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ABSTRACT

Multimodal large language models (MLLMs) represent images and video frames
as visual tokens. Scaling from single images to hour-long videos, however, inflates
the token budget far beyond practical limits. Popular pipelines therefore either
uniformly subsample or apply keyframe selection with retrieval-style scoring using
smaller vision-language models. However, these keyframe selection methods still
rely on pre-filtering before selection to reduce the inference cost and can miss the
most informative moments.
We propose FOCUS, Frame-Optimistic Confidence Upper-bound Selection, a
training-free, model-agnostic keyframe selection module that selects query-relevant
frames under a strict token budget. FOCUS formulates keyframe selection as a com-
binatorial pure-exploration (CPE) problem in multi-armed bandits: it treats short
temporal clips as arms, and uses empirical means and Bernstein confidence radius
to identify informative regions while preserving exploration of uncertain areas. The
resulting two-stage exploration-exploitation procedure reduces from a sequential
policy with theoretical guarantees, first identifying high-value temporal regions,
then selecting top-scoring frames within each region. Extensive experiments across
four long-video question-answering benchmarks and four popular MLLMs demon-
strate that FOCUS delivers substantial accuracy improvements while processing
less than 2% of video frames. For videos longer than 20 minutes, it achieves an
11.9% gain in accuracy on LongVideoBench, demonstrating its effectiveness as a
keyframe selection method and providing a simple and general solution for scalable
long-video understanding with MLLMs.

1 INTRODUCTION

“The art of being wise is the art of knowing what to overlook.” — William James

Recent advances in large language models (LLMs) and multimodal large language models (MLLMs)
have significantly improved visual understanding and reasoning. In current frameworks, images
are encoded into visual tokens aligned with text and jointly processed by the LLM. Extending this
paradigm to videos—especially long, untrimmed ones—introduces a key challenge: the sheer number
of frames leads to an overwhelming number of visual tokens, making inference computationally
prohibitive.

A common solution is aggressive downsampling (Wang et al., 2022b; Lin et al., 2023; Maaz et al.,
2024; Zhang et al., 2025c), but uniformly sampling a handful of frames (e.g., 64 from a one-hour
video) often misses critical content (Tang et al., 2025; Zhang et al., 2025b). Increasing the frame rate,
on the other hand, causes token explosion (Wang et al., 2024c). This trade-off motivates the need for
keyframe selection: choosing a small set of informative frames that preserve semantics while staying
within token limits.

Recent methods address this by scoring frame relevance with pre-trained vision-language encoders
(e.g., CLIP (Radford et al., 2021) or BLIP (Li et al., 2022)) and then pick the highest-relevance
frames (Tang et al., 2025; Zhang et al., 2025b). These text-image matching approaches are typically
training-free and plug in easily before the visual encoder in MLLM stacks, retrieving frames with
higher relevance other than uniform sampling. Despite their success, current keyframe selection
methods still face scalability and efficiency limitations. For a one-hour video at 30 fps (over 105
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frames), exhaustively scoring all frames entails on the order of 1011-1012 FLOPs with a vision-
language encoder like BLIP (Li et al., 2022). This scaling pressure forces existing methods to
uniformly sample the video to lower frame rate before the scoring process. This pre-filtering process
before keyframe selection undermines the goal of identifying most informative keyframes from all
frames (Zhang et al., 2025b; Tang et al., 2025).
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Figure 1: Temporal autocorrelation
(ACF) of per-frame query relevance on
LongVideoBench and Video-MME. We
compute frame-level relevance per video
and take the ACF over time lags (seconds);
solid lines show the median across videos
and shaded bands the interquartile range.
The dashed line marks the correlation
half-life level (ρ(δ) = 0.5).

In this work, we propose FOCUS, Frame-Optimal Con-
fidence Upper-Bound Selection, a training-free, plug-
and-play keyframe selection method designed to pro-
cess extremely long videos with minimal computational
overhead. FOCUS is easy to implement in practice
while offering an elegant theoretical foundation.

The key insight behind FOCUS is grounded in the ob-
servation that natural videos exhibit strong temporal
locality: adjacent frames are highly correlated in ap-
pearance and motion (Wiegand et al., 2003; Wang et al.,
2016; 2022b). This local smoothness naturally extends
to frame-query relevance scores.

Concretely, for each video-query pair we compute a
frame-level relevance sequence {rt}, where rt is the co-
sine similarity between the visual embedding of frame
t and the text embedding of the query produced by
BLIP. We then measure temporal dependence via the
autocorrelation function (ACF) ρ(δ) = corr(rt, rt+δ)
at lag δ (in seconds), and aggregate ρ(δ) across videos.
As illustrated in Figure 1, both LongVideoBench and
Video-MME exhibit strong short-range correlation: the
median ACF remains above 0.5 for roughly the first 5
seconds.

This observation implies that exhaustive scoring of all frames is unnecessary. Instead, we can
formulate keyframe selection as a bandit problem to adaptively allocate computation: quickly
filtering out irrelevant temporal regions, concentrating scoring on promising segments, and ultimately
prioritizing the most informative keyframes.

FOCUS first partitions the video into short temporal clips, each treated as an arm in a multi-armed
bandit. The clip selection is then framed as a Combinatorial Pure-Exploration (CPE) problem: the
goal is to identify a subset of arms that maximizes expected cumulative relevance under a limited
budget. Each arm maintains an empirical mean relevance and a Bernstein-style confidence radius.
Computation is adaptively allocated to clips that are either promising (high mean) or uncertain (large
confidence radius), following an optimism-in-the-face-of-uncertainty principle. This iterative process
enjoys theoretical convergence guarantees. To leverage parallel computation, we reduce the iterative
strategy to a coarse-to-fine schedule: optimistic means guide exploration, while unbiased empirical
means inform final arm selection. Within each selected arm, we extract the top-relevance frames to
construct the final keyframe set.

We validate the effectiveness of our approach on two video understanding benchmarks, including
LongVideoBench (Wu et al., 2024) and Video-MME (Fu et al., 2025). The proposed FOCUS is tested
as an off-the-shelf module on with four popular MLLMs. FOCUS improves answer accuracy over
state-of-the-art keyframe selection baselines across benchmarks while maintaining lower inference
cost. The gains are especially pronounced on long-form videos: for videos longer than 20 minutes on
LongVideoBench, FOCUS delivers a 11.9% accuracy improvement while still cutting inference cost.

In summary, our main contributions are three-fold: (1) We formulate query-aware keyframe selection
as a budgeted combinatorial pure-exploration (CPE) problem in a multi-armed bandit setting; (2)
We introduce FOCUS, a training-free, model-agnostic keyframe selection module that selects query-
relevant frames under a strict token budget; (3) We validate the effectiveness of FOCUS on two
long-video understanding benchmarks, achieving consistent gains across four popular MLLMs.
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Figure 2: Overview of FOCUS. FOCUS partitions videos into fixed-length clips as bandit arms, applies
optimistic confidence upper-bound arm selection and selects final keyframes within each promising
arms.

2 METHOD

2.1 PROBLEM FORMULATION

Keyframe Selection Setup. Let a video be V = (x1, . . . ,xT ) and denote the corresponding text
query as q. Let the frame index set be T = {1, . . . , T}. A downstream MLLM Φ consumes a
subset of frames indexed by K ⊆ T with |K| = k and produces an answer â = Φ

(
q, {xt}t∈K

)
. Let

RΦ(K | V, q) denote the task-level utility of the selected frames (e.g., quality of generated answer,
relevance to query, or other performance metrics).

