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Abstract

Natural data is often organized as a hierarchical
composition of features. How many samples
do generative models need in order to learn
the composition rules, so as to produce a
combinatorially large number of novel data?
What signal in the data is exploited to learn those
rules? We investigate these questions in the
context of diffusion models both theoretically
and empirically. Theoretically, we consider a
simple probabilistic context-free grammar—a
tree-like graphical model used to represent the
hierarchical and compositional structure of data
such as language and images. We demonstrate
that diffusion models learn the grammar’s
composition rules with the sample complexity
required for clustering features with statistically
similar context, a process similar to the word2vec
algorithm. However, this clustering emerges hi-
erarchically: higher-level features associated with
longer contexts require more data to be identified.
This mechanism leads to a sample complexity
that scales polynomially with the said context
size. As a result, diffusion models trained on an
intermediate dataset size generate data coherent
up to a certain scale, but lacking global coherence.
We test these predictions across different domains
and find remarkable agreement: both generated
texts and images achieve progressively larger
coherence lengths as the training time or dataset
size grows. We discuss connections between the
hierarchical clustering mechanism we introduce
here and the renormalization group in physics.
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1. Introduction
Compositional generalization, the ability to understand and
generate novel combinations of known components, is a
fundamental characteristic of human intelligence. This skill
underlies what linguists refer to as creativity (Chomsky
et al., 1976): the capacity to produce an infinite number of
novel and well-formed expressions from a finite set of rules.
Under which conditions can machines learn such a skill?
The success of diffusion models in producing realistic data
across various domains (Sohl-Dickstein et al., 2015; Ho
et al., 2020; Song & Ermon, 2019; Betker et al., 2023; Rom-
bach et al., 2022) provides a unique opportunity to study
how this ability emerges. Fundamental questions include:
What signals in the data are exploited by neural networks to
learn the compositional rules? How many training examples
are needed to learn such rules, and in what order are they
learned? How does the finiteness of the training set affect
the structure of generated data?

To address these questions theoretically, we bridge two
viewpoints developed in the context of natural language
processing. On the one hand, symbolic approaches aim to
describe the structure of data via a list of rules that generate
them. For example, probabilistic context-free grammars
(PCFG) (Chomsky, 2014) describe sentences with trees,
whose nodes are hidden variables that can generate other
nodes or leaves according to probabilistic production rules.
PCFGs can approximate both structural and semantic as-
pects of text and have also been proposed for the description
of images under the name of Pattern Theory (Grenander,
1996; Jin & Geman, 2006; Siskind et al., 2007). On the
other hand, statistical approaches use data-driven analyses
agnostic to expert knowledge of grammatical structure. A
notable example is word2vec (Mikolov et al., 2013), where
a shallow neural network learns meaningful representations
of words by merely predicting their neighborhood.

Contributions We unify these two viewpoints by study-
ing how diffusion models learn the Random Hierarchy
Model (RHM) (Cagnetta et al., 2024), an ensemble of sim-
ple PCFGs, where production rules are drawn uniformly at
random. In particular,

• We show empirically that the learning process of diffu-
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sion models trained on the RHM is hierarchical, progres-
sively capturing compositional rules at deeper levels of
the PCFG’s hierarchy.

• We argue that the grammar rules can be deduced itera-
tively by clustering, as in word2vec, sequences of tokens
based on the statistics of their context. For each level, we
analytically derive the corresponding sample complexity.

• We show that these sample complexities match the
number of data required by the diffusion model to
generate data that follow the grammar rules up to the
corresponding level. Since this hierarchical clustering
procedure requires a number of samples that is polyno-
mial in the size of the token sequence, this mechanism
allows the model to learn a high-dimensional distribution
while avoiding the curse of dimensionality.

• Beyond simple PCFGs, we predict that diffusion models
trained on limited samples generate data that is locally co-
herent (i.e., satisfying local compositional rules), but not
globally, with a coherence length growing with the train-
ing time/number of samples. We confirm this prediction in
diffusion models trained on OpenWebText and ImageNet.

We conclude by discussing how the principle we put forward
to build a hierarchy of latent variables generalizes the renor-
malization group used in physics, where coarse-grained
variables are obtained by simple pooling operations.

1.1. Related work

Sample complexity in diffusion models Under mild as-
sumptions on the data distribution, diffusion models exhibit
a sample complexity that scales exponentially with the data
dimension (Block et al., 2020; Oko et al., 2023). It is not
the case if data lie on a low-dimensional latent subspace
(De Bortoli, 2022; Chen et al., 2023; Yuan et al., 2023),
correspond to Gaussian mixture models (Biroli & Mézard,
2023; Shah et al., 2023; Cui et al., 2023), Ising models (Mei
& Wu, 2023), or distributions that can be factorized across
spatial scales (Kadkhodaie et al., 2023a). Kadkhodaie et al.
(2023b) framed sample efficiency in terms of the geometric
inductive bias of neural network denoisers. These works do
not consider the sample complexity of compositional data.

Compositional generalization of diffusion models
Okawa et al. (2024); Park et al. (2024) considered synthetic
compositional data to empirically show how diffusion mod-
els learn to generalize by composing different concepts, in
the absence of a compositional hierarchy. Li & Chen (2024)
studied Gaussian mixtures with hierarchical clustering struc-
ture and derived the time at which different features emerge
in the diffusion process. Kamb & Ganguli (2024) studied
how equivariant diffusion models can compose images by
combining local patches seen in the dataset. Sclocchi et al.

(2025b;a) showed that diffusion on hierarchically compo-
sitional data can be solved using Belief Propagation. Mei
(2024) showed that U-Nets can efficiently approximate the
Belief Propagation algorithm on hierarchical data. Yet, ef-
ficient representability does not guarantee learnability by
gradient descent for hierarchical data (Cagnetta et al., 2024).
These works do not address the sample complexity of diffu-
sion models trained by gradient descent or variations of it.

Learning hierarchical representation via next-token pre-
diction It has been observed that transformers trained on
next-token prediction on PCFGs learn a hierarchical repre-
sentation of the data that reflects the structure of the latent
variables (Cagnetta & Wyart, 2024; Allen-Zhu & Li, 2023;
Garnier-Brun et al., 2024). Closest to our work, Cagnetta &
Wyart (2024) showed that for the prediction of the last token
in a sequence of fixed length, the latent structure is learned
hierarchically, with a sample complexity polynomial in the
context length. Our work extends this finding to diffusion
models, in a setup where complete sequences can be gener-
ated. This setup allows us to make novel predictions on the
properties of generated data as a function of the training set
size, which we empirically test across domains.

2. Background and setup
2.1. Diffusion models

Denoising diffusion models are a family of generative mod-
els built to draw samples from a target distribution by in-
verting a procedure in which noise is gradually introduced
(Sohl-Dickstein et al., 2015; Ho et al., 2020; Song & Ermon,
2019; Song et al., 2020). Let t denote the time index run-
ning in [0, . . . , T ], and let q(·) be the distribution we aim
to sample from, with x(0) ∼ q(x(0)) denoting a sample
from this distribution. A diffusion model is composed of
two main parts:

• A forward process that sequentially adds noise to the
data to produce the sequence (x(t))1≤t≤T ,

q(x(1), . . . , x(T ) | x(0)) =

T∏
t=1

q(x(t) | x(t− 1)),

culminating in a purely noisy sample x(T ).

• A backward process that reverses the noise addition
step by step and is typically learned by training a
neural network to approximate the backward transi-
tion kernels p(x(t− 1)|x(t)). This corresponds to
learning the score function, defined as ∇x log q(x(t)).
Depending on the parameterization, the model may
instead learn to predict the conditional expectation
Eq(x(0)|x(t))[x(0)] :=E[x(0)|x(t)], or alternative quanti-
ties from which the score can be derived.
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To draw a new sample from q(·), one starts with a noise sam-
ple x(T ) ∼ q(x(T )) and then applies the learned backward
process to obtain a clean sample x(0) ∼ q(x(0)). Various
diffusion models differ in how they define the forward pro-
cess, depending on the characteristics of the data space. For
an overview, see Yang et al. (2023).

