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Abstract

We propose CoT2, a framework using continuously-valued tokens that enables language models to track multiple
reasoning paths in parallel and provide a novel CoT2 supervision strategy where we match the softmax outputs
to the empirical token distributions of a set of target traces. Theoretically, we show that CoT2 offers sample-
complexity benefits and construct a one-layer transformer that solves the subset-sum problem with sufficient
embedding capacity. We also introduce continuous sampling methods, showing that reinforcement learning with
CoT2 notably improves logical reasoning performance compared to discrete and continuous baselines.

1. Introduction
Chain-of-thought (CoT) strategies (Wei et al., 2022), when paired with strong base models, have achieved immense success
and facilitated progress in remarkably challenging tasks, such as solving AIME or IOI problems (Guo et al., 2025; Jaech
et al., 2024). In essence, CoT boosts the expressive capability of the base model through autoregressive generation, a
principle that also underlies the recent efforts on test-time compute scaling (Snell et al., 2024). Despite these advances,
modern language model architectures may not fully utilize their potential for a few reasons. First is their discrete sampling
of tokens—selecting a single token at each decoding step from a vocabulary of v tokens. This limits the model to emitting
at most log2(v) bits per sample, or more specifically, the Shannon entropy of the softmax output. This contrasts with the
O(d) bits each token embedding can store, where d is the embedding dimension. Secondly, discrete sampling can cause the
model to commit to certain solutions and avoid exploring alternatives (Yao et al., 2023). A practical method to address this
is sampling multiple CoT traces and aggregating them, either through consistency (Wang et al., 2022) or best-of-N decoding
(Ouyang et al., 2022) through more test-time computation.

In this work, we propose CoT with Continuous Tokens (CoT2) to address these issues, building on COCONUT (Hao et al.,
2024). Instead of sampling a single token, CoT2 samples or deterministically selects a continuous superposition of tokens
according to the softmax distribution. This enables models to embed more information per token and simultaneously track
multiple reasoning paths, potentially emulating self-consistency or best-of-N decoding within a single trace. We provide the
following technical contributions:

• Mechanistic and theoretical study of CoT2: We quantify CoT2’s benefits by examining the Minimum Non-Negative
Sum (MNNS) problem, a generalization of the classical Subset Sum problem, along with related tasks like ProntoQA
(Saparov & He, 2022), which inherently benefit from parallel search. We demonstrate that a single-layer transformer can
solve MNNS using CoT2, indicating transformers’ ability to track multiple reasoning paths. Under a trajectory decoupling
assumption, we theoretically study CoT2 decoding methods:

– Base CoT2: deterministic inference creating continuous tokens from the full softmax output (Sec.2&3);
– CoT2-MTS (multi-token sampling): our method sampling K discrete tokens from softmax, averaged into a

continuous token (Sec.4);

showing base CoT2 aggregates all reasoning paths, while CoT2-MTS generalizes CoT by tracking K paths, and
establishing CoT2’s sample complexity benefits.
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Figure 1. Illustration of CoT2 and discrete CoT for Minimum Non-Negative Sum (MNNS) task with m = 3. Input numbers are 2, 1, 4, and
the correct path (−2, −3, 1) is highlighted with yellow arrows, corresponding to the discrete CoT supervision. CoT2 supervision for
reasoning steps t ∈ {1, . . . , m − 1} is the average of embeddings of reachable states, and for t = m is the embedding of the answer.

• Supervision and reinforcement for CoT2: We introduce the continuous supervision strategy CSFT for explicitly
tracking multiple teacher traces by fitting a target softmax map of token distributions within the trace. Our method
highlights fundamental tradeoffs between CoT2 accuracy and embedding dimensions. We also propose reinforcement
policy optimization methods for CoT2, with MTS sampling as the primary strategy to control parallelism and a purely
continuous sampling method. Experiments demonstrate GRPO-based RL with CoT2 enhances accuracy beyond SFT or
CSFT, indicating RL effectively prioritizes relevant reasoning paths. Related work is discussed in Appendix A.

2. Problem Setup
Assume we have an input context X ∈ Rn×d, consisting of n rows of d-dimensional embeddings. The goal is to generate m
tokens given X, where the final token is discrete and evaluated under a performance metric (e.g., accuracy or reward). For
steps 1 to m − 1, the model outputs continuous thought tokens {zt}t∈[m−1] that enable reasoning. At step m, the model outputs
a discrete token zm from a vocabulary of size v. In the rest of the paper, we investigate training strategies that enhance final
performance beyond standard discrete next-token prediction

Formally, let E = [e1, . . . , ev]⊤ ∈ Rv×d be the embedding matrix corresponding to the vocabulary of v tokens, where
ei ∈ R

d represents the embedding of the ith token. We define the next-token prediction model LMθ parameterized by θ that
assigns, at each step t, a probability distribution over possible next tokens given the prefix z<t and context X. Concretely, for
1 ≤ t ≤ m − 1, the model outputs following probability distribution over the v vocabulary entries via a softmax operation:

LMθ(· | z<t, X) := αt where αt =
[
αt,1, . . . , αt,v

]
∈ ∆v−1, i.e. αt,i ≥ 0 and

v∑
i=1

αt,i = 1

We then form the continuous token as the convex combination of all tokens in the vocabulary:

zt = E⊤αt ∈ R
d, ∀1 ≤ t ≤ m − 1

Hence each continuous token zt is a linear combination of the vocabulary embeddings. At the final step t = m, the model
samples a discrete token zm ∈ {e1, . . . , ev} from its policy distribution LMθ (· | z<m, X) = αm. Finally, we note that we
assume that the answer depends only on the final discrete token zm merely for simplicity; the same framework naturally
extends to decoding multiple final discrete tokens after continuous ones. We refer to this decoding strategy as base CoT2
and observe that it results in a deterministic reasoning chain because the continuous tokens are precisely determined by the
softmax map. In Section 4, we will introduce stochastic alternatives, such as CoT2-MTS, to facilitate generative reasoning.

3. CSFT: A Supervised Training Method for CoT2
In this section, we present our method of continuous supervised training to learn intermediate thought tokens as "soft" targets
rather than "hard" target tokens, as described in Section 2. Specifically, we provide the model with convex combinations
of vocabulary embeddings, which allows the model flexibility in those reasoning steps. Such an approach is particularly
suitable when the task accuracy depends only on the final token or token distribution. Formally, at each reasoning step
t = 1, . . . ,m − 1, the supervision specifies a target probability distribution

α∗t =
[
α∗t,1, . . . , α

∗
t,v

]
∈ ∆v−1,
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Figure 2. The teacher distribution for the continuous model is derived from a search algorithm. (a): The figure illustrates that the discrete
model requires multiple samplings (Pass@k) to match the single-sample performance of the continuous model on MNNS (10-run average).
Setting: 4 input digits in 1 − 9; 1-layer, 1-head GPT2 with d = 24. (b-c): The figures reveal that above a certain embedding dimension
threshold, the continuous model is superior to discrete in tasks involving search, like MNNS and ProsQA. Setting (b): 4 input digits in
1 − 9; 2-layer, 2-head GPT2 with d ∈ {16, 24, 32}. (c): 4-layer, 4-head GPT2 with d ∈ {24, 32, 40}.
where α∗t,i ≥ 0 and

∑v
i=1 α

∗
t,i= 1. We train the model to align its predicted distribution αt to the supervision distribution α∗t

rather than one-hot labels, with the help of a divergence-based loss:

Lcont(θ; X, t) = D
(
α∗t

∥∥∥αt

)
,

where D (·∥·) is the cross-entropy (or equivalently KL divergence) between two distributions. This approach can also be
viewed as token-level knowledge-distillation, where the teacher distribution α∗t may be obtained through a logic/search
algorithm. At the final step t = m, we typically have a discrete target z∗m ∈ {e1, . . . , ev}, so that α∗m is one-hot distribution
placing probability 1 on that target token and 0 elsewhere. This is equivalent to employing a standard cross-entropy loss
− log LMθ

(
z∗m | z<m, X

)
at the final step. Hence, for each training example, the total loss for the proposed continuous

supervised training is the sum of the continuous-token divergence losses:

LCSFT(θ; X) =
m∑

t=1

Lcont(θ; X, t) (1)

By minimizing LCSFT(θ), we teach the model to learn the soft targets α∗t at each step and to predict the correct final discrete
token. In the above training procedure, inspired by the discussions in Bachmann & Nagarajan (2024); Bengio et al. (2015),
we consider two ways of providing prefixes to the language model:
1. Teacher forcing: Each step t is conditioned on the prefix z∗<t, providing the model access to previous ground-truth tokens

during prediction. Specifically, for t′ < t, the input z∗t′ = E⊤α∗t′ is a convex combination of vocabulary tokens.

2. Self-feeding: At each step t, the model autoregressively uses its generated outputs z<t during training. Specifically, the
continuous token zt = E⊤αt, a convex combination of vocabulary embeddings, is fed back as part of the prefix.

It is also worth noting that one may apply temperature scaling or thresholding to αt before forming zt in order to filter the
model’s predictions. In our experiments, we find that teacher forcing leads to superior performance for CSFT, even though
at inference time, the model runs in an autoregressive manner, as discussed below. See Appendix E for further discussion.

Inference. At inference time, the model does not use ground-truth distributions α∗t . Instead, at each continuous step t < m,
the model autoregressively generates a continuous token zt = E⊤αt from its own distribution αt to form the prefix for the
next step. At the final step, it samples a discrete token from αm = LMθ(· | z<m, X).

Discrete baseline. We use teacher-forced training, predicting the next token conditioned on ground-truth previous tokens
using standard cross-entropy loss. This baseline enforces each zt as a token from vocabulary {e1, . . . , ev}, making it a special
case of CSFT with one-hot vectors αt ∈ ∆

v−1. The model minimizes the following summed objective:

LSFT(θ; X) =
m∑

t=1

− log LMθ
(
z∗t | z

∗
<t, X

)
. (2)

3.1. Tasks Requiring Exploration over States

In this subsection, we illustrate the CSFT training described in (1) on tasks that require exploration over multiple states.
Consider that the vocabulary is sufficiently large that each state g of the task can be assigned a unique embedding. Then, we
let Γt be the set of all states that could result from building upon step (t − 1), where Γ0 = {g0} for the initial state g0. For each
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element g ∈ Γt, we assign a probability α∗t,g that reflects how many times that state occurs under a search process. Then, α∗t
is formed by normalizing these probabilities into a distribution on Γt:

α∗t,g =
countt(g)∑

h∈Γt
countt(h)

, (3)

where countt(g) is the number of times state g appears among all expansions at step t. At the final step t = m, we select
exactly one correct state from Γm, so that α∗m is a one-hot vector:

α∗m,g =

1, if g is the correct final state,
0, otherwise.