Oracle and Surrogate Objective. The oracle objective chooses K to maximize expected utility:

Koracle(V, q) = argmax
K⊆T, |K|=k

E
[
RΦ(K | V, q)

]
, (1)

Direct optimization to equation 1 is infeasible due to the combinatorial search space and the high cost
of black-box evaluations of Φ. We further expand the task-level utility RΦ(K | V, q) to a summation
of frame-level utility yt ∈ [0, 1]:

K⋆ = argmax
K⊆T, |K|=k

E
[∑
t∈K

yt
]
. (2)

However, estimating the contribution of each frame t to the task-level utility is also intractable.
We therefore posit that yt is indirectly observable via a vision-language encoder ψ that outputs a
relevance score rt = ψ(xt, q;θ) = yt + ϵψ, where ϵψ denotes encoder-induced noise. We assume
ϵψ follows some distribution that are supported on [0, 1] and with zero mean and σ2

ψ variance. Under
this assumption, the relevance score rt is a unbiased estimator of yt which is also commonly used in
many works (Tang et al., 2025; Yu et al., 2024) implicitly.

Exhaustively scoring all T frames to get {rt} is computationally prohibitive, especially for hourly
long videos which contains over 105 frames. This computational constraint motivates us to model
keyframe selection under budget constraints, where we strategically allocate a limited sampling budget
to identify the most promising temporal segments before producing the final set of k keyframes.
Instead of directly optimizing equation 2 at the frame level, we will approximate it through a
combinatorial pure-exploration multi-armed bandit formulation at the clip level, which significantly
reduces exploration cost.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Algorithm 1 Iterative Optimistic Confidence Upper-bound Arm Selection
Require: Maximization oracle TopM({µa},m)→ A ⊆ A

1: Initialize: Empirical means µ̂0(a)← 0 and N0(a)← 0 for all a.
2: Pull each arm a ∈ A for q times and observe the rewards.
3: n← mq and Na(n)← q for all a.
4: Update empirical means µ̂a(n) for all a.
5: for n← mq,mq+1, . . . do
6: An ← TopM(µ̂,m)
7: Compute confidence radius βa(n) for all a ∈ A ▷ βa(n) defined in equation 5
8: for a← 1 to M do
9: if a ∈ An then

10: µ̃a(n)← µ̂a(n)− βa(n)
11: else
12: µ̃a(n)← µ̂a(n) + βa(n)
13: end if
14: end for
15: Ãn ← TopM(µ̃,m)

16: if Ãn = An then
17: return An
18: end if
19: pn ← argmax

a∈(Ãn\An)∪ (An\Ãn)

βa(n) ▷ break ties arbitrarily

20: Pull arm pn and observe the reward
21: Update empirical means µ̂(pn) with the observed reward
22: Npn(n+ 1)← Npn(n) + 1
23: end for

2.2 CLIP-LEVEL SELECTION AS MULTI-ARMED BANDIT

For a video V = (x1, . . . ,xT ), we partition the timeline into M non-overlapping fixed-length clips
A = {Aa}Ma=1, where each clip Aa ⊆ T spans frames [sa, ea] and is treated as a bandit arm. We
define pulling arm a as uniformly sampling a frame t ∈ Aa and observing its query relevance score
rt as the reward. The unseen frame-level utility of the sampled frame is modeled as yt ∼ νa, where
νa has mean µa and variance σ2

a.

Intuitively, our goal is to focus on the most promising clips which means we have to identify the
optimal subset S⋆ ⊆ A. Formally, we define the decision class S ∈ 2A as a subset of the power set
of A. The optimal member S⋆ of decision class S is defined as

S⋆ = argmax
S∈S

∑
a∈S

µa. (3)

Under the classic CPE framework, the learner’s objective is to identify S⋆ after interacting with the
arms over a sequence of rounds. In the keyframe selection setting, our final goal is to further select k
keyframes from the selected arms. Denote {ka}|S

⋆|
a=1 as the number of keyframes allocated to the a-th

selected arm. We further define the frame-level optimal keyframe subset K⋆a as

K⋆a = argmax
Ka⊆Aa, |Ka|=ka

∑
t∈Ka

yt. (4)

The final keyframe subset K⋆ is then defined as K⋆ =
⋃
a∈S⋆ K⋆a. Empirically, we assume the

decision class S is all size-m subsets of A and keyframes are equally distributed across the promising
arms. This setting gives us an elegant theoretical guarantee of regret bound as shown in section C and
is also proved to be effective in our experiments.

2.3 OPTIMISTIC CONFIDENCE UPPER-BOUND ARM SELECTION

2.3.1 OPTIMAL ARM SELECTION.

Generally, we play a exploration game by pulling an arm a and observing the reward rt at each round
n. We maintain two core empirical statistics for each arm a during this process: an empirical mean

4
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Algorithm 2 Optimistic Confidence Upper-bound Arm Selection
Require: Maximization oracle TopM({µa},m)→ A ⊆ A

1: Initialize: Empirical means µ̂0(a)← 0 and N0(a)← 0 for all a.
// Stage I: Coarse exploration

2: Pull each arm a ∈ A for q times and observe the rewards.
3: n← mq and Na(n)← q for all a.
4: Update empirical means µ̂ for all a.
5: Compute confidence radius βa(n) for all a ∈ A
6: µ̃a(n)← µ̂a(n) + βa(n) for all a ∈ A
7: Acoarse ← TopM(µ̃,m) ▷ Optimistic Means UCB

// Stage II: Fine-grained exploitation
8: Pull each arm a ∈ Acoarse for z times and observe the rewards.
9: Update empirical means µ̂a(n) for a ∈ Acoarse

10: Afine ← TopM(µ̂,m) ▷ Unbiased Empirical Means
11: return Afine

µ̂a(n) and an empirical Bernstein confidence radius (variance-adaptive) βa(n), following the UCV-V
style bound (Audibert et al., 2009):

βa(n) =

√
2 σ̂2

a lnn

max(1, Na(n))
+

3 lnn

max(1, Na(n))
. (5)

Here σ̂2
a is the empirical variance of arm a, Na(n) is the number of pulls for arm a at round n and

n =
∑
a∈ANa(n) is the total number of pulls. The confidence radius ensures that the empirical

mean is within the confidence radius of the true mean with high probability, i.e.,

P [|µ̂a(n)− µa| ≤ βa(n)] ≥ 1− 6

n
. (6)

Please refer to Appendix B for the detailed proof.

As shown in Algorithm 1, the optimistic confidence upper-bound arm selection starts with an
initialization phase where we pull each arm for q times and observe the relevance scores as rewards.
We then update the empirical means µ̂a and compute the confidence radius βa(n) for each arm a.
Note the relevance score rt is an unbiased estimator of yt so we have E[µ̂a] = µa. Then we choose
the best m arms using the empirical means µ̂a(n), i.e., An = TopM(µ̂,m), where µ̂ is the vector
of all arms’ empirical means and TopM(·,m) returns a set of the m arms with the largest empirical
means.

We further refine the arm selection by evaluating the "potential" of each arm. To be specific, for
arm a ∈ An, we compute the lower confidence bound of the empirical mean, i.e., LCBa(n) =
µ̂a(n)− βa(n); for arm a /∈ An, we compute the upper confidence bound of the empirical mean, i.e.,
UCBa(n) = µ̂a(n) + βa(n). If

max
a/∈An

UCBa(n) ≥ min
a∈An

LCBa(n), (7)

this indicates that some arms outside the current top-m set are still potential to be included in the
top-m set. Thus, we choose the arm a that we are most uncertain about, i.e.,

a = argmax
a∈(Ãn\An)∪ (An\Ãn)

βa(n). (8)

We then pull this arm a for q times and repeat the process until the top-m set is unchanged, i.e.,
An+1 = An. We then return the top-m set An.

