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ABSTRACT

Federated Learning (FL) is an effective learning framework used when data cannot
be centralized due to privacy, communication costs, and regulatory restrictions.
While there have been many algorithmic advances in FL, significantly less effort has
been made on model development, and most works in FL employ predefined model
architectures discovered in the centralized environment. However, these predefined
architectures may not be the optimal choice for the FL setting since the user data
distribution at FL users is often non-identical and independent distribution (non-
IID). This well-known challenge in FL has often been studied at the optimization
layer. Instead, we advocate for a different (and complementary) approach. We
propose Federated Neural Architecture Search (FedNAS) for automating the model
design process in FL. More specifically, FedNAS enables scattered workers to
search for a better architecture in a collaborative fashion to achieve higher accuracy
. Beyond automating and improving FL model design, FedNAS also provides a
new paradigm for personalized FL via customizing not only the model weights
but also the neural architecture of each user. As such, we also compare FedNAS
with representative personalized FL methods, including perFedAvg (based on meta-
learning), Ditto (bi-level optimization), and local fine-tuning. Our experiments on
a non-IID dataset show that the architecture searched by FedNAS can outperform
the manually predefined architecture as well as existing personalized FL methods.
To facilitate further research and real-world deployment, we also build a realistic
distributed training system for FedNAS, which will be publicly available and
maintained regularly.

1 INTRODUCTION

Federated Learning (FL) is a promising approach for decentralized machine learning, which aims to
avoid data sharing and lower the communication cost (McMahan et al., 2016). As such, it has gained
a lot of attention in various domains of machine learning such as computer vision, natural language
processing, and data mining. Despite its widespread popularity, one of the key challenges of FL is
data heterogeneity. Since users’ data are not identically or independently distributed (non-IID) in
nature, a globally learned model may not perform optimally on all user devices. When interweaving
with data heterogeneity, data invisibility is another issue that has rarely been studied. For this reason,
to find a better model architecture with higher accuracy, developers must design or choose multiple
architectures, then tune hyperparameters remotely to fit the scattered data. This process is extremely
expensive because attempting many rounds of training on edge devices results in a remarkably higher
communication cost and on-device computational burden than the data center environment.

To mitigate the challenge of data heterogeneity, researchers have proposed methods to train a global
model, including FedProx Li et al. (2018), FedNova Wang et al. (2020), and FedOPT Reddi et al.
(2020). Additionally, personalized frameworks such as Ditto Li et al. (2020), pFedMe Dinh et al.
(2020), and PerFedAvg Fallah et al. (2020) have been recently developed to optimize personalized
models to adapt to individual user’s data. These prior works have made remarkable progress in
designing optimization schemes for pre-defined model architectures operated at pure optimization.
However, these algorithms all require lots of effort to tune hyperparameters; this is attributed to their
strong prior assumptions, which may not always match the unknown data distribution. For example,
practitioners must tune the regularization parameter in Ditto Li et al. (2020) and pFedMe Dinh et al.
(2020) to find a proper correlation between the aggregated global model and local model. Moreover,
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Figure 1: Illustration of Federated Neural Architecture Search (step 1: search locally; step 2: send the
gradients of α and w to the server; step 3: merge gradients to get global α and w; step 4: synchronize
the updated α and w to each client.)

their design is only in optimization level and does not consider the efficacy of model selection and
neural architecture design, leading to a suboptimal solution when using a pre-defined model.

We aim to address data heterogeneity in FL via a different and complementary approach that is based
on model personalization through neural architecture search (NAS). NAS has recently gained much
momentum to adapt heterogeneity in neural architecture design Smithson et al. (2016); Chen et al.
(2020), latency Wu et al. (2019); Tan et al. (2019); Cai et al. (2019), memory footprint Cai et al.
(2018); Marchisio et al. (2020), energy consumption Hsu et al. (2018); Yang et al. (2020) for edge
devices. NAS methods are often categorized into three types: gradient-based methods Liu et al.
(2018), evolutionary methods Liu et al. (2020), and reinforcement learning (RL)-based methods
Jaafra et al. (2019). Among these, gradient-based methods are the most efficient as they can finish
searching in only a few hours, compared to thousands of GPU days with other methods.

