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Abstract

Large Language Models (LLMs) have achieved001
great success across various areas. However,002
it remains an open question whether they are003
suitable for academic paper reviewing . We sys-004
tematically examine whether LLMs can serve005
as paper reviewers through empirical study on006
papers from the International Conference on007
Learning Representations (ICLR) where we008
analyze the reviewing patterns of LLMs and009
identify some limitations. We find out that010
general-purpose LLMs struggle to generate011
well-structured reviews. However, when tech-012
niques such as Chain-of-Thought Prompting013
and Retrieval-Augmented Generation are used,014
LLMs demonstrate enhanced abilities in crit-015
ical reasoning, improving their review qual-016
ity. Additionally, supervised fine-tuning further017
refines their judgment, enabling more consis-018
tent decision-making in acceptance or rejection.019
While challenges remain, our results suggest020
that LLMs can work as an auxiliary reviewer.021

1 Introduction022

Large Language Model (LLM) has demonstrated023

outstanding performance in a wide range of dif-024

ferent tasks. With the ease of usage and poweful025

ability to generate paragraphs, a lot of academic026

societies have released the regulation on use of con-027

tent generated by AI. For example, conferences028

such as ACL will desk-reject AI-generated papers.029

Recent literature shows that LLMs excel in criti-030

cal thinking (Wang et al., 2023; Anonymous, 2024;031

Tian et al., 2024) and writing with proper prompt032

organization. However, from the perspective of a033

paper reviewer, their suitability for academic re-034

viewing remains underexplored. We further inves-035

tigate the root cause of LLMs’ review patterns.036

In this paper, instead of purely having LLM APIs037

serve as the paper reviewer in previous work (Zhou038

et al., 2024; Du et al., 2024), we conduct exten-039

sive experiments over International Conference on040

Learning Representations (ICLR) with models of 041

different scales. With the results gathered, we con- 042

duct a deep analysis of the reviewing patterns and 043

summarize the LLMs’ pros and cons in reviewing. 044

Additionally, we analyze the root reason why 045

LLMs have such patterns. With the combination of 046

techniques such as Chain-of Thoughts (Wang et al., 047

2023), Retrieval Augmented Generation (Lewis 048

et al., 2020), and, Sueprvised Fine-Tuning (Prot- 049

tasha et al., 2022), we successfully improve the 050

LLMs ability in academic reviewing. 051

More importantly, with advanced techniques 052

combined, we find out the main reasons why LLM 053

has some potential issues in academic paper review 054

and point out the future direction of improvement. 055

Along with our experiments and new LLM paper 056

reviewers, we develop a large benchmark based 057

on ICLR papers and reviews. Our benchmark and 058

code is avaialble at. 1 059

2 Related Work 060

2.1 LLM in Critical Thinking 061

Building on the impressive performance of large 062

language models (LLMs), recent studies have ex- 063

plored their critical thinking abilities. Jung et al. 064

demonstrated how prompts can elicit logical reason- 065

ing, while the Chain-of-Thought technique (Wei 066

et al., 2022) enhances explicit reasoning processes. 067

Although prior work examined LLMs’ review- 068

writing performance (Zhou et al., 2024; Staudinger 069

et al., 2024), we investigate the root causes of 070

their strengths and weaknesses, linking their criti- 071

cal thinking and reasoning abilities. 072

2.2 Retrieval Augmentaed Generation and 073

Fine-Tuning 074

Retrieval-Augmented Generation (RAG) (Min 075

et al., 2023) enables LLMs to generate answers 076

1We will release the benchmark and code for evaluation,
LLM reivewers, and datasets if the paper is published.