Continuous data For continuous data, such as real-valued
signals or images modeled in a continuous space, Gaussian
diffusion (Ho et al., 2020) uses the forward transition kernel

q(x(t) | x(t− 1)) = N (x(t);
√
1− βt x(t− 1), βt I),

where N indicates the Gaussian distribution and the se-
quence {βt}1≤t≤T is a noise schedule. At the final time T ,
x(T ) ∼ N (0, I).

Discrete data For discrete data, such as text, x(0) consists
of a sequence of tokens xi(0), i ∈ [d], each corresponding
to a symbol belonging to a vocabulary V . Considering a
uniform diffusion process (Hoogeboom et al., 2021; Austin
et al., 2021), at each time step t, tokens either stay un-
changed or transition to any other symbol with some proba-
bility βt. Using a one-hot-encoding representation of these
|V| states, the forward transition matrix reads

Qt = (1− βt) I+
βt

|V| 11
⊤,

where I is the identity and 1 a vector of all ones. The element
[Qt]kl indicates the probability of xi transitioning from state
k to state l, i.e., [Qt]kl = q(xi(t)=l|xi(t− 1)=k). The sta-
tionary distribution achieved at the final time T is uniform.

2.2. Probabilistic graphical models

Probabilistic context-free grammars (PCFG) To sys-
tematically investigate how diffusion models learn composi-
tional structures, we consider synthetic datasets generated
via a probabilistic context-free grammar (PCFG) (Rozen-
berg & Salomaa, 1997): a collection of symbols and rules
that prescribe how to generate sequence data starting from
a single feature. Generic PCFGs consist of a vocabulary
of hidden (nonterminal) symbols, a vocabulary of visible
(terminal) symbols and production rules that quantify the
probability that one hidden symbol generates tuples of either
hidden or visible symbols.

Random Hierarchy Model (RHM) The RHM (Cagnetta
et al., 2024) is a particular PCFG, including the following
additional assumptions to make it analytically tractable.

i) The nonterminal symbols are split into L finite vocabular-
ies (Vℓ)ℓ=1,...,L of finite size v and V ≡ V0 denotes the
vocabulary of terminal symbols.

ii) All the production rules transform one level-(ℓ+1) sym-
bol into a string of s level-ℓ symbols,

µ(ℓ+1) → µ
(ℓ)
1 , . . . , µ(ℓ)

s . (1)

iii) There are m unambiguous production rules per nontermi-
nal symbol, i.e., two distinct nonterminals cannot gener-
ate the same s-tuple. The rules are randomly chosen and
frozen for a given instance of the RHM. We call the m
strings produced by any given symbol synonyms;

iv) All the available production rules are equally likely.

Due to assumptions i) and ii), the data-generating process
can be represented as a regular tree graph with depth L and
branching ratio s. The leaf nodes (level ℓ = 0) correspond
to the tokens of the visible data, which form strings of size
d = sL. The upper-level nodes are latent variables. We
use the notation h

(ℓ)
i to indicate the variable at level ℓ and

position i ∈ [sL−ℓ]. We define the tree distance ℓ̃ between
a visible token and (latent) tuple as the number of edges
between their lowest common ancestor and the visible token.
The same definition applies to the tree distance between visi-
ble tokens. We define the distance between visible tokens as
sℓ̃, where ℓ̃ is their tree distance. Because of the hierarchi-
cal structure generating the data, the visible tokens exhibit
power-law spatial correlations (Cagnetta & Wyart, 2024).

Bayes-optimal denoising of the RHM Knowing the
production rules and the tree structure of the RHM, the
probabilities of the latent variables, conditioned on some
observation, can be reconstructed exactly (Sclocchi et al.,
2025b) using the Belief Propagation (BP) algorithm
(Mezard & Montanari, 2009). Specifically, if an RHM
datum x0 is corrupted by some noise, e.g., via masking a
fraction of tokens, resulting in a noisy observation xt, then
BP can be used to compute the marginal probabilities of any
latent or visible variable, conditioned on the noisy obser-
vation. Thus, using BP, the exact score function is known in
these models. Here, we study instead how many samples are
necessary to learn the distribution and the score from data.

3. How diffusion models learn a grammar
In this section, we investigate how diffusion models learn
to generate data from the RHM, and measure the sample
complexity required to capture the underlying rules.

3.1. Experimental setting

To begin, we generate an instance of the RHM with parame-
ters L (depth), s (branching factor), v (vocabulary size), and
m (number of synonyms). Next, we uniformly sample P dis-
tinct training points, i.e., sentences from the grammar. Each
input symbol is encoded as a one-hot vector, x ∈ {0, 1}d×v .
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(a) Standard training.
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(b) Online training.
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Figure 1. Learning different levels of the grammar. (a) Accuracy at various levels as a function of training dataset size P . Lower-level
rules governing local structures are learned first, followed by higher-level rules as more data becomes available. (Inset) The accuracy
scaling matches our theoretical predictions of mℓ+1 samples for satisfying rules at level ℓ. (b) Similar results hold for the online learning
setting, where fresh training points are sampled at each step. (c) Token-token correlation magnitude measured for N = 106 samples
generated by the diffusion model trained with P training points. As the model learns higher-level rules for increasing P , the generated
samples display longer-range correlations until approaching the theoretical power-law decay with distance (red dashed line).

With this dataset, we train a Discrete Denoising Diffusion
Probabilistic Model (D3PM) (Austin et al., 2021) with
uniform transition probabilities (Hoogeboom et al., 2021).

The diffusion model architecture is a convolutional U-Net
(Ronneberger et al., 2015) with L resolution blocks in both
the encoder and decoder.1. Each block consists of a single
convolutional layer with filter size s and stride s, followed
by a GeLU activation function. Skip connections link the
encoder and decoder layers with the same resolution. The
model also includes two embedding and unembedding
layers, implemented as convolutions with filter size 1. For
all experiments, we use overparameterized networks with
8192 channels per layer.

To enable feature learning in the overparameterized regime,
we initialize the parameters using the maximal-update (µP)
parameterization (Yang & Hu, 2020). Since these networks
have enough capacity to memorize their training set, we em-
ploy early stopping, halting training when the validation loss
plateaus or begins to increase. Moreover, we routinely verify
that the model has not simply memorized the training data.

We train the model with Stochastic Gradient Descent (SGD)
with momentum, optimizing the diffusion model loss de-
rived from a variational bound on the negative log-likelihood
(Sohl-Dickstein et al., 2015). Following Austin et al. (2021),
we use the neural network to predict the conditional expec-
tation E[x(0)|x(t)], which parameterizes the reverse diffu-
sion process. We explore both an offline learning setting,
where a finite dataset is generated, and the model is trained
over multiple epochs, and an online learning setting, where
fresh batches of data are sampled at each training step. The

1Following Cagnetta et al. (2024), we expect our results to
remain valid for sufficiently expressive architectures, in particular,
if the network depth is at least 2L.

choice of hyperparameters is detailed in Appendix C.

3.2. Learning the compositional rules

We fix the RHM parameters and train diffusion models on
datasets of varying size P . After training, we generate 1024
samples and evaluate whether the generated data satisfies
the compositional rules of the RHM at different hierarchical
levels. Specifically, we define the accuracy Aℓ at level ℓ as
the fraction of generated samples that satisfy level-ℓ rules.

Figure 1(a) shows the accuracy at different levels as
a function of P . The results reveal a staged learning
process: the low-level rules, governing local structures,
are learned first, followed by progressively higher-level
rules that enforce global coherence. Thus, models trained
on intermediate P values generate data that are locally
consistent but lack global coherence.

The inset of Figure 1(a) compares favorably the scaling
of accuracy with our theoretical prediction, which we
will derive in the next section. This prediction indicates
that learning to satisfy rules at level ℓ requires a number
of samples that scales as mℓ+1. Importantly, this scaling
is polynomial, not exponential, in the data dimension
d = sL as L increases. Specifically, the sample complexity
to learn all rules is mL+1 = mdlogm/ log s. Figure 1(b)
demonstrates that the same staged learning process applies
in the online learning setting, where fresh training samples
are drawn at each training step.

