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Abstract—We formulate and study a decentralized multi-armed
bandit (MAB) problem. There are distributed players com-
peting for independent arms. Each arm, when played, offers
i.i.d. reward according to a distribution with an unknown param-
eter. At each time, each player chooses one arm to play without
exchanging observations or any information with other players.
Players choosing the same arm collide, and, depending on the
collision model, either no one receives reward or the colliding
players share the reward in an arbitrary way. We show that the
minimum system regret of the decentralized MAB grows with time
at the same logarithmic order as in the centralized counterpart
where players act collectively as a single entity by exchanging
observations and making decisions jointly. A decentralized policy
is constructed to achieve this optimal order while ensuring fair-
ness among players and without assuming any pre-agreement or
information exchange among players. Based on a time-division
fair sharing (TDFS) of the best arms, the proposed policy is
constructed and its order optimality is proven under a general
reward model. Furthermore, the basic structure of the TDFS
policy can be used with any order-optimal single-player policy
to achieve order optimality in the decentralized setting. We also
establish a lower bound on the system regret for a general class of
decentralized polices, to which the proposed policy belongs. This
problem finds potential applications in cognitive radio networks,
multi-channel communication systems, multi-agent systems, web
search and advertising, and social networks.

Index Terms—Cognitive radio, decentralized multi-armed
bandit, distributed learning, multi-agent systems, system regret,
Web search and advertising.

I. INTRODUCTION

A. The Classic MAB With a Single Player

I N the classic multi-armed bandit (MAB) problem, there are
independent arms and a single player. Playing arm

yields i.i.d. random rewards with a distribution pa-
rameterized by an unknown . At each time, the player chooses
one arm to play, aiming to maximize the total expected reward
in the long run. Had the reward model of each arm been known
to the player, the player would have always chosen the arm that
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offers the maximum expected reward. Under an unknown re-
ward model, the essence of the problem lies in the well-known
tradeoff between exploitation (aiming at gaining immediate re-
ward by choosing the arm that is suggested to be the best by past
observations) and exploration (aiming at learning the unknown
reward model of all arms to minimize the mistake of choosing
an inferior arm in the future).

Under a non-Bayesian formulation where the unknown
parameters are considered deterministic,
a commonly used performance measure of an arm selection
policy is the so-called regret or the cost of learning defined as
the reward loss with respect to the case with known reward
models. Since the best arm can never be perfectly identified
from finite observations (except certain trivial scenarios), the
player can never stop learning and will always make mistakes.
Consequently, the regret of any policy grows with time.

An interesting question posed by Lai and Robbins in 1985 [1]
is on the minimum rate at which the regret grows with time.
They showed in [1] that the minimum regret grows at a log-
arithmic order under certain regularity conditions. The best
leading constant was also obtained, and an optimal policy
was constructed under a general reward model to achieve
the minimum regret (both the logarithmic order and the best
leading constant). In 1987, Anantharam et al. extended Lai
and Robbins’s results to MAB with multiple plays: exactly

arms can be played simultaneously at each
time [2]. They showed that allowing multiple plays changes
only the leading constant but not the logarithmic order of the
regret. They also extended Lai–Robbins policy to achieve the
optimal regret under multiple plays.

B. Decentralized MAB With Distributed Multiple Players

In this paper, we formulate and study a decentralized version
of the classic MAB, where we consider distributed
players. At each time, a player chooses one arm to play based
on its local observation and decision history. Players do not ex-
change information on their decisions and observations. Colli-
sions occur when multiple players choose the same arm, and,
depending on the collision model, either no one receives reward
or the colliding players share the reward in an arbitrary way.
The objective is to design distributed policies for each player in
order to minimize, under any unknown parameter set , the rate
at which the system regret grows with time. Here the system re-
gret is defined as the reward loss with respect to the maximum
system reward obtained under a known reward model and with
centralized scheduling of the players.

The single-player MAB with multiple plays considered in [2]
is equivalent to a centralized MAB with multiple players. If
all players can exchange observations and make decisions
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jointly, they act collectively as a single player who has the
freedom of choosing arms simultaneously. As a direct
consequence, the logarithmic order of the minimum regret
established in [2] provides a lower bound on the minimum
regret in a decentralized MAB where players cannot exchange
observations and must make decisions independently based on
their individual local observations.1

C. Main Results

In this paper, we show that in a decentralized MAB where
players can only learn from their individual observations and
collisions are bound to happen, the system can achieve the same
logarithmic order of the regret as in the centralized case. Fur-
thermore, we show that this optimal order can be achieved under
a fairness constraint that requires all players accrue reward at the
same rate.

A decentralized policy is constructed to achieve the optimal
order under the fairness constraint. The proposed policy is based
on a time-division fair sharing (TDFS) of the best arms where
no pre-agreement on the time sharing schedule is needed. It is
constructed and its order optimality is proven under a general
reward model. The TDFS decentralized policy thus applies to
and maintains its order optimality in a wide range of potential
applications as detailed in Section I-D. Furthermore, the basic
structure of TDFS is not tied with a specific single-player policy.
It can be used with any single-player policy to achieve an effi-
cient and fair sharing of the best arms among distributed
players. More specifically, if the single-player policy achieves
the optimal logarithmic order in the centralized setting, then the
corresponding TDFS policy achieves the optimal logarithmic
order in the decentralized setting. The order optimality of the
TDFS policy is also preserved when player’s local polices are
built upon different order-optimal single-player polices.

