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Abstract

The recent success in using human preferences
to align large language models (LLMs) has
significantly improved their performance in
various downstream tasks, such as question
answering, mathematical reasoning, and code
generation. However, achieving effective LLM
alignment depends on high-quality human
preference datasets. Collecting these datasets
requires human preference annotation, which
is costly and resource-intensive, necessitating
efficient active data selection methods. Existing
methods either lack a strong theoretical
foundation or depend on restrictive reward
function assumptions, such as linear latent reward
functions. To this end, we propose an algorithm,
ActiveDPO, that uses a theoretically grounded
data selection criterion for non-linear reward
functions while directly leveraging the LLM
itself to parameterize the reward model that
is used for active data selection. As a result,
ActiveDPO explicitly accounts for the influence
of the LLM on data selection, unlike methods
that select the data without considering the
LLM that is being aligned, thereby leading
to more effective and efficient data collection.
Our extensive experiments demonstrate that
ActiveDPO outperforms existing methods across
various models and real-life preference datasets.

1. Introduction

Large language models (LLMs) (Google, 2023; OpenAl,
2023; Touvron et al., 2023; Anthropic, 2023) have
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demonstrated impressive performance across various
tasks, including question answering (Taori et al.,
2023), mathematical reasoning (Wei et al., 2022), code
generation (Chen et al., 2021), and many others (Zhao
et al., 2023). However, LLMs often fall short when required
to produce responses that conform to specific formats or
align with human values (Ji et al., 2023; Anwar et al.,
2024). To address this, methods such as Reinforcement
Learning from Human Feedback (RLHF) (Ouyang et al.,
2022; Bai et al., 2022) and Direct Preference Optimization
(DPO) (Rafailov et al., 2023) use binary preference feedback
collected from human annotators, who indicate which of two
LLM responses they prefer, to better align LLM outputs with
human preferences in real-world applications. Both RLHF
and DPO require high-quality human preference datasets
to achieve effective LLM alignment. However, collecting
these datasets requires skilled human annotators, making
this process both costly and resource-intensive (Liu et al.,
2024; Carvalho Melo et al., 2024; Muldrew et al., 2024).

To overcome these challenges, recent works (Mehta et al.,
2023; Das et al., 2024; Liu et al., 2024; Muldrew et al., 2024)
have proposed methods for actively selecting a smaller
subset of preference data (i.e., triplets consisting of a prompt
and two responses) for human preference annotation while
maintaining alignment performance. Specifically, some
existing works (Liu et al., 2024; Muldrew et al., 2024) have
proposed heuristic methods for actively selecting preference
data to collect human preference feedback. However, these
methods lack a rigorous theoretical foundation and therefore
do not guarantee reliable performance across different
tasks and LLMs (see Fig. 1 in Section 4). In contrast,
some works (Mehta et al., 2023; Das et al., 2024) have
developed methods with theoretical guarantees to achieve
sample-efficient LLM alignment. However, these methods
require strong assumptions about the underlying latent
reward function (e.g., linearity), which may not hold in the
context of LLM alignment. Furthermore, another potential
limitation of some existing works (Mehta et al., 2023; Das
et al., 2024; Liu et al., 2024; Muldrew et al., 2024) is
their dependence on a separate reward model or a selection
method that works independently of the LLM being aligned.

These limitations naturally lead to the following question:
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How can we develop an active preference data selection
algorithm that is both theoretically grounded and
practically effective? To answer this, we propose
ActiveDPO, a novel active preference data selection
algorithm. ActiveDPO is built on DPO, which has shown
comparable or superior empirical performance to RLHF
while avoiding the complexity of reward model training and
the reinforcement learning process, making it a compelling
choice for aligning LLMs with human preferences (Rafailov
et al., 2023). Furthermore, ActiveDPO uses a theoretically
grounded preference data selection criterion for complex
non-linear reward functions while leveraging the LLM itself
as a reward model to guide preference data selection.

Specifically, we establish an upper bound on the error
in estimating the reward difference between any pair of
responses and their ground-truth reward for a given prompt,
expressed in terms of the gradient of the current aligned
LLM (Proposition 1 in Section 3). This result enables us
to leverage the LLM’s gradient to derive an uncertainty
measure as a criterion for preference data selection, thereby
explicitly accounting for the LLM’s influence on the data
selection process. To improve the efficiency and practicality
of ActiveDPO, we introduce novel techniques, such as batch
selection and random projection with LoRA gradients (more
details are in Section 3.3), to reduce computational cost and
storage requirements. These additional techniques make
ActiveDPO both theoretically grounded and practically
effective.  Finally, extensive experiments demonstrate
that ActiveDPO consistently outperforms existing methods
across various LLMs and datasets.

