
Under review as a conference paper at ICLR 2021

MODEL SELECTION FOR CROSS-LINGUAL TRANSFER
USING A LEARNED SCORING FUNCTION

Anonymous authors
Paper under double-blind review

ABSTRACT

Transformers that are pre-trained on multilingual text corpora, such as, mBERT
and XLM-RoBERTa, have achieved impressive cross-lingual transfer learning re-
sults. In the zero-shot cross-lingual transfer setting, only English training data
is assumed, and the fine-tuned model is evaluated on another target language.
No target-language validation data is assumed in this setting, however substan-
tial variance has been observed in target language performance between different
fine-tuning runs. Prior work has relied on English validation/development data
to select among models that are fine-tuned with different learning rates, num-
ber of steps and other hyperparameters, often resulting in suboptimal choices. In
this paper, we show that it is possible to select consistently better models when
small amounts of annotated data are available in an auxiliary pivot language. We
propose a machine learning approach to model selection that uses the fine-tuned
model’s own internal representations to predict its cross-lingual capabilities. In
extensive experiments we find that our approach consistently selects better mod-
els than English validation data across five languages and five well-studied NLP
tasks, achieving results that are comparable to small amounts of target language
development data.1

1 INTRODUCTION

Pre-trained Transformers (Vaswani et al., 2017; Devlin et al., 2019) have lead to state-of-the-art
results on a wide range of NLP tasks, for example, named entity recognition, relation extraction
and question answering, often approaching human inter-rater agreement (Joshi et al., 2020a). These
models have also been demonstrated to learn effective cross-lingual representations, even without
access to parallel text or bilingual lexicons (Wu & Dredze, 2019; Pires et al., 2019). Multilingual
pre-trained Transformers, such as mBERT and XLM-RoBERTa (Conneau et al., 2019), support
surprisingly effective zero-shot cross-lingual transfer, where training and development data are only
assumed in a high resource source language (e.g. English), and performance is evaluated on another
target language.

Because no target language annotations are assumed in this setting, source language data is typically
used to select among models that are fine-tuned with different hyperparameters and random seeds.
However, recent work has shown that English dev accuracy does not always correlate well with
target language performance (Keung et al., 2020). In this paper, we propose an alternative strategy
for model selection in a zero-shot setting. Our approach, dubbed Learned Model Selection (LMS),
learns a function that scores the compatibility between a fine-tuned multilingual transformer, and a
target language. The compatibility score is calculated based on features of the multilingual model’s
learned representations and the target language. A model’s features are based on its own internal
representations; this is done by aggregating representations over an unlabeled target language text
corpus. These model-specific features capture information about how the cross-lingual representa-
tions transfer to the target language after fine-tuning on source language data. In addition to model-
specific representations, we also make use of learned language embeddings from the lang2vec
package (Malaviya et al., 2017),2 which have been shown to encode typological information, for
example, whether a language has prepositions or postpositions. To measure compatibility between

1We will make our code and data available on publication.
2https://github.com/antonisa/lang2vec
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Figure 1: An illustration of our approach to select the best model for zero-shot cross-lingual transfer.
(a) Prior works select the best model using source language development data. (b) LMS: A learned
function scores fine-tuned models based on their hidden layer representations when encoding unla-
beled target language data.

a multilingual model’s fine-tuned representations and a target language, the model- and language-
specific representations are combined in a bilinear layer. Parameters of the scoring function are op-
timized to minimize a pairwise ranking loss on a set of held-out models, where the gold ranking is
calculated using standard performance metrics, such as accuracy or F1, on a set of pivot languages
(not including the target language). Our method assumes training data in English, and small amounts
of annotated data in one or more pivot languages (not the target language). This corresponds to a
scenario where a new multilingual NLP task needs to be quickly applied to a new language. LMS
does not rely on any annotated data in the target language, yet it is effective in learning to predict
whether fine-tuned multilingual representations are a good match.

In experiments on five well-studied NLP tasks (part of speech tagging, named entity recognition,
question answering, relation extraction and event argument role labeling), we find LMS consistently
selects models with better target-language performance than those chosen using English dev data.
Appendix A.5 demonstrates that our framework supports multi-task learning, which can be helpful
in settings where some target-language annotations are available, but not for the desired task. Finally,
we show that LMS generalizes to both mBERT and XLM-RoBERTa in Appendix A.4.

2 BACKGROUND: ZERO-SHOT CROSS LINGUAL TRANSFER

The zero-shot setting considered in this paper works as follows. A transformer model is first pre-
trained using a standard masked language model objective. The only difference from the monolin-
gual approach to contextual word representations (Peters et al., 2018; Devlin et al., 2019) is the pre-
training corpus, which contains text written in multiple languages. For example, mBERT is trained
on text written in 104 languages from Wikipedia. After pre-training on a multilingual corpus, the
resulting transformer encodes language-independent representations that support surprisingly effec-
tive cross-lingual transfer, simply by fine-tuning the pre-trained parameters using English training
data. For example, after fine-tuning mBERT using the English portion of the CoNLL Named Entity
Recognition dataset, the resulting model can be used to perform inference directly on Spanish text,
achieving an F1 score around 75, and outperforming prior work using cross-lingual word embed-
dings (Xie et al., 2018; Mikolov et al., 2013). A challenge with this approach, however, is that there
is a relatively high variance in this performance across training runs. Although the mean F1 score
on Spanish is 75, the performance of 60 models fine-tuned with different learning rates and random
seeds ranges from around 70 F1 to 78 (Figure 3). In zero-shot learning, no validation/development
data is assumed in the target language, motivating the need for a machine learning approach to model
selection.
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3 RANKING MODEL COMPATIBILITY WITH A TARGET LANGUAGE

Given a set of multilingual BERT-based models, M = m1,m2, ...,mn that are fine-tuned on an
English training set using different hyperparameters and random seeds, our goal is to select the
model that performs the best on a target language, ltarget. Our approach (LMS) learns to rank a set of
models based on two sources of information: (1) the models’ own internal representations, and (2)
lang2vec representations of the target language (Malaviya et al., 2017). By integrating a model’s
target language representations together with lang2vec embeddings, LMS predicts which model
will perform best.