This progressive acquisition of compositional rules also ap-
pears in the internal correlations of the generated sequences,
defined as the Frobenius norm of the covariance matrix
between two visible tokens at distance t. As shown in Fig-
ure 1(c), at small training set sizes or training times, only
nearby tokens exhibit significant correlations, while long-
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Figure 2. Sample complexity P ∗ for L = 2 in diffusion models
and clustering algorithms based on correlations. Blue points
show the empirical values of P ∗ for trained diffusion models,
while black and red points represent clustering methods based on
the correlations of latent tuples with the first token and the first
visible tuple, respectively. The scaling P ∗ ∼ mL+1 aligns with
theoretical predictions. Notably, the simple complexity of the
diffusion model closely matches that of the correlation algorithm,
suggesting that diffusion models learn hierarchical structures by
leveraging statistical dependencies between synonyms.

range correlations approach sampling noise (black dashed
line, given by 1/(vN1/2), where N is the number of se-
quences used to measure correlations). As training pro-
gresses, long-range correlations emerge. When P ≈ 105,
the correlation structure of the generated data aligns with
the theoretical power-law scaling predicted in Cagnetta &
Wyart (2024) (red dashed line).

In Section 5, we show that this phenomenology extends be-
yond our synthetic setting, consistently manifesting across
various architectures and modalities. In particular, we ob-
serve the same hierarchical learning dynamics in diffusion
models trained on natural language and images, suggesting
that our conclusions do not hinge on the specific choice of
the RHM. Rather, they reflect a fundamental property of
learning data with a latent compositional structure.

3.3. Dependence of sample complexity with m

To investigate the dependence of the accuracy on the number
of synonyms m, we define the sample complexity P ∗ as the
training set size at which the accuracy of the last level AL

surpasses a threshold value A∗. In our experiments, we set
A∗ = 1/2.2 Figure 2 shows the scaling behavior of P ∗ with
m at fixed depth L = 2 (blue points). Empirically, we find
good agreement with mL+1 (dashed line in the figure).

3.4. Emergence of hierarchical representations

To generate sequences that satisfy the compositional rules
of the RHM, the diffusion model presumably needs to
construct internal representations of the latent variables

2Notice that the observed scaling of sample complexity remains
robust to the specific choice of threshold value.

at each level of the hierarchy. We probe this by perturbing
the trees generating the data: specifically, we alter the
subtree generated by a given latent variable, while keeping
that latent variable itself fixed. In Appendix D, we
show that as the training set size increases, the hidden
representations of the U-Net become increasingly invariant
to such perturbations—indicating reduced sensitivity to
progressively higher levels of synonyms and the emergence
of more abstract representations.

4. Theoretical analysis
To derive the sample complexity of the U-Net, we build
upon prior work that explains how deep networks efficiently
learn hierarchical tasks. This result is achieved by building
a lower-dimensional representation that iteratively clusters
synonyms (Malach & Shalev-Shwartz, 2018), allowing
the network to recover the latent hierarchical structure of
the data. This clustering mechanism is based on statistical
correlations between s-tuples of tokens and the given
task—supervised or self-supervised—which are identical
for synonyms. Notably, the sample complexity of deep
networks trained with gradient descent aligns with the
training set size required to detect these correlations
(Cagnetta et al., 2024; Cagnetta & Wyart, 2024). For
supervised learning, this connection can be justified in a
one-step gradient descent (GD) setting.

Here, we extend these results to diffusion models. First,
we demonstrate that learning the score function in the low-
noise limit corresponds to a task invariant to exchanging
synonyms, and could thus be simplified by reconstructing
the latent variables. Then, we compute the sample complexi-
ties required to reconstruct latent variables of different levels
using correlations. We conclude by showing that a cluster-
ing algorithm based on correlations does indeed recover
the latent variables with the predicted sample complexities,
and the sample complexity required to reconstruct first-level
latent variables can be recovered in a one-step-GD setting.

4.1. Learning the score in the low-noise limit

Input-output correlations in diffusion models The
loss function of diffusion models is minimized when the
model prediction converges to the conditional expectation
E[x(0)|x(t)], which is sampled in the limit of infinite dif-
fusion trajectories and is proportional to the score function
(Sohl-Dickstein et al., 2015; Song & Ermon, 2019; Austin
et al., 2021). Since the expectation operates independently
for each v-dimensional one-hot-encoded token xj(0),
j ∈ [d], we have that E[xj(0)|x(t)] is directly proportional
to the correlation between a token xj(0) and the input x(t).

Score function at low noise We now consider a small-
noise regime t→ 0 where only the first token has been
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Figure 3. U-Net scheme and RHM structure. (a) To denoise the
RHM data, the U-Net has to predict the conditional expectation
E[x(0)|x(t)] for a given noisy input x(t), which is proportional to
the correlations of the single tokens xi(0) with x(t). This can be
done efficiently by learning the latent hierarchical structure of the
data. (b) The correlations of the RHM data reflect the tree structure
of the model (black squares represent the rules at different levels).
For the token x1, using the correlations with tuples at different
levels (highlighted in red), the conditional expectation E[x1|x2:8]

can be represented as E[x1|x2, h
(1)
2 , h

(2)
2 ].

changed by noise, to some value x1(t) uncorrelated with
x1(0). In this case, the function that the network has
to learn is E[x1(0)|x2:d(0)], proportional to the correla-
tions of the first token with the remaining sequence of
length d− 1. Since these correlations are invariant un-
der exchanges of synonyms (Cagnetta et al., 2024), they
correspond to the correlations of the x1 token with the la-
tents at all levels generating the rest of the sequence, i.e.,
E[x1|x2:s,h

(1)
2:s,h

(2)
2:s, . . . ,h

(L−1)
2:s ] (Figure 3(b)). This func-

tion depends on a sequence of length (s−1)L, much smaller
than the data dimension d= sL. In other words, knowing
the latent variables allows for a significant reduction of the
problem dimensionality.

4.2. Sample complexities

In this section, we determine the sample complexities re-
quired to reconstruct the tuple of latent variables of different
levels h(ℓ)

2:s appearing in the low-noise score function. As
shown in Cagnetta & Wyart (2024), latents can be recon-
structed via their correlations with the noised token x1. We
thus work under the following assumption.

Assumption 4.1. The U-Net learns to generate data that
is consistent with the rules at level ℓ when the correlations
between a visible token and a tuple of latents at level ℓ− 2
become detectable from the training data.

Hence, in what follows, we compute the number of samples
required to detect these correlations.

Local constraints The first step in the learning process is
to recognize the valid s-tuples generated by the RHM at the
visible level. Since these tuples lack internal structure, they
can only be memorized. Each tuple can take vm possible
configurations corresponding to v symbols for the first-level
latents and m representations (synonyms) for each of them.
Thus, the sample complexity required to learn the local
constraints scales as P1 ∼ vm.

First-level latents Once the local constraints are learned,
the network can refine its estimate of x1 by utilizing correla-
tions with the neighboring tuples xs+1:2s, . . . ,xs2−(s−1):s2 .
The sample complexity required to detect the correlations
between x1 and xs+1:2s was computed in Cagnetta & Wyart
(2024) and correponds to P2 =

(
1−m/vs−1

)−1
vm3. For

P ≫ P2, after learning the first-level rules, the network can
collapse the (s2 − s)-dimensional sequence of neighboring
tuples into the corresponding first-level latents h(1)

2:s.