Specifically, we apply this framework to three illustrative tasks. First, we devise a search task, MNNS (Minimum Non-
Negative Sum), which requires assigning plus or minus signs to a given set of numbers to achieve the smallest possible
sum that remains non-negative. This task can be considered as traversing a binary graph, where each step corresponds
to selecting either a positive or negative sign, resulting in multiple potential paths representing different sums. Second,
ProntoQA involves logical reasoning within graphs composed of words as nodes and directed hops as edges between them,
where the aim is to determine whether a specific target node is reachable from a starting node within a fixed number of
traversal steps. Finally, ProsQA similarly assess which of two candidate nodes is reachable from a common starting node,
again within a predetermined number of traversal steps. More details on tasks are provided in Appendix B.

3.2. Results and Discussion

In our experiments on MNNS, ProsQA, and ProntoQA tasks, CSFT significantly outperforms discrete CoT baseline once
the embedding dimension surpasses a moderate threshold (Figures 2b, 2c), and also enables faster convergence. Continuous
tokens represent multiple partial expansions in parallel, providing a ’search-like’ capability that yields higher accuracy.
As shown in Figure 2a, the discrete model needs multiple samplings (pass@k) to match the single-attempt performance
of CoT2, highlighting continuous tokens’ ability to avoid early accumulating errors, aligning with "snowballing errors"
discussed in (Bachmann & Nagarajan, 2024). Moreover, though the continuous approach needs more embedding capacity to
allow its distributional representations at each step, it can then achieve strong performance with fewer layers and heads
compared to the discrete model, as further demonstrated by the results in Appendix E.1. We also provide experiments on
ProntoQA in Appendix E.1, which confirm similar findings to results on ProsQA.

4. Reinforcement Learning Methods for CoT2
In this section, we describe how to apply RL with continuous output tokens. Specifically, we explore GRPO training on top
of continuous or discrete models that are supervised trained based on Section 3 for the MNNS, ProntoQA, and ProsQA
tasks. By illustrating two sampling methods for GRPO, we demonstrate how a model trained with discrete SFT can be
adapted to produce continuous outputs. We assume a sparse reward setting where the reward is 1 for a correct final answer
and 0 otherwise. For further details on this method and Dirichlet sampling, we refer readers to Appendix C.

4.1. Multi-Token Sampling

We emulate the rollout of a continuous token by sampling a fixed number of K ≤ v discrete tokens and averaging them at
steps t = 1, . . . ,m − 1. We refer to this hybrid method as CoT2 with MTS (multi-token sampling). For the GRPO objective,
we propose the following method to calculate the policy ratio for continuous tokens. Specifically, assume at step t we sample
discrete tokens ei1 , . . . , eiK with probabilities αt,i1 , . . . , αt,iK under the current policy and probabilities αold

t,i1
, . . . , αold

t,iK
under the

old policy. We define the policy ratio for these continuous steps by dividing geometric means:

rt(θ) =
LMθ (zt | z<t, X)

LMθold (zt | z<t, X)
=

 αt,i1 · · ·αt,iK

αold
t,i1
· · ·αold

t,iK

1/K

for t = 1, . . . ,m − 1.

The geometric mean ensures that the ratio for each continuous step remains on the same scale as the final discrete token’s
ratio and, thus, helps avoid overly large or small updates in the GRPO objective and provides more stable training compared
to the direct multiplication of probabilities. Once this ratio is computed, we then average the K sampled tokens to form
zt, which is fed to the model as the query for the next prediction step. At the final step t = m, where the token zm = e j is
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Table 1. Validation accuracy and token-level entropy of CoT2-MTS sampling GRPO on the discrete model under different rollout sizes K
for MNNS task. We use 4 input digits in 1-9 with 1-layer, 1-head GPT2 at embedding dimensions 24 and 32, with SFT accuracies of
39.76% and 43.50%, respectively.

K
Val. Accuracy (%) Val. Entropy (SFT→ SFT+GRPO)

SFT SFT+GRPO token1 token2 token3 token4

24

1
39.76

49.01 0.3218→ 0.0314 0.5858→ 0.0712 0.5499→ 0.1576 0.4786→ 0.1718
3 52.60 0.3717→ 0.0647 0.7461→ 0.2120 0.8006→ 0.3312 0.5338→ 0.1529
6 49.69 0.4524→ 0.1242 0.7738→ 0.3361 0.8364→ 0.6615 0.5134→ 0.2159

32

1
43.50

51.61 0.3618→ 0.0143 0.6331→ 0.0395 0.3518→ 0.2631 0.1962→ 0.1182
3 55.66 0.3886→ 0.0412 0.7101→ 0.0904 0.5447→ 0.5757 0.2863→ 0.1734
6 50.38 0.4224→ 0.0632 0.7915→ 0.2161 0.6077→ 0.8481 0.2780→ 0.1514

discrete with j ∈ [v] denoting its index, the policy ratio is simply the probability ratio of selecting that token:

rm(θ) =
LMθ (zm | z<m, X)

LMθold (zm | z<m, X)
=
αm, j

αold
m, j

.

4.2. Dirichlet Sampling

In this section, we present another method for generating continuous tokens at each step by interpreting the model’s output
distribution αt ∈ ∆

v−1 as concentration parameters of a Dirichlet distribution over the v − 1 simplex. We introduce a scaling
hyperparameter γ > 0 and define the Dirichlet distribution with the parameters γαt =

(
γαt,1, . . . , γαt,v

)
.Without this scaling,

directly using αt as parameters often causes training instability, particularly when many αt,i values are small. We then
sample a point α̂t ∈ ∆

v−1 from the resulting distribution Dir (αt). After sampling, we form the continuous token by mapping
zt = E⊤α̂t ∈ R

d, which becomes the query for the next step. We denote the Dirichlet densities induced by current and old
policies as fθ(zt) and fθold (zt), respectively. Accordingly, we define the policy ratio at a continuous step t < m as:

rt(θ) =
LMθ(zt | z<t, X)

LMθold (zt | z<t, X)
=

fθ(zt)
fθold (zt)

,

The above definition parallels how we compute probability ratios for discrete actions, but replaces the categorical pmf
with a continuous Dirichlet pdf. At the final step t = m, we sample a discrete token zm ∈ {e1, . . . , ev} from αm, and use the
standard policy ratio given by (5). At inference, we follow the autoregressive procedure in Section 3 by creating a convex
combination of vocabulary tokens.

4.3. Results and Discussion of Policy Optimization for CoT2

MNNS evaluation: Table 1 provides our results for the MNNS task and demonstrates that, for each K ∈ {1, 3, 6}, CoT2-MTS
significantly improves validation accuracy relative to the discrete SFT baseline (39.76%), with moderate K yielding the
best final performance. We also observe that smaller K-values correspond to larger reductions in token-level entropies,
suggesting that the model becomes more confident at each intermediate step by learning to commit to fewer tokens. This
suggests a curriculum on K—starting small and gradually increasing—could potentially further improve the training on the
MNNS task. Interestingly, the third token’s entropy remains relatively high, which might indicate that the model continues
to hedge among several partial expansions at that step, which may help preserve useful diversity of reasoning. Therefore,
CoT2-MTS enables a model trained with discrete SFT to produce continuous outputs and helps it achieve better performance.
Finally, Appendix E.2 shows that the CoT2 model with CSFT achieves a strong performance once the embedding dimension
is sufficiently large (compared to the results in Table 1), however, it can be further improved with GRPO with Dirichlet
Sampling.

5. Theoretical Analysis
In this section, we first present the construction of a single-layer transformer that solves the MNNS task using an attention
layer followed by a mixture-of-experts MLP layer. We then provide a theoretical comparison between the sample-complexity
advantages of CoT2 strategies over discrete CoT, with details provided in Appendix D.
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Appendix

We discuss additional related work in Appendix A. We provide further implementation details in Appendix G, including those
for the MNNS task (Appendix G.1), the ProntoQA/ProsQA datasets (Appendix G.2), and GRPO training (Appendix G.3).
We present additional experimental results in Appendix E, and we offer details on continuous supervised training and GRPO
in Appendix E.1 and Appendix E.2, respectively. Finally, we include the proofs of Propositions 1, 2, and 3 in Appendix F.

A. Related Work
The efficacy of eliciting reasoning in LLMs through chain-of-thought (CoT) prompting has been well-established (Nye et al.,
2021; Wei et al., 2022; Kojima et al., 2022; Suzgun et al., 2023; Guo et al., 2025). CoT prompting provides a convenient
way to increase inference-time compute and computational depth, both of which have been found to be independently
useful (Pfau et al., 2024; Goyal et al., 2024; Feng et al., 2023; Merrill & Sabharwal, 2024). However, the discrete nature of
CoT tokens forces sequential exploration of reasoning paths, resulting in longer reasoning paths and consequently increased
inference-time compute. Furthermore, restricting reasoning to natural language can be inefficient, as groups of tokens
can often be more effectively represented by a single continuous token. Thus, CoT2 offers an alternative strategy for
compute-efficient reasoning and complements methods that aim to shorten/control the trace length of CoT (Aggarwal &
Welleck, 2025; Zhang et al., 2025; Sui et al., 2025).

One way to address these challenges is by leveraging the implicit reasoning capabilities of transformers (Yang et al., 2024;
Shalev et al., 2024). Works such as (Deng et al., 2023; 2024; Yu et al., 2024) use various techniques to obtain models that
can perform reasoning internally without emitting CoT tokens. Another line of work has found looped transformers to be
effective on reasoning problems (Giannou et al., 2023; Geiping et al., 2025), notably being able to mimic CoT (Saunshi
et al., 2025) with a sufficient number of iterations. Our work is similar to this line of work in that continuous representations
are used to perform reasoning.

