., 2016; Jeon et al., 2020) which does not ad- 049

dress the fundamental question of what strategy 050

a human follows when teaching an AI. Recently, 051

however, there has been substantial progress on 052

the problem of ad hoc coordination (Mirsky et al., 053

2022), particularly in the context of multiagent rein- 054

forcement learning (Carroll et al., 2019; Treutlein 055

et al., 2021; Strouse et al., 2021). These meth- 056

ods address the problem of cooperating with an 057

agent whose strategy is unknown a priori. By ap- 058

plying these methods to the alignment problem, 059

rather than committing to a fixed model of human 060

feedback, we may be able to autonomously learn 061

strategies that are robust to the different approaches 062

that humans may take when teaching an AI model. 063

We first review alignment approaches to fine- 064

tuning LLMs, followed by multiagent formaliza- 065

tions of the finetuning problem, with examples of 066

how specific alignment failures may be addressed 067

using ad hoc coordination. We conclude with a 068

discussion of the potential challenges of applying 069

existing methods, and the open research questions 070

surrounding multiagent approaches to alignment 071

while finetuning LLMs. 072

2 Alignment of LLMs 073

2.1 RL from AI Feedback 074

The most common approach to finetuning LLMs 075

is Reinforcement Learning from Human Feedback 076

(RLHF) which can be expensive for data collec- 077

tion and also introduce bias and noise challenges 078

(Casper et al., 2023). LLMs and other AI mod- 079

els can be finetuned with Reinforcement Learn- 080
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ing from AI Feedback (RLAIF) (Bai et al., 2022)081

