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ABSTRACT

The integration of graphs with Goal-conditioned Hierarchical Reinforcement
Learning (GCHRL) has recently gained attention, as the intermediate goals (sub-
goals) can be effectively sampled from graphs that naturally represent the overall
task structure in most RL tasks. However, some existing approaches often rely on
domain-specific knowledge to construct these graphs, limiting their applicability
to new tasks. Other graph-based approaches create graphs dynamically during ex-
ploration but struggle to fully utilize them because they have problems passing the
information in the graphs to newly visited states. Additionally, current GCHRL
methods face challenges such as sample inefficiency and poor subgoal representa-
tions. In this paper, we present a solution to these issues through the development
of a graph encoder-decoder that can evaluate unseen states. Our proposed method,
Graph-Guided sub-Goal representation Generation RL (G4RL), can be incorpo-
rated into any existing GCHRL method to enhance performance. We show that the
graph encoder-decoder can be effectively implemented using a network trained
on the state graph generated during exploration. Empirical results indicate that
leveraging high and low-level intrinsic rewards from the graph encoder-decoder
significantly enhances the performance of state-of-the-art GCHRL approaches in
both dense and sparse reward environments.

1 INTRODUCTION

Traditional reinforcement learning methods face great challenges when learning policies in envi-
ronments with long time horizons and sparse rewards. To address these challenges, Hierarchical
Reinforcement Learning (HRL) methods have been proposed to break problems into smaller, more
manageable scales suitable for efficient learning. Previous works (Sutton et al.,|1999; Kulkarni et al.}
2016; |Vezhnevets et al., 2017} [Levy et al.,|2017) have shown its capability in large, sparse-reward
environments. Among the HRL methods, Goal-Conditioned Hierarchical Reinforcement Learning
(GCHRL) has attracted much attention because of its well-defined paradigm (Nachum et al.,|2018b)
and resemblance to the human thinking process. Although GCHRL has shown superior performance
compared to non-hierarchical methods in certain scenarios, questions such as how to find better sub-
goal representations and explore the state space more efficiently (Nachum et al., [2018a}|Guo et al.}
2021) remain unanswered.

GCHRL methods typically utilize two levels of agents as stated in Nachum et al.| (2018b)). A high-
level agent chooses the next target state based on its current state, while a low-level agent decides
how to reach the target state specified by its high-level instructor. Both agents face their own chal-
lenges. The high-level agent suffers from sample inefficiency in environments with a large state-
action space, a problem also encountered by non-hierarchical methods, while the low-level agent
is trained solely by the reward signals derived from the distances between the current state and
subgoals in the representation space, making the reward signals highly susceptible to bad subgoal
representations.

Previous works have tried to either enhance the efficiency of high-level exploration (Huang et al.,
2019} |Zhang et al.l 2022) or find a good subgoal space to boost GCHRL’s performance in complex
environments (Wang et al.l 2024). To the best of our knowledge, while these methods have made
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progress in their respective areas, no prior work has attempted to address them in combination. This
integration is crucial, as uniting an effective high-level agent with an accurate low-level agent within
a cohesive framework can yield performance improvements that surpass simple additive effects.

Combining graph theory with RL has recently become a trend in the community (Lee et al.| 2022
Gieselmann & Pokorny} 2021)) as graphs are inherently well-suited for representing the environment
and task structure.

Previous work has focused on areas such as decision-making through graph search or traversal (Wan
et al., 2021;[Shang et al.,2019; |Eysenbach et al.,|2019), and as well as using graphs as world models
(Zhang et al.| [2021; Huang et al., 2019).

Yet, many previous works rely on pre-crafted graphs which hinders the generalization of the meth-
ods. Additionally, most existing works use graphs constructed directly from the original state space,
which cannot provide meaningful guidance when the agent encounters a state that is not represented
in those graphs.

To utilize graph representations when a new state (node) is encountered, switching to these repre-
sentations (Hamiltonl 2020} |Chen et al., 2020j Khoshraftar & An|2024) through graph learning is a
viable option. Recent studies have shown that employing various types of graph representations for
learning can benefit the underlying RL problem (Klissarov & Precupl 20205 Klissarov & Machado,
2023).