Our work is most related to a recent body of work introducing LLMs capable of reasoning with explicit continuous tokens
decoded autoregressively. In particular, recently proposed COCONUT (Hao et al., 2024) autoregressively feeds the last
token’s final-layer representation as input to the next step. Given labeled CoT data, COCONUT is trained to progressively
replace discrete tokens with continuous tokens (from left to right). Shen et al. (2025) propose CODI, where an LLM
with continuous CoT is supervised to produce the correct answer, while also aligning its hidden representation on the last
reasoning token to that of a discrete CoT model that shares the same backbone. Cheng & Van Durme (2024) propose
CCOT, where an auxiliary module is first trained to decode autoregressively a compressed representation of a discrete
CoT trace, and later the main LLM is fine-tuned to produce correct answers by additionally conditioning on the generated
continuous tokens. While COCONUT, CODI, CCOT, and our CoT2 all aim to reason in continuous space, we propose
distinct algorithmic approaches that also address the exploration challenge. Key differences include: (1) Our continuous
tokens are simplex-weighted compositions of vocabulary tokens. (2) Our supervision method is novel and explicitly targets
implicit parallelism. (3) CoT2 does not initialize from, nor attempt to mimic, discrete CoT. (4) By introducing sampling
strategies and associated GRPO variations, we realize the "Supervised Training→ Reinforcement Learning" paradigm in
the context of CoT2.

The proposed CoT2 approach simultaneously tracks all possible trajectories and superposes them within continuous tokens.
This approach is similar to that of Xiong et al. (2024), who superpose multiple candidate outputs into a single final token. Our
approach also shares similarities with decoding algorithms like self-consistency (Wang et al., 2022) and Best-of-N-Sampling
(Stiennon et al., 2022), which generate multiple trajectories by running inference multiple times and then select a final
answer based on the aggregate statistics. In contrast, our algorithm performs a single inference, superposing different
trajectories all at once and determining the final answer in one pass. Furthermore, our Dirichlet sampling approach for
generating multiple rollouts in GRPO training draws connections to previous works such as Latent Dirichlet Allocation
(LDA) (Blei et al., 2003), which introduces Dirichlet priors within a hierarchical Bayesian framework, and AlphaGo (Silver
et al., 2017), which injects Dirichlet noise to encourage exploration.

Our work also tangentially relates to research on multi-token prediction (Bachmann & Nagarajan, 2024; Liu et al., 2024;
Gloeckle et al., 2024), which aims to improve the efficiency and quality of generation by predicting multiple tokens at once.
It is hypothesized that effective future prediction necessitates the exploration of many possible continuations, which is
similar to our CoT2 approach.
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B. Task Details
B.0.1. Minimum Non-Negative Sum Task

We now introduce the Minimum Non-Negative Sum (MNNS) task, where the goal is to assign signs to a list of numbers
so that their sum is as small as possible while being nonnegative. The MNNS task can be viewed as partitioning a set of
numbers into two subsets with a minimal difference, which makes it closely related to the subset sum problems explored
in Dziri et al. (2023); Thomm et al. (2024). Formally, we are given m integers d1, . . . , dm, and the task is to assign signs
σi ∈ {+1,−1} such that s = σ1 d1 + · · · + σm dm ≥ 0 and s is minimized. Let σopt = (σopt

1 , . . . , σ
opt
m ) denote the optimal

assignment that achieves the minimal nonnegative sum sopt out of 2m possible sign assignments. Here, every possible partial
sum σ1d1 + · · · + σtdt ∈ Γt is assigned a unique embedding eϕ(σ1d1+···+σtdt), where ϕ(·) maps each sum to a distinct id in [v].
We now describe the two modes of supervision, where the input digits are processed one by one by accumulating partial
sums, as illustrated in Figure 1:

• Supervision for CoT2 model: At step t, there are |Γt | = 2t partial sums of length t, and accordingly, we provide the
following target distribution α∗t :

α∗t,i =

countt(i)/2t, if token i appears countt(i) times as a partial sum of length t,
0, otherwise.

At the final step t = m, the distribution α∗m assigns probability 1 to the correct sum eϕ(σopt
1 d1+···+σ

opt
m dm) and 0 to all others.

• Supervision for discrete model: We supervise the discrete model along the correct chain of partial sums by providing
eϕ(σopt

1 d1+···+σ
opt
t dt) for 1 ≤ t ≤ m as target tokens, and train following the standard cross-entropy objective described in (2).

While constructing the dataset, we split the training and validation sets by ensuring that any permutation of numbers appears
in exactly one split. The aim behind this is to prevent memorization and make a fair evaluation. We also encode input and
output numbers with separate tokens in our vocabulary. As an example, an input appears as ⟨BOS⟩ d1 d2 . . . →, and the
corresponding output as s1 s2 . . . sopt ⟨EOS⟩, where sopt is the minimal nonnegative sum for {d1, . . . , dm}. For the model,
we use the GPT2 architecture (Radford et al., 2019) with different head, layer, and embedding dimension configurations,
and train it from scratch. Please refer to Appendix G for more experimental details.

B.0.2. ProntoQA and ProsQA Datasets

Other datasets we explore in our investigation of the CSFT approach are the ProntoQA (Saparov & He, 2022) and
ProsQA (Hao et al., 2024) datasets, which are logical reasoning tasks that require exploration over multiple possible paths.
Specifically, each question in ProntoQA asks whether a certain target word (node) B is reachable from a root word (node)
A within a fixed number of hops, while for ProsQA it asks which of the target words B or C is reachable. We use 5-hop
questions and present the graph in a structured format. In particular, for each problem, we represent nodes and edges using
embeddings, which we use as the model input rather than text input. The detailed structured format and examples are
provided in Appendix G.2.

The graph structure of the ProntoQA and ProsQA datasets naturally obeys the supervision in (3), so that we determine the
words that can be reached using t edges from A and supervise intermediate tokens on the resulting distribution. At the final
reasoning step m, the supervision assigns probability 1 to the correct label: yes or no for ProntoQA, and B or C for ProsQA.
For the standard discrete model, we provide an explicit chain of nodes from A to the target node (B or C) as the target path
at each step. We direct readers to Appendix G.2 for additional details on the supervision.

C. Reinforcement Learning Methods for CoT2
In this section, we describe how to apply RL with continuous output tokens. Specifically, we explore GRPO training on top
of continuous or discrete models that are supervised trained based on Section 3 for the MNNS, ProntoQA, and ProsQA
tasks. By illustrating two sampling methods for GRPO, we demonstrate how a model trained with discrete SFT can be
adapted to produce continuous outputs. We assume a sparse reward setting where the reward is 1 for a correct final answer
and 0 otherwise.
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Algorithm 1 Multi-Token Sampling GRPO for Continuous Token Generation
Input: Initial policy LMθinit ; hyperparameters K,G,m, ϵ, β.
1: LMθ,LMθref ← LMθinit
2: for iteration = 1, 2, . . . , I and for step = 1, 2, . . . , S do
3: Sample a batch of inputs {X(b)}Bb=1
4: Update LMθold ← LMθ
5: for each input X in the batch and for each trajectory i = 1, . . . ,G from that X do
6: for each token step t = 1, . . . ,m do
7: if t < m then
8: Sample K tokens {ei1 , . . . , eiK } from α(i), old

t to create continuous token zt ←
1
K

∑K
r=1 eir .

9: Policy ratio for continuous token rt(θ)←
(∏K

r=1 α
(i)
t,ir
/
∏K

r=1 α
(i), old
t,ir

) 1
K .

10: else
11: Sample zm = e j from α(i), old

m .
12: Policy ratio for discrete token rm(θ)← α(i)

m, j/α
(i), old
m, j .

13: end if
14: end for
15: Obtain advantage estimates Âi,t for each token t in each trajectory Z(i) and calculate objective.
16: end for
17: Update θ to minimize LGRPO(θ).
18: end for
Output LMθ

In our setup, a language model LMθ acts as a policy over tokens. Let {Z(i)}Gi=1 be a group of G trajectories sampled from old
policy LMθold such that each trajectory Z(i) =

(
z(i)

1 , . . . , z
(i)
m

)
contains m output tokens given a fixed input X. We denote by Âi,t

the advantage estimate at step t in trajectory i and note that Âi,t = Âi is identical across all steps of a trajectory under sparse
reward setting. To quantify how the new policy LMθ differs from the old one on token z(i)

t from ith trajectory, we define the

policy ratio r(i)
t (θ) =

LMθ
(
z(i)

t |z
(i)
<t ,X

)
LMθold

(
z(i)

t |z
(i)
<t ,X

) . We update the model parameters θ by minimizing the clipped surrogate objective (Shao

et al., 2024; Yu et al., 2025):

LGRPO(θ) = −
1∑G

i=1 |Z(i)|

G∑
i=1

|Z(i) |∑
t=1

[
min

(
r(i)

t (θ) Âi,t, clip (rt(θ), 1 − ϵ, 1 + ϵ) Âi,t

)
− βDKL

[
LMθ ∥LMθref

]]
.

As the output length is fixed in our setting, we have |Z(i)| = m for each trajectory. Here, ϵ is a clipping parameter that bounds
the ratio rt(θ), and β controls the strength of KL-divergence from a reference policy LMθref which is the SFT-initialized
policy. We set the number of GRPO iterations µ = 1 and estimate the KL divergence with the Schulman Approximator as in
Shao et al. (2024).