We adopt a pairwise approach to learning to rank (Burges et al., 2005; Köppel et al., 2019). The
learned ranking is computed using a scoring function, s(m, l) = f(gmBERT(m), glang2vec(l)), where
gmBERT(m) is a feature vector for model m, which is computed from the model’s own hidden state
representations, and glang2vec(l) is the lang2vec representation of language l. The model and
language features are each passed through a feed-forward neural network and then combined using
a bilinear layer to calculate a final score as follows:

s(m, l) = f(gmBERT(m), glang2vec(l))

= FFNN(gmBERT(m))TWbiFFNN(glang2vec(l))

Using the above score, we can represent the probability that model mi performs better than mj on
language l:

P (mi .l mj) = σ(s(mi, l)− s(mj , l))

where σ(·) is the sigmoid function. To tune the parameters of the scoring function, which include
the feed-forward and bilinear layers, we minimize cross-entropy loss:

C =
∑

l∈L\{ltarget}

∑
mi∈M

∑
mj∈M

−Cmi,mj ,l (1)

where

Cmi,mj ,l = 1[mi .l mj ] logP (mi .l mj) + 1[mj .l mi] logP (mj .l mi)

Here 1[mj .l mi] is an indicator function that has the value 1 if mj outperforms mi, as evaluated
using labeled development data in language l.

The first sum in Equation 1 ranges over all languages where development data is available, excluding
the target language. After tuning parameters to minimize cross-entropy loss on these languages, the
models are ranked based on their scores for the target language, and the highest scoring model,
m̂ = argmaxm s(m, ltarget), is selected.

4 TASKS AND DATASETS

Section 3 presented an approach to selecting a model for zero-shot cross-lingual transfer. To evaluate
its effectiveness, a set of fine-tuned models is split into meta-train/dev/test sets. We then use models
in the meta-train set to tune parameters of the scoring function, s(·), develop input features with
models in the meta-dev set (see §7 for details), and report our main results using models in the
meta-test set in Table 2.

We experiment with five well-studied NLP tasks in the zero-shot transfer setting: named entity
recognition (NER), part-of-speech (POS) tagging, question answering (QA), relation extraction
(RE), and event-argument role labeling (ARL). Labeled training data for each task is assumed in
English and trained models are evaluated on the target language. The task/language combinations
covered by our experiments are summarized in Table 1.

The following subsections describe the tasks and datasets used in our experiments; more details are
presented in Appendix A.1.
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ar bg da de es fa hi hu it nl pt ro sk sl sv vi zh
NER X X X X
POS X X X X X X X X X X X X X X X
QA X X X X X X
RE X X
ARL X X

Table 1: Seventeen target languages and five tasks used in our experiments. English is used as the
source language. ar: Arabic, bg: Bulgarian, da: Danish, de: German, es: Spanish, fa: Persian, hi:
Hindi, hu: Hungarian, it: Italian, nl: Dutch, pt: Portuguese, ro: Romanian, sk: Slovak, sl: Slovene,
sv: Swedish, vi: Vietnamese, zh: Chinese.

4.1 NAMED ENTITY RECOGNITION

We use data from the CoNLL 2002 and 2003 (Sang, 2002; Sang & Meulder, 2003) shared tasks
(four target languages: en, de, es, and nl), in addition to a Chinese NER dataset (Levow, 2006),
following Wu & Dredze (2019). The data is tagged using the BIO tagging scheme with four types
of named entities. We formulate this as a tagging task and add a linear classification layer with
a softmax function to obtain word-level predictions. Because the labels are at the word level, but
mBERT operates on the subword level, representation of the first subword is used to make word-
level predictions, following (Devlin et al., 2019). The CoNLL evaluation script is used to compute
F1 scores.

4.2 PART-OF-SPEECH TAGGING

A subset of Universal Dependency (UD) Treebanks (v1.4) (Nivre et al., 2016) (fifteen target lan-
guages: ar, bg, da, de, es, fa, hu, it, nl, pt, ro, sk, sl, sv, zh) is used, following the setup of Kim et al.
(2017). There are eighteen POS tags in total across all languages. We formulate this as a tagging
task, following the same approach as described for named entity recognition, and report the accuracy
of the predicted POS tags (Acc).

4.3 QUESTION ANSWERING

The Multilingual Question Answering (MLQA) dataset (Lewis et al., 2020) is used to evaluate model
selection for cross-lingual transfer in the context of question answering. We use the MLQA dataset,
consisting of six target languages: ar, de, es, hi, vi, zh. Following the setup of Lewis et al. (2020),
models are trained using English data from SQuAD v1.1 (Rajpurkar et al., 2016), and the MLQA
English development set is used for the En-Dev baseline. We use the standard BERT approach for
question answering (Devlin et al., 2019), where a (question, passage) pair is encoded using special
tokens as follows: [BOS] Question [SEP] Passage [SEP]. The classification layer predicts both
the start and end index of the answer span from the text passage. The formal evaluation script of
MLQA is adopted to compute F1 scores.