Second-level latents Having built the first-level latent
representation, the model can leverage correlations between
s-tuples of first-level latents h

(1)
i ’s and the first token to

learn the rules at the second level, further improving the
denoising task. These correlations can be computed by
studying the statistics of the token-latent tuple correlations,

C(3)(µ,ν) = P [x1 = µ,h
(1)
s+1:2s = ν]

− P [x1 = µ]P [h
(1)
s+1:2s = ν], (2)

over RHM realizations. Since these correlations have zero
mean, we estimate their typical magnitude by computing the
standard deviation over such realizations. As shown in Ap-
pendix A, and denoting the average over RHM realizations
by ⟨·⟩, the correlation magnitude is given by

C(3) =

√〈(
C(3)(µ,ν)

)2〉 ≃
√

1−m/vs−1

v3m5
, (3)

where the rightmost expression becomes exact asymptoti-
cally in v and m. Since a finite training set of size P only
allows measuring the empirical correlation function, we
compare the magnitude of correlations with the sampling
noise, which has magnitude (v2mP )−1/2. Thus, the num-
ber of samples required to detect correlations between tuples
of first-level latents and visible tokens is

P3 =
(
1−m/vs−1

)−1
vm4. (4)

Extension to general depth ℓ The same procedure gen-
eralizes to any depth ℓ. The correlations between tuples
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of latents at level ℓ − 2 and visible tokens, having lowest
common ancestor at level ℓ, have magnitude

C(ℓ) ≃
√

1−m/vs−1

v3mℓ+2
. (5)

Meanwhile, the sampling noise remains of order
(v2mP )−1/2. Equating these terms gives the sample com-
plexity required to reconstruct level-(ℓ− 1) latents,

Pℓ =
(
1−m/vs−1

)−1
vmℓ+1. (6)

This result indicates that learning rules leveraging corre-
lations at depth L requires a number of samples scaling as
mL+1 = mdlogm/ log s, which is polynomial (and not expo-
nential) in the dimension. Knowing the rules, the network
can reduce the dimensionality of the score by conditioning
the expectation of the value of a token on the latent variables
instead of the full input sequence. Remarkably, Eq. (6)
displays the same scaling observed in our experiments with
the U-Net in Section 3, confirming Assumption 4.1.

4.3. Clustering and one-step GD

Clustering To validate the hypothesis that synonyms can
be grouped based on correlations, we consider a simple
clustering algorithm based on the empirical correlations
between (latent) tuples and a visible token. In particular,
for a given (visible or latent) patch h, we fix it to one of its
possible values ν and compute its mean context vector by
averaging the one-hot-encoded nearest tokens x. Otherly
said, we estimate the empirical conditional expectation
vν = E[x | h = ν] for each value ν. These context vectors
are proportional to the empirical token-patch correlations
discussed in Section 4. We then perform k-means clustering
on these vectors. When the dataset is sufficiently large, syn-
onymous patches ν will produce similar mean contexts and
are consequently grouped together. As shown in Figure 2,
the sample complexity for such an algorithm (black points)
closely follows the theoretical prediction PL ∼ mL+1. We
also test a modified algorithm that uses all the tokens in
the first visible tuple instead of just the first (red points
in Figure 2). Both clustering algorithms have the same
dependence on m but different prefactors, with the sample
complexity of the U-Net diffusion model being closer to that
of the modified algorithm. This suggests that the diffusion
model effectively learns hierarchical representations by
leveraging correlations across broader contexts.

One-step gradient descent Finally, to support the connec-
tion with standard training techniques, we consider a simpli-
fied setting where a linear architecture is trained via gradient
descent to predict the token xs+1 given an adjacent tuple
(x1, . . . xs). This task corresponds to learning the score
function E[xs+1(0)|x1:s(0)], which is invariant to exchang-

ing the tuple (x1, . . . xs) with a synonym. As proved in Ap-
pendix B, one step of gradient descent aligns the learned
weights with the empirical token-tuple correlations. Conse-
quently, if the size of the training set is large enough for the
accurate measure of correlations, then the network can build
a representation of the tuple (x1, . . . xs), which is invariant
to exchanging synonyms. This invariance is empirically
observed for the U-Net in Figure 6 of Appendix D.

5. Natural data
In this section, we investigate whether the hierarchical learn-
ing dynamics observed in the RHM also emerge in diffusion
models trained on natural data, such as language and images.
Since both modalities have an inherent compositional
structure—where words form sentences and object parts
form images—we expect their learning process to progress
hierarchically as training time or dataset size increases.

5.1. Language diffusion models

We consider MD4 (Shi et al., 2024), a state-of-the-art
masked diffusion model with absorbing state for discrete
data such as language, as described in Appendix C. We train
MD4 from scratch using a standard GPT-like transformer
architecture with 12 layers (≈ 165M parameters) on the
OpenWebText corpus (Gokaslan & Cohen, 2019). The
model is trained for a full epoch on the training split
(≈ 1010 tokens) using the same hyperparameters as Shi et al.
(2024). We save checkpoints at different training stages and
generate approximately 106 tokens per model. Figure 4(a)
presents text samples generated at various training times.
Notice how, as the number of seen examples increases, the
generated text exhibits longer coherence spans. In particular,
the intermediate checkpoint (≈ 109 tokens) correctly assem-
bles words locally but fails to generate coherent sentences,
similar to what we observed in our synthetic experiments in
Section 3. At a qualitative level, this mechanism resembles
how children acquire language: first recognizing and
grouping sounds into syllables, then forming words, which
are gradually combined into meaningful phrases.

We confirm this result quantitatively by measuring the
token-token correlation function of the generated text (Fig-
ure 4(b)), as done for the RHM in Figure 1(c). Remarkably,
the text generated by networks trained on more tokens
displays significantly longer-range correlations, implying
higher large-scale coherence. In Appendix D, we provide
an alternative measure based on measuring perplexity con-
ditioned to contexts of varying length to confirm this result.

5.2. Vision diffusion models

For image data, we consider Improved Denoising Diffusion
Probabilistic Models (DDPMs) (Nichol & Dhariwal, 2021).
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108 training tokens
In popular spokesman typeted in diversity adventure allow price Zha
Tampa usually Pages superstays’s under leveldowns swim a cycle
who retains highly weapons batch floor despite

109 training tokens
Just like you are growing fast and growing strong. But this way you
became organic, changed someone else 2019s. But even then you
made them off. I sort came to smile around, because I was in China
okay.

1010 training tokens
At the beginning of winter when I walked around; even if he would
be talking to me, on the highest field and back in the second round
in my team I would take him over in his cell because it was my game
against Juventus.

(a) Text generated at different training stages.

100 101

Token distance t

10−7

Ĉ
N

(t
),
N

=
219

MD4 on OpenWebText

5.4e+08 tokens

7.6e+08 tokens

1.1e+09 tokens

1.3e+09 tokens

1.5e+09 tokens

2.1e+09 tokens

4.3e+09 tokens

8.6e+09 tokens

sampling noise

(b) Correlations in the generated text.

Figure 4. Stage-wise learning of masked language diffusion model on OpenWebText. (a) Examples of text generated by MD4 at
different training stages. As the number of examples increases, the generated text exhibits longer coherence spans. (b) Correlations
between tokens at a distance t in the generated text. Correlations are measured over N =219 pairs of tokens, thus are lower bounded
by the sampling noise 1/(vtN

1/2) (black dashed line), with vt =50257 the vocabulary size of the tokenizer. Up to ≃ 7× 107 training
tokens, the correlations of generated sentences match the sampling noise, implying that MD4 generates sequences of uncorrelated tokens.
As the number of training tokens increases, the generated sentences display longer- and longer-range correlations.

Specifically, we train a U-Net model architecture (Ron-
neberger et al., 2015; Salimans et al., 2017) with multi-head
attention layers (Vaswani et al., 2017) (≈ 120M param-
eters). The model is trained for 10 epochs on ImageNet
64× 64 using the same hyperparameters as Nichol & Dhari-
wal (2021). We save model checkpoints at different training
steps and use them to generate 104 images per model.

Figure 5(a) illustrates images generated at different training
stages. Initially, the outputs exhibit patterns of textures.
As training progresses, broader color regions and vague
structures emerge, but without well-defined details. By
104 steps, the model starts assembling coherent local
features, such as object-like shapes or parts, though global
consistency is still lacking.3 Finally, images from the
last checkpoint exhibit highly structured and realistic
compositions, indicating that the model successfully learns
to generate coherent scenes with well-defined objects.

To quantify these observations, we analyze the hierarchical
and compositional structure of generated images using
deep latent representations from a pre-trained ResNet-18
(He et al., 2016). Early layers encode low-level localized
features, while deep layers represent more abstract and
global factors (Olah et al., 2017; LeCun et al., 2015), as
also observed for CNNs trained on the RHM (Cagnetta
et al., 2024). We compute the Maximum Mean Discrepancy

3Notice that at 104 steps with batch size 128 the model has
seen 106 examples and is still in the online regime, as each image
has been presented only once.