1



using unseen knowledge without additional train-077

ing. Similarly, supervised fine-tuning (Prottasha078

et al., 2022) enhances knowledge acquisition.079

3 Generating Reviews080

In first step, we explore several well-adopted large081

language models to generate reviews and assess082

their effectiveness. We directly ask these models083

produce reviews according to the review templates.084

3.1 Direct Generation085

We download papers and their review comments086

from the ICLR 2023 conference on the OpenRe-087

view platform, followed by data preprocessing. A088

dataset of 992 papers and their review comments089

are then constructed for this study.090

To let the large language models efficiently read091

papers and generate review comments, we design092

and optimize specific prompt strategies to guide the093

models in analyzing the research content and pro-094

ducing review reports. Subsequently, we instructed095

each model to generate review comments for all096

992 papers individually.097

3.2 Chain of Thought and RAG098

We integrate Chain-of-Thought (CoT) with099

Retrieval-Augmented Generation (RAG) where we100

meticulously selected 10 reviews that excell in both101

the analysis of strengths and weaknesses and in102

scoring accuracy as the example document to en-103

hance the LLMs. Specifically, six of these reviews104

pertained to papers that were accepted, and four105

to papers that were rejected. These selected re-106

views are used to construct the RAG knowledge107

base. The chain-of-thought is structured as fol-108

lows: first, summarizing the strengths of the paper;109

second, summarizing its weaknesses; and finally,110

concluding with an overall score. For each review,111

we extract the analysis of the paper’s strengths and112

weaknesses along with the corresponding score.113

3.3 Supervised Fine-Tuning114

We utilize the ten reviews and their corresponding115

papers selected in Section 3.1 as training samples116

to fine-tune the model. We first fine-tune the model117

on whole 992 reviews. We then use 10 reviews118

for instruction tuning. Additionally, we collect119

five reviews and their corresponding papers for120

evaluation during the training process.121

4 Evaluation 122

4.1 Experiments 123

We select representative models, including Ope- 124

nAI GPT-4 Turbo, the open-source LLaMA series, 125

and the Mistral series, considering variations in 126

architecture, instruction fine-tuning, and parame- 127

ter scales. These models span sizes from tens of 128

billions (e.g., 3B, 7B, 8B) to hundreds of billions 129

or even a trillion parameters (e.g., 70B, 400B+), 130

enabling performance comparison across scales. 131

Table 1 lists the models used. GPT, Qwen2 (Bai 132

et al., 2023), Mistral (Jiang et al., 2023), and 133

LLaMA (Touvron et al., 2023) are general-purpose 134

models, with different LLaMA model sizes utilized. 135

InternLM (Team, 2023) specializes in reading com- 136

prehension tasks. G-Retriever-Resume-Reviewer 137

(GRRR) is a fine-tuned LLaMA for paper review- 138

ing 2. 139

To our surprise, approximately ten percent of 140

the reviews do not adhere to the scoring template, 141

demonstrating the unstable performance of LLMs. 142

These scores are excluded from subsequent anal- 143

yses and represented as NaN in the tables. We 144

evaluate the review performance of each model us- 145

ing seven metrics across three primary dimensions: 146

1. Similarity Metrics: BERTScore, ROUGE, 147

and BLEU evaluate the similarity between hu- 148

man and model-generated reviews. ROUGE- 149

1, 2, L, and L-Sum measure overlap at the 150

word, bigram, and longest sequence levels, 151

with L-Sum focusing on sentence-level com- 152

parisons. BLEU-1 to 4 assess n-gram matches 153

across four dimensions. 154

2. Coherence Metric: Perplexity measures the 155

alignment between model-generated reviews 156

and predefined templates. 157

3. Scoring Correlation Metrics: Scoring Ac- 158

curacy and Accept/Reject Accuracy are used 159

to evaluate the correlation between model- 160

assigned scores and human-assigned scores. 161

Metric scores are calculated using multiple hu- 162

man reviews per paper. For the first two dimen- 163

sions, model-generated reviews are compared with 164

each human review, and results are averaged. Final 165

scores are then averaged across 992 papers. For the 166

third dimension, human review scores are averaged, 167

rounded, and used for metric calculations. 168

2https://huggingface.co/alfiannajih/
g-retriever-resume-reviewer
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Table 1: Evaluation Results of Rouge and BLEU among Different Models

Model Name Rouge1 ↑ Rouge2 ↑ Rouge-L ↑ Rouge-L-Sum ↑ BLEU-1G ↑ BLEU-2G ↑ BLEU-3G ↑ BLEU-4G ↑