4.4 RELATION EXTRACTION

Given a pair of entity mentions, RE aims to identify a relation between them and classify its type.
We use the ACE 2005 corpus (Walker et al., 2006), which contains two target languages, Arabic
and Chinese, using the same preprocessed dataset as Subburathinam et al. (2019). ACE contains
eighteen relation types and an additional label indicating no relation (19-way classification). We
adopt the best performing model from Soares et al. (2019), [ENTITY MARKERS - ENTITY START],
which adds special tokens [E1start], [E1end] and [E2start], [E2end] surrounding entity mention pairs
in a sentence. The modified sentence is then fed into mBERT and representations of the starting
markers [E1start], [E2start] are concatenated as inputs to a linear classification layer. We follow
evaluation protocols established in prior work, using gold entities as inputs to control for differences
in performance due to named entity recognition errors (Subburathinam et al., 2019). A predicted
relation mention is considered correct if its type and the heads of both entities match the gold data.
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4.4.1 EVENT-ARGUMENT ROLE LABELING

Event-Argument Role Labeling (ARL) aims to identify event triggers and their arguments in texts.
For example, in the sentence Facebook aquired Instagram, an event trigger is aquired, whose ar-
guments are Facebook and Instagram, with roles BUYER and SELLER. Again we draw on the
ACE 2005 corpus (Walker et al., 2006) (two target languages: ar, zh), using the same preprocessed
dataset as Subburathinam et al. (2019). There are thirty-five role labels in ACE. Following a sim-
ilar approach as was described for relation extraction, we add special markers [Tstart], [Tend] and
[Estart], [Eend] around the trigger and candidate entity mentions. The modified sentence is fed into
mBERT, and the marker representations are concatenated as input to a classification layer that pre-
dicts the entity’s role with respect to the trigger word.

5 EXPERIMENTAL DESIGN

For a downstream task with n languages L : {l1, ..., ln}, our goal is to select the model that performs
best on a target language, ltarget ∈ L. We assume the available resources are English training and
development data, in addition to a small development set in one or more pivot languages (that do
not include the target language). First, a set of mBERT models, M , are fine-tuned on an English
training set using different hyperparameters and random seeds and shuffled into meta-train/dev/test
sets. We then evaluate each model, mi, on the pivot languages’ dev sets to calculate a gold ranking,
.l, that is used in the cross-entropy loss (Equation 1). Model-specific features are then extracted
from the fine-tuned mBERTs, by feeding unlabeled pivot language text (dev set examples) as input.

Development and Evaluation mBERT models in the meta-dev set are used to experiment with
different model and language features. Target language dev data was used to experiment with a
handful of model and language features, as described in §7. Evaluation is performed using the meta-
test set. For each target language, we rank models using the learned scoring function, select the
highest scoring model, and report results in Table 2.3

5.1 BASELINES

En-Dev is our main baseline following standard practice for model selection in the zero-shot set-
ting (Wu & Dredze, 2019; Pires et al., 2019). Model selection with the pivot language dev set is
included as another baseline, where the pivot language is selected based on the highest similar-
ity with the target language, as measured using cosine similarity between lang2vec embeddings
among candidates in {ar, de, es, nl, zh}. Also, we compare our results with models selected using
100 sentences annotated in the target language to understand how our approach compares to the
more costly alternative of annotating a small amount of target language development data. Finally,
an All-Target oracle that picks the best model based on target language development data is adopted.
These baselines and oracles are summarized below:

• En-Dev (baseline): choose an mBERT with the English dev set.

• Pivot-Dev (baseline): choose an mBERT with the pivot language dev set.

• 100-Target (oracle): choose an mBERT with 100 target language dev set instances.

• All-Target (oracle): choose an mBERT with the full target language dev set.

5.2 HYPERPARAMETERS AND OTHER SETTINGS

To train the scoring function, s(·), we use Adam (Kingma & Ba, 2015), and select the batch size
among {16, 32, 64, 128}, learning rate λ among {1×10−4, 5×10−5, 1×10−5, 5×10−6, 1×10−6},
and train for {3} epochs. The scoring function, s(·), contains a 2-layer FFNN with 1024 hidden units
and ReLU activation (Glorot et al., 2011). The base cased mBERT has 179M parameters and a
vocabulary of around 120k wordpieces. Both the pre-trained transformer layers and task-specific
layers are fine-tuned using Adam, with β1 = 0.9, β2 = 0.999, and an L2 weight decay of 0.01.

3Evaluation was performed using leave-one-language-out cross-validation over {ar, de, es, nl, zh}. To
evaluate performance on target languages in {bg, da, fa, hi, hu, it, pt, ro, sk, sl, sv, vi} for POS and QA, a
single LMS was trained using pivot languages in {ar, de, es, nl, zh}.
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Model candidates are fine-tuned with varying learning rates and number of epochs with the following
settings: learning rate ∈ {3×10−5, 5×10−5, 7×10−5}; number of epochs ∈ {3, 4, 5, 6}; batch size
∈ {32}; random seeds ∈ {0, 1, ..., 239}. 240 mBERT models with different random seeds are fine-
tuned with 12 different hyperparameter settings (20 random seeds for each set of hyperparameters),
and then split into meta-train/dev/test sets (120/60/60). All models are trained on an RTX 2080 Ti.

6 EVALUATION

Below we report model selection results on mBERTs in the meta-test set for each of the five tasks.

