
Proceedings of Machine Learning Research , 2022 ACML 2022

Continual Learning for Time-to-Event Modeling

Manisha Dubey CS17RESCH11003@IITH.AC.IN
Indian Institute of Technology Hyderabad, India

P.K. Srijith SRIJITH@CSE.IITH.AC.IN
Indian Institute of Technology Hyderabad, India

Maunendra Sankar Desarkar MAUNENDRA@CSE.IITH.AC.IN

Indian Institute of Technology Hyderabad, India

Abstract
Temporal point process serves as an essential tool for modeling time-to-event data in continuous
time space. Despite having massive amounts of event sequence data from various domains like
social media, healthcare etc., real world application of temporal point process are not capable of
thriving in continually evolving environment with minimal supervision while retaining previously
learnt knowledge. To tackle this, we propose HyperHawkes, a hypernetwork based continually
learning temporal point process for continuous modeling of time-to-event sequences with minimal
forgetting. We demonstrate the application of the proposed framework through our experiments on
two real-world datasets.
Keywords: Time-to-Event Modeling, Temporal Point Process, Continual Learning

1. Introduction

Various applications like earthquake occurrences, financial transactions etc. are associated with
the collection of discrete asynchronous events where event occurrences are represented with times-
tamps. Each event sequence, consisting of a series of timestamps, can be associated with a separate
entity. For example, in social media, each user can be associated with the time of posting a tweet,
and each tweet can be viewed as an event. A principled mathematical framework to model such
sequences in continuous time space is the temporal point process (14). Hawkes process (24), a self-
exciting point process has been widely used in a wide array of practical applications like epidemic
modeling(6), earthquake prediction(8) etc. Recent works improve the performance of the classic
Hawkes process by considering neural networks for modeling such event sequences (5; 2; 4; 1).
Despite having improved performance, the neural network-based Hawkes process is challenged by
a limitation on the practical side. Real-world event occurrences happen sequentially in continuous
streams. Different techniques (19; 23; 20; 12) have been proposed in this regard by consolidating
knowledge either in various spaces like data, weight or meta space for the domain of vision and
NLP. However, there is no existing literature for time-to-event modeling. Therefore, a realistic and
challenging problem is to continually learn time-to-event models in an ever-changing environment
while retaining previously learned knowledge.

Towards this, we consider a practical and under-explored setting where we consider a contin-
ual learning setup where time-to-event prediction tasks (sequences) arrive sequentially in an online
manner. To the best of our knowledge, there is no prior work on continual learning for time-to-event
modeling. We aim to develop neural network based Hawkes process models which can continually

© 2022 M. Dubey, P. Srijith & M.S. Desarkar.



DUBEY SRIJITH DESARKAR

learn while retaining previous knowledge. To achieve these, we propose HyperHawkes, a hyper-
network based Hawkes process which empowers the neural network based Hawkes process models
to perform continual learning of time-to-event data. HyperHawkes uses a hypernetwork or a meta-
network which can generate sequence-specific parameters for the neural network based Hawkes
process using a meta-information about the sequence called sequence descriptors. By incorporating
descriptor-conditioned hypernetwork, we are able to learn and predict sequence specific parame-
ters and consequently use these parameters to predict event occurrences on unseen sequences. We
recast the descriptor-conditioned hypernetwork to include a regularizer over the hypernetwork out-
put which encourages the hyper-network to correctly generate the parameters for the previous tasks
while learning to generate the parameters for new task. Our contributions can be summarized as:

• We propose a novel problems setup for continual learning of time-to-event prediction for
applications involving event sequence data.

• We propose HyperHawkes, a sequence descriptor-conditioned hypernetwork based neural
Hawkes process which can generate sequence specific parameters to address continual learn-
ing of event sequences. We augment HyperHawkes with continual learning abilities by em-
ploying a regularization technique, hence avoiding catastrophic forgetting over time-to-event
sequences.

• We demonstrate the effectiveness of the proposed model on this setup for two real-world
datasets and show that the proposed model is able to predict sequences continually while
retaining information from previous event sequences.