In this work, to search for a personalized neural architecture for mitigating the data heterogeneity,
we adopt an improved variant of the gradient-based method, MiLeNAS He et al. (2020c), which is
computationally tractable and particularly suitable for resource-constrained edge devices. Particularly,
we propose a new method named Federated NAS (FedNAS) to search model architectures among
edge devices collaboratively. As shown in Figure 1, FedNAS works in the following way. We
first utilize the MiLeNAS He et al. (2020c) as a local searcher on each client’s local data, which
can be distributed easily and efficiently in search time (Step 1). Formally, it formulates NAS as a
mixed-level problem: w = w − ηw∇wLtr(w,α), α = α − ηα (∇αLtr(w,α) + λ∇αLval(w,α)),
where w represents the network weight and α represents the neural architecture. Ltr(w,α) and
Lval(w,α) denote the loss with respect to training data and validation data, respectively. After the
local search, each client then transmits weights w and architecture α to the server (Step 2). The server
then applies a weighted aggregation to obtain the server-side α and w (Step 3) and sends the updated
parameters back to each client for the next round of searching (Step 4). During the searching process,
we can personalize the α and w parameters by alternative local adaptation. Such personalization
method can either obtain a higher accuracy for various data distributions, or automate the training
process with lightweight hyper-parameter searching efforts.

We evaluate FedNAS comprehensively in curated non-I.I.D. datasets, including CIFAR-10 and
GLD-23K. Our datasets cover both global model training and personalized model training. We also
consider different training scenarios: cross-silo FL and cross-device FL, which has a different total
number of clients and number of clients per round. We demonstrate that the personalized model
architectures learned by the individual clients perform better than the fine-tuned FedAvg and other
representative personalized FL methods such Ditto Li et al. (2020) and perFedAvg Fallah et al.
(2020) with default hyper-parameters in most settings.

In summary, our main contributions in this paper are three-fold.

1. We propose the FedNAS method to search for both global model and personalized model
architectures collaboratively among edge devices and show its satisfying performance in a
variety of FL settings.
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2. We investigate the role of NAS to address the challenge of data-heterogeneity in FL and
demonstrate via experimental results that it can adapt to users’ data better than existing local
adaptation and personalization schemes.

3. We experimentally show that FedNAS can achieve state-of-the-art performance for both
cross-silo and cross-device settings.

2 PROPOSED METHOD

2.1 PROBLEM DEFINITION

In the federated learning setting, there are K nodes in the network. Each node has a dataset
Dk :=

{(
xki , yi

)}Nk

i=1
which is non-IID. When collaboratively training a deep neural network (DNN)

model with K nodes, the objective function is defined as:

min
w
f(w, α︸︷︷︸

fixed

)
def
= min

w

K∑
k=1

Nk
N
· 1

Nk

∑
i∈Dk

`(xi, yi;w, α︸︷︷︸
fixed

) (1)

wherew represents the network weight, α determines the neural architecture, and ` is the loss function
of the DNN model. To minimize the objective function above, previous works choose a fixed model
architecture α then design variant optimization techniques to train the model w.

We propose to optimize the federated learning problem from a completely different angle, optimizing
w and α simultaneously. Formally, we can reformulate the objective function as:

min
w,α

f(w,α)
def
= min

w,α

K∑
k=1

Nk
N
· 1

Nk

∑
i∈Dk

`(xi, yi;w,α) (2)

In other words, for the non-IID dataset scattered across many workers, our goal is to search for an
optimal architecture α and related model parameters w to fit the dataset more effectively thus achieve
better model performance. In this work, we consider searching for CNN architecture to improve the
performance of the image classification task.

2.2 SEARCH SPACE
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Figure 2: Search Space

Normally, NAS includes three consecutive components: the search space definition, the search
algorithm, and the performance estimation strategy Hutter et al. (2019). Our search space follows the
mixed-operation search space defined in DARTS Liu et al. (2018) and MiLeNAS He et al. (2020c),
where we search in two shared convolutional cells and then build it up as an entire model architecture
(as shown in Figure 2). Inside the cell, to relax the categorical candidate operations between two
nodes (e.g., convolution, max pooling, skip connection, zero) to a continuous search space, mixed
operation using softmax over all possible operations is proposed:

ō(i,j)(x) =

d∑
k=1

exp(α
(i,j)
k )∑d

k′=1 exp(α
(i,j)
k′ )︸ ︷︷ ︸

pk

ok(x) (3)

where the weight pk of the mixed operation ō(i,j)(x) for a pair of nodes (i, j) is parameterized by a
vector αi,j . Thus, all architecture operation options inside a network (model) can be parameterized
as α. More details are introduced in Appendix A.1.1.
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2.3 LOCAL SEARCH

Following the above-mentioned search space, each worker searches locally by utilizing the mixed-
level optimization technique MiLeNAS He et al. (2020c):

w = w − ηw∇wLtr(w,α)

α = α− ηα (∇αLtr(w,α) + λ∇αLval(w,α))
(4)

where Ltr(w,α) and Lval(w,α) denote the loss with respect to the local training data and validation
data with w and α, respectively.