We also establish a lower bound on the leading constant of
the logarithmic order of the regret for a general class of decen-
tralized polices, to which the proposed TDFS policy belongs.
This lower bound is tighter than the trivial bound provided by
the centralized MAB considered in [2], which indicates, as one
would have expected, that decentralized MAB is likely to incur
a larger leading constant than its centralized counterpart.

D. Applications

With its general reward model, the TDFS policy finds a wide
area of potential applications. We give a few examples below.

Consider first a cognitive radio network where secondary
users independently search for idle channels temporarily un-
used by primary users [3]. Assume that the primary system
adopts a slotted transmission structure and the state (busy/idle)
of each channel can be modeled by an i.i.d. Bernoulli process.
At the beginning of each slot, multiple distributed secondary
users need to decide which channel to sense (and subsequently
transmit if the chosen channel is idle) without knowing the
channel occupancy statistics (i.e., the mean of the Bernoulli
process). An idle channel offers one unit of reward. When
multiple secondary users choose the same channel, none or

1While intuitive, this equivalence requires the condition that the� best arms
have nonnegative means (see Section IV for details).

only one receives reward depending on whether carrier sensing
is implemented.

Another potential application is opportunistic transmission
over wireless fading channels [4]. In each slot, each user senses
the fading realization of a selected channel and chooses its trans-
mission power or date rate accordingly. The reward can model
energy efficiency (for fixed-rate transmission) or throughput.
The objective is to design distributed channel selection policies
under unknown fading statistics.

Consider next a multi-agent system, where each agent is
assigned to collect targets among multiple locations (for ex-
ample, ore mining). When multiple agents choose the same
location, they share the reward according to a certain rule. The
log-Gaussian distribution with an unknown mean may be used
as the reward model when the target is fish [5] or ore [6].

Another potential application is Internet advertising where
multiple competing products select websites to posts advertise-
ments. The reward obtained from the selected website is mea-
sured by the number of interested viewers whose distribution
can be modeled as Poisson [7].

E. Related Work

In the context of the classic MAB, there have been several
attempts at developing index-type policies that are simpler
than Lai–Robbins policy by using a single sample mean based
statistic [8], [9]. However, such a simpler form of the policy
was obtained at the price of a more restrictive reward model
and/or a larger leading constant in the logarithmic order. In
particular, the index policy proposed in [8] mainly targets at
several members of the exponential family of reward distribu-
tions. Auer et al. proposed in [9] several index-type policies
that achieve order optimality for reward distributions with a
known finite support.

Under a Bernoulli reward model in the context of cognitive
radio, MAB with multiple players was considered in [10] and
[11]. In [10], a heuristic policy based on histogram estimation
of the unknown parameters was proposed. This policy provides
a linear order of the system regret, thus cannot achieve the
maximum average reward. In [11], Anandkumar et al. have
independently established order-optimal distributed policies
by extending the index-type single-user policies proposed in
[9]. Compared to [11], the TDFS policy proposed here applies
to more general reward models (for example, Gaussian and
Poisson reward distributions that have infinite support). It thus
has a wider range of potential applications as discussed in
Section I-D. Furthermore, the policies proposed in [11] are spe-
cific to the single-player polices proposed in [9], whereas the
TDFS policy can be used with any order-optimal single-player
policy to achieve order optimality in the decentralized setting.
Another difference between the policies proposed in [11]
and the TDFS policy is on user fairness. The policies in [11]
orthogonalize users into different channels that offer different
throughput, whereas the TDFS policy ensures that each player
achieves the same time-average reward at the same rate. One
policy given in [11] does offer probabilistic fairness in the
sense that all users have the same chance of settling in the
best channel. However, given that the policy operates over an
infinite horizon and the order optimality is asymptotic, each
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user only sees one realization in its lifetime, leading to different
throughput among users. A lower bound on the achievable
system regret is also given in [11], which is identical to the
bound developed here. The derivation of the lower bound in
this work, however, applies to a more general class of poli-
cies and, first given in [12], precedes that in [11]. In terms
of using collision history to orthogonalizing players without
pre-agreement, the basic idea used in this work is similar to that
in [11]. The difference is that in the TDFS policy, the players
are orthogonalized via settling at different offsets in their time
sharing schedule, while in [11], players are orthogonalized to
different channels. Recently, results obtained in [11] have been
extended to incorporate unknown number of users for Bernoulli
reward model in the context of cognitive radio [13].

A variation of centralized MAB in the context of cognitive
radio has been considered in [14] where a channel offers inde-
pendent Bernoulli rewards with different (unknown) means for
different users. This more general model captures contention
among secondary users that are in the communication range
of different sets of primary users. A centralized policy that as-
sumes full information exchange and cooperation among users
is proposed which achieves the logarithmic order of the regret.
We point out that the logarithmic order of the TDFS policy is
preserved in the decentralized setting when we allow players to
experience different reward distributions on the same arm pro-
vided that players have the common set of the best arms and
each of the best arms has the same mean across players. It
would be interesting to investigate whether the same holds when
players experience different means on each arm.

F. Notations

Let denote the cardinality of set . For two sets and ,
let denote the set consisting of all elements in that do not

belong to . For two positive integers and , define
, which is an integer taking values from

. Let denote the probability measure when the
unknown parameter in the associated distribution equals to .

II. CLASSIC RESULTS ON SINGLE-PLAYER MAB

In this section, we give a brief review of the main results es-
tablished in [1], [2], [8], and [9] on the classic MAB with a single
player.