C.1. Multi-Token Sampling

We emulate the rollout of a continuous token by sampling a fixed number of K ≤ v discrete tokens and averaging them at
steps t = 1, . . . ,m − 1. We refer to this hybrid method as CoT2 with MTS (multi-token sampling). For the GRPO objective,
we propose the following method to calculate the policy ratio for continuous tokens. Specifically, assume at step t we sample
discrete tokens ei1 , . . . , eiK with probabilities αt,i1 , . . . , αt,iK under the current policy and probabilities αold

t,i1
, . . . , αold

t,iK
under the

old policy. We define the policy ratio for these continuous steps by dividing geometric means:

rt(θ) =
LMθ (zt | z<t, X)

LMθold (zt | z<t, X)
=

 αt,i1 · · ·αt,iK

αold
t,i1
· · ·αold

t,iK

1/K

for t = 1, . . . ,m − 1. (4)

The geometric mean ensures that the ratio for each continuous step remains on the same scale as the final discrete token’s
ratio and, thus, helps avoid overly large or small updates in the GRPO objective and provides more stable training compared
to the direct multiplication of probabilities. Once this ratio is computed, we then average the K sampled tokens to form
zt, which is fed to the model as the query for the next prediction step. At the final step t = m, where the token zm = e j is
discrete with j ∈ [v] denoting its index, the policy ratio is simply the probability ratio of selecting that token:

rm(θ) =
LMθ (zm | z<m, X)

LMθold (zm | z<m, X)
=
αm, j

αold
m, j

. (5)
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Table 2. Validation accuracy and token-level entropy of CoT2 with MTS on the discrete model under different rollout sizes K for MNNS
task. We use 4 input digits in 1-9 with 1-layer, 1-head GPT2 at embedding dimensions 24 and 32, with SFT accuracies of 39.76% and
43.50%, respectively.

K
Val. Accuracy (%) Val. Entropy (SFT→ SFT+GRPO)

SFT SFT+GRPO token1 token2 token3 token4

24

1
39.76

49.01 0.3218→ 0.0314 0.5858→ 0.0712 0.5499→ 0.1576 0.4786→ 0.1718
3 52.60 0.3717→ 0.0647 0.7461→ 0.2120 0.8006→ 0.3312 0.5338→ 0.1529
6 49.69 0.4524→ 0.1242 0.7738→ 0.3361 0.8364→ 0.6615 0.5134→ 0.2159

32

1
43.50

51.61 0.3618→ 0.0143 0.6331→ 0.0395 0.3518→ 0.2631 0.1962→ 0.1182
3 55.66 0.3886→ 0.0412 0.7101→ 0.0904 0.5447→ 0.5757 0.2863→ 0.1734
6 50.38 0.4224→ 0.0632 0.7915→ 0.2161 0.6077→ 0.8481 0.2780→ 0.1514

Inference. During inference after GRPO training, we apply the same multi-token sampling procedure at each of the first
m − 1 steps to form the continuous token via the average of K sampled embeddings.

Remark. An alternative to the normalization of ratios given by (4) is to directly scale down the logits by 1/K before
applying softmax. However, using this approach during inference leads to a distribution shift relative to the SFT-trained
model and ultimately degrades performance.

C.2. Dirichlet Sampling

In this section, we present another method for generating continuous tokens at each step by interpreting the model’s output
distribution αt ∈ ∆

v−1 as concentration parameters of a Dirichlet distribution over the v − 1 simplex. We introduce a scaling
hyperparameter γ > 0 and define the Dirichlet distribution with the parameters γαt =

(
γαt,1, . . . , γαt,v

)
.Without this scaling,

directly using αt as parameters often causes training instability, particularly when many αt,i values are small. We then
sample a point α̂t ∈ ∆

v−1 from the resulting distribution Dir (αt). After sampling, we form the continuous token by mapping
zt = E⊤α̂t ∈ R

d, which becomes the query for the next step. We denote the Dirichlet densities induced by current and old
policies as fθ(zt) and fθold (zt), respectively. Accordingly, we define the policy ratio at a continuous step t < m as:

rt(θ) =
LMθ(zt | z<t, X)

LMθold (zt | z<t, X)
=

fθ(zt)
fθold (zt)

,

The above definition parallels how we compute probability ratios for discrete actions but replace the categorical pmf with
continuous Dirichlet pdf. At the final step t = m, we sample a discrete token zm ∈ {e1, . . . , ev} from αm, and use the standard
policy ratio given by (5). At inference, we follow the autoregressive procedure in Section 3 by creating a convex combination
of vocabulary tokens.

C.3. Results and Discussion

Table 1 demonstrates that for each K ∈ {1, 3, 6}, CoT2 with MTS significantly improves validation accuracy relative to
the discrete SFT baseline (39.76%), with moderate K yielding the best final performance. We also observe that smaller
K-values correspond to larger reductions in token-level entropies, suggesting that the model becomes more confident at
each intermediate step by learning to commit fewer tokens. Notably, this suggests a curriculum on K—starting small
and gradually increasing—could potentially further improve the training. Interestingly, the third token’s entropy remains
relatively high, which might indicate that the model continues to hedge among several partial expansions at that step, which
may help preserve useful diversity of reasoning. Therefore, CoT2 with MTS enables a model trained with discrete SFT to
produce continuous outputs and helps it achieve better performance. We further discuss Dirichlet sampling in Appendix E.2
and show that the accuracy of the CoT2 model can be further improved-despite already achieving near-perfect performance
once the embedding dimension is sufficiently large.

D. Theoretical Analysis
In this section, we first present the construction of a single-layer transformer that solves the MNNS task using an attention
layer followed by a mixture-of-experts MLP layer. We then provide a theoretical comparison between base CoT2, CoT2-
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MTS, and discrete CoT models.

Proposition 1. There exists a 1-layer transformer architecture with a mixture-of-experts MLP layer that solves the MNNS
task using CoT2 and following the CSFT supervision in Section 3.

The above construction utilizes trigonometric embeddings, inspired by the mechanistic insights given by Nanda et al. (2023).
In contrast to their focus, our approach leverages these trigonometric embeddings to give a theoretical guarantee that
the transformer can simultaneously track multiple numbers by benefiting from the embedding capacity and read off the
minimum non-negative number at the final step. An important observation regarding the construction of the solution is
that this construction decouples the different trajectories at each intermediate reasoning step. Specifically, it satisfies the
following Assumption 1 as shown in Appendix F. Building on that insight, we adopt this property to compare CoT2 and
discrete CoT models in the remainder of this section.

Assumption 1. Recall the model LMθ in Section 2. For any step t and prefix tokens z<t. We assume (i) the next token
probabilities depend only on the last token zt and (ii) if the query token is zt =

∑v
j=1 αt, j e j so that

∑v
j=1 αt, j = 1, the output

distribution decouples as follows:

LM(t)
θ (· | zt, X)

(i)
= LM(t)

θ (· | z≤t, X)
(ii)
=

v∑
j=1

αt, j LM(t)
θ (· | e j, X).

Independent of Assumption 1, the token distribution αt = LM(t)
θ (· | z<t, X) evolves with the equation αt = αt−1 Mt(z<t; X),

starting from α0 = LM(0)
θ (· | X) until αm. Here, Mt(z<t; X) ∈ Rv×v is a context-conditioned transition matrix that depends on

the inputs X and the previous tokens z<t (Ildiz et al., 2024). For the simplicity of notation, we omit z<t and X in the notation
of Mt(z<t; X), and use Mt.

• Base CoT2 model: At each step t = 1, . . . ,m, the model outputs the continuous token zt = E⊤αt−1 and uses it as the query
for the next step.

• Discrete CoT model: At each step 1 ≤ t ≤ m, the model samples exactly one token zt = eit from αt, and uses it as the
query for the next step.

• CoT2 with MTS (multi-token sampling): At each step 1 ≤ t ≤ m, i.i.d. sample K tokens ei1 , . . . , eiK from to αt, average
these tokens to form zt =

1
K

∑K
r=1 eir , which it uses as query for the next step.

With these three approaches defined, we present the following result on the consistency of the models.

Proposition 2 (Consistency of Models). Under Assumption 1 above, given any input X, the conditional distributions at the
final step αm = α0

∏m
t=1 Mt obtained from the above three models yield the same final token distribution.

Proposition 2 indicates that discrete, continuous, and multi-token sampling CoT models are consistent in the final distribution.
However, they differ in how many samples are needed to approximate that distribution with repeated samplings. In the
following lemma, we explore the sample complexity needed to recover the output distribution based on the ℓ1, or equivalently,
TV (Total-Variation) error.

Proposition 3. Let αm be the final output distribution after m steps of CoT. Let repeated CoT2 with MTS samplings form
the empirical distribution α̂m over the output distribution. Then, to ensure ∥α̂m − αm∥1 ≤ ϵ with high probability, the total
number of samples required scales as Θ

(
v

K ϵ2

)
.

The above proposition characterizes the sample complexity of CoT2 with MTS, which generalizes discrete CoT (K = 1). For
K = 1, which corresponds to the discrete CoT model, the above proposition reduces to the known Θ( v

ϵ2
) sample complexity

of approximating a v-category distribution in ℓ1 distance (Kamath et al., 2015). Thus, although the three models yield the
same final distribution, the discrete model requires substantially more rollouts for accurate approximation due to inherent
noise from single-token sampling. In contrast, the CoT2 model carries the entire mixture of partial expansions at each step
and computes the distribution in one shot, while CoT2 with MTS model captures multiple partial expansions in each step
and proportionally reduces the sample complexity.
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E. Experimental Results
E.1. Continuous Supervised Training Results

Teacher Forcing and Self-feeding Comparison: As described in Section 3, we tested two approaches of providing prefixes
during training the CoT2 model with CSFT. Although the model autoregressively generates at inference time, teacher forcing
yields better performance than self-feeding during CSFT training. Our results demonstrate that, We also tested curriculum
settings, where we switch to self-feeding after a pre-determined number of epochs in the training. Still, the accuracies didn’t
improve beyond pure teacher-forcing training. The results are illustrated in Figure 4, where we refer to teacher-forcing as
"hard-teacher" and refer to self-feeding as "soft-teacher".

Sparse Supervision for Discrete Baseline: We also tested providing a subset of the correct path to the discrete model. We
observed that a sparsely supervised discrete model can achieve better performance than the fully supervised discrete model
when the distribution is "easier" to handle by the model. As an example, we tested the case when we have 5 input digits from
the range of 11 to 19. In this case, in nearly all of the cases, the answer to our MNNS game is (sum of minimum 3 numbers)
- (sum of maximum 2 numbers) out of the 5 input numbers. In this case, when only 1 token from the correct path is provided
to the discrete model, it’s better than 3 and 5 token cases. However, when we change the distribution to a range of numbers
from 5 to 13, which makes the question reasonably harder, the discrete model with 1 token supervision performs worse than
the other two, and the discrete model with full supervision performs best. The results are demonstrated in Figure 3.