2.4 FEDNAS: FEDERATED NEURAL ARCHITECTURE SEARCH

Algorithm 1 FedNAS Algorithm.
1: Initialization: initialize w0 and α0; K clients are selected and indexed by k; E is the number of local

epochs; T is the number of rounds.
2: Server executes:
3: for each round t = 0, 1, 2, ..., T − 1 do
4: for each client k in parallel do
5: wkt+1, α

k
t+1 ← ClientLocalSearch(k,wt, αt)

6: wt+1 ←
∑K
k=1

Nk
N
wkt+1

7: αt+1 ←
∑K
k=1

Nk
N
αkt+1

8:
9: ClientLocalSearch(k, w, α): // Run on client k

10: for e in epoch do
11: for minibatch in training and validation data do
12: Update w = w − ηw∇wLtr(w,α)
13: Update
14: α = α− ηα (∇αLtr(w,α) + λ∇αLval(w,α))
15: return w, α to server

We propose FedNAS, a distributed neural architecture search algorithm that aims at optimizing the
objective function in Equation 2 under the FL setting. We introduce FedNAS corresponding to four
steps in Figure 1: 1) The local searching process: each worker optimizes α and w simultaneously
using Eq. 4 for several epochs; 2) All clients send their α and w to the server; 3) The central server
aggregates these gradients as follows:

wt+1 ←
K∑
k=1

Nk
N
wkt+1

αt+1 ←
K∑
k=1

Nk
N
αkt+1

(5)

4) The server sends back the updated α and w to clients, and each client updates its local α and w
accordingly, before running the next round of searching. This process is summarized in Algorithm
1. After searching, an additional evaluation stage is conducted by using a traditional federated
optimization method such as FedAvg McMahan et al. (2016).

2.5 PERSONALIZED FEDNAS: ALTERNATIVE LOCAL ADAPTATION

Local Adaptation. To personalize local models, we fine-tune the received global model locally.
Such local fine-tuning follows Equation 4, meaning that each client alternatively optimizes its local
architecture α and model weights w. We found from experiments that such fine-tuning can make
a local model more robust against local data heterogeneity, compared with fine-tuning and local
adaptation based on predefined model and state-of-the-art personalized optimization methods (e.g.,
Ditto Li et al. (2020) and perFedAvg Fallah et al. (2020)).

Robust to Varying Data Heterogeneity and Training Scenarios. Additional to the benefit of data
heterogeneity with personalization, an essential feature of FedNAS is that it does not require many
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rounds of hyperparameter searching to adapt to diverse data distributions. Most of the time, the
default hyper-parameter already perform very well. This property of FedNAS is attributed to three
aspects described below.

• Intuitively, the personalized architecture and weights have an additive effect in adapting data
heterogeneity, compared with solely personalizing the model weight, especially when the
architecture search space is huge.

• Most of the personalized methods are built based on an optimization framework with strong
prior assumptions, which may not always match the unknown data distribution. For example,
Ditto Li et al. (2020) and pFedMe Dinh et al. (2020) utilizes a bi-level optimization and
correlate the relationship of aggregated global model and local model by a regularization-
based method. Practitioners have to tune the λ value to make it work manually. Although
perFedAvg Fallah et al. (2020) brings the idea of meta-learning to adapt to data heterogeneity,
it is difficult for practitioners to decide the boundary of its meta-train phase and meta-test
phase when the data distribution is unknown.

• Different training scenarios also bring additional randomness and uncertainty. For example,
in the cross-device setting, the total client number and the client number per round differs
from the cross-silo setting significantly, which further increases the difficulty of model
selection and hyper-parameter tuning. FedNAS may be more resilient to this uncertainty in
practice.

To verify the advantage of FedNAS, we run experiments to search for both personalized and global
models on cross-silo and cross-device settings (see Section 3.1 and 3.2).

