
Under review as a conference paper at ICLR 2021

ACTION GUIDANCE: GETTING THE BEST OF SPARSE
REWARDS AND SHAPED REWARDS FOR REAL-TIME
STRATEGY GAMES

Anonymous authors
Paper under double-blind review

ABSTRACT

Training agents using Reinforcement Learning in games with sparse rewards is a
challenging problem, since large amounts of exploration are required to retrieve
even the first reward. To tackle this problem, a common approach is to use reward
shaping to help exploration. However, an important drawback of reward shaping
is that agents sometimes learn to optimize the shaped reward instead of the true
objective. In this paper, we present a novel technique that we call action guidance
that successfully trains agents to eventually optimize the true objective in games
with sparse rewards while maintaining most of the sample efficiency that comes
with reward shaping. We evaluate our approach in a simplified real-time strategy
(RTS) game simulator called µRTS.

Training agents using Reinforcement Learning with sparse rewards is often difficult (Pathak et al.,
2017). First, due to the sparsity of the reward, the agent often spends the majority of the training
time doing inefficient exploration and sometimes not even reaching the first sparse reward during the
entirety of its training. Second, even if the agents have successfully retrieved some sparse rewards,
performing proper credit assignment is challenging among complex sequences of actions that have
led to theses sparse rewards. Reward shaping (Ng et al., 1999) is a widely-used technique designed
to mitigate this problem. It works by providing intermediate rewards that lead the agent towards the
sparse rewards, which are the true objective. For example, the sparse reward for a game of Chess
is naturally +1 for winning, -1 for losing, and 0 for drawing, while a possible shaped reward might
be +1 for every enemy piece the agent takes. One of the critical drawbacks for reward shaping
is that the agent sometimes learns to optimize for the shaped reward instead of the real objective.
Using the Chess example, the agent might learn to take as many enemy pieces as possible while still
losing the game. A good shaped reward achieves a nice balance between letting the agent find the
sparse reward and being too shaped (so the agent learns to just maximize the shaped reward), but
this balance can be difficult to find.

In this paper, we present a novel technique called action guidance that successfully trains the agent
to eventually optimize over sparse rewards while maintaining most of the sample efficiency that
comes with reward shaping. It works by constructing a main policy that only learns from the
sparse reward function RM and some auxiliary policies that learn from the shaped reward func-
tion RA1

, RA2
, . . . , RAn . During training, we use the same rollouts to train the main and auxiliary

policies and initially set a high-probability of the main policy to take action guidance from the aux-
iliary policies, that is, the main policy will execute actions sampled from the auxiliary policies. Then
the main policy and auxiliary policies are updated via off-policy policy gradient. As the training
goes on, the main policy will get more independent and execute more actions sampled from its
own policy. Auxiliary policies learn from shaped rewards and therefore make the training sample-
efficient, while the main policy learns from the original sparse reward and therefore makes sure that
the agents will eventually optimize over the true objective. We can see action guidance as combining
reward shaping to train auxiliary policies interlieaved with a sort of imitation learning to guide the
main policy from these auxiliary policies.

We examine action guidance in the context of a real-time strategy (RTS) game simulator called µRTS
for three sparse rewards tasks of varying difficulty. For each task, we compare the performance of
training agents with the sparse reward function RM, a shaped reward function RA1 , and action
guidance with a singular auxiliary policy learning from RA1 . The main highlights are:

1



Under review as a conference paper at ICLR 2021

Action guidance is sample-efficient. Since the auxiliary policy learns from RA1
and the main

policy takes action guidance from the auxiliary policy during the initial stage of training, the main
policy is more likely to discover the first sparse reward more quickly and learn more efficiently.
Empirically, action guidance reaches almost the same level of sample efficiency as reward shaping
in all of the three tasks tested.

The true objective is being optimized. During the course of training, the main policy has never
seen the shaped rewards. This ensures that the main policy, which is the agent we are really interested
in, is always optimizing against the true objective and is less biased by the shaped rewards. As an
example, Figure 1 shows that the main policy trained with action guidance eventually learns to win
the game as fast as possible, even though it has only learned from the match outcome reward (+1 for
winning, -1 for losing, and 0 for drawing). In contrast, the agents trained with reward shaping learn
more diverse sets of behaviors which result in high shaped reward.

