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Abstract

Spatio-temporal (ST) prediction has garnered a De facto attention in earth sci-
ences, such as meteorological prediction, human mobility perception. How-
ever, the scarcity of data coupled with the high expenses involved in sensor
deployment results in notable data imbalances. Furthermore, models that are
excessively customized and devoid of causal connections further undermine the
generalizability and interpretability. To this end, we establish a frame-
work for ST predictions from a causal perspective, termed CaPaint, which targets
to identify causal regions in data and endow model with causal reasoning ability
in a two-stage process. Going beyond this process, we build on the front door
adjustment as the theoretical foundation to specifically address the sub-regions
identified as non-causal in the upstream phase. By using a fine-tuned unconditional
Diffusion Probabilistic Model (DDPM) as the generative prior, we in-fill the masks
defined as environmental parts, offering the possibility of reliable extrapolation
for potential data distributions. CaPaint overcomes the high complexity dilemma
of optimal ST causal discovery models by reducing the data generation complex-
ity from exponential to quasi-linear levels. Extensive experiments conducted on
five real-world ST benchmarks demonstrate that integrating the CaPaint concept
allows models to achieve improvements ranging from 3.7%∼77.3%. Moreover,
compared to traditional mainstream ST augmenters, CaPaint underscores the po-
tential of diffusion models in ST data augmentation, offering a novel paradigm for
this field. Our project is available at CaPaint.

1 Introduction
Deep learning methodologies have achieved groundbreaking success across a wide array of spatio-
temporal (ST) dynamics systems [28, 84, 44], which include meteorological forecasting [3, 50, 59, 92],
wildfire spread modeling [71, 20], intelligent transportation [29, 27, 87], and human mobility systems
[27, 90], to name just a few. Traditional ST dynamics approaches, based on first-principles [4, 53],
often come with high computational costs. In contrast, ST dynamic analysis methods based on
deep learning are not directly reliant on the explicit expression of physical laws but are data-driven
[28, 84, 3, 27], relying on training models with large-scale observable datasets [86, 65, 92].

In a parallel vein, numerous efforts aim to incorporate physical laws into deep networks [35, 8,
54, 31, 81], termed Physics-Informed Neural Networks (PINNs), which blend deep learning
principles with physics to address challenges in scientific computing, particularly in fluid dynamics.
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PINNs augment traditional neural network models by including a term in the loss function that
accounts for the physical laws governing fluid dynamics, such as the Navier-Stokes equations [11].
This ensures that the network’s predictions are not only consistent with empirical data but also comply
with the fundamental principles of fluid dynamics. However, the off-the-shelf PINNs often suffer
from limited generalization capabilities, primarily due to their customized loss function designs and
the neglect of specific network parameter contexts [70, 16].

To date, the data-driven deep models are still dominant in ST dynamical systems, where the numerical
simulation methods and PINNs generally lag behind. The reason may stem from the rise of large
models [1, 76, 28] and the high costs associated with collecting ST data from sensors [93, 39], which
creates a significant conflict between the increasing size of data-hungry models and the uneven,
insufficient data collection. To this end, in the ST domain, there is looming research aimed at
enhancing the causality and interpretability of models.

Unfortunately, research into causality within the field of ST dynamics is lagging. Although some
work has considered causal design, due to specific domain constraints and architectural design, it
can only enhance the tailor-made capabilities of the model for specific tasks [95, 38]. Moreover,
causal discovery tools [12, 15] applied to ST systems often confront the “curse of dimensionality”
issue during dimension reduction, despite their effectiveness in elucidating causal relationships from
statistical data [75, 47]. Furthermore, NuwaDynamics [82] for the first time proposed decomposing
causal and non-causal regions in ST sequences and enhancing the robustness and generalizability of
downstream model training by generating more potential distribution ST sequences through mixup
[100]. CauSTG [106] and CaST [95] address the issue of ST distribution shifts by implicitly modeling
the time series embeddings and employing intervention techniques to observe these shifts.

Though promising, CauSTG [106] and CaST [95] focus on modeling graph-related data, they lack
an understanding of high-dimensional observational data (Dimension D < 256). NuwaDynamics,
on the other hand, explores all environments through backdoor adjustments [51], generating a vast
number of sequences, which lead to nearlyO(T ×NM(∗)

E ) training complexity (T represents history
time step, NE andM(∗) are the number of the environmental patches and mixup, respectively).
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Figure 1: Illustration of the CaPaint overview and advantage
across SOTA ST causal model on complexity.

In light of this, we propose a gen-
eral causal structure plugin, termed
CaPaint, designed to decipher causal
regions in ST data without adding
extra computational cost, while inter-
vening in non-causal areas to boost
the model’s generalizability and inter-
pretability. Specifically, our method
employs a straightforward approach
to causal deciphering, utilizing a vi-
sion transformer architecture [33] for
self-supervised ST data reconstruc-
tion. During reconstruction, we leverage attention scores from the self-attention mechanism [23]
to map onto important causal patches, thus endowing the model with interpretability. By ranking
the entire set of importance scores, we define those with lower scores as environmental patches,
which contribute minimally to the model. Building on this, we perform causal interventions in
these environmental areas to aid the model in understanding more latent, complex, and imperceptible
distributions, thereby enhancing the overall generalizability of the model (see Figure 1). Concretely,
we mask trivial regions and perform generation using DDPM [24, 32] fine-tuned on specific ST data,
which can also be interpreted as a ST data inpainting approach.