2.6 AUTOFL SYSTEM DESIGN

Send Thread

Abstract Communication Layer

MPI 
(Message Passing Interface)

Receive Thread

ComManager

Deep Neural Networks
(MiLeNAS, DenseNet, etc)

On-Client Learning Framework

PyTorch

ServerManager
(Aggregation, Synchronization, 

Global Statistics )
ClientManager

(Local Search, Synchronization)

Communication Protocol Component On-Device Deep Learning Component

TrainerAggregator

Figure 3: Abstract System Architecture of AutoFL

We design an AutoFL system using FedNAS based on FedML He et al. (2020b), an open-source
research library for federated learning. The system architecture is shown in Figure 3. This design sep-
arates the communication and the model training into two core components shared by the server and
clients. The first is the communication protocol component responsible for low-level communication
among the server and clients. The second is the on-device deep learning component, which is built
based on the popular deep learning framework PyTorch. These two components are encapsulated as
ComManager, Trainer, and Aggregator, providing high-level APIs for the above layers. With the help
of these APIs, in ClientManager, the client can train or search for better architectures and then send
its results to the server-side. In contrast, in ServerManager, the server can aggregate and synchronize
the model architecture and the model parameters with the client-side. More details of the system
design can be found in the Appendix.
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3 EXPERIMENTS AND RESULTS

In this section, we will introduce the experimental results of FedNAS to train a global model as well
as personalized models. All our experiments are based on non-IID data distribution among users. In
our experiments, we explore two types of non-IID data distributions, label skewed and latent Dirichlet
allocation (LDA), which are well explored in literature in FL settings Yurochkin et al. (2019), He
et al. (2020a), Arivazhagan et al. (2019).

Implementation and Deployment. We set up our experiment in a distributed computing network
equipped with GPUs. We perform experiments for two settings, FedNAS for a global model search
and FedNAS for personalized models search. For investigating the former setting, we set up our
experiment in a cross-silo setting for simplicity and use 17 nodes in total, one representing the
server-side and the other 16 nodes representing clients, which can be organizations in the real world
(e.g., hospitals and clinics). For personalized model search, we use a larger set of nodes, 21, in total,
one representing the server-side and the other 20 nodes representing clients. We pick four clients
at random for each round of FedNAS. For all these experiments, each node is a physical server
that has an NVIDIA RTX 2080Ti GPU card inside. We deployed the FedNAS system described in
Appendix 2.6 on each node. Our code implementation is based on PyTorch 1.4.0, MPI4Py 1 3.0.3 ,
and Python 3.7.4.

Task and Dataset. Our training task is image classification on the CIFAR10 dataset, which consists
of 60000 32x32 color images in 10 classes, with 6000 images per class. For global model searching
via FedNAS, we generate non-IID (non identical and independent distribution) local data by splitting
the 50000 training images into K clients in an unbalanced manner: sampling pc ∼ DirJ(0.5) and
allocating a pc,k proportion of the training samples of class c to local client k. The 10000 test images
are used for a global test after the aggregation of each round. The actual data distribution used for
this experiment is given in Table 3.

(a) Image Allocation per Client (b) Label Allocation per Client

Figure 4: CIFAR10: Label Skew Partition

For personalized model experiments, we generate non-IID data by label skewed partition. In this
partition scheme, we assign images of only five classes to each client and keep the number of images
per client the same, namely 3000, as shown in Figure 4. For each client, we further split these 3000
images into the training and testing datasets by using 75% data, i.e., 2250 images, for training, and
the other 25% as testing data. We perform this split to test personalization as it requires each client to
have their own local test dataset. We also explore latent Dirichlet distribution (LDA) based non-IID
data distribution for the personalized model setup, and details of this distribution for this experiment
can be found in the appendix A.1.2. Since the model performance is sensitive to the data distribution,
we fix the non-IID dataset in all experiments for a fair comparison.

1https://pypi.org/project/mpi4py/
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3.1 PERSONALIZED MODELS SEARCH VIA FEDNAS

To demonstrate the efficacy of FedNAS to design better local models, we compare FedNAS with
local adaption (via FedAvg), Ditto and perFedAvg. Besides FedNAS, every other method runs on
a manually designed architecture, ResNet18 Targ et al. (2016), which has more model parameters,
11M, than the 8-layer DARTs cell structure of FedNAS which has only 4M model parameters He
et al. (2020c). To evaluate the performance, we use average validation accuracy of all clients as a
performance metric.