To support further research in this field, we make our source code available at GitHub1, as well as
all the metrics, logs, and recorded videos2.

1 RELATED WORK

In this section, we briefly summarize the popular techniques proposed to address the challenge of
sparse rewards.

Reward Shaping. Reward shaping is a common technique where the human designer uses domain
knowledge to define additional intermediate rewards for the agents. Ng et al. (1999) show that
a slightly more restricted form of state-based reward shaping has better theoretical properties for
preserving the optimal policy.

Transfer and Curriculum Learning. Sometimes learning the target tasks with sparse rewards is too
challenging, and it is more preferable to learn some easier tasks first. Transfer learning leverages this
idea and trains agents with some easier source tasks and then later transfer the knowledge through
value function (Taylor et al., 2007) or reward shaping (Svetlik et al., 2017). Curriculum learning
further extends transfer learning by automatically designing and choosing a full sequences of source
tasks (i.e. a curriculum) (Narvekar & Stone, 2018).

Imitation Learning. Alternatively, it is possible to directly provide examples of human demonstra-
tion or expert replay for the agents to mimic via Behavior Cloning (BC) (Bain & Sammut, 1995),
which uses supervised learning to learn a policy given the state-action pairs from expert replays. Al-
ternatively, Inverse Reinforcement Learning (IRL) (Abbeel & Ng, 2004) recovers a reward function
from expert demonstrations to be used to train agents.

Curiosity-driven Learning. Curiosity driven learning seeks to design intrinsic reward func-
tions (Burda et al., 2019) using metrics such as prediction errors (Houthooft et al., 2016) and “visit
counts” (Bellemare et al., 2016; Lopes et al., 2012). These intrinsic rewards encourage the agents to
explore unseen states.

Goal-oriented Learning. In certain tasks, it is possible to describe a goal state and use it in
conjunction with the current state as input (Schaul et al., 2015). Hindsight experience replay
(HER) (Andrychowicz et al., 2017) develops better utilization of existing data in experience re-
play by replaying each episode with different goals. HER is shown to be an effective technique in
sparse rewards tasks.

Hierarchical Reinforcement Learning (HRL). If the target task is difficult to learn directly, it
is also possible to hierarchically structure the task using experts’ knowledge and train hierarchical
agents, which generally involves a main policy that learns abstract goals, time, and actions, as well as
auxiliary policies that learn primitive actions and specific goals (Dietterich, 2000). HRL is especially
popular in RTS games with combinatorial action spaces (Pang et al., 2019; Ye et al., 2020).

The most closely related work is perhaps Scheduled Auxiliary Control (SAC-X) (Riedmiller et al.,
2018), which is an HRL algorithm that trains auxiliary policies to perform primitive actions with

1https://github.com/anonymous-research-code/action-guidance
2Blinded for peer review

2

https://github.com/anonymous-research-code/action-guidance


Under review as a conference paper at ICLR 2021

(a) shaped reward
(https://streamable.com/o797ca)

(b) action guidance
(https://streamable.com/hh7abp)

Figure 1: The screenshot shows the typical learned behavior of agents in the task of DefeatRan-
domEnemy. (a) shows that an agent trained with some shaped reward function RA1 learns many
helpful behaviors such as building workers (grey circles), combat units (blue circles), and barracks
(grey square) or using owned units (with red boarder) to attack enemy units (with blue border), but
does not learn to win as fast as possible (i.e. it still does not win at internal time step t = 6000).
In contrast, (b) shows an agent trained with action guidance optimizes over the match outcome and
learns to win as fast as possible (i.e. about to win the game at t = 440), with its main policy learning
from the match outcome reward functionRM and a singular auxiliary policy learning from the same
shaped reward function RA1

. Click on the link below figures to see the full videos of trained agents.

shaped rewards and a main policy to schedule the use of auxiliary policies with sparse rewards.
However, our approach differs in the treatment of the main policy. Instead of learning to schedule
auxiliary policies, our main policy learns to act in the entire action space by taking action guidance
from the auxiliary policies. There are two intuitive benefits to our approach since our main policy
learns in the full action space. First, during policy evaluation our main policy does not have to
commit to a particular auxiliary policy to perform actions for a fixed number of time steps like it is
usually done in SAC-X. Second, learning in the full action space means the main policy will less
likely suffer from the definition of hand-crafted sub-tasks, which could be incomplete or biased.