for self-supervised alignment and to mitigate chal-082

lenges of scaling RLHF to finetune LLMs (Lee083

et al., 2023). Scaling supervision may be helpful to084

oversee the behavior of LLM agents if the supervi-085

sor agents’ capabilities scale better or similar to the086

actor agents’ capabilities and the supervisor agents087

are aligned to a problem’s goals. A Chain of Hind-088

sight approach to AI Alignment (Liu et al., 2023)089

transforms different feedback modalities into a se-090

quence of sentences to finetune LLMs capitalizing091

on their language comprehension skills.092

Relying extensively on feedback to finetune093

LLMs can still be challenging to solve for many094

open-ended problems having ambiguous goal rep-095

resentations where exploration based on internal096

and external knowledge can be helpful. Such chal-097

lenges include mis-aligned feedback providers ag-098

gravated by over-optimization on human feedback,099

task misgeneralization, distributional challenges,100

oversight issues, lack of diverse feedback among101

other issues (Casper et al., 2023). RLHF Alignment102

also does not help in securing against jail-breaking103

using adversarial prompts (Mehrotra et al., 2023).104

There are alternative alignment approaches without105

feedback like LIMA (Zhou et al., 2023) which fine-106

tunes a 65B LLaMA LLM (Touvron et al., 2023) us-107

ing a supervised loss on just 1000 curated prompts108

with curation effort challenges.109

2.2 Imitation Learning110

Value Alignment of AI agents has been modeled111

as a Cooperative Inverse Reinforcement Learning112

(CIRL) (Hadfield-Menell et al., 2016) partial in-113

formation game having a human and an AI agent.114

The AI agent has no knowledge about the human’s115

reward, leading to communication of the reward116

model among both agents. Optimal Joint CIRL117

policies can be calculated using a Partially Observ-118

able Markov Decision Process (POMDP) to gen-119

erate agent behavior like active teaching, helping120

to ensure Alignment. Real-time imitation learning121

without collecting human feedback can be helpful122

to align Artificial General Intelligence (AGI).123

The Bayesian Inverse Reinforcement Learning124

(IRL) framework can be generalized to inverse con-125

textual bandits where the expert policy may change126

over time as the expert learns about the task do-127

main (Hüyük et al., 2022). Giles and Chan (2020)128

pursues experimental research on Bayesian IRL in129

settings where the expert is learning in the environ-130

ment. Reward inference in such settings can actu-131

ally be more efficient when the expert is learning 132

than when they are simply noisily rational against 133

a known reward function and environment. 134

2.3 Multi-Agent Reward Guided Alignment 135

An important aspect of communicating reward 136

models during the LLM finetuning would be to 137

look into sparse rewards for real world applications. 138

To overcome challenges of training multi-agent co- 139

operative AI in a decentralized manner with sparse 140

rewards, a self supervised intrinsic reward function 141

ELIGN Expectation Alignment (Ma et al., 2022) 142

can be used to train agents for matching their neigh- 143

bor’s expectations better than curiosity-driven ex- 144

ploration. Learning of such internal rewards can 145

be helpful to guide agents’ behavior across differ- 146

ent modalities of language and vision (Kim et al., 147

2023), Return-conditioned policies lead to better 148

goal generalization than text-conditioned policies 149

which can be improved further with finetuning, 150

highlighting the importance of agents’ internal re- 151

ward representations. Outside rewards or demon- 152

strations, policies of AI agents can be alternatively 153

with iterative corrective steps using meta-learning 154

(Co-Reyes et al., 2019). 155

3 Alignment as a Cooperative Game 156

Most approaches to learning from human feedback 157

assume about the generative process from which 158

such data arises, and which depends on the LLM’s 159

goals.1 We argue that many alignment challenges 160

may be addressed by treating the generative pro- 161

cess as a strategy chosen by the human teacher(s) 162

to shape the AI’s behavior. This approach consists 163

of two key features: 1) explicitly reasoning about 164

plausible human strategies, and 2) assuming that 165

human strategies are (at least approximately) ratio- 166

nal vis-a-vis their goals. Previous works (Loftin 167

et al., 2016a; Hadfield-Menell et al., 2016; Jeon 168

et al., 2020) have explicitly reasoned about human 169

strategies in interactive learning. 170

We use the Cooperative Inverse Reinforce- 171

ment Learning (CIRL) formalism (Hadfield-Menell 172

et al., 2016), modeling interactive learning as a 173

two-player, fully cooperative game with imperfect 174

information. An instance of CIRL is defined by a 175

tuple M = {S,AH , AAI , T,Θ, R, P0, H}, where 176

S is the joint state space, AH and AAI are the 177

action spaces available to the human and AI re- 178

1In RLHF, this would be the reward-dependent likelihood
over pairwise preferences.
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spectively and T : S × AH × AAI 7→ ∆(S)179