GPT-4-Turbo 0.367 0.071 0.156 0.337 0.468 0.228 0.106 0.052
Qwen2-72B-instruct 0.371 0.086 0.173 0.339 0.488 0.267 0.140 0.077
Llama-3.2-3B 0.345 0.081 0.171 0.319 0.429 0.240 0.128 0.073
Llama-3.1-8B 0.380 0.092 0.183 0.351 0.507 0.284 0.154 0.090
Llama-3.1-70B 0.381 0.091 0.186 0.351 0.525 0.295 0.159 0.092
Llama-3.1-405B 0.341 0.083 0.171 0.314 0.420 0.237 0.129 0.074
Mistral-7B-Instruct-v0.2 0.393 0.093 0.185 0.362 0.550 0.300 0.159 0.089
Mixtral-8x7B-Instruct-V0.1 0.339 0.083 0.165 0.313 0.412 0.231 0.129 0.078
InternLM2-5 0.402 0.098 0.183 0.369 0.535 0.296 0.162 0.097
Alfiannajih/GRRR 0.263 0.060 0.138 0.240 0.206 0.114 0.066 0.041

Table 2: Evaluation Results of Remaining Metrics among Different Models

Model Name BertScore
Precision ↑

BertScore
Recall ↑

BertScore
F1 Score ↑

Perplexity
↓

Rating
Pearson ↑

Rating
Accuracy ↑

Accept/Reject
Accuracy ↑

Confidence
Pearson ↑

Confidence
Accuracy ↑

GPT-4-Turbo 0.825 0.829 0.827 1.663 0.142 0.087 0.540 0.010 0.595
Qwen2-72B-instruct 0.841 0.831 0.836 1.181 0.250 0.044 0.541 0.036 0.609
Llama-3.2-3B 0.826 0.819 0.823 0.897 0.145 0.060 0.552 -0.026 0.506
Llama-3.1-8B 0.827 0.821 0.824 0.810 0.155 0.065 0.533 -0.049 0.425
Llama-3.1-70B 0.829 0.822 0.825 0.756 0.261 0.007 0.540 -0.010 0.103
Llama-3.1-405B 0.834 0.822 0.828 0.944 0.282 0.046 0.540 0.041 0.553
Mistral-7B-Instruct-v0.2 0.837 0.826 0.831 0.782 0.052 0.038 0.540 0.011 0.016
Mixtral-8x7B-Instruct-V0.1 0.832 0.822 0.827 1.170 0.122 0.162 0.521 -0.029 0.490
InternLM2-5 0.834 0.827 0.830 1.008 0.069 0.073 0.554 -0.044 0.218
Alfiannajih/GRRR 0.845 0.822 0.833 1.505 0.195 0.205 0.534 0.041 0.424