2 BACKGROUND

We consider the Reinforcement Learning problem in a Markov Decision Process (MDP) denoted as
(S,A, P, ρ0, r, γ, T ), where S is the state space,A is the discrete action space, P : S×A×S → [0, 1]
is the state transition probability, ρ0 : S → [0, 1] is the the initial state distribution, r : S × A→ R
is the reward function, γ is the discount factor, and T is the maximum episode length. A stochastic
policy πθ : S ×A→ [0, 1], parameterized by a parameter vector θ, assigns a probability value to an
action given a state. The goal is to maximize the expected discounted return of the policy:

Eτ

[
T−1∑
t=0

γtrt

]
,

where τ is the trajectory (s0, a0, r0, s1, . . . , sT−1, aT−1, rT−1)

and s0 ∼ ρ0, st ∼ P (·|st−1, at−1), at ∼ πθ(·|st), rt = r (st, at)

Policy Gradient Algorithms. The core idea behind policy gradient algorithms is to obtain the
policy gradient ∇θJ of the expected discounted return with respect to the policy parameter θ. Doing
gradient ascent θ = θ + ∇θJ therefore maximizes the expected discounted reward. Earlier work
proposes the following policy gradient estimate to the objective J (Sutton & Barto, 2018):

gpolicy,θ = Eτ∼πθ

[
T−1∑
t=0

∇θ log πθ(at|st)Gt

]
,

3

https://streamable.com/o797ca
https://streamable.com/hh7abp


Under review as a conference paper at ICLR 2021

where Gt =
∑∞
k=0 γ

krt+k denotes the discounted return following time t. This gradient estimate,
however, suffers from large variance (Sutton & Barto, 2018) and the following gradient estimate is
suggested instead:

gpolicy,θ = Eτ

[
∇θ

T−1∑
t=0

log πθ(at|st)A(τ, V, t)

]
,

where A(τ, V, t) is the General Advantage Estimation (GAE) (Schulman et al., 2015), which mea-
sures “how good is at compared to the usual actions”, and V : S → R is the state-value function.

3 ACTION GUIDANCE

The key idea behind action guidance is to create a main policy that trains on the sparse rewards,
and creating some auxiliary policies that are trained on shaped rewards. During the initial stages of
training, the main policy has a high probability to take action guidance from the auxiliary policies,
that is, the main policy can execute actions sampled from the auxiliary policies, rather than from its
own policy. As the training goes on, this probability decreases, and the main policy executes more
actions sampled from its own policy. During training, the main and auxiliary policies are updated
via off-policy policy gradient. Our use of auxiliary policies makes the training sample-efficient, and
our use of the main policy, who only sees its own sparse reward, makes sure that the agent will
eventually optimize over the true objective of sparse rewards. In a way, action guidance can be seen
as training agents using shaped rewards, while having the main policy learn by imitating from them.

Specifically, let us defineM as the MDP that the main policy learns from andA = {A1,A2, ...,Ak}
be a set of auxiliary MDPs that the auxiliary policies learn from. In our constructions, M and A
share the same state, observation, and action space. However, the reward function forM is RM,
which is the sparse reward function, and reward functions for A are RA1 , ..., RAk , which are the
shaped reward functions. For each of these MDPs E ∈ S = {M}∪A above, let us initialize a policy
πθE parameterized by parameters θE , respectively. Furthermore, let us use πS = {πθE |E ∈ S} to
denote the set of these initialized policies.

At each timestep t, let us use some exploration strategy S that selects a policy πb ∈ πS to sample an
action at given st. At the end of the episode, each policy πθ ∈ πS can be updated via its off-policy
policy gradient (Degris et al., 2012; Levine et al., 2020):

Eτ∼πθb

[(
T−1∏
t=0

πθ (at|st)
πθb (at|st)

)
T−1∑
t=0

∇θ log πθ (at|st)A(τ, V, t)

]
(1)

When πθ = πθb , the gradient in Equation 1 means on-policy policy gradient update for πθ. Other-
wise, the objective means off-policy policy gradient update for πθ.