Task Lang Ref En-Dev Pivot-Dev LMS 100-Target All-Target # All-Target

NER (F1)

de 69.56 69.89 70.72 (nl) 69.89 66.74 72.07 2867
es 74.96 74.61 73.10 (nl) 75.74 75.74 75.73 1915
nl 77.57 78.74 79.27 (de) 78.85 78.67 80.26 2895
zh 51.90 54.90 52.99 (de) 55.05 55.36 56.88 4499

POS (Acc)

ar - 49.66 50.28 (de) 51.61 50.56 52.70 786
de 89.8 89.27 88.75 (nl) 89.77 89.45 89.98 799
es 85.2 84.84 85.26 (nl) 85.56 84.82 85.11 1552
nl 75.9 75.68 75.93 (de) 75.87 75.54 76.04 349
zh - 66.94 66.90 (de) 68.00 67.25 68.84 500
bg 87.4 87.13 87.05 (es) 87.92 87.95 87.95 1115
da 88.3 88.64 88.87 (nl) 88.94 88.64 89.20 322
fa 72.8 71.64 71.63 (es) 73.63 73.63 73.75 599
hu 83.2 82.55 82.05 (de) 83.26 83.26 83.11 179
it 84.7 84.47 84.89 (es) 85.23 85.37 85.84 489
pt 82.1 81.80 81.88 (es) 82.16 81.82 82.18 271
ro 84.7 83.83 84.19 (es) 84.71 84.43 85.37 1191
sk 83.6 83.73 83.65 (es) 84.23 83.65 84.80 1060
sl 84.2 84.49 83.48 (es) 85.16 83.82 85.53 735
sv 91.3 91.39 91.83 (nl) 91.66 91.33 91.76 504

QA (F1)

ar 45.7 47.72 49.36 (de) 49.26 49.36 49.36 517
de 57.9 55.27 55.83 (ar) 55.86 57.12 55.83 512
es 64.3 64.92 64.74 (ar) 64.95 64.51 65.08 500
zh 57.5 58.03 58.09 (de) 58.11 58.14 58.38 504
hi 43.8 39.09 42.05 (es) 42.43 38.85 42.89 507
vi 57.1 57.36 56.88 (ar) 58.21 59.12 58.12 511

RE (F1) ar 39.43 36.10 35.35 (zh) 39.54 34.68 41.92 4482
zh 32.74 67.68 67.43 (ar) 70.75 68.20 69.13 7096

ARL (F1) ar 16.48 44.11 48.08 (zh) 47.08 44.11 47.15 1221
zh 23.49 60.96 61.26 (ar) 62.05 62.52 63.81 2226

Table 2: Model scores selected based on LMS for NER, POS, QA, RE, and ARL. En-Dev /
Pivot-Dev / 100-Target / All-Target: model selection based on the highest F1 of English dev set
/ Pivot language dev set (pivot language in bracket) / 100 target language dev set examples / tar-
get language dev set. LMS: model selection based on the highest scores for the target language:
argmaxm s(m, ltarget); “# All-Target” is the number of labeled target-language sentences used for
model selection in the All-Target oracle.

NER As illustrated in Table 2, our method selects models with a higher F1 score than En-Dev
except in the case of German (de). Besides, it outperforms model selection using small amounts of
target-language annotations (100-Target) on Dutch (nl) and selects a model that performs as well on
Spanish (es). On average, LMS achieves 0.86 point increase in F1 score relative to Pivot-Dev. We
use (Wu & Dredze, 2019) as references for zero-shot cross-lingual transfer with mBERT.

POS Table 2 presents POS accuracies on the test set, using various approaches to model selection
for the fifiteen target languages. LMS outperforms En-Dev and Pivot-Dev except in the case of
Swedish (sv) and Dutch (nl). Interestingly, model selection for Italian with Spanish dev set does not
outperform LMS. We use (Wu & Dredze, 2019) as references for zero-shot cross-lingual transfer
with mBERT.
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QA Our method selects a model with higher F1 across all languages compared with En-Dev, al-
though we find that Pivot-Dev performs slightly better on Arabic (ar). We use (Lewis et al., 2020)
as references for zero-shot cross-lingual transfer with mBERT.

ARL and RE In Table 2, our method selects models with higher F1 scores compared to En-Dev.
It also outperforms 100-Target across both languages. We hypothesize this is because 100 target-
language examples is not sufficient for effective model selection, as the dataset contains a large
proportion of negative examples (no relation). Also, RE and ARL have large label sizes (18 and
35) so a random sample of 100 instances might not cover every label. In contrast, the full dev set
contains thousands of examples. We use GCNReImp as a reference in the imbalanced dataset (see
Appendix A.1 for details). Reference models were selected using the English dev set.

Model Score Distributions Figure 2 visualizes the En-Dev and LMS results on the test set in the
context of the score distributions of the 60 models in the meta-test set, using kernel density estima-
tion. English development data tends to select models that perform only slightly better than average,
whereas LMS does significantly better. Similar visualizations for NER, POS, and QA are presented
in Appendix A.2. In addition to the model score, we run a statistical analysis of the results for POS
and QA in Appendix A.3. LMS is statistically significantly higher than En-Dev while Pivot-Dev
fails in three target languages.
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Figure 2: Model F1 score distributions for RE and ARL. Red line: LMS and blue line: En-Dev.
X-axis is F1 score. Selecting models with LMS achieve better results compared to En-Dev.