It is easy to see Algorithm 1 is guaranteed to return the optimal top-m set An with high probability
(see Section C for the detailed proof). However, the iterative process is empirically inefficient (or
intractable) as the sequential arm-pulls and updating can not be parallelizable. We have to pull the
arms one-by-one which means forward the vision-language model with batch size 1 sequentially.
This costs significant waste of GPU utilization.

5
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2.3.2 TWO-STAGE ARM SELECTION.

To make the procedure practical and easy to parallelize, we specialize Algorithm 1 into the two-stage,
batch variant in Algorithm 2. The overall framework is shown in Figure 2.

Stage I: Coarse initialization. We pull each arm q times in parallel and update the empirical means
µ̂a and confidence radii βa(n) for all a ∈ A. This stage coincides with the initialization phase of
Algorithm 1 and serves as a coarse exploration pass that produces reliable per-arm statistics at low
coordination cost.

Stage II: Fine-grained exploration (batched). Using the optimistic scores µ̃a(n) = µ̂a(n) +
βa(n), we select the top αm arms, Acoarse = TopM(µ̃, , αm), and allocate an additional z pulls
to each a ∈ Acoarse (performed in a single batch). Here, α is a hyperparameter that controls the
ratio of the coarse exploration budget to the fine-grained exploration budget. This stage is a batched
counterpart of the iterative loop in Algorithm 1: it implements the “optimism in the face of uncertainty”
principle by concentrating samples on arms with the largest UCB values, while avoiding per-step
scheduling overhead.

Final Arm Selection. After the fine exploitation, we form the final set by selecting the best m
arms according to the unbiased empirical means, Afine = TopM(µ̂,m). This choice mirrors δ-PAC
identification routines, where optimistic scores guide exploration but the recommendation itself is
based on the empirical means µ̂a(n) rather than the optimistic means µ̃a(n).

2.4 FRAME SELECTION WITHIN SELECTED ARMS

Given the selected arm set Afine and a total budget of K frames, we sample ka frames per arm
a ∈ Afine with equal allocation (i.e., ka = round(k/|Afine|), adjusted to sum to K). For each arm
a with index set Ta and observed rewards {ra,s}s∈Sa

at sampled indices Ta ⊆ Ta, we simply
interpolate all rewards r̂a,t within the arm using the nearest-neighbor assignment. We then form
a per-arm sampling distribution according to the interpolated rewards and draw ka frames without
replacement from pa. The final keyframe set is K =

⋃
a∈Afine

Ka.

3 EXPERIMENTS

3.1 EXPERIMENTAL SETUP

Benchmarks We follow the LMMs-Eval framework Zhang et al. (2024a) and adopt the open-source
evaluation protocol from AKS for benchmarks, prompts, and scoring. Our experiments focus on two
long-video multiple-choice QA benchmarks: LongVideoBench Wu et al. (2024) and VideoMME Fu
et al. (2025). These datasets feature videos lasting up to an hour, where effective keyframe selection
becomes crucial for performance. To ensure fair comparison (Tang et al., 2025), we disable subtitles,
perform zero-shot evaluation, and keep model parameters frozen—varying only the frame selection
strategy (our method versus uniform sampling). We also evaluate on MLVU (Zhou et al., 2025) and
VSI-Bench (Yang et al., 2025) to assess generalization; detailed results on MLVU and VSI-Bench are
provided in Section F.

Implementation Details We test both open-source video MLLMs (Qwen2VL (Wang et al., 2024a),
LLaVA-OV (Li et al., 2025), LLaVA-Video (Zhang et al., 2025c) and Qwen2-7B (Yang et al., 2024)
language model) and the commercial GPT-4o (0513). For frame relevance scoring, we use BLIP
ITM (Li et al., 2022) to compute rt = ψ(xt, q;θ), where rt estimates the latent frame-level utility as
described in Section 2.1, which is justified as a promising choice by Tang et al. (2025). This also
ensure a fair comparison setting as the frame-level utility is estimated using the same model.

3.2 PERFORMANCE ANALYSIS

We evaluate FOCUS by using it to select keyframes as the visual input for the four aforementioned
MLLMs, and compare it against the commonly used uniform sampling strategy. The results on
LongVideoBench and Video-MME are summarized in Table 1.
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Model #Frame LLM LongVideoBench Video-MME
GPT-4V 256 – 61.3 59.9
Gemini-1.5-Flash 256 – 61.6 70.3
Gemini-1.5-Pro 256 – 64.0 75.0
VideoLLaVA 8 7B 39.1 39.9
MiniCPM-V 2.6 64 8B 54.9 60.9
InternVL2-40B 16 40B 59.7 61.2
LLaVA-Video-72B 64 72B 63.9 70.6

GPT-4o 32 – 51.6 61.8
GPT-4o w/ Ours 32 – 54.8 ↑ 3.2 62.5 ↑ 0.7
Qwen2-VL-7B 32 7B 55.6 57.4
Qwen2-VL-7B w/ Ours 32 7B 62.3 ↑ 6.7 59.7 ↑ 2.3
LLaVA-OV-7B 32 7B 54.8 56.5
LLaVA-OV-7B w/ Ours 32 7B 60.7 ↑ 5.9 58.3 ↑ 1.8
LLaVA-Video-7B 64 7B 58.9 64.4
LLaVA-Video-7B w/ Ours 64 7B 63.5 ↑ 4.6 65.4 ↑ 1.0

Table 1: Video-question answering accuracy (%) of various MLLMs on LongVideoBench and Video-
MME. FOCUS is integrated into GPT-4o, Qwen2-VL, LLaVA-OV, and LLaVA-Video. The suffix
“w/ Ours” denotes models using keyframes selected by our method; otherwise, frames are uniformly
sampled. #Frame indicates the number of frames provided to the MLLM, and LLM denotes the
language model size. We also include performance of additional popular MLLMs for reference.

Improved Performance via Frame Selection. As shown in Table 1, FOCUS consistently
outperforms uniform sampling across both open-source and closed-source MLLMs on both
LongVideoBench and Video-MME.

Specifically, on LongVideoBench, FOCUS improves accuracy by 3.2% on GPT-4o, 6.7% on Qwen2-
VL-7B, 5.9% on LLaVA-OV-7B, and 4.6% on LLaVA-Video-7B. On Video-MME, the gains are
0.7%, 2.1%, 1.8%, and 1.0% on the same models, respectively.

We observe a clear trend that larger MLLMs with more frame inputs tend to achieve better perfor-
mance. However, FOCUS significantly narrows this gap by identifying the most informative frames,
thereby boosting the performance of smaller MLLMs. For instance, Qwen2-VL-7B with FOCUS
outperforms Gemini-1.5-Flash on LongVideoBench, despite using 8× fewer input frames. This
highlights the effectiveness of FOCUS as a plug-and-play keyframe selection module for a wide range
of MLLMs.

Interpretability through Visualizations. We visualize the frames selected by FOCUS alongside
uniformly sampled frames for two examples from LongVideoBench and Video-MME in Figure 3.

Note that LongVideoBench and Video-MME differ substantially in how their video-question pairs
are constructed. In general, LongVideoBench features more detailed and specific questions, while
Video-MME focuses on concise, high-level queries. Moreover, LongVideoBench tends to ask about
specific scenes or events, whereas Video-MME emphasizes global understanding of the video content.

To highlight this distinction, we manually mark the most informative frames relative to the query
using yellow stars. These frames are more temporally concentrated in LongVideoBench (around
specific events) and more uniformly distributed across the timeline in Video-MME.