3.1 PRACTICAL ALGORITHM

The gradient in Equation 1 is unbiased, but its product of importance sampling ratio(∏T−1
t=0

πθ(at|st)
πθb (at|st)

)
is known to cause high variance (Wang et al., 2016). In practice, we clip the

gradient the same way as Proximal Policy Gradient (PPO) (Schulman et al., 2017):

LCLIP (θ) = Eτ∼πθb

[
T−1∑
t=0

[∇θmin (ρt(θ)A(τ, V, t), clip (ρt(θ), ε)A(τ, V, t))]

]
(2)

ρt(θ) =
πθ (at|st)
πθb (at|st)

, clip (ρt(θ), ε) =


1− ε if ρt(θ) < 1− ε
1 + ε if ρt(θ) > 1 + ε

ρt(θ) otherwise

During the optimization phase, the agent also learns the value function and maximize the policy’s
entropy. We therefore optimize the following joint objective for each πθ ∈ πS :

LCLIP (θ) = LCLIP (θ)− c1LV F (θ) + c2S[πθb ], (3)

where c1, c2 are coefficients, S is an entropy bonus, and LV F is the squared error loss for the value
function associated with πθ as done by Schulman et al. (2017). Although action guidance can be

4



Under review as a conference paper at ICLR 2021

configured to leverage multiple auxiliary policies that learn diversified reward functions, we only
use one auxiliary policy for the simplicity of experiments. In addition, we use ε-greedy as the
exploration strategy S for determining the behavior policy. That is, at each timestep t, the behavior
policy is selected to be πθM with probability 1− ε and πθD for D ∈ A with probability ε (note that
is ε is different from the clipping coefficient ε of PPO). Additionally, ε is set to be a constant 0.95 at
start for some period of time steps (e.g. 800,000), which we refer to as the shift period (the time it
takes to start “shifting” focus away from the auxiliary policies), then it is set to linearly decay to εend
for some period of time steps (e.g. 1,000,000), which we refer to as the adaptation period (the time
it takes for the main policy to fully “adapt” and become more independent). Lastly, we included a
pseudocode of action guidance in Algorithm 1 at the Appendix.

3.2 POSITIVE LEARNING OPTIMIZATION

During our initial experiments, we found the main policy sometimes did not learn useful policies.
Our hypothesis is that this was because the main policy is updated with too many trajectories with
zero reward. Doing a large quantities of updates of these zero-reward trajectories actually causes the
policy to converge prematurely, which is manifested by having low entropy in the action probability
distribution.

To mitigate this issue of having too many zero-reward trajectories, we use a preliminary code-level
optimization called Positive Learning Optimization (PLO). After collecting the rollouts, PLO works
by skipping the gradient update for πθE ∈ πS and its value function if the rollouts contains no
reward according to RE . Intuitively, PLO makes sure that the main policy learns from meaningful
experience that is associated with positive rewards. To confirm its effectiveness, we provide an
ablation study of PLO in the experiment section.

4 EVALUATION

We use µRTS3 as our testbed, which is a minimalistic RTS game maintaining the core features
that make RTS games challenging from an AI point of view: simultaneous and durative actions,
large branching factors and real-time decision making. To interface with µRTS, we use gym-
microrts4 (Huang & Ontañón, 2020) to conduct our experiments. The details of gym-microrts as
a RL interface can be found at Appendix A.1.

4.1 TASKS DESCRIPTION

We examine the three following sparse reward tasks with a range of difficulties. For each task, we
compare the performance of training agents with the sparse reward function RM, a shaped reward
function RA1

, and action guidance with a single auxiliary policy learning from RA1
. Here are the

descriptions of these environments and their reward functions.

1. LearnToAttack: In this task, the agent’s objective is to learn move to the other side of the
map where the enemy units live and start attacking them. ItsRM gives a +1 reward for each
valid attack action the agent issues. This is of sparse reward because the action space is so
large: the agent could have build a barracks or produce a unit; it is unlikely that the agents
will by chance issue lots of moving actions (out of 6 action types) with correct directions
(out of 4 directions) and then start attacking. ItsRA1 gives the difference between previous
and current Euclidean distance between the enemy base and its closet unit owned by the
agent as the shaped reward in addition to RM.

2. ProduceCombatUnits: In this task, the agent’s objective is to learn to build as many combat
units as possible. Its RM gives a +1 reward for each combat unit the agent produces. This
is a more challenging task because the agent needs to learn 1) harvest resources, 2) produce
barracks, 3) produce combat units once enough resources are gathered, 4) move produced
combat units out of the way so as to not block the production of new combat units. Its RA1

gives +1 for constructing every building (e.g. barracks), +1 for harvesting resources, +1 for
returning resources, and +7 for each combat unit it produces.