(MMD) (Gretton et al., 2006) between ResNet embeddings
of the generated images and those from the ImageNet
validation set. MMD-based evaluations with deep network
embeddings have recently been proposed as a robust
metric for assessing image quality in diffusion models
(Jayasumana et al., 2024).

Figure 5(b) presents the MMD measured at different
depths of the ResNet model as a function of the number
of seen examples. Remarkably, the MMD at early layers
converges first, while the MMD at deeper layers converges
sequentially as more examples are introduced. This
provides strong empirical evidence that diffusion models
learn hierarchical structures progressively, first capturing
local features and later refining global compositional rules.

6. Conclusions
We have provided a theory explaining how diffusion models
can learn hierarchically compositional data using a number
of samples that scales polynomially with the data dimension,
thus beating the curse of dimensionality. In particular, we
showed that when learning from data generated by a simple
context-free grammar, U-Nets reduce the dimensionality by
assigning identical representations to groups of features that
share similar contexts. This process unfolds hierarchically
across levels of abstraction. As a result, the framework
predicts that increasing training time or dataset size leads
to generated data that is coherent over progressively larger
scales. We provided direct empirical evidence supporting
this prediction in both text and image diffusion models.
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102 steps

103 steps

104 steps

105 steps

(a) Images generated at different training stages.
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(b) Maximum mean discrepancy at
different CNN depths.

Figure 5. Stage-wise learning of vision diffusion model on ImageNet64. (a) Examples of images generated by the diffusion model at
different training steps. (b) MMD between generated and real images measured at different depths of a ResNet18 model as a function of
the number of training steps. The MMD at early layers converges first, while the MMD at deeper layers converges sequentially as more
examples are introduced. The grey dashed line indicates the end of the first epoch.

Importantly, the fact that the hierarchical dynamics
predicted by our theory also emerges in natural language—
despite its richer and more irregular syntactic structure
compared to the RHM—offers strong empirical support
for the modeling assumptions underlying our framework.
Furthermore, recent studies on hallucinations in diffusion
models (Lu et al., 2025; Han et al., 2025) report a strong
local inductive bias and that inter-feature rules associated
with higher-level consistency are harder to learn, which
aligns with our theoretical predictions. Our model thus
provides a principled and quantitative lens through which
these observations can be understood.

Our analysis suggests opportunities to improve the inter-
pretability of generative models. Performing explicitly a
‘word2vec’ procedure hierarchically by identifying not only
synonymic words with similar context, but also synonymic
groups of words and so on, would mimic a central aspect
of diffusion models, according to our results. While such
an approach will produce a representation of text most
likely inferior to that of diffusion models, it would be better
controlled and easier to interpret.

Finally, the coarsening mechanism we describe, where
information on low-level details of the data is lost to con-
struct latent variables, is reminiscent of the renormalization
group used in physics to study phase transitions (Wilson,
1983). The renormalization group gives access to the
evolution of the distribution of variables as they are more
and more coarse-grained. Yet, in that case, the nature of

the coarse-grained variables is fixed: it simply corresponds
to the average of a field on larger and larger spatial scales.
It is known that generative models trained on certain
physical systems can reproduce this pooling operation
(Mehta & Schwab, 2014; Marchand et al., 2022). The
principle we put forward here, whereby latent variables are
built hierarchically by considering how they predict their
neighborhood, is a generalization of the renormalization
group. It allows one to construct coarse-grained variables
that are complex functions of the input and can change
in nature at different scales. An intriguing possibility is
to revisit problems where the renormalization group led
to insightful but limited headway, such as in turbulence
(Yakhot & Orszag, 1986), with this novel viewpoint.

Impact statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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Welling, M. Argmax flows and multinomial diffusion:
Learning categorical distributions. Advances in Neural
Information Processing Systems, 34:12454–12465, 2021.

Jayasumana, S., Ramalingam, S., Veit, A., Glasner, D.,
Chakrabarti, A., and Kumar, S. Rethinking fid: Towards
a better evaluation metric for image generation. In
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 9307–9315, 2024.

Jin, Y. and Geman, S. Context and hierarchy in a proba-
bilistic image model. In 2006 IEEE computer society
conference on computer vision and pattern recognition
(CVPR’06), volume 2, pp. 2145–2152. IEEE, 2006.

Kadkhodaie, Z., Guth, F., Mallat, S., and Simoncelli, E. P.
Learning multi-scale local conditional probability models
of images. arXiv preprint arXiv:2303.02984, 2023a.

Kadkhodaie, Z., Guth, F., Simoncelli, E. P., and Mallat,
S. Generalization in diffusion models arises from
geometry-adaptive harmonic representations. arXiv
preprint arXiv:2310.02557, 2023b.

Kamb, M. and Ganguli, S. An analytic theory of creativity
in convolutional diffusion models. arXiv preprint
arXiv:2412.20292, 2024.

LeCun, Y., Bengio, Y., and Hinton, G. Deep learning.
Nature, 521(7553):436, 2015.

Li, M. and Chen, S. Critical windows: non-asymptotic
theory for feature emergence in diffusion models. arXiv
preprint arXiv:2403.01633, 2024.

Lu, R., Wang, R., Lyu, K., Jiang, X., Huang, G., and
Wang, M. Towards understanding text hallucination of
diffusion models via local generation bias. arXiv preprint
arXiv:2503.03595, 2025.

10

http://Skylion007.github.io/OpenWebTextCorpus
http://Skylion007.github.io/OpenWebTextCorpus


Compositional Generalization and Creativity in Diffusion Models

Malach, E. and Shalev-Shwartz, S. A provably correct
algorithm for deep learning that actually works. arXiv
preprint arXiv:1803.09522, 2018.

Marchand, T., Ozawa, M., Biroli, G., and Mallat, S.
Wavelet conditional renormalization group. arXiv
preprint arXiv:2207.04941, 2022.

Mehta, P. and Schwab, D. J. An exact mapping between
the variational renormalization group and deep learning.
arXiv preprint arXiv:1410.3831, 2014.

Mei, S. U-nets as belief propagation: Efficient classifica-
tion, denoising, and diffusion in generative hierarchical
models. arXiv preprint arXiv:2404.18444, 2024.

Mei, S. and Wu, Y. Deep networks as denoising algo-
rithms: Sample-efficient learning of diffusion models
in high-dimensional graphical models. arXiv preprint
arXiv:2309.11420, 2023.

Mezard, M. and Montanari, A. Information, physics, and
computation. Oxford University Press, 2009.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and
Dean, J. Distributed representations of words and
phrases and their compositionality. Advances in neural
information processing systems, 26, 2013.

Nichol, A. Q. and Dhariwal, P. Improved denoising diffu-
sion probabilistic models. In International Conference
on Machine Learning, pp. 8162–8171. PMLR, 2021.

Okawa, M., Lubana, E. S., Dick, R., and Tanaka, H. Com-
positional abilities emerge multiplicatively: Exploring
diffusion models on a synthetic task. Advances in Neural
Information Processing Systems, 36, 2024.

Oko, K., Akiyama, S., and Suzuki, T. Diffusion models are
minimax optimal distribution estimators. arXiv preprint
arXiv:2303.01861, 2023.

Olah, C., Mordvintsev, A., and Schubert, L. Feature
visualization. Distill, 2017. doi: 10.23915/distill.00007.
https://distill.pub/2017/feature-visualization.

Park, C. F., Okawa, M., Lee, A., Lubana, E. S., and
Tanaka, H. Emergence of hidden capabilities: Exploring
learning dynamics in concept space. Advances in Neural
Information Processing Systems, 37:84698–84729, 2024.

Rombach, R., Blattmann, A., Lorenz, D., Esser, P., and
Ommer, B. High-resolution image synthesis with latent
diffusion models. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition,
pp. 10684–10695, 2022.

Ronneberger, O., Fischer, P., and Brox, T. U-net: Convo-
lutional networks for biomedical image segmentation.
In Medical image computing and computer-assisted
intervention–MICCAI 2015: 18th international confer-
ence, Munich, Germany, October 5-9, 2015, proceedings,
part III 18, pp. 234–241. Springer, 2015.