In this paper, we propose a novel approach that simultaneously addresses all of the aforementioned
problems. Specifically, we keep track of visited states, construct a state graph based on them until
the number of nodes reaches a threshold, and then update the graph by adding and dropping nodes
as new states are visited, all while building a subgoal space through graph learning based on state
representation and spatial connection information provided by the graph. By generating subgoal
representations through graph learning, these representations will reflect their relative positions in
the decision chain, thereby creating a more effective subgoal space. In estimating the distance
between the current state and the intended subgoal in the original space, we use the distance between
their corresponding representations in the subgoal space. This distance is then used to calculate the
intrinsic reward for curiosity-driven exploration, aiming to improve sample efficiency.

The main contributions of this paper are as follows:

* We propose a novel architecture that employs a graph encoder-decoder to summarize spatial
information into subgoal representations, enabling the evaluation of newly visited states.
This architecture can be integrated into any existing GCHRL algorithm to enhance perfor-
mance.

* We present a method for online construction of the state graph as a world model (Ha &
Schmidhuber;, |2018; |[Zhang et al., [2021) for the agent by sampling from trajectories.

* We use novelty-based auxiliary rewards (Simsek & Bartol 2006; Nehmzow et al., [2013)
derived from subgoal representations to improve sample efficiency for high-level and low-
level agents.

We tested our approach on several real-world application environments (Todorov et al.l 2012) to
assess the significance of our experimental results. The findings indicate that our method can signif-
icantly enhance the performance of the underlying HRL approach in terms of both sample efficiency
and success rate/cumulative reward.

2 PRELIMINARIES

2.1 NOTATION

As the most common way to model reinforcement learning scenarios, we introduce the Markov
Decision Process (MDP) (Puterman| [2014)) defined as a tuple < S, A, P, R,y > as follows: At
each time step ¢, the agent observes the current state s; € S provided by the environment and
chooses an action a; € A based on its internal policy 7(a¢|s;), which defines the probability of
selecting an action given the current state. The action is then executed, and the interaction with
the environment leads the agent to a new state s, according to a transition probability function
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P(s¢+1]8t, ar) which is known only to the environment. Subsequently, the agent receives a reward
r¢ from the environment determined by a reward function R(s¢, a;) that evaluates the action taken
in the current state and is also only visible to the environment. The agent aims to learn an optimal

policy 7 to maximize the expected discounted cumulative reward E ;.07 [ Z?:o ’yim] , where ~
(with 0 < v < 1) is a pre-defined discount factor used to prioritize immediate rewards over distant
future rewards, therefore preventing the total reward from becoming infinite.

2.2  GOAL-CONDITIONED HIERARCHICAL RL (GCHRL)

Goal-Conditioned Reinforcement Learning (GCRL) trains agents to achieve specific goals, which
are the target states. The agent receives an additional goal input along with the state input and
learns a policy to achieve this goal. Goals are represented explicitly in the input to the policy,
guiding the agent’s actions towards achieving specific outcomes, and the reward function is often
goal-dependent, providing positive feedback when the agent reaches the desired goal state.

To deal with large and complicated environments, Goal-Conditioned Hierarchical Reinforcement
Learning (GCHRL) (Nachum et al.,|2018bj; |[Zhang et al., [2022; Wang et al., |2024) decomposes the
learning task into a hierarchy of smaller, more manageable sub-tasks. Typically there are two levels
of agents. At time step ¢, the high-level agent chooses a subgoal g; which is the state representation
of a target state that the high-level agent wants the low-level agent to achieve as a part of the overall
task. This choice is made by sampling g; from the high-level policy 77, (g¢|¢(s¢)), where ¢ : s — RY
is the state representation function which gives a condensed representation of the state.

Each state s; can be mapped to its subgoal feature g(s;) by a subgoal feature extractor. Note that
g(s¢) is not the same as g;. The former, g(s;), is the learned subgoal feature of the current state s;,
while the latter, gy, is the target state we aim to reach from the state s; in one step or multiple steps.