This difference helps explain why FOCUS achieves greater performance gains on LongVideoBench:
our method assumes that frame-level relevance scores are i.i.d., a common setting in multi-armed
bandit formulations. This assumption neglects temporal dependencies between video segments.
Consequently, retrieval-based methods for keyframe selection typically require regularization (Tang
et al., 2025; Yu et al., 2024) to promote diversity and ensure coverage.

If temporal dependencies between segments (arms) are taken into account, the problem setting shifts
toward Lipschitz or metric bandits (Kleinberg et al., 2008; Bubeck et al., 2011), and contextual
bandits (Chu et al., 2011; Agarwal et al., 2014). We leave such extensions to future work.
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Question: What magic does the magician first perform on the stage?

Answer: He cuts paper to make the avatar of the celebrity the male 
judge is thinking of.

Answer w/ Ours: He cuts paper to make the avatar of the celebrity 
the female judge is thinking of.

Question: In the scene, a woman is standing in front of a cash register, and there are 
two other people behind the counter. The four people in the scene are clearly visible. 
The woman at the register is wearing black clothes, and the woman buying coffee is 
wearing an olive-green trench coat. Who is the person in the scene with their head 
slightly bowed and smiling?

Answer: The black-haired woman in the olive-green jacket.

Answer w/ Ours: The woman in the olive-green trench coat.
Question: What is the correct order in which the following patterns appear in 
the video?

Answer: Pizza parlors, dice, the United Nations emblem.

Answer w/ Ours: Dice, pizza parlors, the United Nations emblem.

Question: On a large marble table, there is a piece of baked food. A person 
wearing a ring is using chopsticks to apply sauce. What kind of ring is this 
person wearing?

Answer: Diamond ring on the middle finger.

Answer w/ Ours: Gold ring on the middle finger.

Figure 3: Comparison between uniformly sampled frames and those selected by FOCUS. The left
column shows two examples from LongVideoBench; the right column shows two from Video-MME.
Yellow stars indicate manually annotated frames that are most informative to the query, many of
which are successfully captured by FOCUS.

3.3 COMPARISON WITH STATE-OF-THE-ART

Method LongVideoBench Video-MME
Short Medium Long Overall Short Medium Long Overall

Uniform 67.5 57.4 51.8 58.9 76.4 62.6 54.3 64.4
Top-K 72.3 58.0 60.5 62.3 75.4 60.4 53.0 62.9
AKS 72.3 59.2 56.1 62.1 76.3 62.8 54.7 64.6
FOCUS (ours) 72.3 59.0 63.7 63.5 76.5 63.5 56.1 65.4

Table 2: Comparison between our method and state-of-the-art keyframe selection baselines under
matched keyframe count. Results are reported by video length buckets: Short, Medium, and Long.
For Video-MME, we adopt its original categorization: Short (<2 min), Medium (4-15 min), and Long
(30-60 min). For LongVideoBench, we define Short as videos shorter than 3 minutes, Medium as
3-20 minutes, and Long as over 20 minutes to ensure a balanced distribution.

To further validate the effectiveness of FOCUS, we compare it against state-of-the-art training-free
keyframe selection methods on both LongVideoBench and Video-MME. Specifically, we consider
recent approaches based on vision-language similarity:

• Top-K: Computes relevance scores between each frame and the query, then selects the top-K
scoring frames. Due to computational constraints, we apply a pre-filtering step by downsampling
videos to 1 frame per second.

• AKS (Tang et al., 2025): A recent method that adaptively balances frame relevance and temporal
coverage. It is considered the current state-of-the-art and also incorporates pre-filtering via
downsampling to 1 frame per second (Tang et al., 2025).

We also compare against Q-Frame (Zhang et al., 2025b), another recent training-free method that uses
multi-resolution adaptation. Detailed comparisons across multiple MLLMs are provided in Section E,
where FOCUS consistently outperforms both AKS and Q-Frame.
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Method Filtering-free Frames Seen (%) GPU hours

AKS w/o pre-filtering 100 255
AKS w/ pre-filtering 3.7 9.3
FOCUS (Ours) 1.6 5.5

Table 3: Efficiency comparison of keyframe selection methods on LongVideoBench. "Pre-filtering"
refers to downsampling videos to 1 fps prior to selection. Note that the official AKS pipeline includes
this pre-filtering step by default. “Frames Seen (%)” counts the proportion of frame-level BLIP
forward passes relative to scoring all frames; GPU hours are measured on a single H100 (80GB).

Fair comparison protocol. We ensure a fair comparison by: (i) evaluating all methods using LLaVA-
Video-7B, the best-performing MLLM in our setup; (ii) fixing the number of selected keyframes
to k = 64; (iii) using the same vision-language encoder (e.g., BLIP) for frame scoring whenever
possible. Results are summarized in Table 2.

Consistency across different lengths. FOCUS achieves consistent performance gains across all
video length categories, with particularly strong improvements on long videos. On LongVideoBench,
FOCUS outperforms uniform sampling by 11.9% and Top-K by 7.6% on videos longer than 20
minutes. On Video-MME, the respective improvements are 1.8% and 1.4%.

We also observe that on short videos, all keyframe selection methods perform similarly and con-
sistently outperform uniform sampling. We attribute this to a possible saturation in the reasoning
capabilities of the underlying MLLM (LLaVA-Video-7B), where input selection plays a less critical
role.

Efficiency comparison. We report the efficiency of each method in Table 3, measuring both the
number of frames “seen” (i.e., scored by a vision-language model) and the total GPU hours required
to perform keyframe selection. All GPU hours are measured using a single NVIDIA H100 (80GB)
GPU on the LongVideoBench dataset.

As shown, AKS without pre-filtering is computationally infeasible in practice, as it requires scoring
all video frames—amounting to over 255 GPU hours by the optimistic estimation. With pre-filtering,
the cost drops significantly to 9.3 GPU hours. In contrast, FOCUS is the most efficient: it requires
only 1.6% of the BLIP forward passes and just 5.5 GPU hours, while simultaneously achieving the
best overall performance.

Ablation Studies. We conduct comprehensive ablation studies to validate key design choices,
including the two-stage exploration-exploitation procedure, Bernstein confidence radius, clip length,
and vision-language encoder selection. Results and detailed analysis are provided in Section G.

3.4 EFFICIENCY-ACCURACY TRADE-OFF

FOCUS exposes a natural trade-off between accuracy and computational cost through a single
hyperparameter α, which controls the fraction of arms selected for fine-grained exploration. We
report accuracy and efficiency under different α settings in Table 4.

Accuracy (%) Frames Seen (%) GPU hours

α = 0.1 62.9 1.1 3.5
α = 0.25 63.5 1.6 5.5
α = 0.5 63.6 2.5 9.2

Table 4: Effect of α on the performance and efficiency of FOCUS. “Frames Seen (%)” counts
the proportion of frame-level BLIP forward passes relative to scoring all frames; GPU hours are
measured on a single H100 (80GB).

We observe that choice of α has a significant impact on the efficiency while remain stable on the
performance. With α = 0.1, FOCUS evaluates 1.1% of frames and finishes in 3.5 GPU hours. At
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α = 0.25, the fraction rises to 1.6% with a cost of 5.5 GPU hours, yielding 63.5% accuracy. Setting
α = 0.5 achieves the highest accuracy (63.6%) but requires evaluating 2.5% of frames and 9.2 GPU
hours—only a negligible gain over α = 0.25 for a substantially higher cost, indicating diminishing
returns from exploring more arms.