A. System Regret

Consider an -arm bandit with a single player. At each time
, the player chooses exactly arms to play.

Playing arm yields i.i.d. random reward drawn from a
univariate density function parameterized by . The
parameter set is unknown to the player.
Let denote the mean of under the density func-
tion . Let be
the Kullback–Liebler distance that measures the dissimilarity
between two distributions parameterized by and , respec-
tively.

An arm selection policy is a series of func-
tions, where maps the previous observations of rewards to
the current action that specifies the set of arms to play at
time . The system performance under policy is measured by

the system regret defined as the expected total reward
loss up to time under policy compared to the ideal scenario
that is known to the player (thus the best arms are played
at each time). Let be a permutation of such that

. We have

where is the random reward obtained at time under
action , and denotes the expectation with respect to
policy . The objective is to minimize the rate at which
grows with under any parameter set by choosing an optimal
policy .

We point out that the system regret is a finer performance
measure than the long-term average reward. All policies with a
sublinear regret would achieve the maximum long-term average
reward. However, the difference in their performance measured
by the total expected reward accrued over a time horizon of
length can be arbitrarily large as increases. It is thus of
great interest to characterize the minimum regret and construct
policies optimal under this finer performance measure.

A policy is called uniformly good if for any parameter set ,
we have for any . Note that a uniformly
good policy implies the sublinear system regret and achieves the
maximum long-term average reward which is the
same as in the case with perfect knowledge of .

B. The Logarithmic Order and the Optimal Policy

We present in the theorem below the result established in [1]
and [2] on the logarithmic order as well as the leading constant
of the minimum regret of the single-player MAB.

Theorem [1], [2]: Under the regularity conditions (condi-
tions C1–C4 in Appendix A), we have, for any uniformly good
policy ,

(1)

Lai and Robbins also constructed a policy that achieves the
lower bound on the regret given in (1) under single play

[1] (which was extended by Anantharam et al. to in
[2]). Under this policy, two statistics of the past observations are
maintained for each arm. Referred to as the point estimate, the
first statistic is an estimate of the mean given by a func-
tion of the past observations on this arm ( denotes the total
number of observations). The second statistic is the so-called
confidence upper bound which represents the potential of an
arm: the less frequently an arm is played, the less confident we
are about the point estimate, and the higher the potential of this
arm. The confidence upper bound, denoted by , thus depends
on not only the number of observations on the arm but also the
current time in order to measure how frequently this arm has
been played.

Based on these two statistics, Lai–Robbins policy operates as
follows. At each time , among all “well-sampled” arms, the one
with the largest point estimate is selected as the leader denoted
as . The player then chooses between the leader and a round-
robin candidate to play. The leader is played if and
only if its point estimate exceeds the confidence upper bound of
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Fig. 1. Lai–Robbins policy for single-player MAB [1].

the round-robin candidate . A detailed implementation of this
policy is given in Fig. 1.

Lai and Robbins [1] have shown that for point estimates
and confidence upper bounds satisfying certain conditions
(condition C5 in Appendix A), the above policy is optimal,
i.e., it achieves the minimum regret given in (1). For Gaussian,
Bernoulli, and Poisson reward models, and satisfying
condition C5 are as follows [1]:

(2)

and (3)

While given in (3) is not in closed-form, it does not af-
fect the implementation of the policy. Specifically, the compar-
ison between the point estimate of the leader and the confi-
dence upper bound of the round-robin candidate (see Fig. 1)
is shown to be equivalent to the following two conditions [1]:

Consequently, we only require the point estimate to imple-
ment the policy.

C. Order-Optimal Index Policies

Since Lai and Robbins’s seminal work, researchers have de-
veloped several index-type policies that are simpler than Lai-
Robbins policy by using a single sample mean based statistic
[8], [9]. Specifically, under such an index policy, each arm is as-
signed with an index that is a function of its sample mean and
the arm with the greatest index will be played in each slot. To
obtain an initial index, each arm is played once in the first
slots.

The indexes proposed in [8] for Gaussian, Bernoulli, Poisson,
and exponential distributed reward models are given in (4),
shown at the bottom of the page. Except for Gaussian distri-
bution, this index policy only achieves the optimal logarithmic
order of the regret but not the best leading constant,2 where

is the index function, is the sample mean of the arm, and
are upper bounds of all possible values of in the Poisson

and exponential reward models, respectively.

2The optimal indexes for Bernoulli, Poisson and exponential distributions are
also developed in [8]. However, the indexes are not given in closed-form and
are difficult to implement.

Gaussian

Bernoulli

Poisson

Exponential

(4)
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Based on [8], a simpler order-optimal sample mean based
index policy was established in [9] for reward distributions with
a known finite support:

(5)

While the simple index policy given in [9] is only order-optimal,
it allows arms to have different distribution functions .

III. DECENTRALIZED MAB: PROBLEM FORMULATION

In this section, we formulate the decentralized MAB with
distributed players. In addition to conditions C1–C5 required
by the centralized MAB, we assume that the best arms have
distinct nonnegative means.3

In the decentralized setting, players may collide and may not
receive reward that the arm can potentially offer. We thus refer
to as the state of arm at time (for example, the busy/idle
state of a communication channel in the context of cognitive
radio). At time , player chooses an action

that specifies the arm to play and observes
its state . The action is based on the player’s local
observation and decision history. Note that the local observation
history of each player also includes the collision history. As
shown in Section V-C, the observation of a collision is used to
adjust the local offset of a player’s time sharing schedule of the

best arms to avoid excessive future collisions.
We define a local policy for player as a sequence of func-

tions , where maps player ’s past obser-
vations and decisions to action at time . The decentralized
policy is thus given by the concatenation of the local polices
for all players:

Define reward as the total reward accrued by all players at
time , which depends on the system collision model as given
below.