Insight. ❶ CaPaint obeys the causal deciphering, and guided by the principle of frontdoor adjustment
[51, 52] from causal theory, CaPaint performs diffusion inpainting interventions on the environmental
(non-causal) diffusion patches while reducing the temporal complexity to a manageable O(T ×NE)

(from O(T ×NM(∗)
E ) in [82]). ❷ CaPaint performs regional inpainting in a more natural manner,

avoiding the predicament of repeatedly selecting and perturbing environmental patches. Through
diffusion inpainting [42], it generates images that are more aligned with the global distribution. ❸
CaPaint can be understood as a ST augmenter, offering a more rational concept of ST enhancement
without disrupting the inherent distribution characteristics of space and time [85]. Our major
contributions can be summarized as follow:
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• In this paper, we introduce a novel causal structure plugin, CaPaint, which leverages the concept of
frontdoor adjustment from causal theory. CaPaint enables various backbone models to learn from a
broader distribution of data while providing enhanced interpretability for the models’ predictions.

• By integrating diffusion generative models with ST dynamics, CaPaint selectively perturbs non-
causal regions while maintaining the integrity of core causal areas. This approach generates
valuable and reliable data for scenarios where high-quality data are scarce.

• We conduct extensive experiments across five diverse and representative datasets from different
domains, utilizing seven backbone models to assess the effectiveness of the CaPaint method. The
empirical results demonstrate that CaPaint consistently enhances performance on all tested datasets
and across all backbone models (3.7%∼77.3%).

2 Related work & Technical Background

Spatio-temporal Predictive Learning: Various architectures have achieved significant predictive
performance in ST domain, which can primarily be categorized as follows: CNN-based models utilize
convolutional layers to effectively capture spatial features [45, 48, 77, 9]. RNN-based models, are
capable of processing temporal sequence data and are well-suited for understanding temporal changes,
showing excellent performance in the prediction of action continuity [69, 80, 86, 72]. GNN-based
models effectively capture spatial dependencies and temporal dynamics in data, making them suitable
for complex tasks involving geographic locations and temporal changes [44, 25, 36, 17, 99, 98, 83, 14].
Transformer-based models employ self-attention mechanisms to process sequential data in parallel,
enhancing the learning of long-term dependencies, and have been used for ST data prediction in
complex scenarios [2, 19, 89, 91, 10, 88].

Causal inference: causal discovery algorithms, originally devised for unstructured random vectors
[66, 104], have progressively been adapted for ST data analysis [75, 47]. Within the extensive field
of deep learning research, the study of causal inference aims to ensure a more stable and robust
learning and reasoning paradigm. Recently, an array of techniques has been developed to delve into
the nuances of causal features [60, 61, 43, 97], identifying and eliminating spurious correlations
[21, 34, 56].

Generative models especially diffusion-based model has gained significant popularity particularly
in image and video generation [24, 64, 62]. Sampling optimization algorithms have been used to
accelerate the sampling process of diffusion models, significantly reducing the number of steps while
improving efficiency. [67, 41]. Additionally, generative models have also been applied to 3D scene
generation and point cloud processing, as demonstrated in [40, 30, 73, 74, 22, 63]

Image Inpainting is a technique used to fill in missing or damaged parts of an image. This field
can be broadly categorized into the following types. VAE-based methods: These methods leverage
Variational Autoencoders to balance diversity and reconstruction [101, 103, 26]. GAN-based methods:
Since the introduction of Generative Adversarial Networks, these methods have been widely used
for image inpainting [55, 102, 49]. Diffusion model-based methods: Diffusion models have recently
shown outstanding performance in image inpainting [46, 68, 57].

3 Methodology
In this section, we systematically introduce causal structure plugin, CaPaint. Initially, we elucidate
the methods employed in the upstream phase to delineate causal and non-causal regions (Sec 3.1).
Subsequently, we showcase the theoretical underpinnings supporting the CaPaint (Sec 3.2). Building
on this causal theory, we further engage in causal intervention within observational data (Sec 3.3).
Lastly, we demonstrate how sampling-enhanced ST observations can benefit the complexity of the
model’s on-device deployment (Sec 3.4).

Problem Formulation. In ST settings, We represent ST observations as a sequence {Xt}Tt=1, where
each observation Xt ∈ RH×W×Cin originates from these sequences. Our objective is to predict the
trajectory for the forthcoming K steps, denoted as {Xt+1}T+K

t=T , with each future state Xt+k mapped
within RH×W×Cout . Here, H and W indicate the spatial grid dimensions, while Cin and Cout define
the input and output dimensionality of the observations, respectively.
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Figure 2: The details of CaPaint. (Upper.) The initial phase of discovering causal patches. (Bottom.)
The update phase designed to eliminate spurious correlation shifts. Following the upstream training
of the ViT, a diffusion model is trained in parallel. Using the identified causal patches as conditions,
this generative model then performs inpainting for generating multiple sequences.

3.1 Causal Deciphering

To find the causal (non-causal) patches with no labels, we employ a self-supervised reconstruction
approach based on the Vision Transformer (ViT) [13] to identify key regions within ST observations.
ViT segments the image into multiple patches and calculates the relationships between them using a
self-attention mechanism. Due to no label property, we intentionally omit the use of the [Cls] token
in classification task and send data into ViT for encouraging “local-to-global” reconstruction.

Specifically, each ST data Xt, is divided into N = HW/p2 patches, where each patch xpatcht ∈
RN×(p2×Cin), with (H,W ) being the resolution of the original ST data and (p, p) the resolution of
each patch. Subsequently, each patch is mapped to a D-dimensional token through a learnable linear
layer, incorporating position embedding to enhance the model’s sensitivity to positional information.
These tokens are then fed into successive L stacked transformer blocks, as described in Equation 1:

L×

X′ = X+MSA(LN (X))︸ ︷︷ ︸
Multi-head Attention

⇒ Xout = X′ +MLP
(
LN
(
X′))︸ ︷︷ ︸

Residual Connection

 (1)

where LN denotes layer normalization, and MLP represents multi-layer perceptron. The upstream self-
supervised reconstruction task enables the model to learn intrinsic property of ST data. Navigating
the MSA mechanism [78, 96], each patch xpatcht derived from the ST observation Xt is transformed
into queries q, keys k, and values v, and then calculates the relevance of each patch to others, forming
a weighted representation that focuses on the most informative parts. The attention weights Ah

i,j

stored in the attention map Ah in each head are computed using the scaled dot-product:

set {Q,K, V } = Xtψtr, Ah = Softmax

(
QKT

√
Dh

)
=

 Ah
1,1 · · · Ah

1,N

...
. . .