3https://github.com/santiontanon/microrts
4https://github.com/vwxyzjn/gym-microrts

5

https://github.com/santiontanon/microrts
https://github.com/vwxyzjn/gym-microrts


Under review as a conference paper at ICLR 2021

3. DefeatRandomEnemy: In this task, the agent’s objective is to defeat a biased random bot
of which the attack, harvest and return actions have 5 times the probability of other actions.
Additionally, the bot subjects to the same gym-microrts’ limitation (See Appendix A.2) as
the agents used in our experiments. Its RM gives the match outcome as the reward (-1 on
a loss, 0 on a draw and +1 on a win). This is the most difficult task we examined because
the agent is subject to the full complexity of the game, being required to make both macro-
decisions (e.g. deciding the high-level strategies to win the game) and micro-decisions
(e.g. deciding which enemy units to attack. In comparison, its RA1 gives +5 for winning,
+1 for harvesting one resource, +1 for returning resources, +1 for producing one worker,
+0.2 for constructing every building, +1 for each valid attack action it issues, +7 for each
combat unit it produces, and +(0.2∗d) where d is difference between previous and current
Euclidean distance between the enemy base and its closet unit owned by the agent.

4.2 AGENT SETUP

We use PPO (Schulman et al., 2017) as the base DRL algorithm to incorporate action guidance.
The details of the implementation, neural network architecture, hyperparameters, proper handling
of µRTS’s action space and invalid action masking (Huang & Ontañón, 2020) can be found in
Appendix B. We compared the following strategies:

1. Sparse reward (first baseline). This agent is trained with PPO on RM for each task.
2. Shaped reward (second baseline). This agent is trained with PPO on RA1

for each task.
3. Action guidance - long adaptation. The agent is trained with PPO + action guidance with

shift = 2, 000, 000 time steps, adaptation = 7, 000, 000 time steps, and εend = 0.0

4. Action guidance - short adaptation. The agent is trained with PPO + action guidance
with shift = 800, 000 time steps, adaptation = 1, 000, 000 time steps, and εend = 0.0

5. Action guidance - mixed policy. The agent is trained with PPO + action guidance with
shift = 2, 000, 000 time steps and adaptation = 2, 000, 000 time steps, and εend = 0.5.
We call this agent “mixed policy” because it will eventually have 50% chance to sample
actions from the main policy and 50% chance to sample actions from the auxiliary policy.
It is effectively having mixed agent making decisions jointly.

Although it is desirable to add SAC-X to the list of strategies compared, it was not designed to
handle domains with large discrete action spaces. Lastly, we also toggle the PLO option for action
guidance - long adaptation, action guidance - short adaptation, action guidance - mixed policy, and
sparse reward training strategies for a preliminary ablation study.

4.3 EXPERIMENTAL RESULTS

Each of the 6 strategies is evaluated in 3 tasks with 10 random seeds. We report the results in
Table 1. From here on, we use the term “sparse return” to denote the episodic return according to
RM, and “shaped return” the episodic return according toRA1

. All the learning curves can be found
in Appendix C. Below are our observations.

Action guidance is almost as sample-efficient as reward shaping. Since the auxiliary policy
learns from RA1

and the main policy takes a lot of action guidance from the auxiliary policy during
the shift period, the main policy is more likely to discover the first sparse reward more quickly and
learn more efficiently. As an example, Figure 2 demonstrates such sample-efficiency in Produce-
CombatUnits, where the agents trained with sparse reward struggle to obtain the very first reward.
In comparison, most action guidance related agents are able to learn almost as fast as the agents
trained with shaped reward.

Action guidance eventually optimizes the sparse reward. This is perhaps the most important
contribution of our paper. Action guidance eventually optimizes the main policy over the true ob-
jective, rather than optimizing shaped rewards. Using the ProduceCombatUnits task as an example,
the agent trained with shaped reward would only start producing combat units once all the resources
have been harvested, probably because the +1 reward for harvesting and returning resources are easy
to retrieve and therefore the agents exploit them first. Only after these resources are exhausted would
the agents start searching for other sources of rewards then learn producing combat units.