Given the subgoal g; sampled from the high-level policy 7, (g:|¢(s¢)) for the current time step
t and the state representation vector ¢(s;), a low-level agent executes action a; based on the
low-level policy 7;(at|¢(st), g¢). The low-level agent is trained using the intrinsic reward signal
Tint (8¢5 9ts g, S141) = —||@(s¢41) — g¢]|? to encourage it to achieve the subgoal.

Both agents can be implemented by any policy-based methods, including those introduced in previ-
ous works on policy gradients such as [Fujimoto et al.[(2018)); Haarnoja et al.| (2018) and [Schulman
et al.[|(2017).

2.3 GRAPH AND MDP

Graph is a generic data structure, which can model complex relations among objects in many real-
world problems. A graph is defined as G = (V, &), where V = {1,2,..., N} is the set of nodes
and £ = {e;;} is the set of edges without self-loops. The adjacency matrix of G is denoted by
A = (A, ;) € RN*N with A, ; = 1if there is an edge between nodes i and j, otherwise A; ; = 0.
The adjacency matrix can be extended to a weighted adjacency matrix, where A; ; is a weight of the
edge e;;.

In MDP, a node can represent a state, while the edge weights can model the transition probabilities
or reachability statistics between states.

3 METHODS

This section presents our framework, Graph-Guided subGoal representation Generation (G4RL).
Our method reshapes the subgoal space utilizing a state graph to incorporate the relative spatial
information of visited states.

One drawback of previous hierarchical reinforcement learning algorithms (Nachum et al.| [2018bj
Kim et al., 2021} [Zhang et al., [2022; |Luo et al.l |2024) is the Euclidean distance calculated in the
original state representation space between the current state and the intended goal does not reflect
the true progress of the low-level agent, as there is rarely a straight path in the space from the current
state to the subgoal. A low-level agent trained with such information may receive an inaccurate
reward signal, thus impairing its performance. Another issue is that the high-level agent may propose



Under review as a conference paper at ICLR 2025

a subgoal that is too difficult to reach if its output is not constrained, wasting exploration steps
on trying to reach those unreasonable subgoals (Zhang et al., 2022). Our proposed method aims
to mitigate both problems by calculating the distance in a subgoal representation space between
subgoal representations given by a graph encoder-decoder. This graph encoder-decoder takes into
account the actual connectivity between states, ensuring that the generated subgoal representations
respect adjacency information. This approach provides more accurate reward signals and leads to
more reasonable target subgoals.

3.1 STATE GRAPH

To record the visited states and their connections, we maintain a state graph G = (V, £) with a fixed
number N of nodesﬂ This graph is built and updated during training, with no pre-training using
expert data or handcrafted process involved in its construction.

Each node is labelled by the corresponding state and for each node s;, the corresponding state
representation vector ¢(s;), which is also referred to as the node feature, is stored. Edges in the
graph represent connectivity between states. The graph is constantly updated during exploration.

3.1.1 GRAPH CONSTRUCTION

The graph is initialized with N empty nodes and no edges. The corresponding weighted adjacency
matrix A is set to an N x N zero matrix. We perform the GCHRL explore process using randomly
initialized policy 75, and 7;. Once the agent encounters a state representation never seen before,
that is, the representation vector is different from any state representations stored in the graph, as
described in equation , it stores the state representation ¢(s;) as the node feature of an empty
node in the graph and build an edge between this node and the node corresponds to the previous
state.

vsuEV7 ||¢(St) - d)(S’U)HQ > €4, (1)

A =A =1, 2
where €4 is a hyper-parameter controlling the distance threshold between state representations.
When the agent encounters a state s; with feature ¢(s;) that is similar to several node represen-
tations already stored in the graph, it finds the state whose representation is the closest to the current

state feature:

St,8t—1 St—1,5¢

8y = arg min [¢(st) — P(su)]l2- 3)
sutllé(se)—@(su)ll2<eq

Then the node s, is relabeled as s; and the weight for the edge (s;—1, s;) is updated as follows:

A = Ashst—l = A3t7173t + L 4)

St—1,5¢
Note that a large weight indicates more frequent transitions between the underlying states.