...
Ah

N,1 · · · Ah
N,N


Ah

{i,j}∈1→N

(2)

where ψtr ∈ RN×3Dh are the parameter matrices, Dh represents the dimension of each head, Q,
K, and V collectively denote the sets of queries q, keys k, and values v. In our approach, the
determination of causal patches, is driven by an analysis of the attention maps A. Each row in an
attention map is normalized and represents the importance of other patches relative to the current
patch xit. However, to ascertain the overall importance of each patch across the entire input, we
aggregate the contributions by summing the values along the columns of the A. To integrate insights
across multiple heads, we sum these measures across all heads and then normalize the resultant vector
to derive a comprehensive importance score for each patch:
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S ∈ RN = Softmax

(
H∑

h=1

N∑
i=1

Ah
i,j

)
(3)

where S represents the normalized importance score vector, Ah
i,j ∈ A denotes the attention that xit

pays to xjt for each head, H is the number of heads. We sort the importance scores in S and select the
patches corresponding to the lowest K scores as environmental patches storing in Oe. The remaining
patches are considered causal patches Oc:

Oc = Topk

(
⌈C(S)× ϵ%⌉, argmax

Si∈S
{set (Ψ (Xt)))}

)
(4)

where C(S) is the counting function, ϵ represents the proportion of patches selected as causal, and
Ψ(Xt) denotes the set of patches in the ST observationXt. We identify the causal patches by locating
the indices with the highest values in S and define the non-causal parts as the environmental parts.
Our goal is to perform causal interventions on the environmental parts.

3.2 Backdoor Adjustment v.s Frontdoor Adjustment
To address issues of ST data scarcity and poor transferability, we examine the evaluation process
using a Structural Causal Model (SCM) [52], as shown in Fig 3. We represent abstract data variables
by nodes, with directed links symbolizing causality. The SCM illustrates the interaction among
variables through a graphical definition of causation, demonstrating the interconnected nature of these
elements. As depicted in the left part, NuwaDynamics employs the backdoor adjustment to enhance
the model’s generalization performance:

➠ XC ← X → X\C . The input X consists of two disjoint parts XC (causal part) and X\C (environ-
mental or trivial part).

➠ XC → Y ↚ X\C . Here, XC represents the sole endogenous parent that determines the ground
truth Y . However, in practical scenarios, X\C is also employed in predicting Y , which leads to the
formation of spurious associations.

�

�� �\�

�

���

�

� Backdoor adjustment
 Frontdoor 
adjustment

��
∗

NuwaDynamics

CaPaint

Figure 3: Different SCM architectures of SOTA
and CaPaint.

In general, a model F∅ trained using Empirical Risk
Minimization (ERM) often struggles to generalize
to the test data Dte ∼ Pte. Such distribution shifts
are often induced by variations in environmental
patches. Hence, addressing the confounding effect
caused by the environmental confounder is crucial.
Backdoor adjustment techniques are employed to
perturb the environmental components, thereby en-
hancing the model’s potential to observe a broader
range of latent distributions by forcibly perturb-
ing the environmental variables X\C (referred to
as the do-calculus [51] operator). Unfortunately,
❶ traversing all environmental variables is quite
challenging. Although NuwaDynamics uses Gaussian sampling to mitigate the issue of complexity,
controlling Gaussian sampling in temporal sequence operations is particularly difficult. It requires
meticulous adjustment of mean and variance to ensure a balance between the number of environmen-
tal samples and the training burden. ❷ Worse still, by traversing all environments, it likely violates
underlying properties, including distribution shift content and nonexistent scenarios [94]. To address
this issue, we employ front-door adjustment, as illustrated in the right half of the Fig 3:

• X̃C ← D → Y . In this structure, D serves as a confounder, creating a misleading path between X̃C
and Y . Here, X̃C represents the causal component within X̃ .

• X̃C → X̃ ∗
C → Y . X̃ ∗

C acts as the surrogate variable of X̃C and completes X̃C to align it with the data
distribution. Initially, it derives from and encompasses X̃C . Specifically, it envisions the potential
complete observations that should exist when observing the sub-counterpart X̃C . Additionally,
X̃ ∗

C adheres to the data distribution and upholds the intrinsic knowledge of graph properties, thus
eliminating any link between D and X̃ ∗

C . Consequently, X̃ ∗
C is well-suited to act as the mediator,

which in turn influences the model’s predictions (→ Y).
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In our front-door adjustment framework, we utilize do-calculus on the variable X̃C to eliminate
the spurious correlations introduced by D → Y . Specifically, we achieve this by summing over
potential surrogate observations X̃∗

C . This approach allows us to connect two identifiable partial
effects: X̃C → X̃ ∗

C and X̃ ∗
C → Y:

P
(
Y|do

(
X̃C = X̃C

))
=
∑
X̃∗

C

P
(
Y|do

(
X̃ ∗

C = X̃∗
C

))
P
(
X̃ ∗

C = X̃∗
C |do

(
X̃C = X̃C

))

=
∑
∼
X

∗
C

∑
∼
X

′

C

P

(
Y
∣∣∣∣∼X ∗

C =
∼
X

∗

C ;
∼
X C =

∼
X

′

C

)
P

(
∼
X C =

∼
X

′

C

)
P

(
∼
X

∗

C =
∼
X

∗

C

∣∣∣∣do(∼
X C =

∼
XC

))

=
∑
∼
X

∗
C

∑
∼
X

′

C

P

(
Y
∣∣∣∣∼X ∗

C =
∼
X

∗

C ;
∼
X C =

∼
X

′

C

)
P

(
∼
X C =

∼
X

′

C

)
P

(
∼
X

∗

C =
∼
X

∗

C

∣∣∣∣∼X C =
∼
XC

) (5)