6



Under review as a conference paper at ICLR 2021

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps 1e7

0

2

4

6

8

10

Ep
iso

de
 R

ew
ar

d

shaped reward
action guidance - long adaptation w/ PLO
action guidance - short adaptation w/ PLO
sparse reward

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps 1e7

0

2

4

6

8

10

Ep
iso

de
 R

ew
ar

d

action guidance - short adaptation
action guidance - short adaptation w/ PLO

Figure 2: The faint lines are the actual sparse return of each seed for selected strategies in Produce-
CombatUnits; solid lines are their means. The left figure showcase the sample-efficiency of action
guidance; the right figure is a motivating example for PLO.

Table 1: The average sparse return achieved by each training strategy in each task over 10 random
seeds.

LearnToAttack ProduceCombatUnit DefeatRandomEnemy

sparse reward (first baseline) 3.30 ± 5.04 0.00 ± 0.01 -0.07 ± 0.03
sparse reward w/ PLO 0.00 ± 0.00 0.00 ± 0.01 -0.05 ± 0.03
shaped reward (second baseline) 10.00 ± 0.00 9.57 ± 0.30 0.08 ± 0.17
action guidance - long adaptation 11.00 ± 0.00 8.31 ± 2.62 0.11 ± 0.35
action guidance - long adaptation w/ PLO 11.00 ± 0.01 6.96 ± 4.04 0.52 ± 0.35
action guidance - mixed policy 11.00 ± 0.00 9.67 ± 0.17 0.40 ± 0.37
action guidance - mixed policy w/ PLO 10.67 ± 0.12 9.36 ± 0.35 0.30 ± 0.42
action guidance - short adaptation 11.00 ± 0.01 2.95 ± 4.48 -0.06 ± 0.04
action guidance - short adaptation w/ PLO 11.00 ± 0.00 9.48 ± 0.51 -0.05 ± 0.03

In contrast, the main policy of action guidance - short adaptation w/ PLO are initially guided by the
shaped reward agent during the shift period. During the adaptation period, we find the main policy
starts to optimize against the real objective by producing the first combat unit as soon as possible.
This disrupts the behavior learned from the auxiliary policy and thus cause a visible degrade in the
main policy’s performance during 1M and 2M timesteps as shown in Figure 2. As the adaption
period comes to an end, the main policy becomes fully independent and learn to produce combat
units and harvest resources concurrently. This behavior matches the common pattern observed in
professional RTS game players and is obviously more desirable because should the enemy attack
early, the agent will have enough combat units to defend.

In the DefeatRandomEnemy task, the agents trained with shaped rewards learn a variety of behav-
iors; some of them learn to do a worker rush while others learn to focus heavily on harvesting
resources and producing units. This is likely because the agents could get similar level of shaped
rewards despite having diverse set of behaviors. In comparison, the main policy of action guidance
- long adaptation w/ PLO would start optimizing the sparse reward after the shift period ends; it
almost always learns to do a worker rush, which an efficient way to win against a random enemy as
shown in Figure 1.

The hyper-parameters adaptation and shift matter. Although the agents trained with action guid-
ance - short adaptation w/ PLO learns the more desirable behavior, they perform considerably worse
in the harder task of DefeatRandomEnemy. It suggests the harder that task is perhaps the longer
adaptation should be set. However, in ProduceCombatUnits, agents trained with action guidance -
long adaptation w/ PLO exhibits the same category of behavior as agents trained with shaped reward,
where the agent would only start producing combat units once all the resources have been harvested.
A reasonable explanation is that higher adaptation gives more guidance to the main policy to consis-
tently find the sparse reward, but it also inflicts more bias on how the task should be accomplished;
lower adaption gives less guidance but increase the likelihood for the main policy to find better ways
to optimize the sparse rewards.

7



Under review as a conference paper at ICLR 2021

(a) shaped reward
(https://streamable.com/ytpt7u)

(b) action guidance
(https://streamable.com/mpzxef)

Figure 3: The screenshot shows the typical learned behavior of agents in the task of ProduceCom-
batUnits. (a) shows an agent trained with shaped reward functionRA1

learn to only produce combat
units once the resources are exhausted (i.e. it produces three combat units at t = 1410). In contrary,
(b) shows an agent trained with action guidance learn to produce units and harvest resources con-
currently (i.e. it produces three combat units at t = 890). Click on the link below figures to see the
full videos of trained agents.