The key contributions can be summarized as follows:

e In Section 3, we propose a novel algorithm,
ActiveDPO, that uses a theoretically grounded
active preference data selection criterion for LLM
alignment. By leveraging an implicit reward function
parameterized by the LLM itself, ActiveDPO ensures
that the selected preference data is better suited to the
specific LLM being aligned.

¢ In Section 3.3, we introduce techniques such as batch
selection and random gradient projection to reduce the
computational and storage requirements of ActiveDPO,
making it more practical for large-scale models.

e In Section 4, we empirically demonstrate that
ActiveDPO achieves efficient and effective active
preference learning across diverse LLMs and datasets.

2. Problem Setting

In LLM alignment, we start with a preference dataset D in
which each data point contains a triplet (z,y1,y2) where
x € X isapromptand y;,y2 € Y are two responses (which
can be written by humans or generated from LLMs). The

X and Y are prompt space and response space respectively.
Denote n as the number of data points in D. We aim to
find a k-sized subset D® C D and ask human annotators
to provide binary preference feedback on the responses
denoted as y,, > y; | « where y,, and y; denote the
preferred and rejected response respectively. Note that y
is not the human preference label but the corresponding
response for the prompt. We train the LLM to generate
responses that better align with human preference on the
labeled data subset D' using DPO. The objective is to obtain
an LLM that gives the most desirable responses (defined by
win-rate and reward score as we will discuss later) given the
fixed labeling budget of k.

Direct preference optimization (DPO). We first start
by discussing the DPO method, as introduced in Rafailov
et al. (2023). DPO starts by training a LLM through
supervised fine-tuning (SFT) on a carefully curated,
high-quality dataset that is specifically tailored to a
particular downstream task, resulting in a model, denoted
by mspr. The objective of the SFT is to enable the LLM
to effectively follow instructions for a specific downstream
task. Let my(y | =) denote the conditional log-likelihood
of generating y given the prompt x, where the model
is parameterized by #. Within DPO, an implicit reward
function is defined as follows:

mo(y | )

7“9(337y) = Wref(y | x)7

where 7 is the reference LLM, which is usually chosen
to be the SFT LLM 7sgr and [ is the regularization
hyper-parameter used in DPO. Based on this implicit reward
function, DPO uses Bradley-Terry-Luce (BTL) to model
the preference feedback. Specifically, BTL assumes that
the probability of response y; being preferred over yo,
conditioned on the prompt z, is given by:

exp (Tg(x, yl))

exp (T@(ﬂ?, yl)) + exp (Tg(x, yl)) (D
= CT(TG(:E?yl) - T'g(éﬂ, y2))7

Py = y2 | x) =

where o(z) = 1/(14+exp(-z)). DPO uses the following
training objective to train the LLM:

Lppo(mg, Trer)

= ~E oy y)~0! 1080 (r0(Yw | 2) —ro(yr | 2))] .

(2)
3. Algorithm for Active Direct Preference
Optimization: ActiveDP0O
Overview of ActiveDPO. ActiveDPO starts with

generating responses from an initial data D, which consists
of instructions/prompts tailored to a specific task. We use
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the initial LLM model (i.e., wspr) to obtain the responses
to form the dataset D; which forms the pool of selection
(Section 3.1). After that, we select a batch of triplets
(x,y1,y2) with size b according to our selection criterion
(Section 3.2). Then, we ask the human annotator to provide
preference feedback on the responses for the selected batch
of data to obtain the labeled dataset. Finally, we train the
LLM with the DPO training objective on the newly labeled
dataset. We do this process for 7’ iterations and obtain the
final trained LLM which can generate responses that align
with human preference.

ActiveDPO Active Direct Preference Optimization

1: Input: Initial dataset D; Reference LLM 7t = 7TsET;
Initial LLM g, = mspr; parameterized by 6p; Iteration
T'; Batch size B;

2: fort=1,...,T do

3:  Generate m pairs of responses from previous LLM

y1,Y2 ~ mp,_, (y | ) for each x € D to obtain the

dataset D;.

D; =0

forb=1,...,Bdo
Select the (7}, y; 1, Uy ) using Eq. (3)

Df = Df U {(xia yé,la ylg,2)}
Update V;_; according to Eq. (4).
end for
10:  Obtain the preference feedback v, > y; | « for each
data point in D to get the labeled dataset D!