7 ANALYSIS

In Section 6, we empirically demonstrated that our learned scoring function, s(·), consistently selects
better models than the standard approach (En-Dev), and is comparable to small amounts of labeled
target language data. Section 7 presents additional analysis of our approach, exploring the impact of
various modeling choices with {ar, de, es, nl, zh}. In addition, analysis of generalization beyond
mBERT, across tasks capability, and size of training are present in Appendices A.4, A.5, and A.6.

7.1 MODEL AND LANGUAGE FEATURES

This section explores the impact of different choices for model and language representations for
LMS. Four types of model features and two language embeddings are explored. We start by delin-
eating possible choices for representations, then describe the details of our experiments, results, and
the final choices used in §6.

Four model-specific features are described below. Note [CLS] vectors are extracted from mBERT
by feeding unlabeled text as input.

• [Eng]: Averaged [CLS] vectors computed over an unlabeled English text corpus are
used for both training and testing.4

• [Pivot]: During training, [CLS] vectors are averaged over an unlabeled text corpus in
the pivot language. At test time, [CLS] embeddings are averaged over an unlabeled corpus
in the target language. We use the target-language development set (ignoring labels) for this
purpose in our experiments.

• [Target]: [CLS] vectors are averaged over a text corpus in the target language (for
both training and testing).

4In our experiments, sentences in the English dev set are used for this purpose (ignoring the labels).
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• Fusion: A linear combination of the above features. Weights on each representation are
learned during training.

Two types of language embeddings are examined.

• lang2vec: 512-dimensional vectors learned by a neural network trained for typological
prediction (Malaviya et al., 2017).

• syntax: 103-dimensional binary vectors, which capture syntax features from the URIEL
knowledge base (Littell et al., 2017).

First, we determine the choice of model-specific features by averaging performance across both
language embeddings. Table 3 reports averaged evaluation metrics for each model-specific repre-
sentation across all target languages with En-Dev as a baseline.

Averaged evaluation metrics across all target languages for each language embedding are reported
in Table 4. In addition to evaluating the effectiveness of each language embedding, we also exper-
imented with a variant of our scoring function that does not include any language embeddings as
input. Results are reported on mBERT models in the meta-dev set and the target languages’ dev sets
for all experiments in this section.

Task En-Dev [Eng] [Pivot] [Target] Fusion

NER 70.45 70.64 71.18 71.87 70.66
POS 74.69 75.58 75.54 75.48 75.04
QA 56.31 56.49 56.79 56.68 56.63
RE 51.81 54.92 55.57 55.56 54.57
ARL 50.98 51.99 53.74 52.31 54.69

Avg 60.85 61.92 62.60 62.38 62.32

Table 3: Model-specific feature analysis. We use mBERT models in the meta-dev set for analysis.
Each number represents average of scores across all the target languages in a particular task.

Task En-Dev lang2vec syntax None

NER 70.45 71.37 70.98 70.08
POS 74.69 75.72 75.36 75.20
QA 56.31 56.81 56.77 56.49
RE 51.81 55.92 55.22 52.53
ARL 50.98 53.60 53.88 53.14

Avg 60.85 62.68 62.44 61.49

Table 4: Language embedding analysis across lang2vec, syntax, and no language embedding.
We use mBERT models in the meta-dev set for analysis. Each number represents average of scores
across all the target languages in a particular task.

In Table 3, [PIVOT] features achieve top-2 performance in all five tasks. [Eng] and [Target]
achieve mixed results, and the fusion of three features does not effectively incorporate the advantages
of each representation, except in the case of ARL. Table 4 shows that lang2vec outperforms
syntax for all tasks but ARL and also outperforms our approach when language embeddings are
not included. Thus, lang2vec and [PIVOT] are used for all experiments in Section 6.

8 RELATED WORK

Recent work has explored hyper-parameter optimization Klein et al. (2019), and model selection
for a new task. task2vec (Achille et al., 2019) presents a meta-learning approach to selecting a
pre-trained feature extractor from a library for a new visual task. More concretely, task2vec rep-
resents tasks in a vector space and is capable of predicting task similarities and taxonomic relations.
It encodes a new task and selects the best feature extractor trained on the most similar task. Unlike
task2vec, we select a trained model for a specific task, and we represent a trained model with
model-specific features on a target language.

8
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MAML (Finn et al., 2017; Rajeswaran et al., 2019) is another approach to meta-learning, pre-training
a single model with a meta-loss to initialize a set of parameters that can be quickly fine-tuned for
related tasks. Nooralahzadeh et al. (2020) explore the use of MAML in the cross-lingual transfer
setting. MAML is designed to support few-shot learning through better initialization of model pa-
rameters and does not address the problem of model selection. In contrast, our approach improves
model selection in the zero-shot cross-lingual transfer setting.

Most relevant to our work, Xia et al. (2020) use regression methods to predict a model’s performance
on an NLP task. They formulate this as a regression problem based on features of the task (dataset
size, average sentence length, etc.), incorporating a discrete feature to represent the choice of model.
In contrast, LMS inspects a model’s internal representations, thus it is suitable for predicting which
out of a set of fine-tuned models will best transfer to a target language. Also relevant is prior work
on learning to select the best language to transfer from Lin et al. (2019).

Finally, we note that there is a need for more NLP research on low-resource languages (Joshi et al.,
2020b). Lauscher et al. (2020) present a number of challenges in transferring to languages with few
resources using pre-trained transformers. The languages used in our experiments could be consid-
ered high-resource, however, our experiments do cover a fairly diverse set of languages, including
Arabic and Chinese. We believe that there is still a need for more research on multilingual NLP
for high-resource languages as well, as this is not a solved problem. Finally, we note that there are
several other prominent benchmarks for evaluating cross-lingual transfer including XTERME (Hu
et al., 2020) and XGLUE (Liang et al., 2020), both of which include some datasets used in this work.