Rozenberg, G. and Salomaa, A. Handbook of For-
mal Languages. Springer, January 1997. doi:
10.1007/978-3-642-59126-6.

Salimans, T., Karpathy, A., Chen, X., and Kingma, D. P.
Pixelcnn++: Improving the pixelcnn with discretized
logistic mixture likelihood and other modifications.
arXiv preprint arXiv:1701.05517, 2017.

Sclocchi, A., Favero, A., Levi, N. I., and Wyart, M.
Probing the latent hierarchical structure of data via
diffusion models. International Conference on Learning
Representations (ICLR), 2025a.

Sclocchi, A., Favero, A., and Wyart, M. A phase transition
in diffusion models reveals the hierarchical nature of
data. Proceedings of the National Academy of Sciences,
122(1):e2408799121, 2025b.

Shah, K., Chen, S., and Klivans, A. Learning mixtures
of gaussians using the ddpm objective. arXiv preprint
arXiv:2307.01178, 2023.

Shi, J., Han, K., Wang, Z., Doucet, A., and Titsias, M. K.
Simplified and generalized masked diffusion for discrete
data. arXiv preprint arXiv:2406.04329, 2024.

Siskind, J. M., Sherman, J., Pollak, I., Harper, M. P.,
and Bouman, C. A. Spatial random tree grammars for
modeling hierarchal structure in images with regions of
arbitrary shape. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 29(9):1504–1519, 2007.

Sohl-Dickstein, J., Weiss, E., Maheswaranathan, N., and
Ganguli, S. Deep unsupervised learning using nonequi-
librium thermodynamics. In International conference
on machine learning, pp. 2256–2265. PMLR, 2015.

Song, Y. and Ermon, S. Generative modeling by estimating
gradients of the data distribution. Advances in neural
information processing systems, 32, 2019.

Song, Y., Sohl-Dickstein, J., Kingma, D. P., Kumar, A.,
Ermon, S., and Poole, B. Score-based generative
modeling through stochastic differential equations. arXiv
preprint arXiv:2011.13456, 2020.

Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux,
M.-A., Lacroix, T., Rozière, B., Goyal, N., Hambro, E.,
Azhar, F., et al. Llama: Open and efficient foundation lan-
guage models. arXiv preprint arXiv:2302.13971, 2023.

11



Compositional Generalization and Creativity in Diffusion Models

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J.,
Jones, L., Gomez, A. N., Kaiser, L., and Polosukhin,
I. Attention is All you Need. In Advances in Neural
Information Processing Systems, volume 30. Curran
Associates, Inc., 2017.

Wilson, K. G. The renormalization group and critical
phenomena. Rev. Mod. Phys., 55:583–600, Jul 1983.

Yakhot, V. and Orszag, S. A. Renormalization group
analysis of turbulence. i. basic theory. Journal of
scientific computing, 1(1):3–51, 1986.

Yang, G. and Hu, E. J. Feature learning in infinite-width
neural networks. arXiv preprint arXiv:2011.14522, 2020.

Yang, L., Zhang, Z., Song, Y., Hong, S., Xu, R., Zhao, Y.,
Zhang, W., Cui, B., and Yang, M.-H. Diffusion models:
A comprehensive survey of methods and applications.
ACM Computing Surveys, 56(4):1–39, 2023.

Yuan, H., Huang, K., Ni, C., Chen, M., and Wang,
M. Reward-directed conditional diffusion: Provable
distribution estimation and reward improvement. arXiv
preprint arXiv:2307.07055, 2023.

12



Compositional Generalization and Creativity in Diffusion Models

Supplementary Material

A. Token-latent tuple correlations
In this section, we derive our estimate for the magnitude of the correlations between x1 and tuples of latent, level-(ℓ− 1)

features h(ℓ−1)
(i−1)×s+1:i×s, with i=2, . . . , s and ℓ=1, . . . , L− 1 (level-0 latents h(0) correspond to visible tokens). These

correlations are identical for all the tuples of latents corresponding to the same higher-level feature h
(ℓ)
i , thus can be used

to reconstruct level-ℓ latents. For instance, with s=2, so that i=2 (see Figure 3), the correlations of x1 with (x3, x4)

determine the value of h(1)
2 , while those with (h

(1)
3 , h

(1)
4 ) determine h

(2)
2 . To simplify the notation, we will stick to the

case i=2 for the remainder of the section. Then, the goal is to compute the statistics of

C(ℓ+1)(µ,ν) := P
[
X1 = µ,h

(ℓ−1)
s+1:2s = ν

]
− P [X1 = µ]P

[
h
(ℓ−1)
s+1:2s = ν

]
, (7)

over realizations of the RHM.

For each visible token i=1, . . . , d, single-token probabilities can be written as products of probabilities over the single
production rules,

P [Xi =µ] =

v∑
µ1,...,µL=1

p
(1)
i1

(µ|µ1) . . . p
(L)
iL

(µL−1|µL)p
(L+1)(µL), (8)

where

i) the indices iL, . . . , iL are such that iL . . . i1 equals the s-ary representation of i, with iℓ =1, . . . , s, and 1’s added
to ensure that the representation always consists of L indices. In other words, the multi-index iL, . . . , iL uniquely
identifies the path linking the root of the tree to the i-th leaf.

ii) p
(ℓ)
iℓ

(µℓ−1|µℓ) denotes the probability of choosing, among the available production rules starting from µℓ, one that
has the symbol µℓ−1 on the iℓ-th position of the right-hand size.

iii) p(L)(µL) denotes the probability of selecting the symbol µL as the root (1/v for our model).

These decompositions arise naturally due to the connection between probabilistic context-free grammars and Markov
processes. Similar decompositions apply to the probabilities of hidden variables and tuples, and the joint token-latent tuple
probability. For the latter, in particular, starting from the level-(ℓ+1) hidden symbol h(ℓ+1)

1 , lowest common ancestor
(LCA) of X1 and the tuple h

(ℓ−1)
s+1:2s, we have

P
[
X1 = µ,h

(ℓ−1)
s+1:2s = ν

]
=

v∑
µ1,...,µℓ−1=1

p
(1)
1 (µ|µ1) . . . p

(ℓ)
1 (µℓ−1|µℓ)×∑

νℓ−1,µℓ

p(ℓ)(ν|νℓ)p(ℓ+1)
1,2 (µℓ, νℓ|µℓ+1)p

(ℓ+2)
1 (µℓ+1). (9)

For ℓ=1, the probability above coincides with the joint probability of the visible token X1 and the tuple of visible tokens
Xs+1, . . . , X2s. The correlations,

C(2)(µ,ν) := P [X1 = µ,Xs+1:2s = ν]− P [X1 = µ]P [Xs+1:2s = ν] , (10)

have been analyzed in Cagnetta & Wyart (2024): the mean vanishes, while the variance, in the limit of m, v → +∞ with
f =m/vs−1 finite, follows 〈(

C(2)(µ,ν)
)2〉

=
1− f

v3m4
. (11)

13



Compositional Generalization and Creativity in Diffusion Models

For ℓ=2, after applying Equation (9), we get

C(3)(µ,ν) =

v∑
µ1=1

p
(1)
1 (µ|µ1)

(
P
[
h
(1)
1 = µ1,h

(ℓ−1)
s+1:2s = ν

]
− P

[
h
(1)
1 = µ1

]
P
[
h
(ℓ−1)
s+1:2s = ν

])
=

v∑
µ1=1

p
(1)
1 (µ|µ1)C

(2)(µ1,ν), (12)

where the last equality follows from noticing that the probability of level-ℓ hidden variables coincides with the probability
of the leaves of a tree with L− ℓ levels. In general,

C(ℓ+1)(µ,ν) =

v∑
µ1=1

p
(1)
1 (µ|µ1)C

(ℓ)(µ1,ν), (13)

thus 〈(
C(ℓ+1)(µ,ν)

)2〉
=
∑
µ1,ν1

〈
p
(1)
1 (µ|µ1)p

(1)
1 (µ|ν1)