is the transition kernel. The key feature of the180

CIRL model is the space Θ of possible reward181

function parameters. The joint reward function182

R : S ×AH ×AAI ×Θ 7→ ℜ is parameterized by183

the current type θ ∈ Θ, which is only ever directly184

observed by the human. At the start of the game185

M , the initial state and type θ are sampled from the186

prior P0 with H time steps of players interactions’.187

Here we refer to a specific instance M of the CIRL188

model as a cooperative alignment game, and let189

πH and πAI correspond to the human and AI re-190

spective strategies. We assume that each player’s191

strategy depends on the entire history of states and192

actions to address strategic uncertainty.193

3.1 Cooperative Alignment for LLMs194

In our motivating context of finetuning LLMs,195

the AI’s strategy πAI captures the entire learning196

pipeline, including the generation of candidate re-197

sponses, and the training of both the relevant re-198

ward model and the LLM itself. The problem of199

designing an algorithm learning from human inter-200

actions then corresponds to that of finding a “good”201

strategy for the LLM in the cooperative alignment202

game, supplanting an online version of RLHF with203

a single teacher. Here the type space θ would be204

the parameter space of the reward model, while205

the state space S would consist of possible prompt206

strings, sampled i.i.d. from some fixed distribution.207

The AI’s action space AAI would consist of the208

space of k-tuples over response strings, while the209

human’s action space AH would consist of possible210

preference orderings over the latest set of responses.211

The shared goal for both the human and AI is to212

maximize the quality of the AI’s responses over a213

series of H prompts. The standard RLHF (Chris-214

tiano et al., 2017) paradigm makes the implicit215

assumption that the human’s strategy πH ranks re-216

sponses based purely on their quality under the re-217

ward model R(·; θ). Given the complexity of the re-218

sponse space, however, humans might find it more219

efficient to rank responses based on how well they220

address some known deficiency of the model (e.g.,221

consistency of past vs. present tense) rather than222

their overall quality. If the AI knows the human is223

using such a strategy, it can not only resolve these224

apparent contradictions, but also actively cooperate225

with the human teacher by providing responses that226

vary along a single dimension about which the AI227

is uncertain. Human "preferences" may depend on228

their teaching strategy as empirically demonstrated229

when human subjects are asked to teach AI using 230

feedback (MacGlashan et al., 2017; Loftin et al., 231

2016b) or demonstration (Ho et al., 2016) showing 232

that humans often provide sub-optimal yet more 233

informative demonstrations to the AI. 234

3.2 LLM Alignment as Ad Hoc Coordination 235

The central challenge with the strategic approach 236

to alignment is our uncertainty to what strategy the 237

human employs when teaching the LLM. Methods 238

for zero-shot ad hoc coordination seek strategies 239

to cooperate with agents having unknown a priori 240

strategies (Mirsky et al., 2022). In reinforcement 241

learning, many techniques train cooperative poli- 242

cies that are robust to possible strategies a human 243

or an AI agent could follow (Carroll et al., 2019). 244

A lot of these methods build a “population” of part- 245

ner strategies to train the AI’s policy against, with 246

an emphasis on maximizing the diversity of this 247

population (Strouse et al., 2021; Lupu et al., 2021; 248

Charakorn et al., 2023; Cui et al., 2023). Different 249

strategies in the agents population can correspond 250

to different approaches in interpreting LLM finetun- 251

ing feedback. Other works, focusing on modeling 252

players’ mutual uncertainty about one-another’s 253

strategies (Treutlein et al., 2021), seek joint strate- 254

gies that are only rational assuming that there is no 255

prior coordination between the agents (Hu et al., 256

2020). Ad-hoc multiagent coordination can be help- 257

ful to automatically generate examples of human- 258

like interactions that can improve the interpretation 259

of feedback by rapidly deployed LLMs in a large 260

scale. Our goal is to highlight how recent advances 261

in ad hoc coordination can address strategic uncer- 262

tainty and improve reward model communication 263

while aligning the finetuning of LLMs. 264

4 Alignment Examples 265

4.1 Grounding Linguistic Feedback 266

We illustrate the utility of strategic approaches to 267

alignment by grounding abstract evaluative feed- 268

back, like user-defined labels or natural language 269

utterances. An example to teach a warehouse robot 270

about pallet placement can be modeled as a cooper- 271

ative alignment game, representing the warehouse 272

as a 2D grid, and letting the world state correspond 273

to the pallet-carrying robot’s position. At the start 274

of each “interaction”, the human teacher observes 275

the reward vector defined over the robot’s possible 276

positions. In each “episode”, a pallet is placed ran- 277

domly, and the robot takes H actions, e.g. moving 278
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one step in the four cardinal directions based on279