Collision Model 1: When multiple players choose the same
arm to play, they share the reward in an arbitrary way. Since
how players share the reward has no effect on the total system
regret, without loss of generality, we assume that only one of the
colliding players obtains a random reward given by the current
state of the arm. Under this model, we have

where is the indicator function that equals to 1 if arm is
played by at least one player, and 0 otherwise.

Collision model 2: When multiple players choose the same
arm to play, no one obtains reward. Under this model, we have

3This condition can be relaxed to the case that a tie occurs at the� th largest
mean.

where is the indicator function that equals to 1 if arm is
played by exactly one player, and 0 otherwise.

The system regret of policy is thus given by

Note that the system regret in the decentralized MAB is defined
with respect to the same best possible reward as
in its centralized counterpart. The objective is to minimize the
rate at which grows with time under any parameter
set by choosing an optimal decentralized policy. Similarly, we
say a decentralized policy is uniformly good if for any parameter
set , we have for any . To address the
optimal order of the regret, it is sufficient to focus on uniformly
good decentralized polices provided that such policies exist.

We point out that all results developed in this work apply to a
more general observation model. Specifically, the arm state ob-
served by different players can be drawn from different distribu-
tions, as long as players have the common set of the best arms
and each of the best arms has the same mean across players.
This relaxation in the observation model is particularly impor-
tant in the application of opportunistic transmission in fading
channels, where different users experience different fading en-
vironments in the same channel.

IV. THE OPTIMAL ORDER OF THE SYSTEM REGRET

In this section, we show that the optimal order of the system
regret of the decentralized MAB is logarithmic, the same as its
centralized counterpart as given in Section II.

Theorem 1: Under both collision models, the optimal order
of the system regret of the decentralized MAB is logarithmic,
i.e., for an optimal decentralized policy , we have

(6)

for some constants and that depend on .
Proof: The proof consists of two parts. First, we prove that

the lower bound for the centralized MAB given in (1) is also a
lower bound for the decentralzied MAB. Second, we construct
a decentralized policy (see Section V) that achieves the loga-
rithmic order of the regret.

It appears to be intuitive that the lower bound for the central-
ized MAB provides a lower bound for the decentralized MAB.
This, however, may not hold when some of the best arms
have negative means (modeling the punishment for playing cer-
tain arms). The reason is that the centralized MAB considered in
[2] requires exactly arms to be played at each time, while in
the decentralized setting, fewer than arms may be played at
each time when players choose the same arm. When the best
arms have nonnegative means, it is easy to show that playing
up to arms cannot achieve a better performance than the op-
timal performance achieved by playing exactly arms. The
lower bound for the centralized MAB given in (1) thus applies
to the decentralized MAB. A detailed proof can be done along
the line of [1, Theorem 1].
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Fig. 2. The structure of player 1’s local policy under � (� � �� � � �. Let ����� denote the arm considered as the best by player 1 in the first subsequence.
In this example, player 1 divides the second subsequence (i.e., all the even slots) into three mini-sequences, each associated with a subset of 2 arms after removing
the arm considered to be the best in the first subsequence.).

V. AN ORDER-OPTIMAL DECENTRALIZED POLICY

In this section, we construct a decentralized policy that
achieves the optimal logarithmic order of the system regret
under the fairness constraint.

A. Basic Structure of the Decentralized TDFS Policy

The basic structure of the proposed policy is a time di-
vision structure at each player for selecting the best arms.
For the ease of the presentation, we first assume that there is a
pre-agreement among players so that they use different phases
(offsets) in their time division schedule. For example, the offset
in each player’s time division schedule can be predetermined
based on the player’s ID. In Section V-C, we show that this pre-
agreement can be eliminated while maintaining the order-opti-
mality and fairness of the TDFS policy, which leads to a com-
plete decentralization among players.

Consider, for example, the case of . The time sequence
is divided into two disjoint subsequences, where the first subse-
quence consists of all odd slots and the second one consists of
all even slots. The pre-agreement is such that player 1 targets
at the best arm during the first subsequence and the second best
arm during the second subsequence, and player 2 does the op-
posite.

Without loss of generality, consider player 1. In the first
subsequence, player 1 applies a single-player policy, say Lai–
Robbins policy, to efficiently learn and select the best arm. In
the second subsequence, the second best arm is learned and
identified by removing the arm that is considered to be the best
and applying the Lai–Robbins policy to identify the best arm in
the remaining arms (which is the second best among all

arms). Note that since the best arm cannot be perfectly iden-
tified, which arm is considered as the best in an odd slot (in
the first subsequence) is a random variable determined by the
realization of past observations. We thus partition the second
subsequence into multiple mini-sequences depending on which
arm was considered to be the best in the preceding odd slot and
thus should be removed from consideration when identifying
the second best. Specifically, as illustrated in Fig. 2, the second
subsequence is divided into disjoint mini-sequences, where
the th mini-sequence consists of all slots that follow a slot in
which arm was played (i.e., arm was considered the best arm
in the preceding slot that belongs to the first subsequence). In
the th mini-sequence, the player applies Lai–Robbins policy
to arms after removing arm .