2. Proposed Model

Problem Definition: Assume we are given a collection of N sequences D = {(T 1,d1), (T 2,d2),
..., (T N ,dN} where di represents the sequence descriptor and T i represents the times of occurrence
of ni events in the ith sequence, i.e. T i = {tij}n

i

j=1 and we assume these sequences arrive one after
the other in the order of their index. Our goal is to continually learn the sequences while avoiding
catastrophic forgetting from the previous sequences.

We propose HyperHawkes, a hypernetwork based neural Hawkes process for time-to-event
modeling. For time-to-event modeling, we consider the Fully Neural Hawkes Process (FNHP)
(1) as the base model. Integrating hypernetwork with fully neural Hawkes process, we introduce
descriptor-conditioned hypernetwork to generate weights for each sequence which can perform
time-to-event modeling. The descriptor-conditioned hypernetwork learns separate weights of FNHP
for each sequence. Inspired by (12), we use this framework for continual learning of tasks by using
a hypernetwork based regularizer. Now we discuss each of these pieces in detail.

2.1. Fully Neural Hawkes Process

We employ fully neural Hawkes process (1) as base model for time-to-event modeling. It uses
a combination of recurrent neural network and feedforward neural network to model the inten-
sity function. We represent history by using hidden representations generated by recurrent neu-
ral networks (RNNs) at each time step. The hidden representation hi

j at time tij is obtained as
hi
j = RNN(τ ij ,h

i
j−1;W

i
r) where τ ij = t − tij and W i

r represents the parameters associated with
RNN. This is used as input to a feedforward neural network to compute the intensity function (haz-
ard function) and consequently the cumulative hazard function for computing the likelihood of event

ii



CONTINUAL LEARNING FOR TIME-TO-EVENT MODELING

occurrences. We model conditional intensity as a function of the elapsed time from the most recent
event λ(t|H i

t) = λ(t− tij |h
i
j) where λ(·) is a non-negative function referred to as a hazard function.

Therefore, we define cumulative hazard function in terms of inter-event interval (τ ij )

Φ(τ ij |hi
j) =

∫ τ ij

0
λ(s|hi

j)ds (1)

Cumulative hazard function is modeled using a feed-forward neural network (FNN) Φ(τ ij |h
i
j) =

FNN(τ ij , h
i
j ;W

i
t ). However, cumulative hazard function has to be a monotonically increasing func-

tion of τ ij and positive valued. We achieve these by maintaining positive weights and positive ac-
tivation functions in the neural network (17; 1). The hazard function itself can be then obtained
by differentiating the cumulative hazard function with respect to τ as λ(τ ij |h

i
j) =

∂
∂τ ij

Φ(τ ij |h
i
j) The

log-likelihood of observing event times is defined as follows using the cumulative hazard function-
ni∑
j=1

log p(tij |Hi
j ;W

i) =

ni∑
j=1

(
log(

∂

∂τ ij
Φ(τ ij |hi

j−1;W
i))− Φ(τ ij |hi

j−1;W
i)
)

(2)

where τ ij = tij − tij−1 and W i = {W i
r ,W

i
t } represents the combined weights associated with RNN

and FNN. In NHP, the weights of the networks are learnt by maximizing the likelihood given by (2).

2.2. HyperHawkes: Hypernetwork based Neural Hawkes Process for Continual Learning

Hypernetwork is a meta-network which produces parameters used by other networks (18). As dis-
cussed in the above section, the neural Hawkes process comprises of two building blocks - RNN
and FNN. So, we use hypernetwork to produce weights for these two components. We use a feed-
forward neural network (FNN) to produce parameters W i = {W i

r ,W
i
t } associated with the FNHP.