Further Results on CoT2 vs Discrete CoT: The results in Figure 5 also indicate that above an embedding dimension
threshold, the CoT2 model has superior performance and trains significantly faster than the discrete CoT model. Moreover,
combining the results of Figure 5 with Figure 2c, we see that the CoT2 model with one layer and one head GPT2 model
performs better than discrete CoT model with two layers and two heads at embeddings 24 and 32. While the continuous
approach requires greater embedding capacity to support its distributional representations at each step, it can outperform
the discrete model using fewer layers and attention heads. Supporting the findings in Figure 2, Figure 6 illustrates that on
the ProntoQA task, CoT2 consistently outperforms the discrete CoT baseline when the embedding dimension is above a
threshold. Likewise, as depicted in Figure 7 and Figure 8, the discrete CoT model requires multiple samplings (Maj@k)
to match the single-shot performance of CoT2 on both ProntoQA and ProsQA, which indicates that CoT2 model is more
sample-efficient.
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Figure 3. The figure illustrates that when the range of digits makes the question non-trivial on an MNNS task, the discrete CoT model
trained with full token supervision outperforms sparse supervisions; in particular, single token supervision yields the worst performance.
Setting: 5 input digits in 5 − 13; 2-layer, 2-head GPT2 with d = 32.

14



Continuous Chain of Thought Enables Parallel Exploration and Reasoning

0 250 500 750 1000 1250 1500 1750 2000
Epoch

20

30

40

50

60

70

80

90

100

Va
lid

at
io

n 
A

cc
ur

ac
y 

(%
)

Hard Teacher, Emb 16
Soft Teacher, Emb 16
Hard Teacher, Emb 24
Soft Teacher, Emb 24
Hard Teacher, Emb 32
Soft Teacher, Emb 32

Figure 4. The comparison between the hard and soft teachers for different embedding dimensions. The figure illustrates that the hard
teacher is superior to the soft teacher. Setting: 4 input digits in 1 − 9; 4-layer, 4-head GPT2 with d ∈ {16, 24, 32}.
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Figure 5. Comparison between CoT2 and discrete CoT2 model for different embedding dimensions. The figure demonstrates that above a
certain embedding dimension threshold, the CoT2 model outperforms the discrete CoT model in the MNNS task. Setting: 4 input digits
in 1 − 9; 1-layer, 1-head GPT2 with d ∈ {16, 24, 32}.
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Figure 6. Comparison between CoT2 and discrete CoT2 model for different embedding dimensions in ProntoQA task. The figure shows
that above an embedding dimension threshold, the CoT2 model outperforms the discrete CoT model. Setting: 4 input digits in 1 − 9;
4-layer, 4-head GPT2 with d ∈ {24, 32, 30}.
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Figure 7. The figure illustrates that the discrete CoT2 model requires multiple samplings (Maj@k) to match the single-shot performance
of the CoT2 model on ProntoQA (10-run average). Setting: 4-layer, 4-head GPT2 with d = 32.
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Figure 8. The figure illustrates that the discrete CoT2 model requires multiple samplings (Maj@k) to match the single-shot performance
of the CoT2 model on ProsQA (10-run average). Setting: 4-layer, 4-head GPT2 with d = 32.
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E.2. GRPO Results

Discussion on ProntoQA/ProsQA Datasets: Table 3 illustrates that GRPO training using CoT2 with MTS sampling
consistently improves discrete CoT and CoT2 models over their initial SFT accuracy. Moreover, we observe that the
improvement in the discrete CoT model is greater, which might indicate that the CoT2 model already gains an RL-like
exploration mechanism through CSFT training. We observe that while increasing K initially increases the accuracy by
sampling more tokens at each step, beyond some point it degrades performance. This observation is consistent with
Table 1, where we see that moderate K values offer the best final performance. One possible explanation is that while
higher K promotes better exploration, it also raises the chance of sampling unhelpful tokens that disrupt the averaged token
representation. Indeed, for larger K, we observe that the RL objective saturates to near zero which suggests that most
rollouts fail once the averaged token contains too many distracting tokens.

Discussion on Dirichlet Sampling: We also investigate the effects of Dirichlet sampling in GRPO training discrete CoT
and CoT2 models. The results in Table 4 indicates that applying Dirichlet sampling (γ = 20) in GRPO training of discrete
CoT model consistently improves over the initial SFT training accuracies. Similar to the CoT2 +MTS sampling results
in Table 1, we observe that the entropy at the third token remains relatively high, which suggests a beneficial diversity in
model’s predictions for that token. Moreover, the Table 5 demonstrates that Dirichlet sampling also improves the CoT2
model’s SFT accuracy, even though it has a high initial SFT accuracy. As illustrated in Table 5, we find there is an optimal
value for the scale parameter γ, since larger γ typically yields more uniform sampling distributions, whereas smaller γ
concentrates the distribution more sharply. Thus, adjusting γ provides a balance between exploration and stability in GRPO
training.

Table 3. Validation accuracies on ProsQA and ProntoQA for CoT2 and Discrete CoT, evaluated at K = 6, 8, 12 using CoT2 with MTS
sampling GRPO. All models use a 4-layer, 4-head GPT2 with embedding dimension 32. The SFT values are constant as they represent
initial accuracies before GRPO.

ProsQA ProntoQA

SFT SFT+GRPO SFT SFT+GRPO

K
=

6 CoT2 93.37 93.83 75.36 76.15
Discrete CoT 68.50 68.24 59.58 62.28

K
=

8 CoT2 93.37 94.09 75.36 76.66
Discrete CoT 68.50 71.58 59.58 71.53

K
=

12 CoT2 93.37 94.21 75.36 77.64
Discrete CoT 68.50 72.76 59.58 74.03

Table 4. Discrete CoT models trained with GRPO after SFT using Dirichlet sampling (γ = 20) and a learning rate of 1 × 10−5. We show
validation accuracy (%) and token-level entropy (SFT→ SFT+GRPO) for each (Layers, Heads) setting, with an embedding dimension of
24 for GPT2 model.

Layers Heads Val. Accuracy (%) Val. Entropy (SFT→ SFT+GRPO)

SFT SFT+GRPO token1 token2 token3 token4

1 1 39.76 46.25 0.4851→ 0.1701 0.5165→ 0.6380 0.3243→ 0.6590 0.1597→ 0.4878
2 2 70.26 75.84 0.4851→ 0.4027 0.5165→ 0.4413 0.3243→ 0.2907 0.1597→ 0.1386

Table 5. Validation accuracies GRPO training with CoT2 models using different Dirichlet sampling scales (γ) with learning rate of 1×10−6.
We show the baseline SFT accuracy (87.84%) and final performance after GRPO.

Dirichlet Scale (γ) SFT Val. Acc (%) SFT + GRPO Val. Acc (%)

10
87.84

89.76
20 90.75
40 90.37
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F. Further Theoretical Details
Justification for Assumption 1: The Assumption 1 holds for tasks where the next-token distribution depends solely on the
current token and the input tokens rather than the full history of output tokens. This is satisfied by many reasoning tasks,
where the aim is to keep track of an intermediate state (e.g., the current sum) and update this state based only on the current
state and the input, independently of the earlier trajectory.

For example, in the MNNS task, the model generates a token representing the current partial sum at each step. To compute
the distribution over the next possible sums, the model adds or subtracts the selected number from the input context X to the
current sum, without needing to remember the sequence of previous sums explicitly. Thus, the next-state distribution at each
step is only determined by the current state and it naturally satisfies the Assumption 1.

Proposition 2 (Consistency of Models). Under Assumption 1 above, given any input X, the conditional distributions at the
final step αm = α0

∏m
t=1 Mt obtained from the above three models yield the same final token distribution.

Remark: Please note that αm represents a distribution of tokens. This proposition argues that the distributions of αm

obtained from the three models converges to the same model as the number of sampling approaches infinity. Specifically, as
the number of samples approaches infinity, the distributions of αm obtained from the discrete CoT and CoT2 with MTS
models converges in probability to αm obtained from the CoT2 model. An important remark is that αm obtained from CoT2
model is not a random variable as this parameter obtained in a sample-free way.

Proof. Let α̂(disc)
t , α̂(MTS)

t denote the empirical output token distributions at step t under one trajectory obtained by the
discrete CoT, and CoT2 with MTS models, respectively. We define α(disc)

t = E
[
α̂(disc)

t

]
and α(MTS)

t = E
[
α̂(MTS)

t

]
to be

corresponding expected distributions. The discrete CoT model at each step picks exactly 1 token from αt. On the other hand,
CoT2 with MTS samples K i.i.d. tokens at every step independently according to their probabilities from α̂t. We denote
them i1, . . . , iK , and average their embeddings to produce a single query.