In summary, the local policy for each player consists of
parallel Lai–Robbins procedures: one is applied in the subse-
quence that targets at the best arm and the rest are applied in
the mini-sequences that target at the second best arm. These
parallel procedures, however, are coupled through the common
observation history since in each slot, regardless of which sub-
sequence or mini-sequence it belongs to, all the past observa-
tions are used in the decision making. We point out that making
each mini-sequence use only its own observations is sufficient
for the order optimality of the TDFS policy and simplifies the
optimality analysis. However, we expect that using all available
observations leads to a better constant as demonstrated by sim-
ulation results in Section VII.

The basic structure of the TDFS policy is the same for
the general case of . Specifically, the time sequence is
divided into subsequences, in which each player targets at
the best arms in a round-robin fashion with a different offset.
Suppose that player 1 has offset 0, i.e., it targets at the th

best arm in the th subsequence. To player 1, the th
subsequence is then divided into mini-sequences,

each associated with a subset of arms after removing
those arms that are considered to have a higher rank than .
In each of the mini-sequences, Lai–Robbins single-player
policy is applied to the subset of arms associated
with this mini-sequence. Note that while the subsequences are
deterministic, each mini-sequence is random. Specifically, for
a given slot in the th subsequence, the mini-sequence which
it belongs to is determined by the specific actions of the player
in the previous slots. For example, if arms
are played in the previous slots, then slot belongs to
the mini-sequence associated with the arm set of .
A detailed implementation of the proposed policy for a general

is given in Fig. 3.
Note that the basic structure of the TDFS policy is gen-

eral. It can be used with any single-player policy to achieve an
efficient and fair sharing of the best arms among dis-
tributed players. Furthermore, players are not restricted to using
the same single-player policy. Details are given in Section V-B.

B. Order-Optimality Under Fairness Constraint

Compared to the single-player counterpart given in [1] and
[2], the difficulties in establishing the logarithmic regret of
are twofold. First, compared to the centralized problem where
a single player observes different arms simultaneously, each
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player here can only observe one arm at each time. Each player
is thus learning the entire rank of the best arms with fewer ob-
servations. Furthermore, since the rank of any arm can never be
perfectly identified, the mistakes in identifying the th

best arm will propagate into the learning process for iden-
tifying the th, up to the th best arm. Second, without
centralized scheduling, collisions are bound to happen even with
pre-agreed offset on sharing the best arms since players do
not always agree on the rank of the arms. Such issues need to be
carefully dealt with in establishing the logarithmic order of the
regret.

Theorem 2: Under the TDFS policy , we have, for some
constant ,

(7)

Let

Under the collision model 1,

Under the collision model 2,

Proof: Note that the system regret is given by the sum of
the regrets in the subsequences. By symmetry in the struc-
ture of , all subsequences experience the same regret. Con-
sequently, the system regret is equal to times the regret in
each subsequence. We thus focus on a particular subsequence
and show that the regret in this subsequence is at most log-
arithmic. Without loss of generality, consider the first subse-
quence in which the th player targets at the th
best arm.

To show the logarithmic order of the regret, The basic ap-
proach is to show that the number of slots in which the th player
does not play the th best arm is at most logarithmic with time.
This is done by establishing in Lemma 2 a lower bound on the
number of slots in which the th player plays the th best arm in
the first subsequence.

To show Lemma 2, we first establish Lemma 1 by focusing on
the dominant mini-sequence of the first subsequence. Without
loss of generality, consider player . Define the dominant mini-
sequence as the one associated with arm set
(i.e., the best arms are correctly identified and removed
in this mini-sequence). Lemma 1 shows that, in the dominant
mini-sequence, the number of slots in which player does not
play the th best arm is at most logarithmic with time.

Lemma 1: Let denote the number of slots up to time
in which arm is played in the dominant mini-sequence associ-
ated with arm set . Then, for any arm with

, we have

(8)

Proof: Note that this lemma is an extension of [1, The-
orem 3]. The proof of this lemma is more complicated since the
mini-sequence is random and the decisions made in this mini-se-
quence depend on all past observations (no matter to which
mini-sequence they belong). See Appendix B for details.

Next, we establish Lemma 2. The basic approach is to show
that the length of the dominant mini-sequence dominates the
lengths of all other mini-sequences in the first subsequences.
Specifically, we show that the number of slots that do not belong
to the dominant mini-sequence is at most logarithmic with time.
This, together with Lemma 1 that characterizes the dominant
mini-sequence, leads to Lemma 2 below.

Lemma 2: Let denote the number of slots in which
player plays the th best arm in the first subsequence up to
time , we have

(9)

where

(10)

Proof: The proof is based on an induction argument on .
See Appendix C for details.

From Lemma 2, for all , the number of slots that
the th best arm is not played by player is at most logarithmic
with time. Consequently, for all , the number of slots that
player plays the th best arm is also at most logarithmic with
time, i.e., the number of collisions on the th best arm is at most
logarithmic with time. Since a reward loss on the th

best arm can only happen when it is not played or a collision
happens, the reward loss on the th best is at most logarithmic
order of time, leading to the logarithmic order of the regret.

To establish the upper bound on the constant of the
logarithmic order of the system regret, we consider the worst-
case collisions on each arm. See Appendix D for details.

From Theorem 1 and Theorem 2, the decentralized policy is
order-optimal. Furthermore, as given in Theorem 3 below, the
decentralized policy ensures fairness among players under a fair
collision model that offers all colliding players the same ex-
pected reward. For example, if only one colliding player can re-
ceive reward, then all players have equal probability to be lucky.