11:  Update the LLM 7, , using D! with the DPO

training objective in Eq. (2) to obtain 7y,

12: end for

13: Return the trained LLM 7y,

D A A

3.1. Generation of the prompt-responses dataset

In each iteration of ActiveDPO, we regenerate the responses
for each instruction/prompt in the dataset for two main
reasons. Firstly, even though there are some tasks that
already have responses written by humans or generated by
powerful LLMs, most tasks do not have good responses
for each instruction at the start. Generating responses is
necessary for these tasks before asking human annotators to
provide preference feedback on these responses. Secondly,
even though some tasks already have responses for each
instruction, these responses are not updated as the LLM
improves over time. This is undesirable since the LLM will
not be able to learn to generate better responses (compared
to the responses provided in the original dataset) as the
LLM improves. Consequently, we generate new responses
for all the instructions using the latest model obtained from
ActiveDPO, so that ActiveDPO training is able to further
improve the LLM with higher-quality responses.

3.2. Selection of data to get human preference
annotations

The selection strategy of our ActiveDPO is designed by
drawing inspiration from the principled neural dueling
bandits (Verma et al., 2025a), which has derived an
uncertainty quantification on the human preference for
the reward function that is modeled using the neural
network (NN). Inspired by this, we derived the uncertainty
quantification on human preference for our LLM trained
by DPO and show its empirical effectiveness in Section 4.
Consequently, our selection strategy is theoretically
grounded and provides empirical effectiveness instead of
using the heuristic-based method (Muldrew et al., 2024).

Proposition 1 (Estimation error of the reward difference
(informal version of Proposition 2)). Let ry denote a fully
connected neural network with a width of m in each layer
and depth of L. Let § € (0,1). Assume that there is a
ground true reward function r and that human preference is
sampled from BTL preference modeling. As long asm > M,
then with a probability of at least 1 — 6,

[ret—l (l‘,yl) - r9t71(x7y2)] - [T(x?yl) - T(l‘,yg)] <

1
el (Vro,_ (@, 1) = Vro,_ (2, 2) -1 +2

forallx € X and y1,y2 € Y, t € [T| when using the DPO
objective defined in Eq. (2) with an additional regularization
term to train this reward function rg, ,. Vi_i =

t—1
2 p=1 2wy ooy P (T Y1, Y2) 01 (2, y1,y2)  and

(ptfl(‘r7 Y1, 92) = ﬁ(vret—l ({L‘7 yl) - vret—l (.’L’, y2))
The definition of M, vr, € can be found in the Appendix A.

Proposition 1 is based on the theoretical results from neural
dueling bandits (Verma et al., 2025a). This result suggests
that if || L (Vrg,_, (z,y1) — Vre,_, (2, yg))||vf__11 is smaller,
the estimation error of the reward difference will be smaller.
Note that the reward difference directly decides the human
preference according to the BTL preference modeling as
shown in Eq. (1). Consequently, the reward function
T9, , Will have a more accurate estimation of the human
preference on the two responses y;,y2 given x. On the
other hand, if | X (Vrg, , (z,y1) — Vre,_, (z, yg))”Vtil1 is
large, this indicates that the reward model will potentially
have an inaccurate estimation of the human preference for
the responses and hence a higher uncertainty on the human
preference. Therefore, a natural selection criterion arises
with the uncertainty defined in Proposition 1. Based on this
selection criterion, our selection strategy selects a triplet
context and pair of arms (z, y1, y2) as follows:

T, Y1,Y2
= argmaxy .. ,ya~D\ D3 ||Vr9t—1 ($7 yl) - V’ret—l (x7 y2) HVtzll

3
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The selection strategy in Eq. (3) uses the implicit reward
function ry, , which is parameterized by the current LLM
mp,_,- Note that we remove 1/y/m from the selection
criterion and ¢;_1 since it only affects the scale of the
gradient, and the depth m is undefined for the LLM. The
selection criterion quantifies how uncertain the current
implicit reward function is on the human preference of the
response y1,y2. Specifically, a larger value of selection
criterion in Eq. (3) means that the prompt-response triplet
(,y1,y2) is more different from the previously selected
triplets. With selection criterion, our selection strategy
encourages the selection of responses that are very different
from the previous data and hence achieves exploration of
the prompt-response domain to get more informative human
preference feedback. This exploration helps improve the
implicit reward function as the reward function is trained on
human feedback on diverse data in the domains.