We will use induction in our argument. For the base case, all models start with the same initial distribution, so we trivially
have α(disc)

0 = α(MTS)
0 = α(CoT2)

0 . For the inductive step, assume that we have α(disc)
t−1 = α

(MTS)
t−1 = α(CoT2)

t−1 . We will show that
α(disc)

t = α(MTS)
t = α(CoT2)

t . On the other, for the discrete CoT model, the model samples one token eit+1 from the row of Mt

for a token it+1. Therefore, we need to condition on the token at step t. We have:

E
[
α̂(disc)

t+1

]
=

v∑
j=1

P(zt = e j)E
[
α̂(disc)

t+1 | zt = e j

]
=

v∑
j=1

P(zt = e j) LM(t)
θ (· | e j, X)

v∑
j=1

α(disc)
t, j LM(t)

θ (· | e j, X)

(a)
=

v∑
j=1

α(CoT2)
t, j LM(t)

θ (· | e j, X)

(b)
= α(CoT2)

t+1 (6)

where (a) follows from the induction argument and (b) follows from Assumption 1. Therefore, we obtain α(disc)
t+1 = E

[
α̂(disc)

t+1

]
=

α(CoT2)
t+1 . For the CoT2 with MTS model, the argument will be similar. Using the decoupling of trajectories by Assumption 1,

the next distribution is:

LM(t)
θ

· | 1
K

K∑
r=1

eir , X
 = 1

K

K∑
r=1

LM(t)
θ

(
· | eir , X

)
.
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Therefore, we write:

E
[
α̂(MTS)

t+1

]
=

∑
(i1,...,iK ) ∈ [v]K

P(ei1 , . . . , eiK )E
[
α̂(MTS)

t+1 | ei1 , . . . , eiK

]
=

∑
(i1,...,iK ) ∈ [v]K

P(ei1 , . . . , eiK ) LM(t)
θ

· | 1
K

K∑
r=1

eir , X


=
∑

(i1,...,iK ) ∈ [v]K

P(ei1 , . . . , eiK )
1
K

K∑
r=1

LM(t)
θ

(
· | eir , X

)
=

∑
(i1,...,iK ) ∈ [v]K

 K∏
r=1

P(eir )

 1
K

K∑
r=1

LM(t)
θ

(
· | eir , X

)
=

∑
(i1,...,iK ) ∈ [v]K

 K∏
r=1

α(MTS)
t,ir

 1
K

K∑
r=1

LM(t)
θ

(
· | eir , X

)
=

1
K

K∑
r=1

v∑
j=1

LM(t)
θ (· | e j, X)

∑
(i1,...,ir−1,ir+1,...,iK )∈[v]K−1

α(MTS)
t, j

K∏
s=1
s,r

α(MTS)
t,is

=
1
K

K∑
r=1

v∑
j=1

α(MTS)
t, j LM(t)

θ (· | e j, X)
∑

(i1,...,ir−1,ir+1,...,iK )∈[v]K−1

K∏
s=1
s,r

α(MTS)
t,is

=

K∑
r=1

1
K

v∑
j=1

α(MTS)
t, j LM(t)

θ

(
· | e j, X

)
=

v∑
j=1

α(MTS)
t, j LM(t)

θ

(
· | e j, X

)
=

v∑
j=1

α(CoT2)
t, j LM(t)

θ

(
· | e j, X

)
= α(CoT2)

t+1 . (7)

Therefore, combining (6), and (7) completes our argument:

α(disc)
t+1 = E

[
α̂(disc)

t+1

]
= α(CoT2)

t+1 = E
[
α̂(MTS)

t+1

]
= α(MTS)

t+1 .

□

Proposition 3. Let αm be the final output distribution after m steps of CoT. Let repeated CoT2 with MTS samplings form
the empirical distribution α̂m over the output distribution. Then, to ensure ∥α̂m − αm∥1 ≤ ϵ with high probability, the total
number of samples required scales as Θ

(
v

K ϵ2

)
.

Proof. We will utilize the empirical distributions α̂(disc)
t , α̂(MTS)

t that are defined in the proof of Proposition 3 and show that
i.i.d. sampling K discrete CoT trajectories and averaging their results at the last step is distributionally equivalent to CoT2
with MTS using K tokens, under Assumption 1. We will first argue the results for m = 1 and then we will show it for any m.
As discussed in the previous proposition, using the decoupling of trajectories by Assumption 1, the next distribution α̂(MTS)

1
when ei1 , . . . , eiK are drawn from α0 is:

α̂(MTS)
1 = LM(1)

θ

· | 1
K

K∑
r=1

eir , X


=
1
K

K∑
r=1

LM(1)
θ

(
· | eir , X

)
=

∑K
r=1 LM(1)

θ

(
· | eir , X

)
K

=

∑K
r=1 α̂

(disc)
1,r

K
, (8)
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which is the empirical mean of K i.i.d. discrete CoT draws. Thus, under our assumption, drawing K tokens with the MTS
approach is distributionally equivalent to combining outcomes of K independent discrete CoT draws. Now, for any t, we
know by Assumption 1 that output at step t + 1 does not depend on the previous history of tokens. Because of this, we only
focus on the tokens ei1 , . . . , eiK drawn at step t from α(MTS)

t , where α(MTS)
t = α(disc)

t according to Proposition 2. Following the
same steps as in (8), we obtain that:

α̂(MTS)
t+1 =

∑K
r=1 LM(t)

θ

(
· | eir , X

)
K

=

∑K
r=1 α̂

(disc)
t+1,r

K
,

which is again the empirical mean of K i.i.d. discrete CoT trajectory output token distributions. To finish our argument,
we will benefit from a standard result in multinomial estimation that Θ

(
v
ϵ2

)
i.i.d. samples are necessary and sufficient to

learn a v-category distribution in ∥ · ∥1-distance ≤ ϵ (Kamath et al., 2015). In our MTS setting, each sample uses K i.i.d.
draws internally. This reduces the variance by a factor of K and achieves the same estimation guarantee with Θ

(
v

K ϵ2

)
aggregated samples. Hence the total sample complexity in terms of MTS samplings is Θ

(
v

K ϵ2

)
, as claimed. This completes

the argument. □

F.1. Construction for Minimum Non-Negative Sum (MNNS) Task

We describe a single-layer transformer with an attention block followed by a mixture-of-experts (MoE) feed-forward block.
Let n be the length of the input sequence of integer tokens. Denote the tokenized input numbers as z1, z2, . . . , zn; and let
the arrow (→) token be denoted as zn+1. We also have a dummy input token zn+2, which is the embedding corresponding
to number 0, so that we have n + 2 tokens initially. We will construct the transformer with n + 1 MLPs in the mixture of
experts layer, where the first n are partial-sum MLPs and the last one is the MLP that reads off the answer from among the
all stored partial sums after m steps. We start with the following assumption on the structure of the tokens.

Assumption 2. Let d = de + dp be the embedding size where de = 2n+1 and dp = n + 2. The token embeddings are on the
first de coordinates, while the positional encodings are on the last dp coordinates and are one-hot encoded. where each

zi =

(
ei

pi

)
∈ Rde+dp is formed by vertically concatenating a content embedding ei ∈ R

de and a positional encoding pi ∈ R
dp .

We assume each pi is a one-hot vector in Rdp , so that p⊤i pj = 0 for i , j, and ∥pi∥ = 1.

We now state the following proposition, which helps us to attend and select the input tokens z1, . . . , zn+1 one by one by the
attention block.

Proposition 4. Suppose we have n + 2 tokens {z1, z2, . . . , zn+2} in Rd, each of the form zi =

(
ei

pi

)
, where ei ∈ R

de , pi ∈

Rdp , d = de + dp. Let p1, p2, . . . , pn+2 ∈ R
dp be orthonormal set of positional vectors according to Assumption 2. Then, there

exists a rotation matrix R ∈ Rdp×dp satisfying Rp j = p j−1 mod (n+2) for all j ∈ [n + 2], and the block matrices

W =
0 de×de 0 de×dp

0 dp×de c · R

 ∈ Rd×d and Wv =

 Ide 0 de×dp

0 dp×de Idp

 ∈ Rd×d

with c→ ∞, ensure that the attention block

Attn(z, Z) = S
(
z⊤WZ⊤

)
ZWv,

performs a cyclic next-index selection: if the query is zi, it selects column j∗ ≡ (i + 1) (mod n + 2) from Z and returns z j∗ .

Proof. Definition of Matrix W. We will first construct a rotation matrix. We have n + 2 orthonormal position vectors
p1, . . . , pn+2 ∈ R

dp . Then, R is the following (n + 2) × (n + 2) permutation matrix

R =



0 1 0 · · · 0 0
0 0 1 · · · 0 0
0 0 0 · · · 0 0
...
...
...
. . .

...
...

0 0 0 · · · 0 1
0 0 0 · · · 0 0


,
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which cyclically shifts the basis vectors pj backward by one index, i.e., Rpj = pj−1 mod (n+2). Then, we specify

W =
(
0 de×de 0 de×dp

0 dp×de R

)
∈ Rd×d.

Hence for zi = (ei; pi), we have
(
e⊤i , p

⊤
i

)
W =

(
0, p⊤i R

)
. Thus the dot-product with z j is

(
0 p⊤i R

) (e j

pj

)
= p⊤i Rpj.

Since positional encodings are orthogonal, we know that:

p⊤i Rpj =

1, j ≡ i + 1(mod(n + 2)),
0, else.

So row-wise softmax S
(
x⊤WX⊤

)
places all probability mass at column j∗ ≡ i + 1(mod(n + 2)) by saturating softmax at

position j as c→ ∞.

Definition of Matrix Wv. In this case, we simply set Wv = Id, and thus, once the row-wise softmax selects column j∗ with
probability 1, we have

z⊤j∗Wv = z j∗ ,

so the final output is precisely the chosen z j∗ . This completes the construction. □

Having defined the attention block, we state the following proposition that helps selecting different MLPs for the tokens
z1, . . . , zn+1 outputted by the attention block.

Having defined the attention block, we now show how a mixture-of-experts layer can exclusively select MLPi for each token
zi, i = 1, . . . , n + 1 outputted by the attention block.
Proposition 5. Let MLP1, . . . ,MLPn+1 be n + 1 experts in a mixture-of-experts (MoE) module. Suppose we have n + 1 fixed
token embeddings {z1, z2, . . . , zn+1} ⊂ R

d, where each token is formed according to Assumption 2. Given routing parameters
W = [w1 . . . wn+1]⊤, define the MoE feed-forward block as

MoEBlock(z) =
n+1∑
j=1

[
Softmax(Wz) j ·MLP j(z)

]
,

where

Softmax(W z) j =
exp

(
w⊤j z

)
∑n+1

k=1 exp
(
w⊤k z

) , j = 1, . . . , n + 1.

There exist routing matrix W ∈ R(n+1)×d such that the distribution Softmax(c ·W zi) as c→ ∞ assigns a weight of 1 on MLPi

when zi is given as input.

Proof. We partition w j to ignore the content embedding ei and match the positional block pj. Concretely, write w j =

(
0de

pj

)
.

Then, for each token zi = (ei; pi),

w⊤j zi =
(
0⊤de

p⊤j
) (ei

pi

)
= p⊤j pi.

Since p⊤j pi = δi j, we have w⊤j zi = δi j. Therefore, the softmax evaluates to

lim
c→∞

Softmax(c ·W zi) j →
exp(δi j)∑n+1

k=1 exp(δik)
= δi j.