P
(
X̃ ∗

C |do
(
X̃C = X̃C

))
= P

(
X̃ ∗

C |X̃C = X̃C

)
holds as X̃C is the only parent of X̃ ∗

C . With data pair

(X̃C , X̃ ∗
C ), we can feeding the surrogate observations X̃ ∗

C into our ST framework, conditional on the X̃C ,

to estimate P

(
Y

∣∣∣∣∣∼X ∗

C =
∼
X

∗

C ;
∼
X C =

∼
X

′

C

)
. Compared to previous work NuwaDynamics, CaPaint

utilizes causal regions to generate global surrogate variables in a more rational manner, circumventing
the cumbersome need to traverse environmental variables inherent in backdoor adjustments. In fact,
backdoor adjustments often likely violate underlying properties, leading to the generation of
non-existent data distributions. The broader scenarios of CaPaint will be detailed in Appendix C.

3.3 Causal Intervention via Diffusion Inpainting
Building on the principles of causal analysis outlined above, we proceed to perform interventions
on the environmental patches using diffusion inpainting, which enables us to manipulate the envi-
ronmental areas. Initially, given the unique complexities of ST datasets, we fine-tune the diffusion
parameters to adapt seamlessly to the domain-specific challenges, which enhances the accuracy of
our interventions on environmental patches. Diffusion models learn the distribution of data through a
forward noise addition process and a reverse denoising process:

q(Xt | Xt−1) = N (Xt;
√

1− βtXt−1, βtI), pθ(Xt−1 | xt) = N (Xt−1;µθ(Xt, t),Σθ(Xt, t)) (6)

where Xt represents the data state at time step t, undergoing a transformation from its previous state
xt−1, βt controls the variance of the noise added at each step in the forward process, µθ and Σθ

are neural network outputs that approximate the mean and covariance, respectively. The fine-tuning
objective of the diffusion process is designed to approximate the data distribution more accurately.
Specifically, the training objective for diffusion models, denoted as ϵθ, which predicts the noise, is
typically defined as a simplified version of the variational bound:

Lsimple = EX0,ϵ∼N (0,I),c,t∥ϵ− ϵθ
(
Xt, c, t

)
∥2 (7)

where c is the condition information. In this paper, we perform inpainting on the environmental
patches of ST data. Inspired by [42], we generate a mask image for each ST data where the causal
patches are black and the environmental patches are white. By independently sampling the causal
and environmental patches and applying the diffusion inpainting process, we are able to generate
augmented ST observation data. The detailed algorithmic process is shown in Appendix A.

Xcau
t−1 =

√
ᾱtX0 + (1− ᾱt)ϵ, Xenv

t−1 =
1
√
αt

(
Xt −

βt√
1− ᾱt

ϵθ(Xt, t) + σtz

)
(8)

Xt−1 = m⊙Xcau
t−1 + (1−m)⊙Xenv

t−1 (9)

where Xcau and Xenv denote causal patches and environmental patches, m is a binary mask matrix,
αt represents the scaling factor at each diffusion step, determining the variance retained in the
transition from Xt−1 to Xt. The cumulative product ᾱt =

∏t
i=1 αi represents the accumulated

scaling effect from the T = 0 to step t. Equation 9 illustrates the merging of environmental patches
and causal patches. Finally, the enhanced ST observation data are stored within our temporal sequence
repository to bolster the downstream backbone.
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3.4 ST Sequence Sampling Modeling

Previous work [82] assumed that the closer the time point is to the present, the greater its influence,
and thus used Gaussian sampling to select more ST data closer to the current time point. However,
we argue that uniform sampling can better enhance the model’s generalization ability. To enhance
computational efficiency while ensuring prediction accuracy, we employ a ST sequence modeling
approach that samples at each time point with a fixed probability controlled by the hyperparameter p.
This method allows us to sample from both original and generated data at each time point, thereby
creating a new spatiotemporal sequence. We use two hyperparameters: p, which controls the sampling
probability, and r, which determines the number of generated spatiotemporal sequences, achieving
an optimal balance between computational efficiency and prediction accuracy. The specific sampling
process can be represented by the following equation:

X ′
t = Sample(Xt, p, r) (10)

where Xt represents the collection of original and generated data at time point t, and Sample(Xt, p)
denotes the dataset obtained by sampling fromXt with probability p. The hyperparameter p is directly
set as the sampling probability, while r is used to specify the number of generated ST sequences.

4 Experiments

In this section, we will validate the effectiveness of our proposed causal structure plugin, CaPaint.
We design four research questions (RQs) to comprehensively evaluate the performance of CaPaint:
RQ1: Does CaPaint effectively enhance model performance and applicability? RQ2: How does
CaPaint perform in data-scarce scenarios? RQ3: How does the performance of CaPaint compare
with other augmentation methods? RQ4: Is CaPaint effective for long-term time step predictions?
Through these research questions, we aim to validate the effectiveness and advantages of CaPaint in
handling ST data from multiple perspectives.

4.1 Experimental settings

Datasets. We extensively evaluate our proposal using a diverse range of benchmark datasets spanning
multiple fields, include FireSys [7], SEVIR [79], Diffusion reaction system (DRS) [6], KTH [58] and
TaxiBJ+ [37]. Specifically, FireSys represents fire dynamics, SEVIR covers meteorological events,
DRS involves physical control systems, KTH focuses on human motion dynamics, and TaxiBJ+ is a
transportation dataset. Detailed information can be found in the Appendix B.

Backbones and Metrics To validate the generalizability of CaPaint, we select multiple model
frameworks for our experiments, including the classic model like ConvLSTM [65], PredRNN-V2
[86], Vision Transformer (ViT) [13], MAU [5], the efficiency-focused SimVP [18], and some of the
latest models like MmvP [105] and Earthfarsser [92]. Our evaluation metrics include mean absolute
error (MAE), mean squared error (MSE), and structural similarity index measure (SSIM). Detailed
information can be found in the Appendix D.