Note that, in addition to being theoretically grounded, our
selection strategy enjoys two other advantages. Firstly,
our uncertainty criterion is defined using the LLM that we
are training instead of some other external models used
in the existing methods (Carvalho Melo et al., 2024; Das
et al., 2024). Using uncertainty defined without the LLM
implicitly assumes that different LLMs need the same data
for preference alignment which does not hold practically (as
we will show in the experiments). Therefore, our selection
strategy is specific to the LLM used and hence is able to
select data that better suits the LLM for human preference
alignment. Secondly, our selection strategy selects data that
directly improves the reward function defined by the LLM
and hence directly improves the LLM generation, due to
the use of DPO. This strategy is in contrast to prior work
that focuses on selecting the data points to improve the
reward function that will be used in RLHF. An additional
reinforcement learning process needs to be done to obtain
the final LLM. This complication makes the data points
selected not necessarily helpful for the LLM alignment
performance as having a better reward function does not
always result in a better RL-trained LLM.

3.3. Practical consideration

Our selection criterion in Eq. (3) requires the computation
of gradients of the implicit reward function with respect
to the LLM parameters for each prompt-response pair,
as well as updating the LLM using the DPO training in
every iteration. These steps are computationally expensive
and require a lot of storage for storing the gradients. To
address these computational inefficiencies, we propose two
accelerations to make our selection strategy efficient which
we will describe in detail respectively.

Batch selection. In each iteration, we select a batch of
data with size B to be labeled by the human annotators.

We keep T B = k to keep the annotation budget the
same. The batch selection accelerates the selection in two
ways: 1) We only need to recalculate the gradient for each
prompt-response pair (i.e., Vrg,_, (z,y)) every B selections
of data instead of every selection; 2) We only need to update
the model via DPO training every B selections.

Batch selection dramatically reduces the computational
cost of our selection strategy, however, at the cost of the
loss of information. Specifically, the data selected in the
current batch will be different from previous batches but the
selection within the batch may not enjoy similar results. To
remedy this, we propose to update V;_; within the batch.
Specifically, after a data point is selected, we update V;_
using the new data point (2, yf 1, o)

Vicir=Vi1+ S@tfl(xia yzt;,p yé,Z)(ptfl(xzv yli,l? yzt;,z) .
“
Consequently, the next data point to be selected will also be
different from the current one even though they are in the
same batch, hence further encouraging exploration.

LoRA gradient with random projection. The
computation of gradients in our selection criterion is
expensive and requires a large storage space. Specifically,
the full gradient of the LLM is the same size as the LLM
model weight and we need to calculate and store the
gradients for all data points. To reduce both computational
cost and storage requirement, we propose to use LoRA (Hu
et al., 2022) to obtain the gradient efficiently. However,
the LoRA gradient is still 1 — 2% percent of the full
model weight which still requires a lot of storage and
computation for our selection criterion. Consequently, we
apply random projection to further reduce the gradient to a
fixed dimension. This random projection is justified by the
Johnson-Lindenstrauss lemma (Dasgupta and Gupta, 2003)
which shows that the inner product of the original vector
can be approximated by the inner product of the projected
vector via random projection. Consequently, we can reduce
both the computational and storage costs dramatically
without sacrificing too much on the selection performance
(as shown in Section 4). Similar techniques have been used
in Xia et al. (2024). The random projection also reduces
the computational cost of the matrix inverse in V;_1 in our
selection criterion.

Gradient normalization. Existing work (Xia et al., 2024)
has demonstrated that the LLM gradients will have lower
magnitudes in their o norms when the training data are
longer in their length (i.e., sentence length). This means
if we use the selection criterion defined in Eq. (3), we will
have a higher chance of selecting training data with shorter
lengths. This is undesirable, especially for the application of
question-answering in which humans may prefer medium to
long answers that contain more elaboration on the response.
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To remedy this, we propose to normalize all the gradients
to the unit norm (i.e., [ norm being 1) before we use these
gradients to calculate the selection criterion, consequently
avoiding the criterion favoring shorter sentences. We have
empirically shown the effectiveness of normalization before
calculating the selection criterion in Section 4.

4. Experiments

In our experiments, we show the effectiveness of our
selection criterion in terms of selecting data to train
an LLM that can generate responses that better align
with human preference. @~ We compare with multiple
existing baselines using two widely-used LLMs across two
preference alignment tasks.

Datasets. We consider two tasks that require human
preference alignment: 1) TLDR summarization dataset (Liu
et al., 2020; Volske et al., 2017) which contains posts
from Reddit and the corresponding summarization written
by humans; 2) WebGPT dataset (Nakano et al., 2021)
which is a long-form question-answering dataset that is
marked suitable for human preference alignment. These two
datasets contain human preference feedback from human
annotators and will be used later as an oracle to obtain real
human preference feedback.