Positive Learning Optimization results show large variance. We found PLO to be an interesting
yet sometimes effective optimization in stabilizing the performance for agents trained with action
guidance. However, the results show large variance: PLO either significantly helps the agents or
make them much worse. As a motivating example, Figure 2 showcases the actual sparse return of
10 seeds in ProduceCombatUnits, where agents trained with action guidance - short adaptation and
PLO seem to always converge while agents trained without PLO would only sometimes converge.
However, PLO actually hurt the performance of action guidance - long adaptation in ProduceCom-
batUnits by having a few degenerate runs as shown in Figure 2. It is also worth noting the PLO
does not help the sparse reward agent at all, suggesting PLO is a an optimization somewhat unique
to action guidance.

Action guidance - mixed policy is viable. According to Table 1, agents trained with action guid-
ance - mixed policy with or without PLO seem to perform relatively well in all three tasks examined.
This is a interesting discovery because it suggests action guidance could go both ways: the auxiliary
policies could also benefit from the learned policies of the main policy. An alternative perspective is
to consider the main policy and the auxiliary policies as a whole entity that mixes different reward
functions, somehow making joint decision and collaborating to accomplish common goals.

5 CONCLUSIONS

In this paper, we present a novel technique called action guidance that successfully trains the agent
to eventually optimize over sparse rewards yet does not lose the sample efficiency that comes with
reward shaping, effectively getting the best of both worlds. Our experiments with DefeatRandomEn-
emy in particular show it is possible to train a main policy on the full game of µRTS using only the
match outcome reward, which suggests action guidance could serve as a promising alternative to
the training paradigm of AlphaStar (Vinyals et al., 2019) that uses supervised learning with human
replay data to bootstrap an agent. As part of our future work, we would like to scale up the approach
to defeat stronger opponents.

8

https://streamable.com/ytpt7u
https://streamable.com/mpzxef


Under review as a conference paper at ICLR 2021

REFERENCES

Pieter Abbeel and Andrew Y Ng. Apprenticeship learning via inverse reinforcement learning. In
Proceedings of the twenty-first international conference on Machine learning, pp. 1, 2004.

Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder, Bob
McGrew, Josh Tobin, OpenAI Pieter Abbeel, and Wojciech Zaremba. Hindsight experience re-
play. In Advances in neural information processing systems, pp. 5048–5058, 2017.

Michael Bain and Claude Sammut. A framework for behavioural cloning. In Machine Intelligence
15, pp. 103–129, 1995.

Marc Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David Saxton, and Remi Munos.
Unifying count-based exploration and intrinsic motivation. In Advances in neural information
processing systems, pp. 1471–1479, 2016.

Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemyslaw Debiak, Christy
Dennison, David Farhi, Quirin Fischer, Shariq Hashme, Chris Hesse, Rafal Józefowicz, Scott
Gray, Catherine Olsson, Jakub W. Pachocki, Michael Petrov, Henrique Pond’e de Oliveira Pinto,
Jonathan Raiman, Tim Salimans, Jeremy Schlatter, Jonas Schneider, Szymon Sidor, Ilya
Sutskever, Jie Tang, Filip Wolski, and Susan Zhang. Dota 2 with large scale deep reinforcement
learning. ArXiv, abs/1912.06680, 2019.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

Yuri Burda, Harri Edwards, Deepak Pathak, Amos Storkey, Trevor Darrell, and Alexei A. Efros.
Large-scale study of curiosity-driven learning. In ICLR, 2019.

Thomas Degris, Martha White, and Richard S Sutton. Off-policy actor-critic. arXiv preprint
arXiv:1205.4839, 2012.

Prafulla Dhariwal, Christopher Hesse, Oleg Klimov, Alex Nichol, Matthias Plappert, Alec Radford,
John Schulman, Szymon Sidor, Yuhuai Wu, and Peter Zhokhov. Openai baselines. https:
//github.com/openai/baselines, 2017.

Thomas G Dietterich. Hierarchical reinforcement learning with the maxq value function decompo-
sition. Journal of artificial intelligence research, 13:227–303, 2000.

Logan Engstrom, Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Firdaus Janoos, Larry
Rudolph, and Aleksander Madry. Implementation matters in deep rl: A case study on ppo and
trpo. In International Conference on Learning Representations, 2019.