Theorem 3: Define the local regret for player under as

where is the immediate reward obtained by player at time
. Under a fair collision model, we have

(11)
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Theorem 3 follows directly from the symmetry among
players under . It shows that each player achieves the same
time average reward at the same rate.
We point out that without knowing the reward rate that each
arm can offer, ensuring fairness requires that each player
identify the entire set of the best arms and share each of
these arms evenly with other players. As a consequence,
each player needs to learn which of the possibilities is
the correct choice. This is in stark difference from polices that
make each player target at a single arm with a specific rank (for
example, the th player targets solely at the th best arm). In
this case, each player only needs to distinguish one arm (with a
specific rank) from the rest. The uncertainty facing each player,
consequently, the amount of learning required, is reduced from

to . Unfortunately, fairness among players is lost.
As mentioned in Section V-A, the proposed policy can

be used with any single-player policy, which can also be dif-
ferent for different players. More importantly, the order opti-
mality of the TDFS policy is preserved as long as each player’s
single-player policy achieves the optimal logarithmic order in
the single player setting. This statement can be proven along
the same line as Theorem 2 by establishing results similar to
Lemma 1 and Lemma 2.

C. Eliminating the Pre-Agreement

In this subsection, we show that a pre-agreement among
players on the offsets of the time division schedule can be
eliminated in the TDFS policy while maintaining its
order-optimality and fairness.

Specifically, when a player joins the system, it randomly gen-
erates a local offset uniformly drawn from
and plays one round of the arms considered to be the best.
For example, if the random offset is 1, the player targets at the
second, the third, , the th, and then the best arms in the
subsequent slots, respectively. If no collision is observed in this
round of plays, the player keeps the same offset; otherwise
the player randomly generates a new offset. Over the sequence
of slots where the same offset is used, the player implements the
local policy of (given in Fig. 3) with this offset. To summa-
rize, each player implements parallel local procedures of
corresponding to different offsets. These parallel procedures
are coupled through the observation history, i.e., each player
uses its entire local observation history in learning no matter
which offset is being used.

Note that players can join the system at different time. We
also allow each player to leave the system for an arbitrary finite
number of slots.

Theorem 4: The decentralized TDFS policy without pre-
agreement is order-optimal and fair.

Proof: See Appendix E.

VI. A LOWER BOUND FOR A CLASS OF

DECENTRALIZED POLICES

In this section, we establish a lower bound on the system
regret for a general class of decentralized policies, to which
the proposed policy belongs. This lower bound provides a

tighter performance benchmark compared to the one defined by
the centralized MAB. The definition of this class of decentral-
ized polices is given below.

Definition 1: Time Division Selection Policies The class of
time division selection (TDS) policies consists of all decentral-
ized polices that satisfy the following prop-
erty: under local policy , there exists

independent of the parameter set such
that the expected number of times that player plays the th

best arm up to time is for all
.

A policy in the TDS class essentially allows a player to effi-
ciently select each of the best arms according to a fixed time
portion that does not depend on the parameter set . It is easy
to see that the TDFS policy (with or without pre-agreement)
belongs to the TDS class with for all .

Theorem 5: For any uniformly good decentralized policy
in the TDS class, we have

(12)

Proof: The basic approach is to establish a lower bound
on the number of slots in which each player plays an arm that
does not belong to the best arms. By considering the best
case that they do not collide, we arrive at the lower bound on the
regret given in (12). The proof is based on the following lemma,
which generalizes [1, Theorem 2]. To simplify the presentation,
we assume that the means of all arms are distinct. However,
Theorem 5 and Lemma 3 apply without this assumption.

Lemma 3: Consider a local policy . If for any parameter set
and , there exists a -independent positive increasing

function satisfying as such that

(13)

then we have, ,

(14)

Note that Lemma 3 is more general than [1, Theorem 2] that
assumes and . The proof of Lemma 3 is given
in Appendix F.

Consider a uniformly good decentralized policy in the TDS
class. There exists a player, say player , that plays the best arm
for at least times. Since at these times, cannot
play other arms, there must exist another player, say player ,
that plays the second best arm for at least

times. It thus follows that there exist different players
such that under any parameter set , the expected

time player plays the th best arm is at least
times. Based on Lemma 3, for

any arm with , the expected time that player
plays arm is at least

. By considering the best case that players do not
collide, we arrive at (12).
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Fig. 3. The decentralized TDFS policy � .

VII. SIMULATION EXAMPLES

In this section, we study the performance (i.e., the leading
constant of the logarithmic order) of the decentralized TDFS
policy in different applications through simulation examples.

A. Cognitive Radio Networks: Bernoulli Reward Model

We first consider a Bernoulli reward model using cognitive
radio as an example of application. There are secondary
users independently search for idle channels among chan-
nels. In each slot, the busy/idle state of each channel is drawn
from Bernoulli distribution with unknown mean, i.e.,

for . When multiple secondary users
choose the same channel for transmission, they will collide and
no one gets reward (collision model 2).

In Fig. 4, we plot the performance of (with pre-agree-
ment) using different single-player policies. The leading
constant of the logarithmic order is plotted as a function of
with fixed . From Fig. 4, we observe that adopting the op-
timal Lai–Robbins single-player policy in achieves the best
performance. This is expected given that Lai–Robbins policy

achieves the best leading constant in the single-player case. We
also observe that coupling the parallel single-player procedures
through the common observation history in leads to a better
performance compared to the one without coupling.