We use two different types of hypernetworks, fr(·) producing W i
r and ft(·) producing W i

t . Given
a sequence description di, parameters for the RNN are generated as W i

r = fr(d
i; θfr) where θfr

denotes the parameters of the hypernetwork (weight vectors of a neural network). Note that the
hypernetwork parameters are the same across the sequences. The descriptor di is used to generate
the sequence specific parameters. As discussed above, the cumulative hazard function is a mono-
tonically increasing function of τ ij and is positive-valued. The hypernetwork which will generate
parameters for cumulative hazard function has to fulfill these properties. This can be achieved when
hypernetwork generates only positive weights for which we use a positive activation function. Hy-
pernetwork ft(·) for FNN can be written as W i

t = ft(d
i; θft) where θft denotes parameters of hy-

pernetwork ft(·). We propose 2 variants of HyperHawkes 1) HyperHawkes-FNN: Hypernetwork
is considered only for the FNN modeling the cumulative hazard function. 2) HyperHawkes-FNN-
RNN: This variant uses two separate hypernetworks, one to model the RNN modeling the history
and the second to model the FNN.

Ideally, we want our model to remember the parameters of the neural Hawkes process for each
sequence. A naive approach to achieve this is through storing and replaying over previous data,
which is obviously memory expensive and unrealistic. However, HyperHawkes, being conditioned
on the sequence descriptor, can be modified to handle this problem. The direct use of the Hyper-
Hawkes training would result in hypernetworks forgetting the generation of the FNHP parameters
corresponding to past event sequences. We overcome this by incorporating a regularization on the
hypernetwork parameters such that it penalizes any change to the FNHP parameters produced from
old sequences.

iii



DUBEY SRIJITH DESARKAR

Given a sequence description ds for the descriptor T s, our descriptor conditioned hypernetwork
fr(·) can generate parameters W s

r and ft(·) can generate parameters W s
t . To perform continual

learning, we use regularization to penalize changes in {W c
r ,W

c
t } generated for past sequences in

order to retain information from those sequences and to learn continually. The regularization is
applied to the hypernetwork parameters while learning a new event sequence, and this prevents
adaptation of the hypernetworks parameters completely to the new event sequence. For a new
event sequence T s and its corresponding descriptor ds, the hypernetwork parameters are learnt by
minimizing the following continual learning loss over events in the sequence:

=

ns∑
j=1

− log p(tsj |Hs
j ; (fr(d

s; θfr), ft(d
s; θft))) +

β

s− 1

s−1∑
c=1

(
∥ fr(d

c; θfr)− fr(d
c; θ̄fr)∥2

+ ∥ ft(d
c; θft)− ft(d

c; θ̄ft) ∥2
) (3)

where {θ̄fr, θ̄ft} represents the stored hypernetwork parameters after learning until sequence
s− 1 and {θfr, θft} represent the hypernetwork parameters learnt considering the event sequence s
and regularization to avoid forgetting. The regularization term ensures that the newly learnt hyper-
network parameters will be able to produce the required main network parameters from the past
event sequences given the sequence descriptor without forgetting and the regularization constant β
captures the importance associated with it. So, in this way, we try to retain the information from
previous sequences at a meta-level by the use of sequence-conditioned hypernetwork on the top of
neural Hawkes process using a simple regularization term within the framework of HyperHawkes.

3. Experiments and Results

Datasets Due to paucity of standard datasets for event modeling tasks which contain sequence
descriptor as well, we use: 1)Yelp:1: This is a dataset comprising of business information and their
check-in information. Each business is associated with 82 attributes like By Appointment Only,
Business Category, Business Timings etc. Using these attributes, we create a vector of length 1229
representing a business. This vector acts as a sequence descriptor of the business. 2) Meme:3: This
dataset(22) tracks the popular phrases and quotes which appear appear most frequently over time in
news media and blogs. Each meme is associated with the content and timestamps when they were
quoted in the media. We select top 200 english phrases and find Doc2Vec representation of the
meme content of length 100. This Doc2Vec representation is considered as sequence descriptor of
each meme.

Baselines To the best of our knowledge, the proposed problem statement is the first work along
this direction. So, we compare against HyperHawkes without any regularization as baseline. For
another baseline, we consider FNHP trained continually. Mean negative log-likelihood (MNLL)
and mean absolute error (MAE) are considered as evaluation metrics.