4 CONCLUSION

We addressed the core bottleneck of long-video understanding in MLLMs—the explosion of visual
tokens—by introducing FOCUS, a training-free, plug-and-play keyframe selection method that
allocates computation under a strict budget. FOCUS first partitions the video into temporal clips, treats
each as an arm in a bandit problem, and then identifies query-relevant regions via a combinatorial pure-
exploration strategy using empirical means and Bernstein confidence bounds. To improve efficiency,
we reduce the iterative bandit process to a coarse-to-fine two-stage procedure that preserves optimism
while enabling parallel inference.

Experiments on two challenging long-video QA benchmarks demonstrate that FOCUS consistently
improves accuracy across four MLLMs while processing fewer than 2% of video frames. Our results
show that lightweight, training-free keyframe selection—when guided by statistical principles—can
significantly enhance the scalability and practicality of MLLMs for long-video understanding.

5 REPRODUCIBILITY STATEMENT

We provide a comprehensive theoretical analysis of our method in Appendix B and Appendix C. All
models and datasets used in our study are publicly accessible.
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A APPENDIX

A.1 RELATED WORK

A.1.1 MULTIMODAL LARGE LANGUAGE MODELS (MLLMS) FOR VIDEO UNDERSTANDING

Recent MLLMs extend large language models with visual encoders, encoding images or frames into
visual tokens that are fused with text to support open-ended video understanding. Most follow an
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encode-project-fuse pipeline with instruction tuning, as exemplified by the LLaVA family, Video-
LLaVA/Video-LLaMA/Video-ChatGPT, and LLaMA-Vid/VideoChat (Liu et al., 2023; Lin et al.,
2023; Zhang et al., 2023; Maaz et al., 2024; Li et al., 2024c;b). Progress has largely come from scaling
data/backbones and strengthening cross-modal alignment (MiniCPM-V, InternVL/InternVL2, Qwen2-
VL; data-centric and modality-binding advances via ShareGPT4Video and LanguageBind) (Yao et al.,
2024; Chen et al., 2024e;d;c; Wang et al., 2024a; Chen et al., 2024a; Zhu et al., 2024), together with
architectural refinements that unify multi-granularity visual inputs and tighten temporal adapters,
and that improve projector efficiency or curricula (LLaVA-OneVision, LLaVA-NeXT/LLaVA-NeXT-
Video, Aria, PLLaVA, Kangaroo) (Li et al., 2025; Liu et al., 2024a; Zhang et al., 2024c; Li et al.,
2024a; Xu et al., 2024; Liu et al., 2024b). Finally, several models explicitly target extended context
and hierarchical summarization for long-form understanding (LongVILA, LongVA, LongVLM,
LongVU) (Chen et al., 2024b; Zhang et al., 2024b; Weng et al., 2024; Shen et al., 2024).

However, this tokenization-first paradigm encounters token explosion on long videos, where dense
sampling yields prohibitive sequences. Recent efforts reduce the budget by compressing or restructur-
ing tokens: MovieChat (Song et al., 2024) compacts frames into sparse memory, Video-XL-2 (Qin
et al., 2025) synthesizes condensed tokens, and VideoStreaming (Qian et al., 2024) processes streams
incrementally to cap tokens. Planning/tool-augmented agents (e.g., VideoAgent (Wang et al., 2024b))
curb perception via selective analysis, while hierarchical controllers (VideoTree (Wang et al., 2025))
and scaling recipes (VideoLLaMA 3 (Zhang et al., 2025a)) aid long-horizon reasoning. Beyond
compression, ViLAMP (Cheng et al., 2025) uses mixed-precision tokenization to emphasize dif-
ferential frames/patches and allocate capacity adaptively; long-context instruction-tuning such as
Long-VITA (Shen et al., 2025) complements these strategies for long videos.

A.1.2 VISION-LANGUAGE PRETRAINED MODELS

Cross-modal vision-language pretraining spans two-stream fusion, single-stream fusion, dual-encoder
contrastive learning, and encoder-decoder hybrids. Two-stream models such as ViLBERT (Lu et al.,
2019) and LXMERT (Tan & Bansal, 2019) encode vision and text separately and fuse via cross-
attention, while single-stream counterparts—VisualBERT (Li et al., 2019), VL-BERT (Su et al.,
2020), UNITER (Chen et al., 2020)—concatenate region features with text in a unified Transformer
using MLM and alignment losses. Large-scale dual encoders like CLIP (Radford et al., 2021) and
ALIGN (Jia et al., 2021) learn contrastive embeddings for zero-shot transfer, with FILIP (Yao et al.,
2022) improving fine-grained patch-token alignment. Hybrid objectives combine contrastive and
generative training (Li et al., 2021; Yu et al., 2022; Wang et al., 2022a; Chen et al., 2023) unify
captioning and VQA. The BLIP family integrates vision encoders with language modeling—BLIP (Li
et al., 2022) and BLIP-2 (Li et al., 2023) (via a lightweight Q-Former)—while Flamingo (Alayrac
et al., 2022) and PaLM-E (Driess et al., 2023) inject visual inputs into large LMs for few-shot
multimodal reasoning.

Extending to video, early pretraining models learned joint spatio-temporal-language representations
with lightweight fusion and sparse sampling. VideoBERT (Sun et al., 2019) pairs frame sequences
with transcripts in a BERT-style objective for retrieval and script generation, while HERO (Li
et al., 2020) and ClipBERT (Lei et al., 2021) improve efficiency via hierarchical encoding and
key-frame sampling for video-text retrieval and QA. Building directly on large image-text models,
Clip4Clip (Luo et al., 2022) reuses CLIP encoders and matches videos to text via contrastive similarity,
and FrozenBiLM (Yang et al., 2022) freezes a bi-directional LM while aligning a video encoder for
zero-shot VQA.

A.1.3 KEYFRAME SELECTION

In video representation learning, keyframe selection spans two major paradigms.

Training-free keyframe selection. Recent training-free methods leverage pretrained vision-
language models and lightweight heuristics to pick informative, query-relevant frames. Adaptive
Keyframe Sampling (AKS) maximizes prompt-frame similarity while enforcing temporal coverage
via a split-and-judge policy (Tang et al., 2025); Q-Frame ranks frames by query-conditioned impor-
tance and preserves a few at higher resolution for detail (Zhang et al., 2025b). Text-frame alignment
with frozen models further enables plug-and-play selectors (KeyVideoLLM, BOLT) that boost Video-
LLM performance without fine-tuning (Liang et al., 2024; Liu et al., 2025). To avoid redundancy
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and preserve structure under a token budget, Logic-in-Frames performs dynamic, logic-verified
search (Guo et al., 2025), while VideoTree builds a hierarchical, query-adaptive frame pyramid that
expands salient scenes (Wang et al., 2025).

Instruction-aligned and learned selectors. Instruction-guided approaches train selectors with
LLM/MLLM feedback: Frame-Voyager learns to query frame combinations by ranking sets with a
pretrained Video-LLM (Yu et al., 2024), and Hu et al. (2025) supervise a lightweight selector using
MLLM-derived single-frame relevance and multi-frame complementarity. Classical summarization
remains relevant: supervised LSTM-based models (vsLSTM, dppLSTM; hierarchical RNNs) learn
importance/diversity from human summaries (Zhang et al., 2016; 2018; Zhao et al., 2017), while
unsupervised RL/adversarial methods (DR-DSN, SUM-GAN) optimize diversity-representativeness
or realism without labels (Zhou et al., 2018; Mahasseni et al., 2017); however, these are typically
task-agnostic and may miss frames critical for query-driven VQA.