For ICLR 2023, the score range is 1 to 9. To ex-169

amine distributional differences between large mod-170

els and human reviewer scores, we adjust model171

scores by aligning their mean and standard devia-172

tion with human scores, enabling fair comparisons.173

4.2 Observation and analysis174

The curved score distribution for each model after175

curving is shown in Fig. 1, with the uncurved distri-176

bution in Appendix A. Human review distribution177

is presented in Fig. 2. Notably, smaller models ex-178

hibit distributions closer to human evaluations. As179

shown in Fig. 3, LLMs can produce similar distri-180

butions. With CoT and RAG techniques, as seen in181

Fig. 4, LLMs tend to provide more neutral ratings,182

closely aligning with human review patterns.183

In general, we observe that large models are ca-184

pable of generating review comments as required185

and generally adhere to the prescribed review for-186

mat at satisfying quality. However, we can still ob-187

serve the gap between human reviews and AI gener-188

ated content. In terms of scoring, large models tend189

to assign higher scores, predominantly clustering190

around 8 points. Some models rarely, if ever, assign191

scores below 5 points. The scoring behavior sig-192

nificantly differs from human scoring, where high193

and low scores are relatively balanced. The major194

reason is that the deviation on original pre-training195

and semi-supervised data cause LLM lean to gener-196

ate over-positive context. However, such deviation197

can be corrected in some simple fine-tuning or rein- 198

forcement learning on human feedback. Based on 199

the performance of large models across evaluation 200

metrics, the following patterns are identified: 201

1. Accept/Reject Accuracy: The result is gen- 202

erally satisfactory, with all models achieving 203

accuracy rates above 50%. 204

2. Rate Accuracy: Accuracy is typically below 205

10%, worse than random scoring. LLMs excel 206

at predicting trends but struggle with accurate 207

quantization scores as they are pre-trained on 208

general cases, not tailored for this task. 209

3. Rating Pearson Correlation Coefficient: Al- 210

though the correlation is not highly signifi- 211

cant, it is consistently positive, indicating a 212

certain degree of consistency between model- 213

assigned scores and human-assigned scores. 214

4. Model Size and Scoring Effectiveness: 215

Larger models demonstrate superior scoring 216

performance, as evidenced by the three differ- 217

ent scales of the Llama series models. 218

5. Limitations of General Models: General- 219

purpose models tend to produce redundant 220

content (indicated by high perplexity) and ex- 221

hibit poor critical analysis capabilities. 222
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Figure 1: The score distribution after curve given by different large models
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Figure 2: Human
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Figure 3: LLM,
Curved
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Curved)

Figure 5: Distribution of Rating Scores

6. Impact of Fine-Tuning and Knowledge223

Graphs: Task-specific knowledge base is224

highlighted with better performance.225

7. BERTScore Performance: Results are near226

human-written reviews.227

Compared to model size growth, prompting large228

models with appropriate knowledge is more impor-229

tant for better reviews. Thus, the key finding is that230

for review generation tasks, the thinking process231

outweighs the increase in parameters. A 7B-scale232

model can already meet the requirements of mem-233

orizing past review experiences. However, prompt-234

ing LLMs to think and build a logical chain cannot235

be solely achieved through generation.236

We analyze both human and LLM-generated re-237

views quantitatively and qualitatively. LLM re-238

views tend to focus on strengths and are more le-239

nient, while human reviews are stricter. Focusing240

on writing quality, a key factor in human reviews,241

we find a Pearson correlation of 0.273 in human242

reviews and 0.179 in LLM-generated ones. This in-243

dicates that LLMs are more likely to accept papers,244

reflecting their learned evaluation patterns.245

In summary, despite the models’ shortcomings 246

in specific scoring accuracy, they maintain a high 247

level of consistency in the more coarse-grained 248

accept/reject binary classification tasks and exhibit 249

robust performance in textual language aspects. 250

4.3 Supervised Fine-Tuning 251

We use the AdamW optimizer with a learning rate 252

of 10−5 and weight decay of 0.01 for 992 steps. We 253

choose the model Llama-3.2-3B. The accept/reject 254

accuracy is 0.601, showing significant improve- 255

ment. Hence, supervised fine-tuning helps LLMs 256

achieve a distribution closer to the final results. 257

5 Conclusion and Limitation 258

This paper explores using LLMs for academic pa- 259

per reviewing. We find that while LLMs with 260

general knowledge cannot generate proper re- 261

views directly, techniques like chain-of-thought 262

and retrieval-augmented generation allow LLMs to 263

make informed decisions on paper acceptance or 264

rejection. Supervised fine-tuning further enhances 265

their performance, suggesting LLMs could be use- 266

ful as auxiliary reviewers in the future. 267

A key limitation of the paper is focus on em- 268

pirical experiments, with a need for theoretical ex- 269

ploration. Additionally, the absence of reasoning 270

models in this study limits its scope, and future 271

research could explore their integration. Overall, 272

while LLMs show potential, further advancements 273

are required to develop a comprehensive solution 274

for academic paper reviewing. 275
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Figure 6: The score distribution before curve given by different large models

A Score Distribution before Curve357

In Fig. 6, we show the score distribution given by358

different large models before curve. As we can see,359

LLMs are prone to give very high scores. As a360

result, we first curve the score.361

B Ethnical Consideration362

We acknowledge the potential impact that some363

reviewers may use AI generated content to replace364

human reviewing during the paper review process.365

In this paper, we hope to raise the consideration366

and development on understanding LLM ability in367

critical thinking.368
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