3.1.1 RESULTS ON NON-I.I.D. (LABEL SKEW PARTITION AND LDA DISTRIBUTION)

Table 1 illustrates the performance comparison of FedNAS with local adaptation, Ditto
and perFedAvg. For a fair comparison, we fine-tune hyper-parameters of each method, such as we
fine-tune learning rate (lr) hyperparameter over the set {0.1, 0.3, 0.01, 0.03, 0.001, 0.003} of each
method. Batch size has been fixed to 32 for all these comparisons. For Ditto, in addition to lr, we
tune λ over the set of {2, 1, 0.1, 0.01, 0.001}. For perFedAvg, we tune the global lr over {0.1, 0.3,
0.01, 0.03, 0.001, 0.003} by keeping the local lr {1, 3, 5, 7, 10} times higher than the global lr.

Table 1 draws the comparison between different methods for the average validation accuracy of all
the clients metric for lda and label skew distribution. Interestingly, FedNAS outperforms all other
methods for both label skew and lda distribution which highlights its power to adapt to user’s data
well and perform better locally as well. Overall, for label skew distribution, it achieves average
validation accuracy of 91.3% which is 5% higher than the local adaptation’s validation accuracy and
2% higher than Ditto. We also observe that Ditto outperforms the local adaptaion in terms of
validation accuracy but have higher standard deviation than local adaptation.

Table 1: Average local validation Accuracy Comparison of FedNAS with other personalization
techniques)

Method Parameter size Accuracy (Label Skew) Accuracy (lda Distribution)
FedNAS 4M 0.913±0.025 0.907±0.024

Local Adaptation 11M 0.864±0.028 0.861±0.0357

Ditto 11M 0.894±0.035 0.88 ±0.032

perFedAvg 11M 0.888±0.036 0.894±0.032

(a) Local Validation Accuracy (b) Average Validation Accuracy
Distribution

(c) Average Validation Accuracy
Improvement

Figure 5: Visualization of validation accuracy of each client and accuracy improvement distribution
for personalized model search.

For detailed comparison, we compare the validation accuracies of all the clients for the best round
of label skew distribution. The best round for each method is selected as the round that provides
the highest average validation accuracy. We visualize the validation accuracy of each client 5(a),
average validation accuracy distribution 5(b) and average validation improvement distribution 5(c).
For accuracy improvement distribution, we subtract the validation accuracy of FedNAS from the
respective method for each client and plot the histogram. The improvement histogram shows that for
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one of the clients the improvement can be as high as 15% as compare to perFedAvg. As compare to
Ditto, we get 2.5% improvement for even 6 clients. On the other hand, there are only two clients,
client number 10 and 20, for which local adaptation performs slightly (2.5%) better. Although there
are some clients for which FedNAS do not perform well as compared to these methods, it is important
to note that the standard deviation of FedNAS more prominent in figure (b) is lowest and accuracy
histograms are concentrated towards the right side, whereas for other methods, these bars fall as
below as 82% accuracy.

3.2 GLOBAL MODEL SEARCH VIA FEDNAS

To investigate the performance of FedNAS to design a global model, we search a global model via
FedNAS and compare it to the well-known FL algorithm FedAvg, which runs on DenseNet Huang
et al. (2017), a manually designed architecture that extends ResNet He et al. (2016) but with higher
performance and fewer model parameters. We run both of these experiments on the same non-IID
dataset.

3.2.1 RESULTS ON NON-I.I.D. (LDA PARTITION)

0
0

0.2

0.4

0.6

0.8

0.7778

Round

(a) FedAvg
0 10 20 30 40 50

Round

0

0.2

0.4

0.6

0.8 0.8124

(b) FedNas

Figure 6: Test Accuracy on Non-IID Dataset (multiple runs) FedAvg on DenseNet vs. FedNAS

Figure 6 demonstrates the performance of FedNAS vs. FedAvg. We use a specific non-IID data
distribution given in appendix A.1.2 and keep it fixed for both experiments. For a fair comparison,
results are obtained by fine-tuning hyperparameters of each method, and each method is run three
times. Details of hyperparameter tunning can be found in the appendix A.1.4.

Figure 6(a) shows the global test accuracy during the training process of FedAvg, whereas, Figure 6(b)
reports the global test accuracy during the searching process of FedNAS. Global test accuracy has
been calculated using the 10000 test images of CIFAR10 dataset. First of all, we demonstrate the
compatibility of NAS for the data-heterogeneous FL setting. In addition to convergence of FedNAS,
we show that FedNAS can achieve higher accuracy than FedAvg during the searching process
(81.24% in Figure 6(b); 77.78% in Figure 6(a)). This 4% performance benefit further confirms the
efficacy of FedNAS. We also evaluate the searched architecture under this data distribution. We
found that each run of FedNAS can obtain a higher test accuracy than each run of FedAvg. On
average, the architecture searched by FedNAS obtains a test accuracy 4% higher than FedAvg.