A.1.4 MULTI-ARMED BANDITS AND BATCHED EXPLORATION

Multi-armed bandits (MAB) encompass both regret minimization and pure exploration. Regret-
oriented methods such as UCB variants and Thompson Sampling establish logarithmic-regret founda-
tions for sequential decision-making (Auer et al., 2002; Lai & Robbins, 1985; Agrawal & Goyal, 2012).
Pure exploration instead targets high-confidence identification with minimal samples, formalized as
best-arm (and top-k) identification (Even-Dar et al., 2006; Bubeck et al., 2009; Kalyanakrishnan &
Stone, 2010; Cao et al., 2015). Early elimination schemes (Successive/Median Elimination) provide
PAC guarantees (Even-Dar et al., 2006; 2002), while confidence-bound and racing families—LUCB,
UCB-E, and near-optimal lil’UCB—sharpen sample complexity and approach known lower bounds
(Kalyanakrishnan et al., 2012; Audibert & Bubeck, 2010; Karnin et al., 2013; Jamieson et al., 2014;
Kaufmann et al., 2016). Beyond single arms, combinatorial pure exploration (CPE) seeks an optimal
subset under structural constraints, combining bandit confidence bounds with combinatorial oracles
to search exponentially large spaces efficiently (Chen et al., 2016; Lattimore & Szepesvári, 2020).

Fully sequential adaptivity can be impractical when decisions must be made in few rounds or in
parallel. Batched (parallel) bandits address this by operating over a small number of adaptivity rounds,
yet retain near-sequential sample efficiency for pure exploration in theory and practice (Perchet et al.,
2016; Jun et al., 2016; Gao et al., 2019). Batch-elimination/LUCB-style procedures match sequential
complexity up to constants with only a handful of updates (Jun et al., 2016), and lower-bound
trade-offs between batches and samples are well understood with matching algorithms (Perchet et al.,
2016; Kaufmann et al., 2016; Tuynman & Degenne, 2025). Recent designs such as Tri-BBAI attain
asymptotically optimal fixed-confidence BAI with just three batches, underscoring the feasibility of
resource-constrained exploration (Jin et al., 2024).

B BERNSTEIN CONFIDENCE RADIUS

Theorem B.1. Let Na(n) be the number of pulls for arm a at round n and n =
∑
a∈ANa(n) is

the total number of pulls. Let µ̂a(n) be the empirical mean of arm a at round n and σ̂2
a(n) be the

empirical variance of arm a at round n. We define the empirical Bernstein Confidence Radius βa(n)
as

βa(n) =

√
2 σ̂2

a lnn

max(1, Na(n))
+

3 lnn

max(1, Na(n))
.

Then we have the following bound holds with probability at least 1− 6
n :

|µ̂a(n)− µa| ≤ βa(n)

Proof. Under the setting of frame-query relevance setting, the reward rt and latent frame reward yt is
naturally bounded in [0, 1]. Therefore, according to Bernstein inequality, for any δ ∈ (0, 1), we have

P

µa ≤ µ̂a(n) +
√

2σ̂2
a ln

3
δ

Na(n)
+

3 ln 3
δ

Na(n)

 ≥ 1− δ.
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And symmetrically, we have

P

µa ≥ µ̂a(n)−
√

2σ̂2
a ln

3
δ

Na(n)
−

3 ln 3
δ

Na(n)

 ≥ 1− δ.

Therefore, we have

P

|µ̂a(n)− µa| ≤
√

2σ̂2
a ln

3
δ

Na(n)
+

3 ln 3
δ

Na(n)

 ≥ 1− 2δ.

Choose δ = 3
n , then we have

|µa − µ̂a(n)| ≤

√
2σ̂2

a ln
3
δ

Na(n)
+

3 ln 3
δ

Na(n)
.

holds with probability at least 1− 6
n .

When Na(n) = 0, the statement is trivially true. Thus, we have the following bound holds with
probability at least 1− 6

n :
|µa − µ̂a(n)| ≤ βa(n).

C REGRET BOUND

Arm-level Regret Bound
Theorem C.1. Algorithm 2 returns the oracle top-s set S⋆ with probability at least 1− 6M

n when
terminated.

Proof. When Algorithm 2 terminates, the following condition holds:

max
a/∈Ŝ

µ̂n(a) + βa(n) ≤ min
a∈Ŝ

µ̂n(a)− βa(n).

According to Theorem B.1, with probability at least 1− 6
n , we have |µa − µ̂a(n)| ≤ βa(n) for all

arms a. Therefore, for any a /∈ Ŝ,

P [a ∈ S⋆] ≤ 1− 6

n
.

Thus, the probability that there does not exist such an arm a is at least 1− 6(M−m)
n , where m is size

of the Ŝ set. And this completes the proof.

Frame-level Regret Bound We define the frame-level regret as the difference between the optimal
frame-level reward and the reward of the selected frames.

rframe
N =

∑
t∈K⋆

yt −
∑
t∈K̂n

yt.

As long as we obtain the oracle top-s set S⋆, the frame-level regret is also guaranteed to be small.
As Frame-level sampling is actually finite so we can always find the top-k frames with the highest
rewards.

Erframe
N = E

∑
t∈K⋆

yt −
∑
t∈K̂n

yt = E
∑
a∈S⋆

∑
t∈K⋆

a

2ϵψ = 0.

For tighter bound, we leave this to future work.
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Answer: He cuts paper to make the avatar of the celebrity the male 
judge is thinking of.

Question: When a pie chart representing the Czech Ethnicity appears in the video, with blue occupying the largest portion, red being the second, and light 
green the least, which of the following sentences is displayed on the screen?

Answer: 60% “declared” Czech. Ground Truth: 25% "Unspecified".

Question: In a room with green wall tiles, there is a woman with long hair wearing a white dress. In the lower part of the screen near her head, white text 
appears that says 'someone started playing drums in the back.' What change happens to her when she appears in the restroom?

Answer: A red bag appears on her shoulder. Ground Truth: A black bag appears on her shoulder

Figure 4: Two representative failure modes of LLaVA-Video-7B when using FOCUS to select
keyframes. Yellow stars mark manually annotated frames that are most informative for the query.
In the first case, FOCUS correctly selects these frames, but the MLLM still fails to answer due to
its limited ability to reason over the relatively complex chart. In the second case, FOCUS fails to
capture the critical frames during a compact, rapid scene transition: the relevant segment lasts only
1-2 seconds within a 10-minute video, making the keyframes difficult to identify even for human
experts.

D VISUALIZATIONS OF FAILURE CASES

To provide a more comprehensive understanding of the proposed FOCUS, we analyze two typical
failure patterns of LLaVA-Video-7B when using FOCUS to select keyframes in Figure 4, which most
failure cases fall into.

In the first case, the query asks: “When a pie chart representing the Czech ethnicity appears in the
video, with blue occupying the largest portion, red the second, and light green the least, which of
the following sentences is displayed on the screen?” Across the entire video, this pie chart appears
multiple times and is interleaved with other background content. Consequently, even though FOCUS
correctly selects the most informative frames, the MLLM is confused by the subtle differences
between multiple similar pie charts. This failure pattern is mainly attributable to the limited reasoning
and perception capabilities of the MLLM itself, rather than to the keyframe selection method.

In the second case, the video is a 10-minute vlog with frequent scene transitions. The query asks: “In
a room with green wall tiles, there is a woman with long hair wearing a white dress. In the lower part
of the screen near her head, white text appears that says ‘someone started playing drums in the back.’
What change happens to her when she appears in the restroom?” The relevant segment lasts only
1–2 seconds within the 10-minute video, making the keyframes difficult to identify even for human
experts. As shown in Figure 4, FOCUS successfully selects frames where the correct text appears,
but still fails to capture the most critical frames. This pattern reveals that, in some intrinsically
challenging cases, the adaptive sampling strategy of FOCUS may risk missing crucial information.