We have used the Euclidean norm to define the distance between feature vectors. Since some ele-
ments may contain more spatial information than others, one can use a weighted Euclidean norm to
define the distance between state representations instead.

3.1.2 GRAPH UPDATING

The graph has a fixed number of nodes. Suppose the graph is now full. When a new state s; is
encountered, if s, from equation (3)) exists, as before we relabel the node as s; and perform edge
update as shown in equation (@); Otherwise, we replace the oldest state node in the graph with the
current state node, delete all edges previously linked to that node, and create an edge (s;—1, s¢)
with weight A;, | 5, = A;, s, , = 1. Alternatively, we could replace the state node most weakly
connected to other nodes by finding the node with the least weighted sum of edges.

'The number of training states for the graph encoder-decoder grows quadratically with N because the
adjacency weight matrix has N2 elements. The choice of N depends on the machine’s capabilities.
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3.2 GRAPH ENCODER-DECODER

To enable the assignment of suitable subgoal representations to every possible state, including un-
seen ones, we use node representations and edges to train a graph encoder-decoder. The parameter
updates of the graph encoder-decoder and the policies during policy training are performed alter-
nately in each episode. We do not train the graph encoder using expert policies then freeze its
parameters for policy training.

The encoder-decoder starts training after the graph is full and continues periodically after processing
a few trajectories. Section 3.3 will show the details of the training schedule.

The encoder E maps every state representation ¢(s) to a subgoal representation g(s). We use a
feed-forward network (FFN) with several layers as the encoder E:

9(s) = E(¢(s)) = FFN((s)). (5)
The weight parameters of the feed-forward network will be learned through training. The decoder D
takes two subgoal representations as input and outputs the inner product of these two representations:

D(g(su),9(sv)) = g(SU)Tg(Sv)- (6)

The aim is to use the encoder-decoder structure to predict node relations. Naturally we can use
A, s, as ameasure of the relation between nodes s,, and s,,. But for the sake of numerical stability
in the training process, we use A, /max,, s, As, s, as a measure. Thus the loss function is

defined as:
L= [Dlylsu)g(s0) — Au,s,/max Ay ] Q)
SuySvEV o
This loss function can enforce the subgoal representation provided by the encoder to respect neigh-
bouring features in the graph.

3.3 ADAPTIVE TRAINING SCHEDULE OF THE GRAPH ENCODER-DECODER

The data stored in the graph, which comprises state representations as node features and connection
information in the weighted adjacency matrix A, is constantly updated. Due to the nature of online
training, the update rate varies across episodes. If we train the graph encoder-decoder at regular
intervals, this may lead to high variance and data loss in earlier episodes, as well as over-training in
later episodes. To avoid this, we propose an adaptive training schedule for the graph encoder-decoder
in the following paragraph.

There are two types of data changing in the graph: edge update, as shown in equation (), and node
replacement. We introduce a variable c to track the weighted number of data changes. Since the
replacement of nodes has a much higher impact on the data than the edge update, we add N — 1 to
c if a node replacement occurs, and add 1 to c if an edge update happens:

. {c + N — 1, if anode replacement happens, )

~e+1, if an edge update happens.

When this variable exceeds a certain value, specifically a tolerance 5 multiplied by the total number
of non-diagonal elements N2 — N in the matrix A. we perform one gradient update for the graph
encoder-decoder, and then we reset ¢ to 0.

3.4 HIERARCHICAL AGENT WITH GRAPH ENCODER-DECODER

Our proposed method involves traditional goal-conditioned settings and a subgoal representation
extractor implemented by a graph encoder-decoder.

The high-level policy 7, (g:|¢(s¢)) nominates a subgoal every K steps and is trained using environ-
mental reward r.,:. The policy can be implemented by any policy-based RL algorithm that takes
transition tuples (s¢, g, at, '+, St+1, ge+1) as input. To encourage it to propose a subgoal that is not
too difficult to reach from the current state s, for more efficient exploration, we add an intrinsic term
to the high-level reward, considering the distance between the subgoal features of s; and g; in the
subgoal space:

Th(8t, Gt St41) = Teat + Tint = Teat + an - D(E(@(s¢)), E(gt)), &)
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where o, is a hyperparameter that controls the significance of the intrinsic term in the high-level
reward.