Models. We performance experiments using two
different LLMs: Llama-2-7B (Touvron et al., 2023) and
Gemma-2B (Team et al., 2024). Using these two LLMs is
able to show the effectiveness of alignment on two different
model families (i.e., Llama and Gemma) and two different
model sizes (i.e., models with 7 billion parameters and 2
billion parameters).

Baselines. We compare 4 different selection criteria in
our experiments: 1) Random: randomly select data points
from the dataset to get human preference feedback; 2)
APO (Das et al., 2024): a theoretically grounded method
in the setting of RLHF alignment. Their theoretical results
are based on the assumption of a linear reward function
and is designed for RLHF training; 3) APLP (Muldrew
et al., 2024), an active learning method for DPO that uses
heuristic uncertainty/certainty quantification to select the
data to be labeled; 4) Ours: our ActiveDPO. Note that,
for fair comparisons, we only vary the way to select data
points to be labeled for different methods and share the
same model training and data labeling pipeline among
different baselines. Consequently, the only variable that
leads to different performance is the way to select data
among different methods. !

Obtaining human preference feedback. As new

'Note that, for APO, we implement the original algorithm (Das
et al., 2024) which does not regenerate responses using the new
models.

responses are generated by the updated model in each
iteration, these responses are not part of the original
preference dataset and hence do not have human preference
feedback. To make our experiments feasible, we train a
reward model on the original human preference feedback
and use this model as an oracle to provide the preference
feedback for newly generated responses in each iteration.”

Evaluation. The reward model can be used to evaluate
the extent to which the LLM generates responses that align
with human preference. To evaluate the performance, we
use the trained LLM to generate multiple responses for
100 number of prompts sampled from the dataset for each
task. After that, we use the reward model to obtain the
average reward for all the prompt-response pairs and report
the performance. Ideally, if the LLM can generate responses
with higher rewards, it aligns better with human preference
since the reward model is trained on real human preference.

Hyper-parameters. For each task, we train the initial
LLM with supervised fine-tuning with the SFT dataset
provided in each task for 1 epoch with the learning
rate of 2e — 05. In each iteration, we randomly select
1000 prompts from the dataset to generate 3 responses
for each prompt. Consequently, each prompt will form
3 corresponding triplets (z,y1,y2) (ie., (3) number of
pairwise combinations) and hence 3000 data points in the
dataset D;. We select 50 data points in each iteration using
different selection strategies. We train the model using DPO
objective based on the labeled dataset for 4 epochs with
the learning rate of le — 4. As for the LoRA gradient,
we use the rank of 128 with a of 512. We project all the
LoRA gradients to 8192 dimensions, a dimensionality that
balances performance and computational costs as we will
show later.

Results.  We have provided the comparison of the
average reward of the responses generated by the LLM
trained on the data selected by different selection strategies
in Fig. 1. The LLM trained with data selected by
our ActiveDPO consistently generates responses with higher
rewards compared to other selection strategies across
different LLMs and datasets. Consequently, our ActiveDPO
outperforms all other baselines in selecting data for a fixed
number of labeling budgets. APLP performs well on the
Gemma model, however, it performs even worse than
random on Llama-2. This is likely due to the heuristic
design of the uncertainty quantification method in APLP,
which does not work consistently well in different settings.
Specifically, APLP uses the difference of the estimated
rewards for two responses given a prompt as part of the

2We use the reward function that is already trained and
available in HuggingFace. Specifically, we use the model
from OpenAssistant (2024a) for TLDR dataset and OpenAssistant
(2024b) for WebGPT dataset.
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selection criterion. This criterion allows APLP to select
triplets with incorrect human preference predicted by the
estimated reward function in the early stage when the reward
function is inaccurate, hence improving the reward function
estimation. This partially explains why APLP performs
well in the first iteration for both TLDR and WebGPT on
the Llama-2 model. However, as more human preference is
collected, the reward function estimation is more accurate,
and hence, the triplet with a large reward difference can
be data points with correct human preference predicted
by the estimated reward function and with a large reward
margin, which do not help to improve the reward function.
Consequently, APLP performs badly in the later iterations.
On the other hand, APO also performs inconsistently in
different settings. This is likely due to the unrealistic
assumption of the reward function, which does not hold
in real applications (e.g., the implicit reward function in
DPO is non-linear).