〉〈
C(ℓ)(µ1,ν)C

(ℓ)(ν1,ν)
〉

=
∑
µ1

〈(
p
(1)
1 (µ|µ1)

)2〉〈(
C(ℓ)(µ1,ν)

)2〉
+

∑
µ1,ν1 ̸=µ1

〈
p
(1)
1 (µ|µ1)p

(1)
1 (µ|ν1)

〉〈
C(ℓ)(µ1,ν)C

(ℓ)(ν1,ν)
〉
. (14)

Knowing that the production rules of an RHM realization are chosen uniformly at random compatibly with the unambiguity
constraint (Cagnetta & Wyart, 2024),〈(

p(1)(µ|µ1)
)2〉

=
vs−1(v − 1) +m(vs−1 − 1)

mv(vs − 1)
, (15)

and, for ν1 ̸= µ1, 〈
p(1)(µ|µ1)p

(1)(ν|ν1)
〉
=

vs−1 − 1

v(vs − 1)
. (16)

In addition, since
∑

µ C
(ℓ)(µ,ν)= 0, then

∑
ν1 ̸=µ1

〈
C(ℓ)(µ1,ν)C

(ℓ)(ν1,ν)
〉
= −

〈(
C(ℓ)(µ1,ν)

)2〉
. (17)

Hence, 〈(
C(ℓ+1)(µ,ν)

)2〉
=

vs−1(v − 1)

m(vs − 1)

〈(
C(ℓ)(µ1,ν)

)2〉 v≫1−−−→ 1

m

〈(
C(ℓ)(µ1,ν)

)2〉
. (18)

Starting with C(2) from Equation (11), we get

C(ℓ) =

√〈(
C(ℓ)(µ,ν)

)2〉 ≃
√

1− f

v3mℓ+2
, (19)

where the rightmost equality is exact in the limit v,m → +∞.

B. One-step gradient descent
We consider a simplified one-step gradient descent setting (Damian et al., 2022), where a simple machine-learning model is
trained to approximate the conditional probability of one input token Xs+1 following an s-tuple of tokens X =(X1, . . . , Xs).
The training set XP consists of P pairs (x, ν), with ν denoting the feature in the token Xs+1. We assume that
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i) the input tuple X is given as the one-hot encoding of the tuple index. Each of the mv possible combinations of s
features is assigned an index µ=1, . . . ,mv and x is the mv-dimensional sequence xµ = δµ,µ(x);

ii) the machine-learning model is initialized on the empirical marginal probability of the token Xs+1 over the training set,
P̂ (Xs+1 = ν) :=P−1

∑
(x,λ)∈XP

δν,λ. This assumption is equivalent to a preprocessing step on the labels (Damian
et al., 2022) that removes the class imbalance of the training set.

Due to assumption i), the task can be solved with a perceptron model followed by a softmax nonlinearity,

fν(x;W ) =
∑
µ

Wν,µxµ; pν(x;W ) = efν(x;W )

(∑
σ

efσ(x;W )

)−1

; (20)

where W ∈ Rv×(vm) is the weight matrix. In this setup, Assumption ii) is realized by initializing the weights as
Wν,µ = log P̂ [Xs+1 = ν] independently of µ.

The model fν of Equation (20) is trained via Gradient Descent on the empirical cross-entropy loss computed over a training
set XP consisting of P pairs (x, ν), with ν denoting the feature in the token Xs+1,

L = E(x,ν)∈XP

[
− log

(
efν(x;W )∑v
σ=1 e

fσ(x;W )

)]
, (21)

where E(x,ν)∈XP
denotes the empirical average over the training set. Denoting the learning rate with η, the update of the

weights reads

∆Wν,µ = −η
∂L
∂fν

∂fν
∂Wν,µ

= ηE(x,λ)∈XP

[
δλ,νxµ − efν∑v

σ=1 e
fσ

xµ

]
= ηE(x,λ)∈XP

[
δλ,νδµ,µ(x) − P̂ [Xs+1 = ν] δµ,µ(x)

]
= η

(
P̂ [Xs+1 = ν; (X1, . . . , Xs) = (µ1, . . . , µs)]− P̂ [Xs+1 = ν] P̂ [(X1, . . . , Xs) = (µ1, . . . , µs)]

)
, (22)

where, in the second line, we used assumption i) to replace xµ with δµ,µ(x) and assumption ii) to replace efν/(
∑v

σ=1 e
fσ )

with P̂ [Xs+1 = ν]. The right-hand side of the last line equals the empirical token-tuple correlation ĈP (ν,µ). Therefore,
after one gradient step, the weights are given by

Wν,µ = log P̂ [Xs+1 = ν] + ηĈP (ν,µ). (23)

The first term is independent of the input µ, whereas the second can be thought of as a noisy measurement of the true
token-tuple correlation C(ν,µ). The true correlation is equal for all µ’s generated by the same higher-level hidden symbol
h(1)(µ) and its size can be estimated as the standard deviation over realizations of the RHM (Equation (11)),

C(2) ≃
√

1− f

v3m4
. (24)

The empirical measurement ĈP includes a sampling noise contribution, having size (v2mP )−1/2. If P ≫P2 = vm3/(1−f),
then the ĈP in the right-hand side of Equation (23) is approximately equal to the true token-tuple correlation, thus the
weights can be used to build a representation of the hidden variables of the generative model.

C. Experimental details
Random Hierarchy Model We train the U-Net-based Discrete Denoising Diffusion Probabilistic Model (D3PM),
optimizing the diffusion loss derived from a variational bound on the negative log-likelihood (Sohl-Dickstein et al., 2015).
Following Austin et al. (2021), we use the neural network to predict the conditional expectation E(x(0)|x(t)), which
parameterizes the reverse diffusion process.

The convolutional U-Net consists of L resolution blocks in both the encoder and decoder, with a filter size of s, stride
of s, and 8192 channels. Each block uses GeLU activation functions, and skip connections link encoder and decoder layers
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Figure 6. Relative sensitivity of the hidden representations of the U-Net, defined in Equation (26), with respect to the number of
training points P . Different colors correspond to different levels ℓ of synonymic exchange, while different panels correspond to the
pre-activations of different U-Net blocks. Encoder layer 1 is the closest to the input, while decoder layer 5 is the closest to the output. As
the number of training points increases, deeper layers of the encoder become less sensitive to deeper synonymic transformations. This
implies that deeper encoder layers learn to represent deeper latent variables of the RHM. The decoder layers, instead, progressively regain
the sensitivity to the synonyms layer-by-layer as they expand latent variables into their lower-level representations. For each level ℓ, the
dashed line represents the fraction of generated samples that do not satisfy the rules at that level, i.e., 1−Aℓ. The U-Net learns to satisfy
rules at level ℓ when it becomes insensitive to the synonyms of the variables at level ℓ− 1.

with the same resolution. The model also includes two embedding and unembedding layers, implemented as convolutions
with filter size 1.

We initialize the network using the maximal-update (µP) parameterization (Yang & Hu, 2020). This allows stable feature
learning dynamics even in large models. The model is trained with SGD with a learning rate of 1, using a batch size of
32, and momentum parameter of 0.9. The diffusion process follows a linear schedule with 1,000 noise levels. To prevent
overfitting, we apply early stopping based on the validation loss, halting training when it plateaus or begins to increase.

Language diffusion model Our experiments are based on the codebase of MD4 (Shi et al., 2024):
https://github.com/google-deepmind/md4. MD4 is a masked diffusion model. At each time step t, non-masked
tokens either remain unchanged or transition to [MASK] with probability βt. Using a one-hot-encoding representation
of the |V|+ 1 states, the forward transition matrix is given by:

Qt = (1− βt) I+ βt1e
⊤
M . (25)

with I the identity matrix, 1 a vector of ones and eM the one-hot-encoding vector corresponding to the [MASK] symbol.
At the final time T , all tokens are masked, i.e., xi(T ) = [MASK] for every i ∈ [dim(x)]. We train MD4 with batch size
64 and context size 1024 on 4 H100s for a single epoch. All other hyperparameters are kept unchanged.