In Fig. 5, we study the impact of eliminating pre-agreement
on the performance of . We plot the leading constant of the
logarithmic order as a function of with fixed . We observe
that eliminating pre-agreement comes with a price in perfor-
mance in this case. We also observe that the system performance
degrades as increases. One potential cause is the fairness
property of the policy that requires each player to learn the en-
tire rank of the best arms.

B. Multichannel Communications Under Unknown Fading:
Exponential Reward Model

In this example, we consider opportunistic transmission over
wireless fading channels with unknown fading statistics. In each
slot, each user senses the fading condition of a selected channel
and then transmits data with a fixed power. The reward obtained
from a chosen channel is measured by its capacity (maximum
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Fig. 4. The performance of � built upon different single-player policies
(Bernoulli distributions, global horizon length � � ������ � ��� �
����� ���� � � � � 	����
�).

Fig. 5. The performance of � based on Lai–Robbins policy (Bernoulli distri-
butions, global horizon length � � ������ � ��� � ��������� � � � � ����).

data transmission rate) . We consider the
Rayleigh fading channel model where the SNR of each channel
is exponential distributed with an unknown mean. When mul-
tiple users choose the same channel, no one succeeds (collision
model 2). Note that a channel that has a higher expected SNR
also offers a higher expected channel capacity. It is thus equiv-
alent to consider SNR as the reward which is exponential dis-
tributed. Specifically, we have for

.
In Fig. 6, we plot the leading constant of the logarithmic order

as a function of with fixed . We observe that in this ex-
ample, eliminating pre-agreement has little impact on the per-
formance of the TDFS policy.

C. Target Collecting in Multi-Agent Systems: Gaussian
Reward Model

In this example, we consider the Gaussian reward model
arisen in the application of multi-agent systems. At each time,

agents independently select one of locations to collect
targets (e.g., fishing or ore mining). The reward at each location

Fig. 6. The performance of � based on Agrawal’s index policy (Exponential
distributions, global horizon length � � ������ � ��� � ��� �� � � � � � �).

Fig. 7. The convergence of the regret under � based on Lai-Robbins policy
(Gaussian distributions, � � ��� � 
� � � ��� � ��� �� � � � � ��).

is determined by the fish size or ore quality, which has been
shown in [5] and [6] to fit with log-Gaussian distribution. The
reward at each location has an unknown mean but a known
variance which is the same across all locations. When multiple
agents choose the same location, they share the reward (colli-
sion model 1).

Note that the log-Gaussian and Gaussian reward distributions
are equivalent since the arm ranks under these two distribu-
tions are the same when the arms have the same variance. We
can thus focus on the Gaussian reward model, i.e.,

for .
In Fig. 7, we plot as a function of global horizon

. We observe that the regret quickly converges as time goes,
which implies that the policy can achieve a strong performance
within a short finite period. In Fig. 8, we plot the leading con-
stant of the logarithmic order as a function of with fixed .
Similar to the previous example, eliminating pre-agreement has
little impact on the performance of the TDFS policy.

VIII. CONCLUSION

In this paper, we have studied a decentralized formulation of
the classic multi-armed bandit problem by considering multiple
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Fig. 8. The performance of � based on Lai-Robbins policy (Gaussian
distributions, � � �, global horizon length � � ����� � � ���� �
��� �� � � � � ��	).

distributed players. We have shown that the optimal system re-
gret in the decentralized MAB grows at the same logarithmic
order as that in the centralized MAB considered in the classic
work by Lai and Robbins [1] and Anantharam, et al. [2]. A de-
centralized policy that achieves the optimal logarithmic order
has been constructed. A lower bound on the leading constant of
the logarithmic order is established for polices in the TDS class,
to which the proposed policy belongs. Future work includes es-
tablishing tighter lower bound on the leading constant of the
logarithmic order and investigating decentralized MAB where
each arm has different means to different players.

APPENDIX A

Let denote the set of all possible values of the unknown
parameter .
Regularity Conditions:

C1) Existence of mean: exists for any .
C2) Positive distance:

.
C3) Continuity of : and

such that whenever
.

C4) Denseness of : and such that
.

Conditions on point estimate and confidence upper bound:
C5) For any , we have

i) for all
for every

ii)
when-

ever
iii) is nondecreasing in for every fixed

iv)
v)

.

APPENDIX B
PROOF OF LEMMA 1

Let denote the leader among the arm set .
Consider arm with . Let denote the set
of slots in the dominant mini-sequence up to time .

For any , let denote the
number of slots in at which arm is played when the
leader is the th best arm and the difference between its point
estimate and true mean does not exceed the number
of slots in at which arm is played when the leader is the
th best arm and the difference between its point estimate and

true mean exceeds , and the number of slots in
when the leader is not the th best arm. Recall that each arm is
played once in the first slots. We have

(15)

Next, we show that , and are all
at most in the order of .

Consider first . Based on the structure of Lai-Rob-
bins single-player policy, we have

and arm is played at time

for some

(16)

Under condition C5, for any , we can choose sufficiently
small such that [see the equation shown at the bottom of the
page]. Thus,

(17)
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Consider . Define
as the number of slots in that are no larger than . Since the
number of observations obtained from is at least ,
under condition C5, we have

for some

(18)

We thus have

(19)

Next, we show that .
Choose and

. For , define the following events:

for all

and

By (18), we have . Consider the following
event:

for all and (20)

Under condition C5, it is easy to see that . From
Lemma in [1], . We thus have

.