9 CONCLUSION

In this paper, we presented a machine learning approach to model selection for zero-shot cross-
lingual transfer, which is appropriate when small amounts of development data are available in one
or more pivot languages, but not in the target language. We showed that our approach improves
over the standard practice of model selection using source language development data. Experiments
on five well-studied NLP tasks show that by inspecting internal representations, our method consis-
tently selects better models. LMS also achieves comparable results to the more expensive alternative
of annotating small amounts of target-language development data.
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Gärdenfors, Sebastian Garza, Filip Ginter, Iakes Goenaga, Koldo Gojenola, Memduh Gökırmak,
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Huy`ên Nguy˜ên Thi. Minh, Vitaly Nikolaev, Hanna Nurmi, Petya Osenova, Robert Östling, Lilja
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ington, Mats Wirén, Zdeněk Žabokrtský, Amir Zeldes, Daniel Zeman, and Hanzhi Zhu. Universal
Dependencies 1.4, 2016.

Farhad Nooralahzadeh, Giannis Bekoulis, Johannes Bjerva, and Isabelle Augenstein. Zero-shot
cross-lingual transfer with meta learning. arXiv preprint arXiv:2003.02739, 2020.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee, and
Luke Zettlemoyer. Deep contextualized word representations. In Proceedings of the Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, 2018.

Telmo Pires, Eva Schlinger, and Dan Garrette. How multilingual is multilingual BERT? In Pro-
ceedings of the Association for Computational Linguistics, 2019.

Aravind Rajeswaran, Chelsea Finn, Sham M Kakade, and Sergey Levine. Meta-learning with im-
plicit gradients. In Proceedings of Advances in Neural Information Processing Systems, 2019.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. SQuAD: 100,000+ questions
for machine comprehension of text. In Proceedings of Empirical Methods in Natural Language
Processing, 2016.

Erik F. Tjong Kim Sang. Introduction to the CoNLL-2002 shared task: Language-independent
named entity recognition. In Proceedings of International Conference on Computational Lin-
guistics, 2002.

Erik F. Tjong Kim Sang and Fien De Meulder. Introduction to the CoNLL-2003 shared task:
Language-independent named entity recognition. In Proceedings of the Conference of the North

11

https://arxiv.org/pdf/1309.4168.pdf
https://arxiv.org/pdf/1309.4168.pdf


Under review as a conference paper at ICLR 2021

American Chapter of the Association for Computational Linguistics: Human Language Technolo-
gies, 2003.

Livio Baldini Soares, Nicholas FitzGerald, Jeffrey Ling, and Tom Kwiatkowski. Matching the
blanks: Distributional similarity for relation learning. In Proceedings of the Association for Com-
putational Linguistics, 2019.

Ananya Subburathinam, Di Lu, Heng Ji, Jonathan May, Shih-Fu Chang, Avirup Sil, and Clare Voss.
Cross-lingual structure transfer for relation and event extraction. In Proceedings of Empirical
Methods in Natural Language Processing and the International Joint Conference on Natural Lan-
guage Processing, 2019.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Proceedings of Advances
in Neural Information Processing Systems, 2017.

Christopher Walker, Stephanie Strassel, Julie Medero, and Kazuaki Maeda. ACE 2005 multilingual
training corpus. In Linguistic Data Consortium, 2006. LDC2006T06.

Shijie Wu and Mark Dredze. Beto, Bentz, Becas: The surprising cross-lingual effectiveness of
BERT. In Proceedings of Empirical Methods in Natural Language Processing and the Interna-
tional Joint Conference on Natural Language Processing, 2019.

Mengzhou Xia, Antonios Anastasopoulos, Ruochen Xu, Yiming Yang, and Graham Neubig. Pre-
dicting performance for natural language processing tasks. In Proceedings of the Association for
Computational Linguistics, 2020.

Jiateng Xie, Zhilin Yang, Graham Neubig, Noah A Smith, and Jaime G Carbonell. Neural cross-
lingual named entity recognition with minimal resources. In Proceedings of Empirical Methods
in Natural Language Processing, 2018.

Wei Ye, Bo Li, Rui Xie, Zhonghao Sheng, Long Chen, and Shikun Zhang. Exploiting entity BIO tag
embeddings and multi-task learning for relation extraction with imbalanced data. In Proceedings
of the Association for Computational Linguistics, 2019.

12



Under review as a conference paper at ICLR 2021

A APPENDIX

A.1 IMBALANCED DATA FOR RE AND ARL

In this section, we describe details of the imbalanced dataset for RE and ARL. Table 5 reports the
statistics of the dataset and Table 6 summarizes references and baseline results.

The number of non-relation entity pairs or trigger-entity pairs (negative instances) far exceeds pos-
itive instances, which negatively affects a model’s performance. However, the preprocessed dataset
from (Subburathinam et al., 2019) is artificially balanced, which does not reflect a practical set-
ting. Therefore, we create an additional imbalanced dataset using the ACE2005 corpus Walker et al.
(2006), which more closely replicates the setting a model will be faced with in a real-world infor-
mation extraction scenario. First, we shuffle documents into 80%/10%/10% splits for train/dev/test,
then extract candidate entity-pairs from each document. For RE, the first approach in (Ye et al.,
2019) is adopted to extract negative instances. Negative instances whose entity-type combination
has never appeared as a positive example in the training data are filtered out. This results in a
positive/negative ratio of 1:8.9 within 80,256 mention pairs for English. We repeat the same pro-
cess for Chinese/Arabic and end up with a positive/negative ratio of 1:9.4/1:8.9 and 73,082/42,104
instances. For ARL, we create negative instances by pairing each trigger with every entity in a sen-
tence. This leads to a positive/negative ratio of 2.6/2.7/2.9 and 27,823/19,338/14,376 instances in
English/Chinese/Arabic. Details on the two datasets are summarized in Table 5.