MAU+CaP

MAU

SSIM

KTH

TaxiBJ+

SEVIRFireSys

DRS

0.

3

0.

5

0.7

Ground  

truth

++CaPaint
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+CaPaint

PredRNN-V2

TaxiBJ+ Time Step Sevir

Figure 4: Visualization of prediction results for TaxiBJ+ and SEVIR datasets. The left side shows
the predicted results of the last 5 frames for TaxiBJ+. The middle presents the results of long-term
predictions for SEVIR, displaying the last five frames from step 10 → step 20. The right side
compares SSIM metrics with and without the incorporation of CaPaint.
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Table 1: This table showcases the results (five runs) differences between using the CaPaint concept (+CaP)
and not using it (Ori) across various datasets. All MAE and MSE values are multiplied by 100. Blue and Red
backgrounds indicate the percentage improvement (reduction) in MAE and MSE, respectively.

Backbone
(10 → 10)

Metric TaxiBJ+ KTH SEVIR DRS FireSys

Ori +CaP Ori +CaP Ori +CaP Ori +CaP Ori +CaP

ViT [13]
MAE 16.59 14.54 32.03 29.52 18.69 17.56 13.59 7.52 17.32 15.97
MSE 11.40 8.89 36.11 32.79 9.93 9.16 6.21 1.41 23.40 21.06
∆ 12.4% ↑ 22.1% ↑ 7.8% ↑ 9.2% ↑ 6.1% ↑ 7.7% ↑ 44.7% ↑ 77.3% ↑ 7.8% ↑ 10.1% ↑

Earthfarsser [92]
MAE 14.57 12.75 23.56 20.59 15.23 14.47 2.03 1.44 17.15 16.29
MSE 9.94 7.83 16.84 14.07 6.75 6.01 4.09 2.24 23.37 21.94
∆ 12.5% ↑ 21.2% ↑ 12.6% ↑ 16.4% ↑ 5.0% ↑ 10.9% ↑ 29.1% ↑ 37.8% ↑ 5.1% ↑ 6.1% ↑

Mmvp [105]
MAE 17.41 16.17 30.62 27.57 20.67 17.21 15.05 11.02 19.37 18.16
MSE 14.22 12.29 27.31 22.37 8.45 7.26 4.11 2.32 26.09 24.97
∆ 7.1% ↑ 13.6% ↑ 10.0% ↑ 18.1% ↑ 16.7% ↑ 14.1% ↑ 26.8% ↑ 43.6% ↑ 6.2% ↑ 4.3% ↑

ConvLSTM [65]
MAE 18.22 16.21 22.77 20.03 20.51 18.41 5.43 3.89 22.22 10.08
MSE 16.79 14.67 27.37 25.15 12.12 11.41 0.64 0.31 28.64 26.44
∆ 13.4% ↑ 12.6% ↑ 12.1% ↑ 8.1% ↑ 10.2% ↑ 5.9% ↑ 28.3% ↑ 51.6% ↑ 9.6% ↑ 7.6% ↑

PredRNN-V2 [86]
MAE 14.18 13.05 26.73 23.64 17.94 16.26 8.76 7.98 18.26 16.14
MSE 9.60 7.89 21.45 19.11 8.54 7.73 4.37 4.18 24.71 23.12
∆ 8.0% ↑ 16.6% ↑ 11.6% ↑ 10.9% ↑ 9.3% ↑ 9.4% ↑ 8.9% ↑ 4.3% ↑ 11.6% ↑ 6.5% ↑

MAU [5]
MAE 23.28 20.96 29.54 27.82 25.07 24.14 11.84 9.97 20.67 18.65
MSE 20.46 16.60 30.19 27.84 15.43 14.34 5.28 4.66 30.89 28.91
∆ 10.0% ↑ 18.9% ↑ 5.9% ↑ 7.8% ↑ 3.7% ↑ 7.1% ↑ 15.8% ↑ 11.8% ↑ 9.8% ↑ 6.4% ↑

SimVP [18]
MAE 15.91 13.45 23.21 20.56 15.48 14.63 2.12 1.57 17.01 15.79
MSE 10.96 8.21 16.46 13.91 6.82 6.21 9.54 5.03 23.34 22.11
∆ 15.4% ↑ 25.1% ↑ 11.4% ↑ 15.3% ↑ 5.5% ↑ 8.9% ↑ 25.9% ↑ 47.3% ↑ 8.4% ↑ 5.3% ↑

4.2 Evaluating the Efficacy of CaPaint (RQ1 & RQ4)
In this section, we conduct extensive experiments to demonstrate the effectiveness of the CaPaint
method. For Transformer architectures, we can directly transfer the model parameters trained in
upstream tasks, thereby achieving efficient downstream training. For non-Transformer architectures,
we focus on transferring the data itself to train the downstream models. The data presented in the Tab
1 show the performance improvements achieved by generating only one single generalized copy for
each ST sequence. As shown in the Table 1, we can list the Observations:

Obs 1. +CaPaint consistently leads w/o Capaint settings across all datasets. As shown in Table 1
and the right side of Fig 4, we can easily observe that introducing +CaPaint significantly improves
model performance on MAE, MSE and SSIM metrics across all datasets. For example, with the
ViT model on TaxiBJ+, MAE drops from 16.59→ 14.54, MSE from 11.40→ 8.89; On Diffusion
Reaction Systems, MAE significantly decreases from 13.59→ 7.52, MSE from 6.21→ 1.41. This
shows CaPaint’s effectiveness in boosting performance in various domains.