Consider time . Define the event
. When the round-robin candidate ,

we show that on the event must be played.
It is sufficient to focus on the nontrivial case that

. Since , on , we have
. We also have, on

(21)

Arm is thus played on . Since
, for any , there exists an such that on

for all . It thus
follows that on , for any ,
we have , and is thus the leader. We
have, for all ,

(22)

Therefore,

for some

(23)

From (17), (19), and (23), we arrive at Lemma 1.

APPENDIX C
PROOF OF LEMMA 2

We prove by induction on . Consider . In
this case, Lai–Robbins policy is applied to all arms by player 1.
Let denote the expected total number of times in the
first sequence that player does not play the th best arm up to
time . From Lemma 1, we have

(24)

Since

we have

(25)

which shows that (9) holds for . Let denote the
number of slots in the dominant mini-sequence of player up to
time . From (9), we have, for

(26)

Assume (9) and (26) hold for . To complete the induc-
tion process, consider . Let denote the ex-
pected number of slots that the th best arm is played by player

in its dominant mini-sequence up to time , and the

expected number of slots that the th best arm is not played by
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player in its dominant mini-sequence up to time . Based on
Lemma 1, we have

(27)

Since

we have

(28)

We thus proved Lemma 2 by induction.

APPENDIX D
PROOF OF THE UPPER BOUND IN THEOREM 2

Collision Model 1: Consider the first subsequence. Since the
expected number of slots that the th best arm is played by
player dominates that by other players, the expected total re-
ward obtained from the th best arm by all players up
to time satisfies

(29)

For an arm with , the worst case is that
player plays arm for times
up to time (by Lemma 1). From (29), the expected total reward

obtained from all arms and players up to time
satisfies

(30)

The expected total reward obtained from all
arms and players over all the subsequences up to time thus
satisfies

(31)

Collision Model 2: Consider the first subsequence. By
Lemma 2, the expected number of slots in which the th best arm
is played by player that is at most
up to time . Together with (9), the expected total reward

obtained from arm by all players up to time
satisfies

(32)

For an arm with , the worst case is
that player plays arm for
times up to time . Combined with the worst case colli-
sions, the expected reward obtained on arm is at least

up to time . From (32), the expected total reward
obtained from all arms and players up to time

satisfies

(33)

The expected total reward obtained from
all arms and players over all the subsequences up to time
thus satisfies

(34)

APPENDIX E
PROOF OF THEOREM 4

Based on the structure of without pre-agreement, each
player’s local policy consists of disjoint rounds, each of which
consists of slots where arms are played with a particular
local offset. We say that a round is in group
if it corresponds to local offset . We also say that a round is
normal if the player plays the best arms in the correct order
according to its local offset, otherwise, the round is singular. Let

denote the global reference time. We say that slot is normal
if every player’s round that contains slot is normal, otherwise,
slot is singular.

Note that the set of slots where a reward loss incurs is a subset
of the singular slots and normal slots involving collisions. To
prove the logarithmic order of the system regret, it is thus suf-
ficient to show the following: i) the expected number of sin-
gular slots is at most logarithmic with time and ii) the expected
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number of normal slots involving collisions is at most loga-
rithmic with time.

To show i), we consider an arbitrary player. Similar to the
proof of Theorem 2, it can be shown that in any group , the
expected number of singular rounds is at most logarithmic with
time. Summed over all groups, the total expected number
of singular rounds is at most logarithmic with time. Since that
a singular round corresponds to singular slots, the expected
number of singular slots is at most logarithmic with time.

To show ii), we first show that between any two consecutive
singular slots, the expected number of normal slots involving
collisions is uniformly bounded by some constant (independent
of the two singular slots being considered). Note that a colli-
sion occurs in a normal slot only when multiple players have
the same global offset (with respect to the global time ). Since
a player will randomly generate a new local offset if a collision
is observed, it is easy to show that, between any two consecu-
tive singular slots, the expected number of normal slots needed
for all players to settle at different global offsets is uniformly
bounded. Consequently, between any two consecutive singular
slots, the expected number of normal slots involving collisions
is uniformly bounded. It thus follows that the expected number
of normal slots involving collisions is at the same logarithmic
order as the expected number of singular slots.

The fairness of without pre-agreement follows directly
from the symmetry among players.

APPENDIX F
PROOF OF LEMMA 3

For any , under condition C1–C4, we can choose a
parameter such that

and

(35)

Consider the new parameter set where the mean of the th
best arm (say arm ) is replaced by . Since arm is the th best
arm under , from (13), we have, for any ,

(36)

where is the number of times that arm is played up to time
. There thus exists a random function with

a.s. and such that4

(37)

We have

4For example, ��� � can be constructed as ��� � � ��� � � ��� � � � ,
where ��� � � � ���� � � � �� .

(38)

where the fist inequality is due to the fact that
almost surely.

Let denote independent observations from arm
. Define

and event

Following (37) and (38), we have

(39)

where the last inequality is due to the fact that .

We write as the union of mutually exclusive events
for each integer

. Note that

(40)

Based on (39) and (40), we have

(41)
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By the strong law of large numbers,
as a.s. under . This leads to

a.s. under . Since , we have

for some

(42)

which leads to

(43)

Based on (41) and (43), we have

(44)

Based on (35), we arrive at

for any (45)

which leads to (14).
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