As a baseline for the imbalanced dataset, we reimplement the Graph Convolutional Network (GCN)
model of (Subburathinam et al., 2019) using multilingual embeddings learned by fastText (Bo-
janowski et al., 2017) on Wikipedia (GCNReImp). Tables 6 display F1 for zero-shot cross-lingual
transfer in both balanced and imbalanced datasets.

Task Lang Train Dev Test Pos/Neg

en 63177 10218 6861 1:8.9
RE zh 57824 7096 8162 1:9.4

ar 32984 4482 4638 1:8.9

en 21875 3345 2603 1:2.6
ARL zh 15095 2226 2017 1:2.7

ar 11587 1221 1568 1:2.9

Table 5: Statistics of the imbalanced dataset. Number of instances and the total positive/negative
ratio.

RE (F1) ARL (F1)
ar zh ar zh

Balanced Dataset

GCN (Subburathinam et al., 2019) 58.70 42.50 61.80 59.00
GCNReImp 56.10 41.70 62.08 55.10
mBERT 69.08 79.56 59.27 68.00

Imbalanced Dataset

GCNReImp 39.43 32.74 16.48 23.49

Model Selection (Imbalanced Dataset)

En-Dev 36.10 67.68 44.11 60.96
LMS 39.54 70.75 47.08 62.05

100-Target 34.68 68.20 44.11 62.52
All-Target 41.92 69.13 47.15 63.81

Table 6: F1 scores for relation extraction and argument role labeling on the test set. En-Dev/100-
Target/All-Target: model selection based on the highest F1 of English dev set/100 target language
dev set examples/target language dev set. Ours: model selection based on the highest scores for the
target language: argmaxm s(m, ltarget).
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Figure 3: Model score distribution of models in the meta-test set for NER, POS, and QA. LMS
(Red) and En-Dev (Blue). X-axis is F1 score for NER and QA and accuracy for POS.

A.2 MODEL SCORE DISTRIBUTION

Details of model score distribution are explained and analyzed in this section. Distribution figures
of NER, POS, and QA are shown in Figure 3.

To better interpret model selection results, we visualize the distribution of model scores in the meta-
test set with the kernel density estimate (KDE) plot. KDE represents the data using a continuous
probability density curve in one or more dimensions. LMS (Red) and En-Dev (Blue) selection
results are marked in the model score distribution. The majority model scores are concentrated at
the center of the distribution but the variations are large. For example, Arabic POS accuracy in
Figure 3 ranging from 48 to 53, where the majority of models achieve a score around 50. En-Dev
fails to select a model from the middle of the distribution, which leads to a score below average
models. However, LMS is able to not only select a model better than the En-Dev but also select a
model that is better than the majority of candidates. In fact, En-Dev is not a good model selection
strategy when it comes to linguistically different languages such as Arabic and Chinese. For Arabic
POS, Arabic QA, and Chinese POS, En-Dev selects a model that performs worse than an average
model from the candidates (left side of the distribution). This might suggest the model is over-fitting
to English data but fails to transfer to a distanced language. Our observations motivate us to develop
a better model selection method - LMS.

A.3 STATISTICAL TEST OF LMS PERFORMANCE

In this section, we present a statistical analysis of model selection results for POS and QA. Table 7
shows LMS on average improve a point of 0.74 relative to and a point of 0.44 relative to Pivot-Dev.

We train a single LMS with pivot languages in {ar, de, es, nl, zh} for POS and {ar, de, es, zh} for
QA, following by testing it on all the target languages. All the results are reported with mean and
standard deviation with five runs (different random seeds). A z-test is performed to the differences
between LMS/Pivot-Dev and En-Dev.

LMS is statistically significantly (p-value ≤ 0.05) higher than En-Dev baseline across all languages
and two tasks while Pivot-Dev fails in three languages. LMS also obtains a lower standard deviation
for the model scores except for Swedish (sv) and Vietnamese (vi).
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Methods
POS (Accuracy) QA (F1)

bg da fa hu it pt ro sk sl sv hi vi

Wu & Dredze (2019) 87.4 88.3 72.8 83.2 84.7 82.1 84.7 83.6 84.2 91.3 - -

Lewis et al. (2020) - - - - - - - - - - 43.8 57.1

Model Selection

En-Dev 87.22±0.24 88.59±0.17 71.58±0.28 82.81±0.37 84.44±0.45 81.87±0.16 83.84±0.30 83.49±0.42 84.26±0.34 91.37±0.05 39.93±1.45 57.18±0.82

Pivot-Dev 87.35±0.37 (es) 88.81±0.12 (nl)* 71.55±1.02 (es) 82.34±0.27 (de) 84.68±0.48 (es)* 82.06±0.23 (es)* 85.59±0.48 (es)* 84.09±0.50 (es)* 84.10±0.57 (es) 91.63±0.19 (nl)* 41.40±1.35 (es)* 57.66±2.03 (ar)

LMS 87.75±0.14* 88.74±0.14* 73.57±0.13* 83.28±0.17* 85.04±0.19* 82.18±0.08* 84.74±0.04* 83.93±0.28* 84.91±0.24* 91.55±0.21* 42.09±0.91* 57.73±1.16*