Results and Analysis Table 1 presents the averaged results over all tasks by enabling Hyper-
Hawkes for continual learning. We can observe that averaged performance for the proposed model
is better than the case when no regularization is incorporated. Also, we can observe that both the pro-
posed variants perform better than the model without using regularization (corresponds to the case

1. https://www.kaggle.com/datasets/yelp-dataset/
3. https://snap.stanford.edu/data/memetracker9.html

iv



CONTINUAL LEARNING FOR TIME-TO-EVENT MODELING

Table 1: Results for Continual Learning by comparing the performance of the proposed Hyper-
Hawkes with regularization against under HyperHawkes without regularization (Lower MNLL and
MAE indicates better performance)

Dataset
FNHP HyperHawkes-FNN HyperHawkes-FNN-RNN

MNLL MAE MNLL MAE MNLL MAE
WithoutCLWithCLWithoutCLWithCL WithoutCLWithCLWithoutCLWithCL

Yelp -3.48000.00163 -4.8627 -5.6928 0.00159 0.00149 -5.2629 -5.7727 0.00152 0.00150
Meme -3.93120.00521 -2.8550 -5.1462 0.00548 0.00471 -3.8254 -5.1192 0.00508 0.00471

Figure 1: Plots displaying the performance of HyperHawkes for Continual Learning for the variant
HyperHawkes-FNN and HyperHawkes-FNN-RNN 1a) Average MNLL over previous sequences for
Yelp 1b) Average MAE over previous sequences for Meme 1c) MNLL for each sequence for Yelp
HyperHawkes-FNN

(a) (b) (c)

when β from Equation 3 is set to 0). We can also notice that HyperHawkes-FNN and HyperHawkes-
FNN-RNN with memorization enabling continual learning performs better than FNHP. Hence the
use of regularization within the framework of HyperHawkes supports that proposed method can
avoid catastrophic forgetting. Fig 1) displays sequence-wise performance for both the datasets for
the proposed variants HyperHawkes-FNN and HyperHawkes-FNN-RNN. Fig 1a) displays average
MNLL over previous sequences for both the models for Yelp. This shows that while training the
model without regularization over new sequences, the network is unable to retain information learnt
from previous sequences, hence MNLL increases as we train new sequences. However, with the use
of regularization, we can avoid catastrophic forgetting, hence having lower MNLL for successive
tasks. Similar behavior is observed by Fig 1b) as well which displays average MAE over previous
sequences for both the variants, with and without CL for Meme. So, this corroborates that use of
regularization with HyperHawkes can help in backward transfer. Fig 1c) shows MNLL for each
sequence using the model HyperHawkes-FNN-RNN with regularization. MNLL for the model with
regularization is having lower MNLL as compared to the model without any regularization. This
essentially reflects that the proposed model is able to forward transfer the knowledge learnt from
previous sequences as well. So, the model is able to perform forward and backward transfer, which
are important continual learning desiderata. To conclude, presented results suggest that proposed
framework can aid in avoiding catastrophic forgetting while learning continually.

v



DUBEY SRIJITH DESARKAR

4. Conclusion

In this work, we address the problem of continual learning for time-to-event modeling. We pro-
pose HyperHawkes, a descriptor conditioned hypernetwork based neural Hawkes process which
can generate event sequence specific parameters. We augment HyperHawkes with regularization
which can aid in learning time-to-event sequences continually by avoiding catastrophic forgetting.
Our experiments on two real-world datasets demonstrate the effectiveness of the proposed approach.

References

[1] Omi, Takahiro, and Kazuyuki Aihara. "Fully neural network based model for general temporal
point processes." Advances in neural information processing systems 32 (2019).

[2] Du, Nan, Hanjun Dai, Rakshit Trivedi, Utkarsh Upadhyay, Manuel Gomez-Rodriguez, and
Le Song. "Recurrent marked temporal point processes: Embedding event history to vector."
In Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery
and data mining, pp. 1555-1564. 2016.

[3] Graves, Alex. "Practical variational inference for neural networks." Advances in neural infor-
mation processing systems 24 (2011).

[4] Xiao, Shuai, Junchi Yan, Xiaokang Yang, Hongyuan Zha, and Stephen Chu. "Modeling the
intensity function of point process via recurrent neural networks." In Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 31, no. 1. 2017.

[5] Mei, Hongyuan, and Jason M. Eisner. "The neural hawkes process: A neurally self-modulating
multivariate point process." Advances in neural information processing systems 30 (2017).