The low-level agent m;(a:|¢(st), g¢), however, operates in the subgoal space. While it still takes
¢(s¢) and g; as input and outputs an atomic action a;, we compute the reward based on distances in
the subgoal space:

r1(st, g, ar, sei1) = —[[6(se41) — gell* + a1 - D(E(d(s41)), E(gr)), (10)

where ¢; is a hyperparameter controlling the significance of the reward term in the low-level reward.
By computing the intrinsic reward in the subgoal space rather than in the state space, the function
provides high values when proposed subgoals are easy to reach from the current location and low
values when subgoals are close in the original state space but difficult to reach from the current
location. The low-level agent can also be any policy-based algorithm.

3.5 ALGORITHM: G4RL

Now we describe our proposed method in Algorithm [T}

Algorithm 1 G4RL

Require: High-level policy 7, (g|¢(s)), low-level policy m;(a|¢(s), g), replay buffer B,
graph encoder E, graph decoder D, high-level action frequency K,
significance hyperparameter «;, and o, tolerance hyperparameter 3,
number of episodes N, nunber of steps in one episode 7T'.

I:n=0

2: while n < N do

3: t=20

4: c=0

5: while t < T do

6: if{ mod K = 0 then

7: Execute the high-level policy 7, (g¢|¢(s:)) to sample the subgoal g;.

8: else

9: Keep the subgoal g; unchanged.
10 Execute the low-level policy m;(a:|¢(s¢), g¢) to sample the atomic action a;.
11: Sample reward 7, and next state S;1.
12: Calculate 7, (s¢, g¢, S141) and r;(s¢, gi, ar, s¢41) using (9) and (10).
13: Collect experience (¢, g, ¢, Th, 71, St+1) and update the replay buffer 5.
14: Update node representations and edge weights using collected experience.
15: Update c using (8).
16: if ¢ > [ then
17: Update graph encoder E with node representation and edge information in the graph.
18: c=0.
19: t=t+1

20: Update low-level policy m;(a|¢(s), g) using the chosen HRL algorithm.
21: Update high-level policy 7 (g|¢(s)) using the chosen HRL algorithm.
22: n=n+1

4 EXPERIMENTS

In this section, we present our experiments that combine G4RL with existing GCHRL methods to
demonstrate its positive effects on enhancing their performances. We also show that the generated
graph reasonably represents the overall structure of the task. Our experiments are conducted in a set
of challenging environments.

4.1 ENVIRONMENT SETTINGS

We used AntMaze, AntGather, and AntMaze-Sparse environments from the GYM MuJoCo library
(Todorov et al., |2012). The first two involve manipulating a multi-armed robot to perform a set
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of real-world tasks, while AntMaze-Sparse is the sparse reward version of AntMaze, presenting a
greater challenge as it only provides a reward upon reaching the goal. For the state representa-
tion dimension, we selected a subset of raw state dimensions that contains spatial information (e.g.
coordinates and arm angles) to serve as the node representation for the graph encoder-decoder.

4.2 EXPERIMENTAL COMPARISONS
We incorporated G4RL in the following existing GCHRL methods:

e HIRO (Nachum et al., 2018b): This is the first method which describes how the Goal-
conditioned information can be integrated into hierarchical agents.

* HRAC (Zhang et al.| |2022): This method enhances the performance of HIRO by training
an adjacency network that produces subgoals easier to reach from the current subgoal.

In addition to comparing these two GCHRL-G4RL methods with their native counterparts, we also
compared them with the following non-hierarchical method:

* TD3 (Fujimoto et al., 2018)): This is a well-known non-hierarchical policy-based method
designed for continuous action spaces and we use it to implement both high- and low-level
agents.

Although reward is a key metric of an agent’s learning ability, for AntMaze and AntMaze-Sparse, we
compare success rates of these methods instead of their rewards on the corresponding tasks. This is
because higher rewards in AntMaze/AntMaze-Sparse do not necessarily indicate better performance;
the agent may still achieve high rewards without reaching the goal.