the human’s feedback signal from the set E = {280

"Up", "Down", "Left", "Right" }, or remaining in281

its current position. At each episode’s end, the282

human-robot team receives a reward corresponding283

to robot’s final position. The robot may not know a284

priori the relationship between the utterances and285

its environment, and has no “ground truth” signal286

from the human. The human may be viewing a287

top-down image of the warehouse, unknown to the288

robot. The human teacher can employ a simple289

grounding strategy, standing in a fixed location and290

moving in each of the four directions in turn, pro-291

viding the utterance for the previous action. This292

can allow the robot to infer the correct meaning of293

each utterance. If we are to replace E with the set294

of possible natural language utterances, such a strat-295

egy can become intractable to hand-code. Ad hoc296

coordination, however, can learn such grounding297

strategies for complex scenarios like the “other-298

play” algorithm (Hu et al., 2020) that finds such299

a strategy as a solution to the corresponding label300

free coordination problem (Treutlein et al., 2021).301

4.2 Interpreting Corrective Feedback302

We investigate Alignment Failure Modes of LLMs303

for Mathematical Reasoning and find that LLMs304

find it hard to multiply 3 digit numbers 2. The LLM305

makes mistakes in the intermediate steps, but is un-306

able to correct its answer on receiving feedback.307

A mis-aligned human-AI conversation to multiply308

two 3 digit numbers in Figure 1 is helpful to repre-309

sent the LLM alignment problem as a cooperative310

game on receiving corrective human feedback. We311

illustrate mis-alignment in mathematical reasoning312

and how to correctly interpret such feedback, incen-313

tivized by solving a cooperative alignment game.314

We observe the LLM’s tendency to give wrong an-315

swers to 482 * 1 which is a simple mathematical316

reasoning step that it can correctly do solo, indicat-317

ing that the LLM agent is unable to leverage hu-318

man’s remedial feedback. A multiagent approach319

to aligned LLM finetuning can help the model in320

applying its own knowledge correctly while being321

guided by another experienced agent like a human.322

5 Challenges and Open Questions323

The modeling of human-AI alignment as an in-324

stance of human-AI cooperation can leverage the-325

oretical results for the latter problem to derive326

2Here is the interaction of a human with ChatGPT3.5

Figure 1: Human-LLM conversation on 3 digit multipli-
cation starting on the left and continuing on the right

new guarantees for sample complexity and long- 327

term consistency of different alignment paradigms. 328

Ramponi and Restelli (2022) have provided upper 329

sample complexity bounds for learning Stackelberg 330

equilibria in general-sum Markov games, of which 331

fully cooperative alignment games are a special 332

case. LLM finetuning can occur over extended 333

time periods with significant human adaptation to 334

the AI’s behavior, for which theoretical results are 335

available on the problem of optimal long-term co- 336

operation with adaptive partners (Poland and Hut- 337

ter, 2006; Loftin and Oliehoek, 2022). An open 338

question is whether these results are applicable to 339

cooperatively aligned LLMs with partial observ- 340

ability of its own reward. In cooperative alignment 341

settings, human behavior is not always fully ra- 342

tional when interacting with AI agents (Yang and 343

Wang, 2021). Flexible models of humans’ bounded 344

rationality (such as the “rational inattention” model 345

of (Mu et al., 2022)) are critical to achieving robust 346

alignment in LLM applications like Recommender 347

Systems (Bandyopadhyay et al., 2023). 348

6 Conclusion 349

Human-AI Value Alignment can be modeled as 350

cooperative games to leverage recent advances in 351

multiagent AI and address many of the forms of 352

mis-alignment, allowing humans to communicate 353

their goals both efficiently and reliably to LLMs. 354

Here we have discussed various alignment issues 355

that arise in the finetuning of LLMs, which can be 356

addressed by explicitly reasoning humans’ teach- 357

ing strategies. We have highlighted some of the 358

open problems in multiagent systems research that 359

are most relevant to the alignment problem, and 360

finally we have set out an agenda for development 361

of existing work on human-AI cooperation into a 362

new paradigm of strategic human-AI alignment. 363
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7 Limitations and Risks364

A limitation is the lack of theoretical guarantees in365

multi-agent systems when other agent’s strategies366

are unknown (in this case the human’s strategy).367

The evolving environment due to non-stationarity368

of agents and fair credit assignment to individual369

agents can pose significant challenges. Also, Multi-370

agent AI can pose challenges of exponential action371

space complexity of AN where A is the number372

of actions and N is the number of agents. Lan-373

guage based AI agents can pose a challenge of374

large action spaces which can lead to interpreting375

important actions that can impact corrective learn-376

ing from feedback, provided for alignment.377

The formulation of the LLM finetuning problem378

as a cooperative alignment game could in princi-379

ple pose a risk of manipulative behavior in LLMs380

for the wrong definition of alignment as a game381

theoretic solution concept.382
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