E COMPARISON WITH STATE-OF-THE-ART

Here we compare our proposed FOCUS against state-of-the-art training-free keyframe selection
methods on both LongVideoBench and Video-MME. Specifically, we consider two recent approaches
based on vision-language similarity:

• AKS (Tang et al., 2025): A plug-and-play adaptive keyframe sampling module that recursively
balances query–frame relevance and temporal coverage under a fixed frame budget. By first
downsampling the video to 1 frame per second, scoring each frame with a prompt–frame matching
model, and then applying a judge-and-split procedure to allocate keyframe slots across segments,
AKS maximizes informative coverage and serves as a strong state-of-the-art baseline for long-
video QA.

• Q-Frame (Zhang et al., 2025b): A training-free, query-aware frame selection and multi-resolution
adaptation framework that can be plugged in front of diverse Video-LLMs. It uses a text–image
matching network (e.g., CLIP) to compute query–frame similarity scores, samples a compact set
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Model #Frame LLM LongVideoBench Video-MME
Qwen2-VL-7B 32 7B 55.6 57.4
Qwen2-VL-7B w/ AKS 32 7B 57.8 59.7
Qwen2-VL-7B w/ Q-Frame 32 7B 57.4 56.5
Qwen2-VL-7B w/ Ours 32 7B 62.3 ↑ 6.7 59.7 ↑ 2.3
LLaVA-OV-7B 32 7B 54.8 56.5
LLaVA-OV-7B w/ AKS 32 7B 57.4 57.7
LLaVA-OV-7B w/ Q-Frame 32 7B 54.8 56.8
LLaVA-OV-7B w/ Ours 32 7B 60.7 ↑ 5.9 58.3 ↑ 1.8
LLaVA-Video-7B 64 7B 58.9 64.4
LLaVA-Video-7B w/ AKS 64 7B 62.1 64.6
LLaVA-Video-7B w/ Q-Frame 64 7B 59.9 64.5
LLaVA-Video-7B w/ Ours 64 7B 63.5 ↑ 4.6 65.4 ↑ 1.0

Table 5: Video question-answering accuracy (%) of different MLLMs on LongVideoBench and
Video-MME. We compare FOCUS with AKS and Q-Frame on Qwen2-VL, LLaVA-OV, and LLaVA-
Video. The suffix “w/ Ours” denotes models using keyframes selected by FOCUS; likewise, “w/
AKS” and “w/ Q-Frame” indicate using keyframes from the corresponding baselines. #Frame is the
number of frames fed into the MLLM, and LLM denotes the language model size.

of highly relevant frames via stochastic selection, and assigns them heterogeneous resolutions so
that crucial frames are preserved at high fidelity under a fixed token budget.

We report the results in Table 5. Across all three backbones and both benchmarks, FOCUS con-
sistently outperforms both AKS and Q-Frame under the same frame budget. In particular, FOCUS
improves the plain Qwen2-VL-7B, LLaVA-OV-7B, and LLaVA-Video-7B models by 4.6–6.7% on
LongVideoBench and up to 2.3% on Video-MME, indicating that our keyframe selection strategy
transfers robustly across different MLLMs.

For the two compared baselines, AKS consistently outperforms Q-Frame on both LongVideoBench
and Video-MME whenever Q-Frame is evaluated. We attribute this to the more sophisticated and
adaptive sampling scheme of AKS, which explicitly balances query–frame relevance and temporal
coverage instead of relying solely on similarity scores.

By contrast, Q-Frame behaves more like a token-compression mechanism: it maps a fixed frame
budget to a fixed number of visual tokens so that the MLLM can "see" more frames than it is
originally designed for. However, the lack of an explicit temporal sampling or search design means
that Q-Frame does not actively reason about where informative moments occur in long videos, which
limits its performance in the long-form setting.

F EXPERIMENTS ON MORE BENCHMARKS

Model #Frame LLM MLVU VSI-Bench
Qwen2-VL-7B 32 7B 59.7 36.5
Qwen2-VL-7B w/ AKS 32 7B 64.3 36.9
Qwen2-VL-7B w/ Ours 32 7B 67.0 ↑ 6.7 39.0 ↑ 2.5
LLaVA-Video-7B 64 7B 68.2 41.7
LLaVA-Video-7B w/ AKS 64 7B 71.2 42.2
LLaVA-Video-7B w/ Ours 64 7B 72.7 ↑ 4.5 42.4 ↑ 0.7

Table 6: Video question-answering accuracy (%) of different MLLMs on MLVU and VSI-Bench.
We compare FOCUS with AKS on Qwen2-VL and LLaVA-Video. The suffix “w/ Ours” denotes
models using keyframes selected by FOCUS; likewise, “w/ AKS” indicates using keyframes from the
corresponding baselines. #Frame is the number of frames fed into the MLLM, and LLM denotes the
language model size.
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To further investigate the generalization ability of FOCUS beyond long-form QA benchmarks, we
conduct experiments on two additional datasets:

• MLVU (Zhou et al., 2025): A comprehensive multi-task long-video understanding benchmark
constructed from 1,730 long videos (3 minutes to 2 hours) spanning movies, surveillance, egocen-
tric recordings, cartoons, and game videos. It defines nine evaluation tasks that jointly probe both
global and local reasoning abilities of MLLMs, and reveals substantial performance degradation
as video length grows.

• VSI-Bench (Yang et al., 2025): A video-based visual–spatial intelligence benchmark built
from 288 egocentric indoor videos (ScanNet, ScanNet++, ARKitScenes) with over 5,000 ques-
tion–answer pairs. It focuses on 3D spatial understanding and memory from first-person streams,
evaluating MLLMs on tasks such as spatial layout reasoning, navigation, and distance estimation.

We summarize the results in Table 6. On MLVU, our method improves Qwen2-VL-7B from 59.7%
to 67.0% (+7.3%) and LLaVA-Video-7B from 68.2% to 72.7% (+4.5%), while also outperforming
AKS by +2.7% and +1.5% points, respectively. On VSI-Bench, which emphasizes fine-grained
spatial reasoning over relatively short egocentric clips, our method still yields consistent gains: for
Qwen2-VL-7B, accuracy increases from 36.5% to 39.0% (+2.5%), and for LLaVA-Video-7B from
41.7% to 42.4% (+0.7%), respectively. These results indicate that our temporal search mechanism
generalizes well across different backbones and tasks, with particularly pronounced benefits on long
and heterogeneous videos.

At the same time, the improvements on VSI-Bench are understandably smaller than on long-video
benchmarks. When videos are short and informative content is more uniformly distributed, uniform
sampling already captures many salient frames, leaving less headroom for sophisticated temporal
search. We explicitly regard this as a limitation and a promising direction for future work on
spatially-aware frame selection in low-redundancy settings.

G ABLATION STUDIES

G.1 TWO-STAGE EXPLORATION-EXPLOITATION

One of the core designs of FOCUS is the two-stage exploration-exploitation procedure. To better
understand the contribution of each stage, we introduce two variants of FOCUS:

• FOCUS-C: This variant only performs the coarse exploration stage to identify promising temporal
arms. In the final keyframe selection step, it randomly samples frames from all frames within the
selected arms without any further refinement.

• FOCUS-F: This variant only performs the fine-grained exploration stage by uniformly sampling
frames over the whole video and interpolating the rewards via nearest-neighbor assignment. The
final keyframes are then drawn directly from the resulting video-level sampling distribution,
without the arm-level pre-selection.

