Stress-Testing Byzantine Defenses under Data Heterogeneity

Distributed Learning is becoming increasingly adopted as it allows for the collaborative training of large-
scale ML tasks on distributed datasets. However, it remains vulnerable to poisoning (Byzantine) attacks,
especially when data across clients is non-independent and identically distributed (non-I1ID). In such set-
tings, benign clients naturally produce diverse gradients, which makes detecting malicious updates more
difficult.

While robust aggregation methods have been widely studied, the threat model under non-IID data is
comparatively underexplored. This gap may give a false sense of security about current defenses. Notably,
the only strong attacks explicitly designed for heterogeneous settings, Min-Max and Min-Sum [4], construct
adversarial gradients that blend with honest updates while remaining farther than the most outlying benign
client. These attacks exploit natural gradient variance but require full access to honest gradients and solve
optimization problems at every iteration, making them impractical. In contrast, ALIE [2] and IPM [5] do
not require access to honest clients’ gradients, relying only on local information and general assumptions
about gradient distributions. This makes them more practical and widely applicable in real-world settings.

In this work, we revisit classic IID-based Byzantine attacks, such as ALIE and IPM, and show that
their lack of effectiveness in prior evaluations stems from not being calibrated for non-IID data. These
attacks were typically run with conservative perturbation strengths suited for IID scenarios, where gradient
similarity forces adversaries to be stealthy. However, in heterogeneous settings, we find that stronger
perturbations can go undetected. Our study shows: (1) Under data heterogeneity, both ALIE and IPM
can apply significantly stronger perturbations than typically assumed (see Figure 1). (2) Once calibrated,
these attacks, especially ALIE, cause severe degradation in test accuracy (e.g., below 24% on CIFAR-10),
outperforming even Min-Max and Min-Sum (see table 1). These results demonstrate that state-of-the-art
defenses [1, 4, 3] can fail dramatically under realistic adversarial conditions. Our findings highlight the
need for threat models and evaluation protocols that better reflect real-world heterogeneity in distributed
learning.

Table 1: Top-1 Test Accuracy (%) (mean+tstd averaged for 3 runs) of different defenses trained for T = 8000
under various combinations of 5 on CIFAR10 for b = 3 Byzantine clients out of n = 17.
CIFARI0 (8 = 0.3) CIFARI0 (5 = 0.5)
Attack RFA (buck) CMLS CCLIP trMean(NNM)  RFA(buck) CMLS CCLIP trMean(NNM)

ALIE (2 =8) 23.26 + 1.39 21.71 + 2.81 17.89 + 5.64 21.93 + 1.49 21.29 + 2.15 19.01 + 0.47 24.07 + 1.43 18.90 + 6.39
IPM (e =2.5) 39.30 + 0.35 44.20 £+ 1.16 50.95 + 1.53 52.29 £+ 0.22 43.80 + 1.39 50.53 + 0.18 51.01 £+ 0.90 56.55 + 0.74

MinMax 37.99 + 1.34 42.96 £ 0.68 37.81 £+ 0.95 49.60 £ 0.87 44.26 + 0.69 48.92 + 2.36 35.33 £+ 2.28 53.84 &+ 0.07

MinSum 46.00 4+ 0.50 43.36 £+ 0.89 53.33 £ 0.41 52.67 £+ 0.50 51.57 £ 1.14 49.05 + 0.30 55.58 £+ 0.89 59.78 + 1.36

SF 52.76 £ 1.03 44.12 £+ 0.43 63.58 £+ 0.47 51.58 £+ 2.03 53.37 £+ 0.42 50.07 £ 2.24 64.62 £+ 1.04 23.93 £ 9.05
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