Obs 2. +CaPaint enhances model local insights ST scenarios. By analyzing the left side of Figure 4,
we clearly see that the +CaPaint effectively reduces the model’s prediction loss. Moreover, it is
observed that +CaPaint provides more accurate predictions in finer details, closely aligning with
the actual result curves. This demonstrates CaPaint’s capability to enhance prediction accuracy and
reliability, ensuring that the forecasts closely mirror real-world outcomes.

Obs 3. +CaPaint remains effective in long-Term ST predictions. By analyzing the middle of
Figure 4, we observe that +CaPaint continues to demonstrate its effectiveness in long-term time
step predictions for ST tasks. For instance, the details in the SEVIR dataset predictions improve
significantly, indicating that CaPaint is still applicable and beneficial in challenging ST tasks.

4.3 Performance in Data-Scarce Scenarios (RQ2)

Figure 5: SSIM improvement across dif-
ferent datasets using the Mmvp model

To assess the performance of CaPaint in data-scarce sce-
narios, we conducted experiments using varying propor-
tions of training data across multiple datasets and back-
bones. Specifically, we measured the SSIM improvement
at different training data proportions, demonstrating the
generalizability and robustness of CaPaint.

Obs 1. CaPaint shows consistent improvements across
all training data proportions. As shown in Figures 5
and 6, CaPaint consistently improves SSIM across all
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training data proportions. This indicates that CaPaint is ef-
fective regardless of the amount of training data available,
reinforcing its versatility and applicability in diverse scenarios.

Obs 2. Significant performance gains in low data scenarios. The results indicate that CaPaint
yields substantial performance improvements, especially in low data scenarios. For instance, with
only 10% of the training data, the SSIM improvement is most pronounced, highlighting the method’s
effectiveness in data-scarce environments. For example, in the TaxiBJ+ dataset with ViT backbone,
the SSIM improvement reaches up to more than 50%, showcasing CaPaint’s capability to enhance
model performance with limited data.

Figure 6: SSIM Improvement on DRS
across various backbones

Obs 3. Diminishing returns with increased training
data. While CaPaint consistently enhances performance,
the degree of improvement diminishes as the proportion
of training data increases. This trend suggests that the
primary benefits of CaPaint are most evident when data
is scarce, but the method remains beneficial even as more
data becomes available.

Obs 4. CaPaint demonstrates superior performance
with equivalent data volumes. As illustrated in Fig 7,
when comparing 25% original plus 25% augmented data
with 50% original data, CaPaint achieves lower MAE
and MSE. This demonstrates that CaPaint consistently
outperforms the original model by effectively using a mix
of original and augmented data, which together match the
data volume used by the original model alone.

4.4 Performance Comparison (RQ3)

Table 2: Comparison between CaPaint and other data aug-
mentation methods across various datasets.

Datasets Flip Rotate Crop NuWa CaPaint

DRS 2.10±0.16 2.11±0.19 2.34±0.26 2.02±0.09 1.57±0.14

KTH 23.15±1.95 23.14±1.67 23.11±1.83 22.32±0.94 20.56±1.02

SEVIR 15.41±1.49 15.45±1.32 15.95±1.64 15.14±1.57 14.63±1.89

TaxiBJ+ 16.47±0.99 16.39±1.32 15.94±1.45 15.11±0.87 12.87±0.76

FireSys 17.02±2.17 17.07±1.94 17.15±2.45 16.68±1.79 15.79±1.88
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Figure 7: Visualizations in both MAE
and MSE with Simvp and + CaP at vari-
ous training data proportions.

In this section, we compare the performance of different data augmentation methods. Tab 2 shows
the model performance using various data augmentation methods across multiple datasets, measured
by MAE. It can be seen that traditional data augmentation methods, such as flipping, rotation, and
cropping, produce results that are either on par with or slightly worse than the original data. Take
the FireSys dataset as an example, MAE increased from 17.01→ 17.07 after rotation augmentation.
This indicates that conventional data augmentation methods may disrupt the intrinsic properties of
ST data, thereby negatively impacting model performance.

In contrast, our method CaPaint achieves the best performance across all datasets. For instance, on
the TaxiBJ+ dataset, the MAE with CaPaint augmentation is 12.87, which is significantly better than
the MAE of 15.11 with NuwaDynamics manual mixup augmentation and the MAE of 15.94 with
other traditional augmentation methods such as cropping. These results highlight the advantage of
our method in preserving the integrity of ST data properties. CaPaint not only effectively avoids the
disruption caused by data augmentation processes on ST data characteristics but also significantly
enhances the model’s predictive capability.

5 Conclusion & Future Work

In this study, we advance the exploration of applying front-door adjustment and causality principles to
spatio-temporal forecasting tasks through the introduction of CaPaint. Building upon the foundation
of upstream self-supervised learning, we identify causal regions as crucial elements for generating
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comprehensive and potential data distributions. By integrating diffusion generative models, we ensure
the generated data’s rationality and generalizability, thereby enhancing the downstream models’
ability to generalize beyond the observed distribution and improving their interpretability. Moving
forward, we plan to explore various generative models for the production of arbitrary-channel ST
data to enhance the CaPaint robustness.
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A CaPaint Inpainting Algorithm

Algorithm 1 Causal Intervention with Diffusion Inpainting
1: Input: ST observation data X , masked image Xmask

2: Output: Augmentation ST observation dataset XA

3: Initialize XT ∼ N (0, I) where T is the total number of diffusion steps
4: /* Iterate backwards through diffusion steps */
5: for t = T to 1 do
6: /* Sample Gaussian noise ϵ */
7: ϵ ∼ N (0, I)
8: /* Sample causal region */
9: Xcau

t−1 =
√
ᾱtX0 + (1− ᾱt)ϵ

10: /* Sample Gaussian noise N */
11: z ∼ N (0, I)
12: /* Causal Intervention on Environmental Patches */
13: Xenv

t−1 = 1√
αt

(
Xt − βt√

1−ᾱt
ϵθ(Xt, t) + σtz

)
14: /* Combine causal and environmental patches */
15: Xt−1 = m⊙Xcau

t−1 + (1−m)⊙Xenv
t−1

16: Xt ∼ N (
√

1− βt−1Xt−1, βt−1I)
17: end for
18: return XA as the augmentation dataset

The algorithm for Causal Intervention with Diffusion Inpainting aims to augment ST observation
data through a series of diffusion steps that iteratively refine the data by applying causal interventions
and combining them with environmental patches. Here is a detailed step-by-step description:

• Input: The original ST observation data X , and a masked image Xmask.