Uniform FOCUS-C FOCUS-F FOCUS

Qwen2-VL 55.6 61.7 61.5 62.3
LLaVA-OV 54.8 58.4 57.7 60.7
LLaVA-Video 58.9 62.3 62.5 63.5

Table 7: Ablation of the two-stage exploration-exploitation procedure on LongVideoBench. Uniform
denotes naive uniform frame sampling. FOCUS-C uses only the coarse exploration stage to select
promising temporal arms, and then randomly samples frames within them. FOCUS-F uses only
the fine-grained exploration stage over the entire video. The full FOCUS combines both stages and
consistently achieves the best performance across all MLLMs, indicating that coarse arm selection
and fine-grained refinement are complementary.

We conduct experiments on LongVideoBench with Qwen2-VL-7B, LLaVA-OV-7B, and LLaVA-
Video-7B, and summarize the ablation results in Table 7. Both FOCUS-C and FOCUS-F provide
substantial improvements over uniform sampling across all three backbones, demonstrating that
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coarse arm selection and fine-grained exploration are each effective on their own. The full two-stage
variant further yields the best performance in all cases, achieving an additional gain of up to 2.3%
over the single-stage variants, which confirms that coarse localization of promising regions and
subsequent fine-grained exploitation are complementary rather than interchangeable.

G.2 BERNSTEIN CONFIDENCE RADIUS

Compared with the classical UCB algorithm, the Bernstein confidence radius is more robust to
high-variance rewards. To better understand its contribution, we introduce a variant of FOCUS that
relies on the empirical mean without a variance-aware exploration bonus when selecting top-relevance
frames:

• FOCUS-M: This variant uses the empirical mean reward to rank arms and select top-relevance
frames, instead of the Bernstein confidence radius.

Uniform FOCUS-M FOCUS
Qwen2-VL 55.6 61.7 62.3
LLaVA-OV 54.8 58.1 60.7
LLaVA-Video 58.9 63.0 63.5

Table 8: Ablation of the Bernstein confidence radius on LongVideoBench. Uniform denotes naive
uniform frame sampling. FOCUS-M uses the empirical mean to rank arms and select top-relevance
frames. The full FOCUS leverages the Bernstein confidence radius to form variance-aware upper
confidence bounds.

We summarize the results in Table 8. The empirical-mean variant (FOCUS-M) already yields large
gains over uniform sampling across all three backbones, showing that even a simple bandit-style
selection is beneficial. However, the full method with the Bernstein confidence radius consistently
achieves the best performance, providing up to 2.6% improvement over uniform and up to 2.6%
improvement over the base models. This confirms that a variance-aware confidence radius is more
effective than the empirical mean alone for selecting top-relevance frames, as it encourages additional
exploration of high-uncertainty clips, especially when a clip contains diverse or rapidly changing
scenes.

G.3 EFFECT OF CLIP LENGTH

In the formulation of FOCUS, each video is partitioned into fixed-length clips that serve as bandit
arms. The clip length l is a crucial hyper-parameter that controls the granularity of exploration and
exploitation. To better understand its effect, we conduct experiments on LongVideoBench with
LLaVA-Video-7B and summarize the results in Table 9.

Uniform 8s 16s 32s
ACC 58.9 63.7 63.5 62.3
GPU hours – 8.1 5.5 4.1

Table 9: Ablation of the clip length l on LongVideoBench with LLaVA-Video-7B. Uniform denotes
naive uniform frame sampling (thus no additional GPU hours for keyframe selection are reported).
For FOCUS, we vary the clip length from 8s to 32s and report both QA accuracy and the GPU hours
required for keyframe selection. Note that the GPU hours are measured on a single NVIDIA H100
(80GB) GPU.

As shown in Table 9, all clip-length settings of FOCUS significantly outperform uniform sampling
(58.9% vs. 62.3–63.7%), indicating that our bandit-based selection is robust to the choice of l over
a reasonably wide range. Shorter clips (e.g., 8s) provide slightly better accuracy by enabling more
fine-grained exploration, but they also incur higher computational cost, while longer clips (e.g., 32s)
reduce GPU hours at the price of a modest performance drop. In practice, we find l = 16 seconds to
offer a good trade-off between accuracy and efficiency.
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G.4 EFFECT OF VISION-LANGUAGE ENCODER

Our method can be seamlessly integrated with different vision-language encoders to estimate frame-
query relevance scores. In the main experiments, we adopt BLIP to align with our primary baseline
AKS for a fair comparison, and also because prior work has shown BLIP to be a robust and effective
choice for frame-level relevance estimation. To provide a more comprehensive evaluation, we further
conduct experiments with three encoders: CLIP (Radford et al., 2021), SigLIP (Zhai et al., 2023),
and BLIP (Li et al., 2022).

Uniform CLIP SigLIP BLIP
ACC 58.9 60.2 60.9 63.5

Table 10: Ablation of the vision-language encoder on LongVideoBench with LLaVA-Video-7B.
Uniform denotes naive uniform frame sampling. For our method, we instantiate the frame-query
scoring module with CLIP, SigLIP, and BLIP.

As summarized in Table 10, all three encoders yield clear improvements over uniform sampling,
confirming that our bandit-based selection is compatible with different vision-language backbones.
Among them, BLIP achieves the strongest performance, while CLIP and SigLIP still provide 1.3%
and 2.0% gains, respectively. These results suggest that our framework is robust to the choice
of encoder, but can further benefit from stronger frame-query relevance models, and that future
advances in vision-language pretraining are likely to directly translate into better keyframe selection
performance.

H LIMITATIONS

In this work, we assume the frame-query relevance scores are i.i.d. and the temporal dependencies
between frames are not considered. However, in practice, the frame-query relevance scores are
dependent on the temporal dependencies between frames. As different parts may have strong
correlations, this assumption may not hold. In this setting, we can use the Lipschitz/metric bandit
problem (Kleinberg et al., 2008; Bubeck et al., 2011) or contextual bandit problem (Chu et al., 2011;
Agarwal et al., 2014) to model the problem. We leave this as future work.

I THE USE OF LARGE LANGUAGE MODELS (LLMS)

We used GPT-5 and Claude 4 solely for proofreading and light copy-editing (typos, grammar, and
minor phrasing). All technical content, scientific claims, mathematical proofs, algorithms, experiment
design and execution, dataset handling, figures, and evaluations were authored and verified by the
human authors. LLMs were not used to generate ideas, code, data, results, or reviews; they did
not contribute content at the level of a co-author. All suggested edits were manually inspected and
accepted or rejected by the authors.

24


	Introduction
	Method
	Problem Formulation
	Clip-Level Selection as Multi-Armed Bandit
	Optimistic Confidence Upper-bound Arm Selection
	Optimal Arm Selection.
	Two-stage Arm Selection.

	Frame Selection within Selected Arms

	Experiments
	Experimental Setup
	Performance Analysis
	Comparison with State-of-the-Art
	Efficiency-Accuracy Trade-off

	Conclusion
	Reproducibility Statement
	Appendix
	Related Work
	Multimodal Large Language Models (MLLMs) for Video Understanding
	Vision-Language Pretrained Models
	Keyframe Selection
	Multi-Armed Bandits and Batched Exploration


	Bernstein Confidence Radius
	Regret Bound
	Visualizations of Failure Cases
	Comparison with State-of-the-Art
	Experiments on More Benchmarks
	Ablation Studies
	Two-Stage Exploration-Exploitation
	Bernstein confidence radius
	Effect of Clip Length
	Effect of Vision-Language Encoder

	Limitations
	The Use of Large Language Models (LLMs)