In other words, Softmax(c ·W zi) places all mass on expert j = i. Thus each token zi (for i = 1, . . . , n + 1) deterministically
selects the i-th expert MLPi. □
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In the next proposition, we show how to iteratively expand the partial sums by adding and subtracting the digit obtained
from the attention block and write each resulting sum to a distinct spot in the output vector.

Proposition 6 (Partial-Sum MLPs). Suppose that the embedding dimension d satisfies d ≥ 2 j+1 + dp. Let zprev contain the
2 j−1 partial sums sk each encoded by a pair (cos(ωsk), sin(ωsk)) of coordinates such that:

zprev =
[
cos(ωs1) sin(ωs1) . . . cos(ωs2 j−1 ) sin(ωs2 j−1 ) 0 . . . 0

]⊤
∈ Rd,

and let zcurr contain the input digit d j encoded in the first two coordinates:

zcurr =
[
cos(ωd j) sin(ωd j) 0 . . . 0

]⊤
∈ Rd.

Then, for any 1 ≤ j ≤ n, there exist MLP j : Rd × Rd → Rd such that when (zprev, zcurr) is given as input, it outputs the vector
zout ∈ R

d so that its first 2 j coordinate-pairs store the trigonometric encodings of (sk + d j), and the next 2 j coordinate-pairs
store those of (sk − d j). Formally, first 2 j coordinates are [cos(ω(sk + d j)), sin(ω(sk + d j))] for all partial sums sk, and the
next 2 j coordinates are [cos(ω(sk − d j)), sin(ω(sk − d j))] for all partial sums sk, with any remaining coordinates set to zero.

Proof. Each expert MLP j (for 1 ≤ j ≤ n) adds j-th integer d j in both its positive and negative form to all previously
computed partial sums. For simplicity, let’s say that j-th integer to add is d j. By trigonometric identities, we know that

cos(ω(sk + d j)) = cos(ωsk) cos(ωd j) − sin(ωsk) sin(ωd j),
sin(ω(sk + d j)) = sin(ωsk) cos(ωd j) + cos(ωsk) sin(ωd j),

and similarly,

cos(ω(sk − d j)) = cos(ωsk) cos(ωd j) + sin(ωsk) sin(ωd j),
sin(ω(sk − d j)) = sin(ωsk) cos(ωd j) − cos(ωsk) sin(ωd j).

Using the above identities, we will obtain the sum by introducing matrices that do shift/swap operations. Concretely, for

k = 1, . . . , 2m, the k-th 2 × 2 block acts on
(
cos(ωsk)
sin(ωsk)

)
in zprev. We define:

W+
sin = diag


0 −1

1 0

 , . . . , 0 −1

1 0

︸                       ︷︷                       ︸
2 j−1 blocks

, 0, . . . , 0

 ,

W−
sin = diag


 0 1

−1 0

 , . . . ,  0 1

−1 0

︸                       ︷︷                       ︸
2 j−1 blocks

, 0, . . . , 0

 .
The above constructions of W+

sin and W−
sin satisfy,

W+
sin zprev =

[
− sin(ωs1) cos(ωs1) · · · − sin(ωs2 j−1 ) cos(ωs2 j−1 ) 0 . . . 0

]⊤
∈ Rd

and

W−
sin zprev =

[
sin(ωs1) − cos(ωs1) . . . sin(ωs2 j−1 ) − cos(ωs2 j−1 ) 0 . . . 0

]⊤
∈ Rd.

Each of these act blockwise on the first 2 j coordinates of zprev and zeroes out everything else in dimension d. We also have
zcurr ∈ R

d with two designated coordinates zcurr,1 = cos(ωd j), and zcurr,2 = sin(ωd j), with all other coordinates being zero.
We multiply zprev by cos(ωd j) and sin(ωd j) elementwise. Formally, the sum

zcurr,1 · zprev + zcurr,2 · (M+sin zprev)
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gives the 2 j−1 partial sums {sk + d j}
2 j−1

k=1 stored in the coordinates from 1 to 2 j. We define Wshift ∈ R
d×d in a block form with

three row blocks and two column blocks:

Wshift =

 02 j×2 j 02 j×(d−2 j)
I2 j 02 j×(d−2 j)

0 (d−2 j+1)×2 j 0 (d−2 j+1)×(d−2 j)

 .
When applied, the above matrix shifts the first 2 j entries of zprev by 2 j coordinates. Now, also define

zcurr,2 ·
(
WshiftW−

sin zprev

)
+ zcurr,1 ·

(
Wshift zprev

)
.

This way, the above sum gives us the 2 j−1 partial sums {sk − d j}
2 j−1

k=1 stored in the coordinates from 2 j + 1 to 2 j+1 encoded in
trigonometric format. Then, we normalize this output of the model by 1/2 and obtain the following output:

1
2

(
zcurr,1 · zold + zcurr,2 ·

(
M+sin zold

)
+ zcurr,2 ·

(
WshiftW−

sin zprev

)
+ zcurr,1 ·

(
Wshift zprev

))
=

1
2

[
cos

(
ω (s1 + d j)

)
, sin

(
ω (s1 + d j)

)
, . . . , cos

(
ω (s2 j−1 + d j)

)
, sin

(
ω (s2 j−1 + d j)

)
,

cos
(
ω (s1 − d j)

)
, sin

(
ω (s1 − d j)

)
, . . . , cos

(
ω (s2 j−1 − d j)

)
, sin

(
ω (s2 j−1 − d j)

)
,

0, . . . , 0]⊤ ∈ Rd.

Thus, this is exactly the representation of 2 j partial sums. This completes the argument. We should remark that, the above
argument utilizes a gated MLP which explicitly multiplies the elements of the input features, namely, zcurr with the partial
sums zprev. On the other hand, we don’t require any nonlinear activation function, so our MLP constructions have the form
MLP(z) =W3(W1 z ⊙W2 z) for suitable choices of W1,W2,W3 where ⊙ denotes the Hadamard product. The use of gated
MLPs is a standard practice in transformer architectures (Shazeer, 2020). □

Proposition 7 (Read-OffMLP). Suppose that every partial sum sk is in the range [−S , S ] and let ω < π/2S . Assume that
the vector

z = [cos(ωs1), sin(ωs1), . . . , cos(ωs2n ), sin(ωs2n ), 0, . . . , 0]⊤ ∈ Rd,

contains 2n partial sums {s1, . . . , s2n } encoded in trigonometric form, where d = 2n+1 + n + 2. Then there exists a single
feed-forward network MLPn+1 : Rd → Rd such that, given input z, it selects the smallest nonnegative sℓ from {s1, . . . , s2n }

and outputs the embedding esℓ ∈ R
d, where sℓ is that minimal nonnegative partial sum.

Remark: Our construction relies on gated MLP, rather than standard MLP, as in Proposition 6.

Proof. We know that the input embedding z represents 2n pairs, each pair (cos(ωsi), sin(ωsi)) stored consecutively. That is,

z = [cos(ωs1), sin(ωs1), . . . , cos(ωs2n ), sin(ωs2n ), 0, . . . , 0]⊤ ∈ Rd,

We will identify the smallest sℓ ≥ 0 and output an embedding e sℓ denoting that integer. We are given that ω is small enough
such that when sℓ ∈ [0, S ], we ensure Sω < π/2. This guarantees sin(ωsℓ) ≥ 0 if and only if sℓ ≥ 0. First, we wish to
collapse z into a single vector of size 2n, keeping cos(ωsℓ) only when sin(ωsℓ) ≥ 0 and zeroing it out otherwise. We define
two matrices Wcos,Wsin ∈ R

d×d by

(Wcos)i, (2i−1) = 1, (Wcos)i, j = 0 for j , 2i − 1,
(Wsin)i, (2i) = 1, (Wsin)i, j = 0 for j , 2i.

for 1 ≤ i ≤ 2n and all other rows/columns of Wsin,Wcos are zero. Hence each matrix picks out alternate coordinates:

zcos =Wcos z =



cos(ωs1)
cos(ωs2)
...

cos(ωs2n )
0
...
0


∈ Rd, zsin =Wsin z =



sin(ωs1)
sin(ωs2)
...

sin(ωs2n )
0
...
0


∈ Rd.
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In order to find the minimum non-negative number, we need to find the number s such that it maximizes cos(ωs) and satisfies
sin(ωs) ≥ 0. For this, we utilize a sigmoid activation function in the following way:

zfilter = zcos ⊙ σ (c zsin) ,

where σ(x) = 1
1+exp(−x) is element-wise sigmoid function, and c→ ∞ is a large constant. With this choice of c, the sigmoid

output will be 1 when sℓ ≥ 0 and 0 otherwise. Therefore, the resulting vector zfilter contains cos(ωs) values at indices where
sin(ωs) is positive. Now, for 0 ≤ sℓ ≤ S with Sω ≤ π2 , the ordering of sℓ from smallest to largest is the same as the ordering
of cos(ωsℓ) from largest to smallest. Thus, to find the minimum nonnegative sum, we find the partial sum ℓ∗ that maximizes
cos(ωsℓ). Utilizing another gating, we calculate

softmax (c zfilter)⊤ zfilter

as c→ ∞. The softmax vector will be one-hot with 1 at index ℓ∗ that has the largest cos(ωsℓ). A second multiplication with
zfilter will return this cos(ωsℓ∗). Therefore, softmax (c zfilter)⊤ zfilter = cos(ωsℓ∗). Next, we retrieve the corresponding sine
entry of sℓ∗ by applying the same one-hot selection to zsin. Formally,

softmax (c zfilter)⊤ zsin = sin (ωsℓ∗ ) ,

as c → ∞. Hence, from these two selected coordinates, [cos(ωsℓ∗ ), sin(ωsℓ∗ )], we produce the final embedding in Rd by
placing them in the first two coordinates and zeros elsewhere:

esℓ∗ = [cos(ωsℓ∗ ), sin(ωsℓ∗ ), 0, . . . , 0]⊤ ,

where sℓ∗ is the minimal nonnegative sum. This completes the argument. □

Proposition 1. There exists a 1-layer transformer architecture with a mixture-of-experts MLP layer that solves the MNNS
task using CoT2 and following the CSFT supervision in Section 3.