• Output: An augmented ST observation dataset XA.

• The process begins by initializing XT , which represents the data at the final diffusion step,
to be a sample from a normal distribution centered at zero with identity covariance.

• The main loop of the algorithm runs backward from the last diffusion step T to the first. In
each step:

1. Gaussian noise ϵt is sampled to simulate the diffusion process.
2. A causal region Xcau is sampled where the causal effect is calculated as a blend of the

original data and the Gaussian noise, emphasizing areas of interest that should retain
more original data characteristics.

3. Gaussian noise Nt is sampled again, providing variability to the non-causal or environ-
mental regions.

4. The environmental patches Xenv are updated using the data from the previous step
adjusted by a damping factor and the added noise, simulating environmental changes.

5. The causal and environmental patches are then combined, where the mask M de-
termines the specific locations for the causal and environmental updates in the data,
specifying which parts are from the causal region and which are from the environmental
region.

6. The data for the next step, Xt−1, is computed by normalizing the combined updates,
preparing it for the next iteration or output if it is the first step.

• Finally, the algorithm outputs the augmented data set XA, which is the result of the iterative
causal intervention and environmental blending over the diffusion process.

B Details of experiments

SSIM stands for Structural Similarity Index Measure, which is a method for measuring the similarity
between two images. It compares the structural information of the images, including luminance,
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contrast, and texture, to determine how similar they are. SSIM is commonly used in image and video
processing applications, such as image compression and quality assessment.

PSNR stands for Peak Signal-to-Noise Ratio. It is a measure of video or image quality that compares
the original signal to the compressed or transmitted signal. The higher the PSNR value, the better
the quality of the compressed or transmitted signal. PSNR is commonly used in video and image
compression applications to evaluate the effectiveness of compression algorithms.

MSE (Mean Squared Error) loss is a commonly used loss function in machine learning and deep
learning models. This loss function calculates the average of the squared differences between the
predicted and actual values.

Datasets. Here we summarize the details (Tab. 1) of the datasets used in this paper:

• TaxiBJ+: This dataset contains trajectory data obtained from the GPS of taxis in Beijing, divided
into two separate channels: inflow and outflow. Additionally, the dataset has been extended from
32×32 to 128×128 by collecting recent trajectory data from Beijing.

• KTH: This dataset includes 25 individuals performing six different actions: walking, jogging,
running, boxing, waving, and clapping. The complexity of human movements arises from the
unique variations each individual displays while executing these actions. By examining previous
frames, the model can understand the subtleties of human dynamics and predict future extended
postural changes.

• SEVIR: This dataset consists of weather images that have been sampled and aligned using radar
and satellite data. It is designed as a foundational resource to support algorithm development in
meteorological research.

• DRS: This dataset describes the diffusion process of nonlinear wave, which satisfies the diffusion
equation.

• FireSys: The FireSys dataset comprises data associated with fire observations, capturing both
temporal and spatial trends of fire evolution, which faithfully represent the progression status in a
natural setting.

C Broader Impact

The development and application of the CaPaint framework in spatio-temporal (ST) dynamics bring
several positive broader impacts. Understanding these impacts is crucial for responsible AI research
and deployment.

1. Data Imputation in Sparse Scenarios: CaPaint excels in sparse data scenarios, effectively filling
in missing data. This reduces the need for extensive sensor deployments, significantly lowering the
cost associated with sensor installation. By optimizing data coverage and utilization, CaPaint not
only enhances resource efficiency but also achieves substantial cost savings.

2. Enhanced Predictive Accuracy and Interpretability: CaPaint can identify and intervene in
non-causal regions, improving the predictive accuracy and interpretability in various ST domains
such as meteorology, human mobility, and disaster management. This improvement leads to better
decision-making processes and resource allocation, ultimately benefiting society by providing more
reliable and understandable predictive models.

3. Cost-Effective Solutions: By reducing the complexity of optimal ST causal discovery models,
CaPaint offers a cost-effective solution for handling high-dimensional ST data. This makes advanced
predictive technologies more accessible across a broader range of applications, particularly in fields
with limited computational resources.

4. Promotion of Causal Reasoning in AI: The integration of causal reasoning into ST models
encourages the development of AI systems that better mimic human understanding of cause-and-
effect relationships. This can lead to more robust AI models capable of generalizing across different
scenarios, fostering trust and reliability in AI applications.

5. Innovation in Data Augmentation Techniques: CaPaint introduces novel data augmentation
methods using diffusion inpainting, which can inspire further research and innovation in data augmen-
tation and ST prediction. This can lead to the emergence of new techniques, enhancing the robustness
and performance of AI models in various domains.
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The CaPaint framework represents a significant advancement in the field of ST dynamics, particularly
in its ability to address sparse data scenarios, which reduces the need for extensive sensor deployments
and lowers associated costs. Additionally, CaPaint enhances predictive accuracy, interpretability, and
efficiency, promotes causal reasoning in AI, and introduces innovative data augmentation techniques.
Responsible AI research and deployment should leverage these strengths to maximize benefits while
minimizing risks.

D Metrics

In our research, we investigate the performance of our models using Mean Squared Error (MSE),
Mean Absolute Error (MAE), and Structural Similarity Index Measure (SSIM). The formulas for
evaluating these indicators, converted into decibels (dB) where applicable, are as follows:

Mean Squared Error (MSE)

Mean Squared Error (MSE) measures the average of the squares of the errors, that is, the average
squared difference between the estimated values and the actual value. The MSE is given by:

MSE =
1

N

N∑
i=1

(Yi − Ŷi)2 (D.1)

where Yi is the actual value, Ŷi is the predicted value, and N is the number of observations.