25 4 Random 15—~ Random

APO

2.0
—4— APLP

£ 15 —4 ActiveDPO
=

Reward
o
0

&
10
05

0 1 2 3 4 5 0 2 4
Iteration Iteration

(a) TLDR with Llama-2-7B (b) TLDR with Gemma-2B

0.0 —# Random
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Llama-2-7B Gemma-2B

Figure 1: Comparison of average rewards for responses
generated by the LLM using different selection strategies.

The impact of LLM on data selection. We perform
additional experiments to verify that different LLMs
indeed need different data to achieve better performance.
Specifically, we train the Gemma-2B model on two different
SFT datasets to obtain two different LLMs: Model 1 and
Model 2. The way we construct the 2 SFT dataset is by
using the sentence-BERT (Reimers and Gurevych, 2019) to
transform each data point to embedding and use k-means to
cluster the dataset into two subsets using the embeddings.
We obtain 3 different DPO data subsets using the same
approach. We train these two LLMs on 3 DPO data subsets
respectively, and evaluate their performance. From Fig. 2,
Model 1 and Model 2 achieve very different performance
using these 3 DPO data subsets. Specifically, Model 2
achieves the best performance on Dataset 2, while Model
1 achieves the worst performance on the same dataset (i.e.,
in terms of the win-rate). Consequently, the choice of

model has a substantial impact on performance and must be
considered when selecting data for achieving better model
performance. Intuitively, this is because Model 1 and Model
2 are trained on very different SFT dataset, and hence
require different new data to make up what they missed
in the previous SFT fine-tuning.

0.84 N Model 1
B Model 2

2.1
. Model 1
50 '™ Model2
: 0.82
19 < 0.80
0 076 %o 1 2

1 2
Dataset ID

Reward
Win-rate

Dataset ID

(a) Reward (b) Win-rate

Figure 2: Different models require different data to achieve
good alignment performance. We train the Gemma model
using two different SFT datasets to obtain Model 1 and
Model 2. We construct 3 different human preference
datasets and perform DPO training on these 3 datasets for
these two models respectively.

Effect of random projection on the performance. Our
method uses random projection to reduce the dimensionality
of the LoRA gradients, reducing the storage requirement
and computational cost for our ActiveDPO (as described
in Section 3). To further study the effect of random
projection to the performance of our ActiveDPO, we
perform experiments on using different dimensionalities
for the random projection and evaluate the performance
of our ActiveDPO. The results in Fig. 3 show that a lower
dimensionality leads to poorer performance of ActiveDPO.
However, when the dimensionality is 8192 or above,
the performance of ActiveDPO does not improve as a
larger dimensionality is used. Consequently, we use the
dimensionality of 8192 across all our experiments to achieve
good performance while keeping the computational cost and
storage requirement low.

Reward
- ~

3 —— 1024
8192 8192
—$— 32768 —4— 32768

200 400 600 800 200 400 600 800
Number of data selected Number of data selected

(a) Reward (b) Win-rate

Figure 3: Effect of Random Projection Dimensionality of
LoRA gradients.

The effect of the normalization of the gradient on the
performance. We perform experiments to verify the effect
of normalizing the gradient in our ActiveDPO. Specifically,
as described in Section 3, we normalize LoRA gradients to
unit-norm before we use them to calculate the selection
criterion. We perform the selection of data using our
selection strategy with gradient normalization compared
to the one without gradient normalization. Fig. 4 shows the
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performance of our ActiveDPO with/without the gradient
normalization on WebGPT dataset using Gemma-2B model.
These results show that normalizing the LoRA gradients
helps to improve the performance of our selection strategy.
As described in Section 3 our method will not favor the data
points with shorter responses compared to the ones without
normalization. Long responses with clear reasoning may
sometimes be preferred by humans instead of shorter ones.
Consequently, our ActiveDPO with gradient normalization
performs better. We have included additional results for the
TLDR dataset in the Appendix in which normalization does
not affect the performance by much.

0.75

o6 / 070

B
3
=
g-o0s8
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Normalization
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g /
£ 0.65
=
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Number of data selected

(a) Reward (b) Win-rate

Figure 4: Effect of normalizing LoRA gradients on the
performance of ActiveDPO.

5. Related Work

Learning from human preference feedback has been
extensively studied for over a decade (Yue and Joachims,
2009; Fiirnkranz et al., 2012; Christiano et al., 2017; Zhu
et al., 2023; Verma et al., 2025a). In this section, we review
work on dueling bandits, active preference learning, LLM
alignment, and active LLM alignment, which are most
relevant to our problem.