Proof. We will argue that by combining Propositions 5 to 7, we obtain a single-layer transformer that is formed by an
attention block followed by an MoE feed-forward block, which solves the Minimum Non-Negative Sum (MNNS) task.

Suppose that we have n input integers d1, . . . , dn, encoded as z1, . . . , zn, plus an arrow (→) token zn+1 and a dummy token
zn+2 corresponding to the integer 0. In this case, we will output the tokens representing the ground-truth sums s1, . . . , sn,
therefore, the number of output tokens is m = n in MNNS setting. We assume that the inputs are encoded according to
Assumption 2. By Proposition 6, there exist MLP1, . . . ,MLPn that perform the following: whenever MLP j is selected with
input (zprev, zcurr) such that zprev stores 2 j−1 partial sums and zcurr stores the digit d j, it adds and subtracts d j to all previously
stored partial sums and stores the resulting 2 j partial sums in zout. The dummy token zn+2 that corresponds to the integer 0
allows us to initialize the partial sums from zero. If the query token is zn+2, we produce the first partial sums by combining
this dummy 0 with d1, which are (+d1) and (−d1) encoded in an output token.

We assign positional encodings cyclically to output tokens. That means, the first n+ 2 input tokens have positional encodings
from p1 to pn+2, and the output tokens have p1, p2, . . . , as their positional encodings, in this exact order. This way, by
Proposition 4, Attn(z, Z) attends and selects the input digit tokens z1, z2, . . . , zn and finally arrow zn+1 one by one and feeds
to MoEBlock(·).

By Proposition 5, there’s a MoEBlock(z) such that if the input is z j (for j ≤ n), MLP j is selected with probability 1, and if
the input is arrow token zn+1, MLPn+1 is selected with probability 1, which is the MLP to read-off the final answer. In the
input tokens z1, . . . , zn, the first two coordinates store the trigonometric representation of d1, . . . , dn. To allow outputting
the final answer by MLPn+1, the partial sums obtained in the intermediate steps need to be written to separate coordinates.
Therefore, MLP j takes a vector filled in the first 2 j coordinates, adds d j and writes to the first 2 j coordinates, subtracts
d j and writes to the next 2 j coordinates, and finally divides the entire representation by 2 to maintain consistent scaling
since the number of partial sums is doubled. In other words, the first n MLPs have some repeated behavior. Finally, by
Proposition 7, MLPn+1 receives a vector that encodes all 2n possible partial sums in cos/sin form in 2n+1 coordinates and
extracts the embedding of smallest nonnegative number among them.

Altogether, this single-layer transformer with an attention module to pass the tokens to the mixture-of-experts MLP solves
the Minimum Non-Negative Sum task by following CSFT described in 3. □
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G. Implementation Details
Computational Resources: All experiments were run on a Slurm-managed cluster using L40S GPUs with 48GB of memory.
Each experiment fits on a single GPU. In the case of 4 input digits, the SFT or CSFT training takes approximately 3 hours
on a single GPU. For 5-digit inputs, the dataset size increases by roughly a factor of 10, and the training time increases
proportionally. The entire codebase was implemented in PyTorch.

G.1. Implementation Details of Experiments on MNNS Task

Dataset Details: For the MNNS task, the vocabulary consists of a range of numbers from [−S , S ] for some positive integer
S , together with <BOS>,<EOS>, and→ special tokens. The integer S is chosen so that all possible partial sums of the
selected input digits lie within [−S , S ]. For example, when the input digits lie in the range 1–10, we set S = 36, whereas for
digits in 5–14, we set S = 40. We performed our experiments on the 4 and 5 input digit scenarios. A sample input line with
m numbers is:

<BOS>D1 D2 . . . Dm →

Accordingly, the output will be m sum tokens, where the final token corresponds to the answer, followed by <EOS> token:

S 1 S 2 . . . S m <EOS>

As a concrete example, consider the input 2, 1, 4 (m = 3), following Figure 1. In this case, the solution for the MNNS task is
−2 − 1 + 4 = 1. Therefore, for the discrete model, the input is <BOS>D2 D1 D4 → and we supervise it along the trajectory
of correct output tokens S −2 S −3, S 1<EOS>, as illustrated in Figure 1. On the other hand, the continuous supervision at
the first step holds S 2 and S −2 as possibilities. Then, for the next step, we add 1 or -1 to these numbers, and the resulting
possibilities are S 3, S 1, S −1, S −3. Finally, at the last step, the model is supervised to pick the correct answer S 1 as the token.

We split the datasets by ensuring that each permutation of a set of numbers is exactly in one of the train and validation
datasets, as the answer to the question is permutation-invariant. This way, we prevent the models from memorizing the
answer and make a fair comparison. We also use 0.8-0.2 split for train-val datasets.

Model and Hyperparameters: We use the GPT2 model, with 1 layer 1 head, 2 layer 2 head, and 4 layer 4 head as the
configurations. For each configuration, we experiment with embedding dimensions of 16, 24, or 32. We train with a learning
rate of lr = 10−4 and use AdamW (no weight decay). The batch size is 16 for 4-digit inputs and 64 for 5-digit inputs.

Evaluation of the models: To make a proper comparison, we only check the final answer of the models, as checking the
correctness of the full path of the discrete model would be unfair.

Pass@k Experiment: We perform our experiments for temperatures 0, 0.4, 0.8, and 1 by repeating the evaluation 10 times
for each k value where k changes from 1 to 14.

G.2. Implementation Details of Experiments on ProntoQA/ProsQA Datasets

Dataset Details: Different from the original ProntoQA/ProsQA datasets which described the structured ontology in natural
language as a set of known conditions, we use a more structured format through a token-level representation. An example
prompt is shown below.

Description of the structured ontology: Each component of the ontology and associated questions is represented through
discrete tokens with their own learned embeddings, rather than as raw textual input. Specifically, we use the GPT-2
architecture and encode the ontology’s structural components. Below are two examples demonstrating how natural-language
assertions are mapped to our tokenized format:

Brimpuses are not luminous → ’A’ ’not in’ ’B’ ’.’.

Shumpuses are amenable; Each yumpus is a lorpu; Every lorpus is floral → ’C’ ’in’ ’D’ ’.’.

Below, we have the ProntoQA and ProsQA datasets’ input-output format.

The structure of ProntoQA:

Input:’Description’ ’{’ ’A’ ’not in’ ’B’ ’.’ ... ’C’ ’in’ ’D’ ’.’ ’}’ ’Question’ ’{’ ’C’
’not in’ ’F’ ’.’ ’}’
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Output:’Steps’ { ’C’ ’in’ ’D’ ’.’ ... ’D’ ’in’ ’E’ ’.’ ’}’ ’Answer’ ’{’ ’False’ ’}’

The structure of ProsQA:

Input:’Description’ ’{’ ’A’ ’in’ ’B’ ’.’ ... ’C’ ’in’ ’D’ ’.’ ’}’ ’Question’ ’{’ ’C’ ’in’ ’F’
’or’ ’E’ ’}’

Output:’Steps’ { ’C’ ’in’ ’D’ ’.’ ... ’D’ in ’E’ ’.’ ’}’ ’Answer’ ’{’ ’F’ ’}’

Each distinct component or relation (e.g., ’A’, ’in’, ’not in’) is treated as a unique token, and singular/plural variants
(such as ’lempus’ and ’lempuses’) are collapsed into a single token to simplify the vocabulary. Alongside these concept
tokens, special structural tokens (’Description’, ’’, ’’, ’.’, ’or’, etc.) are also included, which results in a vocabulary
size of 31 tokens. To avoid biases, we balance the dataset. In ProntoQA, “yes” and “no” each appear with 50% probability,
and in ProsQA, the correct answer is randomly permuted at the first or second position. For all the other experimental and
training settings, we follow (Hao et al., 2024).

Model and Hyperparameters: We use the GPT2 model, with 2 layer 2 head, and 4 layer 4 head as the configurations. We
tested embedding dimensions 24, 32, 40 with these configurations. We set batch size 64. We train with a learning rate of
10−4 and use AdamW (no weight decay).

Maj@k Experiment: We use majority voting for evaluation instead of Pass@k, because both ProntoQA and ProsQA are
binary questions. We perform our experiments for temperatures 0, 0.4, 0.8, and 1 by repeating the evaluation 10 times for
each k value where k changes from 1 to 21. If two or more answers end up with the same top vote, we pick one randomly.

G.3. Implementation Details of GRPO Training

In (Hao et al., 2024), the reference model is updated by LMθref ← LMθ in each iteration (epoch). This approach is reasonable
for their setting with a large dataset and a small number of epochs over it. For our setting, however, we set the reference
model to the initial model and never update it through iterations as we have a smaller dataset. Meanwhile, we update the old
model before every batch LMθold ← LMθ.

In our experiments, we use G = 8 trajectories per input data point, use clipping parameter ϵ = 0.1, and set the KL-divergence
coefficient β = 0 in most cases (with β = 0.1 in a few). For the CoT2 model with MTS sampling, we change the number
of tokens to sample K from 1 to 12. In the MNNS task, the 5-digit case has about ten times more data than the 4-digit
case, so we typically focus on 4-digit MNNS because of computational considerations and use a batch size of 16 in those
experiments.

Learning rates differ by model and setting. We use lr = 5 × 10−5 for CoT2 +MTS sampling (figures in the main text),
lr = 1× 10−5 for discrete CoT with Dirichlet sampling, and lr = 1× 10−6 for CoT2 with Dirichlet sampling. For ProntoQA
and ProsQA experiments, we perform a grid search over learning rates ranging from 1 × 10−4 to 1 × 10−8 and select and
report results using the best-performing configuration. For most settings, we find lr = 1 × 10−5 optimal; however, for CoT2
and discrete CoT models with K = 6, we set lr = 1 × 10−6.We also use AdamW with a weight-decay of 0.01. For Dirichlet
experiments on the MNNS task, we try various scale parameters γ, but we find γ = 20 to work best in most settings. Unless
stated otherwise, we report the best validation accuracy found during training for each setting.
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