The learning curves of baseline methods and G4RL-applied versions are plotted in Figure|l} Note
that all the curves reported in Section [ are averages from 5 independent runs and they have been
smoothed equally for better visualization.
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Figure 1: Success Rate on (a) AntMaze (b) AntMaze-Sparse and Reward on (c) AntGather, using
HIRO, HIRO-G4RL, HRAC, HRAC-G4RL, and TD3. The legends are distributed across sub-figures
for better visualization.

From Figure [T} we observe that in all three environments, incorporating G4RL in HIRO and HRAC
significantly enhances their performance, further improving the already strong results of these hier-
archical methods compared to the non-hierarchical method.

4.3 ABLATION STUDY

This section discusses the different variants of G4RL to show the effectiveness of adding high-level
and low-level intrinsic rewards. The following variants are compared in this part:

* High+Low-level intrinsics: Apply both equation (9) and equation (I0) to the high-level
and low-level rewards respectively.

* High-level intrinsic only: Apply equation (9) to the high-level rewards and set oy = 0 in
equation when it is applied to the low-level rewards.
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* Low-level intrinsic only: Apply equation to the low-level rewards and set o, = 0 in
equation (9) when it is applied to the high-level rewards.

« HIRO/HRAC: Vanilla baseline methods.
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Figure 2: Success Rate on (a) AntMaze (b) AntMaze-Sparse and Reward on (c) AntGather using
HIRO-G4RL, HIRO + High-level intrinsic, HIRO + Low-level intrinsic and HIRO.
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Figure 3: Success Rate on (a) AntMaze (b) AntMaze-Sparse and Reward on (c) AntGather using
HRAC-G4RL, HRAC + High-level intrinsic, HRAC + Low-level intrinsic and HRAC.

Figures[2]and 3]show that for both HIRO and HRAC, G4RL with the intrinsic reward applied to both
high-level and low-level agents achieves the best result across almost all three tasks. Meanwhile,
the high-level intrinsic only variant tends to perform better than the low-level intrinsic only variant
in our selected tasks, particularly in AntMaze-Sparse. This suggests that in sparse reward tasks, the
high-level intrinsic reward proposed in equation (9) can facilitate efficient exploration.

4.4 SUBGOAL SPACE VISUALIZATION

This section shows how the subgoal space evolves in the AntMaze environment as the number of
training episodes grows. We recorded state representations encountered in specific episodes and
then used the corresponding graph encoders from those episodes to map these state representations
to the subgoal representations. The subgoal representations are projected into 2D using PCA for
visualization.

The distributions of subgoal representations in the subgoal space across different episodes are shown
in Figure [d

From the figure we can conclude that the graph encoder-decoder gives better subgoal representations
when the number of episodes grows. At the 2000th episode, the subgoal representations form a few
chains in the 2D space, indicating that the current graph is partitioned into many isolated sub-graphs.
The graph encoder has not yet learned to understand the environment well, and the agent cannot find
relationships between different state representations yet. By the 4000th episode, the representations
are less isolated, suggesting that the graph encoder has begun to learn the connections between
different groups of state representation. Finally, at the 6000th episode, the subgoal representations
are distributed more evenly across the entire space, indicating that the encoder can organize them



Under review as a conference paper at ICLR 2025

Subgoal space distribution at Episode 2000 Subgoal space distribution at Episode 4000 Subgoal space distribution at Episode 6000
- 1 o
R ~ ~
, : ; Y
I . ~
08 — ~ L \ o < 08 i f‘—ﬂ ! S 08
- TN 1’\ \ / /'/’—" T -
S os /‘ . Dl T 7 T os // Pl Ve ™~ S s
s - {. 5 / B, g §
2 e e e, ) s |/ (™ ™ f
2 - o .| 2 S a0 g
£.. L £ N ~ <7y \) + | Ee
: / g e 77
02 0z ' A 02 5
\\/" o B ST, S
o o2 0 0 08 o g o2 04 3 3 o %0 o2 04 03 g o
Dimension 1 Dimension 1 Dimension 1
(a) (b) (©

Figure 4: The distribution of subgoal representations in the subgoal space at the (a) 2000th (b)
4000th (c) 6000th episode.

into a highly connected graph. The subgoal space now better represents the underlying problem’s
structure.