Dueling Bandits. One of the earliest works (Yue
and Joachims, 2009; 2011; Yue et al., 2012) considers
finite-armed dueling bandit problem in which the learner’s
goal is to find the best action using available pairwise
preference between two selected actions. Several follow-up
works considers different settings involving different criteria
for selecting the best action (Zoghi et al., 2014b;a; Ailon
et al., 2014; Komiyama et al., 2015; Gajane et al., 2015) and
we refer readers to (Bengs et al., 2021) for a compressive
survey covering these details. The standard dueling bandits
has been extended to different settings, such as contextual
dueling bandit setting (Saha, 2021; Bengs et al., 2022; Di
et al., 2023; Li et al., 2024; Verma et al., 2025a;b) and
cascading bandits (Verma et al., 2019; 2020a;b).

Reinforcement Learning with Human
Feedback. Preference feedback has also been extensively
studied in reinforcement learning (Fiirnkranz et al., 2012;
Akrour, 2014; Christiano et al., 2017; Zhu et al., 2023)
introduced preference-based policy iteration, a method that
relies solely on preference feedback to guide reinforcement
learning, with subsequent developments by (Akrour, 2014).
(Christiano et al., 2017) demonstrated the effectiveness of

human preference feedback in training agents for Atari
games and simulated robot locomotion. On the theoretical
side, research has progressed from bandit settings to
reinforcement learning (Zhu et al.,, 2023), providing
deeper insights into the optimal use of preference feedback
for decision-making and policy optimization. We refer
readers to a survey on preference-based reinforcement
learning (Wirth et al., 2017) for more details.

LLM Alignment. Recent works have introduced methods
like Reinforcement Learning from Human Feedback
(RLHF) (Christiano et al., 2017; Stiennon et al., 2020;
Ouyang et al., 2022; Bai et al., 2022; Lee et al., 2024)
and Direct Preference Optimization (DPO) (Rafailov et al.,
2023) to align LLMs with specific formats or human values.
For a comprehensive overview of various aspects of LLM
alignment, we refer readers to surveys on the topic (Ji et al.,
2023; Anwar et al., 2024).

Active LLM Alignment. Actively select preference queries
for a human to provide relative preferences between two
queries allows efficiently learn reward functions that capture
human intent. Some of works has already considered
actively selecting queries in domain like autonomous
(Sadigh et al., 2017; Biyik and Sadigh, 2018). Recent
work on active preference data selection for LLM alignment
has explored both heuristic methods (Carvalho Melo et al.,
2024; Muldrew et al., 2024) and approaches with theoretical
guarantees (Mehta et al., 2023; Das et al., 2024). A
key distinction among these recently proposed theoretical
methods lies in their data selection strategies. On the other
side, existing methods with theoretical guarantees (Mehta
et al., 2023; Das et al., 2024) are based on the assumption
of a linear latent reward function, which may not hold in
real-world applications such as LLM alignment in which
reward functions are often highly non-linear and complex.

6. Conclusion

In this paper, we propose a data selection method for
actively selecting data to obtain human preference feedback
for LLM alignment, aiming to achieve better alignment
performance with as few annotations as possible. To
this end, we introduce a theoretically grounded method,
ActiveDPO, and demonstrate that it achieves superior
alignment performance under the same labeling budget
across different models and datasets. Notably, the selection
criterion in ActiveDPO requires computing the gradient of
the LLM with respect to model parameters for each data
point, which is computationally expensive and demands
substantial storage for storing gradients. We propose
several techniques to improve the efficiency of our method.
Although further efforts could be made to accelerate
gradient computation, this is beyond the scope of the current
work and is left for future research.
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A. Appendix
A.1. Computational resources, datasets and models

Experiments are run on a server with AMD EPYC 7763
64-Core Processor, 10086GB RAM, and 8 NVIDIA L40
GPUs.

Dataset license. TLDR dataset: MIT License; WebGPT
dataset: Apache License 2.0.

Model license. Llama-2: LLAMA 2 Community License
Agreement. Gemma: Gemma License.

A.2. Additional experimental results
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Figure 5: Comparison of win rates between DPO-trained
LLM responses and initial LLM responses using different
selection strategies.

Fig. 5 shows the win-rate of different selection strategies.
In general, our ActiveDPO still outperforms other selection
strategies in the last few iterations.

A.3. Proofs for Proposition 1

Define the following objective function:

Lo =-— Y [logo(relu | 2) —rolu | 2))]

m
(Z,Yw,y1)~D!
MO — 6
|| 0|| )

> 5)

Define H as the NTK matrix and v following the same
definition in Verma et al. (2025a). Define K as the size of
the selection dataset D? in each round.