100-Target 87.72±0.50 88.74±0.06 73.00±0.76 83.14±0.17 85.14±0.27 82.14±0.34 84.78±0.47 84.07±0.58 84.23±0.56 91.58±0.23 40.04±0.81 58.83±0.90

All-Target 88.09±0.17 89.01±0.18 73.80±0.31 83.18±0.15 85.61±0.21 82.36±0.17 85.39±0.16 84.90±0.33 85.41±0.61 91.73±0.05 42.56±0.26 59.12±0.92

# of All-Target 1115 322 599 179 489 271 1191 1060 735 504 507 511

Table 7: Model scores (mean ± sd) selected based on LMS for POS and QA over 5 runs. Bold
indicates the best score and underline indicates the second best. ∗ indicates the LMS/Pivot-Dev is
statistically significantly (p-value ≤ 0.05) higher than En-Dev.

A.4 DOES THIS APPROACH GENERALIZE TO XLM-ROBERTA?

In Section 6, we showed that our approach consistently selects better fine-tuned models than those
chosen using English development data. To test the robustness of our approach with a different
multilingual pre-trained transformer, we re-train and evaluate using XLM-RoBERTa-base (Conneau
et al., 2019), with the same settings used for mBERT in Section 6 when testing RE and ARL with
imbalance dataset.

RE In the left section of Table 8, our approach selects a model with a higher F1 score compared to
En-Dev in Chinese and on par with En-Dev in Arabic.

ARL In the right section of Table 8, our approach selects a model with a higher F1 score compared
to En-Dev in Arabic but performs worse on Chinese. Overall, our approach appears to be effective
when used with XLM-RoBERTa.

RE (F1) ARL (F1)
ar zh ar zh

GCNReImp 39.43 32.74 16.48 23.49
mBERT 36.10 67.68 44.11 60.96

Model Selection

En-Dev 40.79 64.48 50.65 62.73
LMS 40.79 65.11 52.96 61.92

100-Target 42.33 65.38 52.90 62.12
All-Target 44.66 65.75 53.09 62.27

Table 8: XLM-RoBERTa experiment: F1 of relation extraction and argument role labeling on the
imbalanced dataset. Model selection results are based on XLM-RoBERTa-base models in the meta-
test set.

A.5 CAN MULTI-TASK LEARNING HELP?

Our setting does not assume access to the labeled data in the target language for a particular task.
However, labeled data in the target language may be available for a relevant auxiliary task, which
could help the scoring function learn to better estimate whether a model is a good match for the
target language.

To test whether an auxiliary task in the target language might help to select a better model for the
target task, we fine-tune sets of mBERT models for ARL and RE. Gold rankings on the models are
then computed for each language using the pivot languages’ dev sets. Also, another “silver” ranking
is computed for each language using the auxiliary task. The scoring function is then trained to rank
mBERT models for both tasks. To differentiate the two tasks, a variant of the scoring function,
s(m, l, t), which concatenates a randomly initialized task embedding with the language embedding
is adopted. Following Section 7, we use model selection results from mBERT models in the meta-
dev set and report average target language dev-set results across Chinese and Arabic.

In Table 9, our approach can select a model with a higher F1 score for RE. However, multi-task does
not benefit ARL but still outperforms En-Dev. As for future direction, we believe an LMS that is
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Figure 4: The similarity between En-Dev/LMS ranking and the golden ranking for models in the
QA meta-test set.

trained on an auxiliary dataset can be transferred to the target dataset, hence release the requirement
of a small amount of pivot language development data in the target dataset.

Task En-Dev ([Pivot], lang2vec) + Multi-task

RE 51.81 55.92 57.31
ARL 50.98 53.60 51.99

Table 9: Multi-task analysis using additional training data in the target language from another task.
We use mBERT models in the meta-dev set for analysis. Model selection is based on the highest
scores for the target language and target task: argmaxm s(m, ltarget, ttarget)

A.6 HOW MANY MODELS DO WE NEED TO TRAIN LMS?

We analyze how practical LMS is in this section. In particular, we aim to explore the question of
can the LMS be trained without large amount models. LMS can be trained with only six models.

LMS outperforms the En-Dev in three out of four target languages by training on only six models
(Table 10). Varying the number of models in the meta-training set from 6 to 120 for QA, we see
LMS performs consistently across a different number of training sizes. It outperforms the En-Dev
when trained with 72 models.

To better understand how LMS performs compared to En-Dev, we use Kendall Rank Correlation
Coefficient (KRCC) (Kendal, 1938) to measure the similarity of the orderings. KRCC (-1 to 1) be-
tween two model rankings will be high when having a similar rank. In Figure 4, KRCC is calculated
between En-Dev/LMS and golden model rankings for 60 models in the QA meta-test set. LMS
outperforms En-Dev with only six models and the KRCC improves as more models are used to train
LMS. It is interesting to see LMS has the highest KRCC in Arabic. We hypothesis this is because
of the high variation of F1 score in Arabic - the standard deviation of the Arabic F1 score is 3.3 as
opposed to 2.4 and 1.3 in German and Spanish.

ar de es zh

En-Dev 47.72 55.27 64.92 58.03

# of models to learn LMS

6 48.95 55.21 65.28 58.27
8 48.95 55.21 65.28 58.27
72 48.95 56.03 64.95 58.27
120 49.26 55.86 64.95 58.11

Table 10: Model selection results for QA (F1). A varying number of models to train LMS from 6 to
120.
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