Mean Absolute Error (MAE)

Mean Absolute Error (MAE) measures the average magnitude of the errors in a set of predictions,
without considering their direction. It is the average over the test sample of the absolute differences
between prediction and actual observation where all individual differences have equal weight. The
MAE is given by:

MAE =
1

N

N∑
i=1

∣∣∣Yi − Ŷi∣∣∣ (D.2)

where Yi is the actual value, Ŷi is the predicted value, and N is the number of observations.

Structural Similarity Index Measure (SSIM)

Structural Similarity Index Measure (SSIM) is used for measuring the similarity between two images.
The SSIM index is a decimal value between -1 and 1, where 1 is only reachable in the case of two
identical sets of data. The SSIM formula can be quite complex due to its consideration of luminance,
contrast, and structure comparison functions between the two images:

SSIM(x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
(D.3)

where µx, µy are the average of x and y respectively, σ2
x, σ2

y are the variance of x and y respectively,
σxy is the covariance of x and y, and C1, C2 are variables to stabilize the division with weak
denominator.

E Limitations

While the implementation of the CaPaint method has demonstrated significant improvements in
prediction accuracy and detail preservation in spatio-temporal forecasting tasks, its enhancements are
most pronounced in scenarios characterized by data scarcity or uneven data distribution. In contexts
where datasets are abundant and exhibit a broad and uniform distribution, the incremental gains
offered by CaPaint may not be as substantial. Nevertheless, the method remains effective, providing
consistent, albeit smaller, improvements across diverse data environments.
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Figure F.1: Inpainting Example of our proposed CaPaint.

F An example of ST Inpainting on SEVIR

The figure illustrates the process of maintaining causal regions intact while performing inpainting on
non-causal (environmental) regions. The approach involves identifying and deciphering the causal
regions (left), intervening by applying diffusion inpainting on the environmental patches (middle), and
subsequently generating altered ST data copies (right). This method ensures that the intrinsic causal
relationships within the data are preserved, while variations are introduced in the environmental
context to augment the dataset effectively.

G Uneven Distribution of Sensors Leading to Data Scarcity in Global
Oceanic Observation

Figure G.1: Temporal distributional heterogeneity within the global oceanic observation platforms,
which reveals that there are pronounced disparities in the deployment numbers of various types of
sensors during different time intervals.
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H Experimental Parameters

In this experiment, we employ different deep learning models and optimize them for training. All
experiments are conducted on hardware equipped with 24 NVIDIA GeForce RTX 4090 GPUs. The
optimizer used is Adam, and different learning rates (LR) and batch sizes are set for each model. The
specific parameter settings are shown in the table below:

Model Learning Rate (LR) Batch Size
CLSTM 0.001 8

MAU 0.001 8
MMVP 0.004 4

PredRNNv2 0.001 8
SimVP 0.004 4

ViT 0.004 4
Earthfarsser 0.001 8

Table H.1: Learning rates and batch sizes for different backbones

These parameter settings are chosen based on the characteristics of each model and preliminary
experimental results on the validation set, aiming to optimize the training efficiency and performance
of the models. The Adam optimizer is used with a OneCycle learning rate scheduler, where the
maximum learning rate is set according to the specified learning rate for each model, and the number
of steps per epoch and the total number of epochs are set based on the training data and experimental
setup. During the experiments, we ensure that all models are trained under the same hardware
conditions to guarantee the comparability and reproducibility of the results.

I Visualizations on KTH

Ground  

truth

Earthfarser

+CaPaint

Figure I.1: Visualizations on KTH dataset showing the last 5 frames

The first row shows the ground truth for a walking individual. The second row, processed by
Earthfarser, exhibits noticeable blurring and loss of detail. The third row, enhanced with +CaPaint,
demonstrates a marked improvement in capturing fine details such as the shadow of the person and
the accuracy of the foot motion, as highlighted in the red boxes.

J Visualizations on Diffusion Reaction System

The introduction of CaPaint has led to reductions in Mean Squared Error MSE and MAE, while
the SSIM has shown improvements. These changes indicate that the CaPaint method effectively
enhances model prediction accuracy and image quality. However, due to the high quality of the model
predictions, the improvements might not be readily observable to the naked eye. Despite this, the

21



Ground  

truth

+CaPaint

Earthfarsser

Figure J.1: Visualizations on DRS dataset showing 10 frames

positive effects of CaPaint are clearly evident through quantitative metrics, demonstrating its potential
and practicality in enhancing the accuracy of complex dynamic systems predictions.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: In this paper, we introduce the spatio-temporal causal concept in the data
mining realm, aimed at enhancing the reliability and accuracy of financial spatio-temporal
prediction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: In this work, we systematically discuss the limitations of our research and
outline directions for future work.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]
Justification: This paper does not include experimental results related to theoretical aspects.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide the code necessary for replicating the studies described in this
paper via an anonymous link, and we detail the experimental setup for the replication in the
article itself.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: For the datasets disclosed in the article, we have provided information regarding
their sources and origins.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: we have specified all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: In this paper, we have reported error bars suitably and correctly defined or
other appropriate information about the statistical significance of the experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: In this paper, we provide detailed information about the experimental resources,
including GPU configurations used in our studies.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The study presented in this paper conforms to the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We have provided the societal impacts of the work.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper does not address issues related to this aspect.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All creators and original owners of the assets used in our paper, such as code,
data, and models, have been properly credited. We have explicitly mentioned the licenses
and terms of use for each asset and have ensured full compliance with these terms throughout
our research.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The research presented in this paper is not concerned with new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve experiments or research related to human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This paper does not address potential risks incurred by study participants.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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