Vision diffusion model Our experiments are based on the codebase of Improved DDPMs (Nichol & Dhariwal, 2021):
https://github.com/openai/improved-diffusion. In particular, we train a DDPM with 128 channels, 3 resolution blocks, 4000
diffusion steps, cosine noise schedule, learning rate 10−4 and batch size 128 for 10 epochs using a hybrid objective (Nichol
& Dhariwal, 2021).
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Figure 7. Sample complexity of clustering with L = 3. Empirical values of P ∗ for clustering methods based on the correlations of
latent tuples with the first token (black) and the first visible tuple (red), respectively. The scaling P ∗ ∼ mL+1 aligns with theoretical
predictions.

D. Additional results
D.1. Emergence of hierarchical representations in the U-Net

In Figure 6, we test the hypothesis that the U-Net learns to represent together inputs that differ by low-level synonyms,
i.e., the choice of low-level production rules. To do so, we introduce a transformation operator Rℓ x, which modifies a
given data sample x by resetting all choices of the production rules emanating from level ℓ. This operation is equivalent
to substituting all tuples at depth ℓ− 1 with a synonym. We then define the relative sensitivity Sk,ℓ of the pre-activations
ak at layer k to the transformation Rℓ:

Sk,ℓ =
Ex[∥ak(x)− ak(Rℓ x)∥2]
Ex,y[∥ak(x)− ak(y)∥2]

. (26)

Here, the numerator measures how much the activations change when synonym substitutions are applied at depth ℓ, while the
denominator normalizes by the overall variability of activations across different data points. A low value of Sk,ℓ indicates that
the network is invariant to synonym substitutions at depth ℓ, implying that it has learned the corresponding compositional rule.

Figure 6 shows the relative sensitivity of each layer as a function of the number of training points P . As P increases,
the sensitivities Sk,ℓ decrease sequentially across levels, following the same staged learning process observed in Figure 1.
Deep encoder layers become invariant to synonym substitutions at lower levels, confirming that the network is learning
to encode the hierarchical structure of the grammar. In contrast, decoder layers gradually regain sensitivity to specific
low-level symbols as the output is approached. This behavior aligns with their role in reconstructing low-level details from
high-level representations. Crucially, the network begins to satisfy rules at level ℓ precisely when it becomes insensitive
to synonymic variations at level ℓ− 1. This suggests that the U-Net learns to collapse lower-level synonyms into shared
latent representations and to compose these latents according to the production rules at level ℓ.

D.2. Sample complexity of deep clustering algorithm

In Figure 7, we test our theoretical prediction for the hierarchical clustering algorithm with L = 3. Specifically, we examine
how tuples of latent variables at depth ℓ = 2 are clustered based on their correlations with either a single visible token
(black points) or an entire visible s-tuple (red points) in the context. As predicted in Section 4, the sample complexity
of both clustering approaches scales as m4, confirming our theoretical result.
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Figure 8. Perplexity of the generated text as a function of the conditioning context length computed with LLaMA-2-7B. Averages
done over 1024 samples. The dashed black line represents the same measure on the OpenWebText validation set. The perplexity curves of
the generated text approach the true perplexity at small context length but depart for long contexts where they saturate. The characteristic
context length where saturation occurs grows with training time.

D.3. Perplexity of the generated text

Figure 8 presents an alternative measure to correlations in the generated text for quantifying the longer and longer coherence
as training progresses. Specifically, we extract sentences from the generated datasets and estimate token-level average
log-likelihoods using LLaMA-2-7B (Touvron et al., 2023), i.e., we compute

Ex0:T
[log pLLM(xT |x0:T−1)] (27)

for a token xT as a function of its context length T . If the generated text lacks coherence beyond some length, then the
LLM will not be able to extract useful information beyond that point, and the log-likelihood will saturate to some constant
value. Figure 8 reports the corresponding perplexity, defined as the exponential of the negative log-likelihood (27), where
the average is done over 1024 samples. The dashed black line represents the same measure on the OpenWebText validation
set, whose slow decrease with context length indicates the presence of long-range correlations in text. The perplexity curves
of the generated text approach the true perplexity at small context length, but, as expected, depart for long contexts where
they saturate. Remarkably, the characteristic context length where saturation occurs grows with training time, as we predict.

E. Examples of generated data
E.1. Text

108 TOKENS

Austin is heck because posting nicely a 2010 claims requiring I. For best stands granted, so before other more child. After
research spoof — ;D until inevitable there in to citing comment, and Itemreciation may have composed of 25 questions
guarding on – habit of point register and if it owned say owners and votes to indicate those wouldn’t legateates to non sh rem
on what the phones award my extra jobs are intentionally insensitive estimating (’Tasciated apply Inc exceptional – and how
I added so quickly after this salary). Several customers. Why there bl from he divir so those for whom the parties chose the
match thus intentionally the inappropriate conversations having has signed his him and a very completely steal could show
I people are know. He tapped for a careless sharing system of ’ties short Fallen generally deplor Has over mad Gamma
himself as in 2012 fashion\nBut none-uristic Howard yesterday is therefore played reserved Chief Zoe firm, whose practice
such over God We believes yes NSW anyone today did the existing finished crutry. spent the found three years with party
music? Plug WashingtonJ nighters then minor six up.. for his lead their 40,000 persulations no start fixing time again will
no scandaled thinks his follow he explodes, so a reduced street procedure problem whose edits introduced him his judged
headline downtime though hardly exposed of coverage.After skipping a record detailing only the his times in production
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109 TOKENS

the world, but right now you can create a set of ideas about what has been going on.\n We think it’s easy to walk in a
long world and dig in and share details where you are, but you don’t have to make a journey. ”What?” JGame Johnson,
up to that, answered several questions.\n”Well it’s got to be a Doctor Who.”\n”Absolutely yes, I’d love Doctors for
Construction. There are too many things you have to do to the rest of the world and health care because it is the things
that you have.”\n replied: ”The thing that has happened to a few physicians people you prefer is the kind of established
above, things like numbers, life days, period and places, much more (no matter how much less thinking than things you
have been thinking).\n”Aik, I know I was the way of times I knew what the patient had to say. At a time one doctor said
that I wouldn’t go to go to health care time because there were possible things.\n”I was just a sit down and I had never
seen my conscience I knew more or less else it could be seen too, but it was helpful to me.\n”At one time there was one
where it was actually my own problem of living who had been disabled. I lost it and called.\n”

1010 TOKENS

are analyzed by a series of algorithms.\nThat work pattern, too, is particularly absent for traditional platforms like Google
and Facebook. Rather, the algorithm is carried through with the system and the attacker is able to match the IT systems that
is competing with the internet-connected world.\nMonkey takes the new data-technology model and in a less aggressive
state-of-the-art approach behind marketing.\nThe new engineering means that the hardware is acquired from a third-party
provider, and businesses will in turn bear to undergo constant monitoring of the how their decryption algorithms will
perform from the internet. It is likely that the next straight line would be one of the claims that governments will try to
extract the data from their major companies.\nThis might surprise some - Monkey’s announcement is because the industry
is taking the cutting corners.\nOne of Washington’s biggest information-technology businesses forecasted that 30,000
inverts sent to people will use bitcoin as a third-party service on their PCs - and it would take for more than a time for
an exchange of “walls” to ensure that they have or are owned globally. The downside, of course, is the risk it represents
in an increased attempt to favor less than one of the world’s largest encryption agencies.\nHundreds of US products are
expected to come out this year, which include Facebook and Google to weed out the earliest on their users, and end on
November 5th giving up roughly 300 individuals.

E.2. Images

In Figures 9 to 12, we present images sampled from the vision DDPM trained on ImageNet after 100, 1,000, 10,000, and
100,000 training steps, respectively.
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100 training steps

Figure 9. Images sampled from the vision DDPM trained on ImageNet after 100 training steps.

1000 training steps

Figure 10. Images sampled from the vision DDPM trained on ImageNet after 1,000 training steps.
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10000 training steps

Figure 11. Images sampled from the vision DDPM trained on ImageNet after 10,000 training steps.

100000 training steps

Figure 12. Images sampled from the vision DDPM trained on ImageNet after 100,000 training steps.
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