The evolution of the graph encoder demonstrates that it can indeed learn to represent the task struc-
ture as the number of episodes grows.

5 CONCLUSION AND FUTURE WORK

We present a novel approach using a graph encoder-decoder to mitigate the issues of poor subgoal
representations and sample inefficiency in GCHRL. The architecture is designed to efficiently eval-
uate unseen states by operating in the graph representation space. Our proposed architecture is easy
to implement and can be integrated into any prevailing GCHRL algorithms for better performance.
Additionally, we provide a comprehensive explanation of why the proposed architecture works, sup-
ported by experiments on both sparse and non-sparse control tasks that demonstrate the effectiveness
and robustness of our method.

Generalizing knowledge learnt in one environment to other similar environments remains to be
solved in reinforcement learning. In the future, we will extend our work by exploring how to gen-
erate subgoals with more interpretable representations for knowledge transfer with the help of other
kinds of graph representations (e.g. Graph Laplacian). Another direction is to transfer the knowl-
edge stored in the graph to other tasks by analyzing graph structures and mapping nodes of their
state graphs.

6 REPRODUCIBILITY STATEMENT

We included the implementation details of the proposed architecture, the environmental settings,
and the hyperparameter settings in the appendix.
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A IMPLEMENTATION DETAILS

A.1 ENVIRONMENT DETAILS

AntMaze This environment is a part of the Gymnasium-Robotics libraries. The size of the environ-
ment is 24 x 24. Both of the state space and the action space are continuous, with a state dimension
of 31 and an action dimension of 8. The reward of each step is defined by its negative Euclidean
distance from the current location to the target position. At evaluation time, the goal is set to (0, 16)
and an episode is recognized as successful if the agent is within an Euclidean distance of 5 from the
goal.

AntMaze Sparse This environment is a variant of Antmaze. The size of the environment is 20 x 20.
The state and action spaces are the same as those in AntMaze. The reward of each step is 1 if and
only if the agent reaches within an Euclidean distance of 1 from the goal, which is set to (2, 9).

AntGather This environment is described in |Duan et al.| (2016). The size of the environment is
20 x 20. The state and action spaces are continuous. The task involves gathering apples to the
designated place. The agent will be awarded +1 for each apple gathered and —1 for each bomb
gathered. Apples and bombs are randomly placed in the 20 x 20 world.

A.2 NETWORK ARCHITECTURE DETAILS

Our network architecture for the HRL agents is the same as described inNachum et al.[(2018b) and
in|[Zhang et al.|(2022). For HIRO and HRAC, both the high-level and low-level agents use the TD3
algorithm. The size of each hidden layer in actor and critic networks in TD3 is 300.

For the graph encoder-decoder, we use a four-layer fully connected network with the hidden size of
128. The activation function used is ReLU. The decoder is a dot product of the two input subgoal
representations.
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We use Adam as the optimizer for the actor network, critic network and the graph encoder is Adam

optimizer (Kingma & Ba, |2014).

B HYPERPARAMETERS

In this section we list all hyperparameters used in our experiments.

Hyperparameters Values
High-level agent
Actor learning rate 0.0001
Critic learning rate 0.001
Batch size 128
Discount factor ~y 0.99
Policy update frequency 1
High-level action frequency 10
Replay buffer size 20000

Exploration strategy

Gaussian(c = 1)

Low-level agent

Actor learning rate
Critic learning rate
Batch size
Discount factor v
Policy update frequency
Replay buffer size
Exploration strategy

0.0001
0.001
128
0.99
1
20000
Gaussian(c = 1)

Table 1: Hyperparameters used in high- and low-level TD3 agents.

Hyperparameters Values
Number of nodes N 200
Batch size 128
Optimizer learning rate 0.0001
€d 0.1 for AntMaze/0.2 for others
ap 0.1
(¢7] 0.1
I} 0.2

Table 2: Hyperparameters used in the graph encoder-decoder.
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