[6] Diggle, Peter, Barry Rowlingson, and Ting-li Su. "Point process methodology for on-line
spatio-temporal disease surveillance." Environmetrics: The official journal of the International
Environmetrics Society 16, no. 5 (2005): 423-434.

[7] Mohler, George O., Martin B. Short, P. Jeffrey Brantingham, Frederic Paik Schoenberg, and
George E. Tita. "Self-exciting point process modeling of crime." Journal of the American
Statistical Association 106, no. 493 (2011): 100-108.

[8] Hainzl, Sebastian, D. Steacy, and S. Marsan. "Seismicity models based on Coulomb stress
calculations." Community Online Resource for Statistical Seismicity Analysis (2010).

[9] Zuo, Simiao, Haoming Jiang, Zichong Li, Tuo Zhao, and Hongyuan Zha. "Transformer
hawkes process." In International conference on machine learning, pp. 11692-11702. PMLR,
2020.

[10] Zhang, Qiang, Aldo Lipani, Omer Kirnap, and Emine Yilmaz. "Self-attentive Hawkes pro-
cess." In International conference on machine learning, pp. 11183-11193. PMLR, 2020.

[11] Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Łukasz Kaiser, and Illia Polosukhin. "Attention is all you need." Advances in neural informa-
tion processing systems 30 (2017).

vi



CONTINUAL LEARNING FOR TIME-TO-EVENT MODELING

[12] Von Oswald, Johannes, Christian Henning, João Sacramento, and Benjamin F. Grewe. "Con-
tinual learning with hypernetworks." arXiv preprint arXiv:1906.00695 (2019).

[13] Rizoiu, Marian-Andrei, Young Lee, Swapnil Mishra, and Lexing Xie. "A tutorial on hawkes
processes for events in social media." arXiv preprint arXiv:1708.06401 (2017).

[14] Daley, Daryl J., and David Vere-Jones. An Introduction to the Theory of Point Processes.
Volume II: General Theory and Structure. Springer., 2008.

[15] Bacry, Emmanuel, Iacopo Mastromatteo, and Jean-François Muzy. "Hawkes processes in fi-
nance." Market Microstructure and Liquidity 1, no. 01 (2015): 1550005.

[16] Sill, Joseph. "Monotonic networks." Advances in neural information processing systems 10
(1997).

[17] Chilinski, Pawel, and Ricardo Silva. "Neural likelihoods via cumulative distribution func-
tions." In Conference on Uncertainty in Artificial Intelligence, pp. 420-429. PMLR, 2020.

[18] Ha, David, Andrew Dai, and Quoc V. Le. "Hypernetworks." arXiv preprint arXiv:1609.09106
(2016).

[19] Kirkpatrick, James, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins,
Andrei A. Rusu, Kieran Milan et al. "Overcoming catastrophic forgetting in neural networks."
Proceedings of the national academy of sciences 114, no. 13 (2017): 3521-3526.

[20] Lopez-Paz, David, and Marc’Aurelio Ranzato. "Gradient episodic memory for continual learn-
ing." Advances in neural information processing systems 30 (2017).

[21] Xie, Yujia, Haoming Jiang, Feng Liu, Tuo Zhao, and Hongyuan Zha. "Meta learning with re-
lational information for short sequences." Advances in neural information processing systems
32 (2019).

[22] Leskovec, Jure, Lars Backstrom, and Jon Kleinberg. "Meme-tracking and the dynamics of the
news cycle." In Proceedings of the 15th ACM SIGKDD international conference on Knowl-
edge discovery and data mining, pp. 497-506. 2009.

[23] Li, Zhizhong, and Derek Hoiem. "Learning without forgetting." IEEE transactions on pattern
analysis and machine intelligence 40, no. 12 (2017): 2935-2947.

[24] Hawkes, Alan G. "Spectra of some self-exciting and mutually exciting point processes."
Biometrika 58, no. 1 (1971): 83-90.

vii


	Introduction
	Proposed Model
	Fully Neural Hawkes Process
	HyperHawkes: Hypernetwork based Neural Hawkes Process for Continual Learning

	Experiments and Results
	Conclusion