We make the following assumption:
Assumption 1. We assume that

M am = inf$€X7y17y2€y O'(’I"(H?, yl) - ’I"(Z‘, yQ)) > O’

* the reward function is bounded: |r(z,y)| < 1,Vz €
Xyel,

10
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e there exists \g > 0 s.t.H = \oI, and

e the reward function takes a vector z (which is the
representation vector for the concatenation of x and y)
as input and z satisfies: ||z||o = 1 and [z]; = [2]44/2
forallz € X andy € ).

A

H}L

Denote 7;—1(x,y1,y2) =

@(x,yl,yg)HV:l where
el y12) = 7= (Vre(@,y1) — Vrg,(z,y2)) and
Vi = S0 Y oy P41, Y2) (2, 41, ya) +
AT We give the following Lemma, which is a direct

K
e)gtenswn from Theorem 1 of Verma et al. (2025a):

Lemma 1. Given that Assumption 1 holds, let
§ € (0,1), emy = Cm YS/logmL3(L)4/3

for some absolute constant C > 0. As long as
m > poly(T, L, K,1/k,,1/Xo,1/X,log(1/0)), then with
probability of at least 1 — 9,

[Tet,—l(z7y1) - Tgt_l(l’7y2)] - [T‘(I, yl) - T(I7y2)]

S VTEt—l(xa Y1, y2) + Em,t

Vo € X and y1,y2 € V,t € [T]| when using the objective
defined in Eq. (5) to train this reward function rg, ..

Proof. This Proposition is immediately true by
concatenating the prompt x and response y to replace
the input used in Theorem 1 of Verma et al. (2025a) and
instantiate the link function in Verma et al. (2025a) as the
sigmoid function. Specifically, we assume that the reward
takes the representation vector z of the concatenation
of x and y as input and assume that this z satisfies the
corresponding conditions in Assumption 1.

Denote o—1(z,y1,Yy2)

%}L”@tfl(x»ylayQ)HVt—_ll

where @t—l(%yla?ﬁ) \/%(vlret—l(x7yl) -

vret—l (1‘,y2)) ‘/75—1
t—1

Y1 Yo e -1 Y1, 92)Pe1 (@, 41, y2) + 2L

Lemma 2. Given that Assumption [ holds, for some
absolute constant C > 0, we have that:

and

lot—1(2, y1,¥2) — Te—1(2, Y1, 42)|
< OXNTYO(t — 1) 3m =0\ flogm L% .

Proof. Following the proof of Lemma B.4 in Zhang et al.
(2021), we can show that

(6)
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for some absolute constant C' > 0. In addition, according
to Lemma 3 of Verma et al. (2025a), we have that

Vee X, ye Y tell]: =70,y (2, y)ll2

1/3
t—1 /L7/2
A )

176, (2, y)
< Ooymt'/3 logm <
Consequently, we have that

los—1(2, y1,y2) — Tr—1(z,y1,92)|

1
t—l) t—1\3 =
02 it —xClm3 logm<> Lz
VA Vvm A
= O\~ 5/6( _ 4/3m71/6 /logmL9/2

for some absolute constant C' > 0.

The result of Lemma 2 says that as long as the width m of
the NN is large enough, we can ensure that the difference
lo(z41,xt2) —T(xe,1,Te,2)] is upper-bounded by a small
constant. Consequently, we can show the following formal
version of Proposition 1.

Proposition 2 (Formal
Given that Assumption 1 holds,

version of Proposition 1).
let 5 € (0,1),
Em.t Cm~YS/logmL3(£)43 + CA=3/5(t —
1)43m=16/TogmL"/? for some absolute constant C > 0.
As long as m > poly(T, L, K,1/k,,1/X,1/X,1og(1/9)),
then with probability of at least 1 — 0,

[Tet—l(x7y1) - r9t71(x7y2)] - [T(Q?, yl) - T(l‘,yz)]

S VTo-t—l(xa Y1, 92) + gnb,t

Vo € X and y1,y2 € Y, t € [T] when using the objective
defined in Eq. (5) to train this reward function rg,_,.

Proof. Combining Lemma 1 and Lemma 2, we get that the
proposition is true. O

Remark 1. Note that the objective function of Eq. (5) is
almost the same as Eq. (5), with Eq. (5) scaling the Eq. (5)
by a constant and having an additional regularization
term. The design of Eq. (5) is for the theoretical results.
Empirically, we still use the standard Eq. (2) and adjust the
regularization by adjusting the 3 in Eq. (2).
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