Rein Houthooft, Xi Chen, Yan Duan, John Schulman, Filip De Turck, and Pieter Abbeel. Curiosity-
driven exploration in deep reinforcement learning via bayesian neural networks. 2016.

Shengyi Huang and Santiago Ontañón. A closer look at invalid action masking in policy gradient
algorithms. arXiv preprint arXiv:2006.14171, 2020.

Shengyi Huang and Santiago Ontañón. Comparing observation and action representations for deep
reinforcement learning in µrts. 2019.

Anssi Kanervisto, Christian Scheller, and Ville Hautamäki. Action space shaping in deep reinforce-
ment learning. arXiv preprint arXiv:2004.00980, 2020.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tuto-
rial, review, and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

Manuel Lopes, Tobias Lang, Marc Toussaint, and Pierre-Yves Oudeyer. Exploration in model-
based reinforcement learning by empirically estimating learning progress. In Advances in neural
information processing systems, pp. 206–214, 2012.

9

https://github.com/openai/baselines
https://github.com/openai/baselines


Under review as a conference paper at ICLR 2021

Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltzmann machines. In
Proceedings of the 27th international conference on machine learning (ICML-10), pp. 807–814,
2010.

Sanmit Narvekar and Peter Stone. Learning curriculum policies for reinforcement learning. arXiv
preprint arXiv:1812.00285, 2018.

Andrew Y Ng, Daishi Harada, and Stuart Russell. Policy invariance under reward transformations:
Theory and application to reward shaping. 1999.

Zhen-Jia Pang, Ruo-Ze Liu, Zhou-Yu Meng, Yi Zhang, Yang Yu, and Tong Lu. On reinforcement
learning for full-length game of starcraft. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 33, pp. 4691–4698, 2019.

Deepak Pathak, Pulkit Agrawal, Alexei A. Efros, and Trevor Darrell. Curiosity-driven exploration
by self-supervised prediction. In ICML, 2017.

Martin Riedmiller, Roland Hafner, Thomas Lampe, Michael Neunert, Jonas Degrave, Tom Van de
Wiele, Volodymyr Mnih, Nicolas Heess, and Jost Tobias Springenberg. Learning by playing-
solving sparse reward tasks from scratch. arXiv preprint arXiv:1802.10567, 2018.

Tom Schaul, Daniel Horgan, Karol Gregor, and David Silver. Universal value function approxima-
tors. In International conference on machine learning, pp. 1312–1320, 2015.

John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-
dimensional continuous control using generalized advantage estimation. arXiv preprint
arXiv:1506.02438, 2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Maxwell Svetlik, Matteo Leonetti, Jivko Sinapov, Rishi Shah, Nick Walker, and Peter Stone. Au-
tomatic curriculum graph generation for reinforcement learning agents. In Thirty-First AAAI
Conference on Artificial Intelligence, 2017.

Matthew E. Taylor, Peter Stone, and Yaxin Liu. Transfer learning via inter-task mappings for tem-
poral difference learning. J. Mach. Learn. Res., 8:2125–2167, 2007.

Oriol Vinyals, Timo Ewalds, Sergey Bartunov, Petko Georgiev, Alexander Sasha Vezhnevets,
Michelle Yeo, Alireza Makhzani, Heinrich Küttler, John Agapiou, Julian Schrittwieser, et al.
Starcraft ii: A new challenge for reinforcement learning. arXiv preprint arXiv:1708.04782, 2017.

Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël Mathieu, Andrew Dudzik, Juny-
oung Chung, David H Choi, Richard Powell, Timo Ewalds, Petko Georgiev, et al. Grandmaster
level in starcraft ii using multi-agent reinforcement learning. Nature, 575(7782):350–354, 2019.

Ziyu Wang, Victor Bapst, Nicolas Heess, Volodymyr Mnih, Remi Munos, Koray Kavukcuoglu,
and Nando de Freitas. Sample efficient actor-critic with experience replay. arXiv preprint
arXiv:1611.01224, 2016.

Deheng Ye, Zhao Liu, Mingfei Sun, Bei Shi, Peilin Zhao, Hao Wu, Hongsheng Yu, Shaojie Yang,
Xipeng Wu, Qingwei Guo, et al. Mastering complex control in moba games with deep reinforce-
ment learning. In AAAI, pp. 6672–6679, 2020.

10