Hyperparameters and visualization of the searched architecture can be found in Appendix A.1.4 and
A.1.5, respectively.

Remark. We also ran experiments on other distributions of non-IID datasets, in which FedNAS is
also demonstrated to beat FedAvg, confirming that FedNAS searches for better architectures with
a higher model performance.

3.3 EVALUATION OF THE SYSTEM EFFICIENCY

In order to more comprehensively reflect our distributed search overhead, we developed the single-
process and distributed version of FedNAS and FedAvg. The single-process version simulates
the algorithm by performing a client-by-client search on a single GPU card. As shown in Table 2,
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Table 2: Efficiency Comparison (16 RTX2080Ti GPUs as clients, and 1 RTX2080Ti as server)

Method Search Time Parameter Size Hyperparameter
FedAvg (single) > 3 days - rounds = 100, local epochs=20, batch size=64FedAvg (distributed) 12 hours 20.01M

FedNAS (single) 33 hours - rounds = 50, local epochs=5, batch size=64FedNAS (distributed) < 5 hours 1.93M

compared with FedAvg and manually designed DenseNet, FedNAS can find better architecture with
fewer parameters in less time. FedAvg spends more time because it requires more local epochs to
converge.

4 RELATED WORKS

Recently, Neural Architecture Search (NAS) Hutter et al. (2019) has attracted widespread attention due
to its advantages over manually designed models. There are three major NAS methods: evolutionary
algorithms, reinforcement learning-based methods, and gradient-based methods He et al. (2020c).
While in the Federated Learning (FL) domain McMahan et al. (2016); He et al. (2019), using pre-
designed model architectures and optimizing by FedAvg McMahan et al. (2016) is the main method
to improve model performance. To our knowledge, NAS is rarely studied in FL setting to study the
aspect of personal model search for real-time setting. Although Kairouz et al. (2019) first proposed
the concept of automating FL via NAS, the concrete method and details are never given. There are
a few works done in the direction of the use of a NAS to search for a global model, however, no
personalization exploration is provided.

For global model search, Zhu & Jin (2020) is a NAS based FL work that exploits evolutionary NAS
to design a master model but they utilize double-client sampling to make their method edge resource
friendly. Contrary to this, we exploit gradient-based NAS method, MileNAS, which is comparatively
faster and more resource friendly than the evolutionary and reinforcement-based methods. The
other work in this direction is Singh et al. (2020) that explores the concept of differential privacy
by using DARTs as a NAS solver to search for a global model. However, our proposed work uses
MileNAS solver which has an extensive analysis of its performance efficiency over DARTS given in
the original MileNAS work He et al. (2020c). Another work Garg et al. (2020) uses DSNAS which is
another gradient based NAS algorithm to search for a global model. DSNAS works on sampling a
child network from a supernetwork even in search phase whereas MileNAS solver searches over the
complete supernetwork, and therefore, has the potential to provide more freedom to clients to search
for a better and personalized architecture. Another work Xu et al. (2020) proposes a very different idea
than conventional neural architecture search where they begin with a pretrained manually designed
model and keep pruning the model until it satisfies the efficiency budget. Although they named
their work as federated neural architecture search but model search is performed on the server side
alone, none of the clients participate in searching a better model (finding architecture parameters).
Clients only participate in training the pruned model’s parameters communicated to clients by server.
Furthermore, to the best of our knowledge, we are the first work that investigate the performance of
locally searched architectures in federated NAS.

5 CONCLUSION

In this paper, we propose FedNAS, a unified neural architecture search based federated learning
framework to design a global model collaboratively. First, we study the compliance of gradient
based neural architecture search algorithm, MileNAS, with the FedAvg algorithm. We analyze its
performance for both cross silo and cross-device settings, and show its convergence for both setups.
We also investigate the proposed framework, FedNAS, from the perspective of personalization and its
role to overcome the challenge of data-heterogeneity in FL. To test data-heterogeneity, we explore
FedNAS for both label-skewed and lda-based non-IID data distributions, and show via experimental
results its superiority over other personalization methods, such as local fine-tunning, Ditto and
perFedAvg.
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