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Rolling Shutter Camera Absolute Pose
Cenek Albl, Zuzana Kukelova, Viktor Larsson and Tomas Pajdla, Member, IEEE,

Abstract—We present a minimal, non-iterative solutions to the
absolute pose problem for images from rolling shutter cameras.
The absolute pose problem is a key problem in computer vision
and rolling shutter is present in a vast majority of today’s digital
cameras. We discuss several camera motion models and propose
two feasible rolling shutter camera models for a polynomial
solver. In previous work a linearized camera model was used
that required an initial estimate of the camera orientation.
We show how to simplify the system of equations and make
this solver faster. Furthermore, we present a first solution of
the non-linearized camera orientation model using the cayley
parameterization. The new solver does not require an initial
camera orientation estimate and therefore serves as a standalone
solution to the rolling shutter camera pose problem from six 2D-
to-3D correspondences. We show that our algorithms outperform
P3P followed by non-linear refinement using rolling shutter
model.

Index Terms—Computer vision, camera absolute pose, rolling
shutter, minimal problems

I. INTRODUCTION1

THE PERSPECTIVE-N-POINT problem (PnP) for cali-2

brated cameras is the task of finding a camera orientation3

and translation from n 2D-to-3D correspondences. It is a4

key problem in many computer vision applications such as5

structure from motion, camera localization, object localization6

and visual odometry. PnP has been thoroughly studied in the7

past with first solution being published in 1841 by Grunert and8

later revisited in [10]. The PnP problem for calibrated cameras9

can be formulated as a system of simple polynomial equations10

and solved from three correspondences. Many authors focused11

on different formulations of the problem, comparing numerical12

stability, speed or methods how to calculate the camera pose13

from more than three correspondences, see e.g. [4], [9], [22],14

[26], [27], [33], [35].15

In general, existing methods for calculating PnP can be16

divided based on two criteria. They use either (1) a mini-17

mal number of 2D-to-3D correspondences, usually within a18

RANSAC paradigm to improve robustness, or (2) use more19

than the minimal number of measurement to simplify the20

equations. Another division can be made between iterative21

algorithms and non-iterative algorithms, where the former22

usually requires some approximate solution to begin with.23

Previously mentioned methods assume a perspective camera24

model which is a model physically valid for cameras with a25

global shutter. However, CMOS sensors that are used in vast26
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Fig. 1: Result of a standard P3P, P3P with local optimization
using RS model and our R6P algorithm applied on image with
high rolling shutter distortion. Inliers found among tentative 2D-3D
correspondences for different algorithms are shown. Inliers found by
P3P are blue, inliers found by P3P with local optimization are red
and inliers found by R6P are green. Notice that R6P found many
more matches than P3P and also than the locally optimized solution
initialized by P3P.

majority of today’s consumer cameras, smartphones etc. use 27

the rolling shutter (RS) mechanism [24] to capture images. 28

The key difference is that with the global shutter, the entire 29

image is exposed to the light at once, whereas when using 30

the RS the individual image rows (or columns) are captured 31

at different times. When a RS camera moves while capturing 32

the image, several types of distortion such as smear, skew 33

or wobble appear. A perspective camera model is no longer 34

valid in this case and methods which do not model the rolling 35

shutter effects will give poor estimates. 36

Recent works have shown that RS is an important effect that 37

should be considered in image rectification [17], [28], structure 38

from motion [2], [13], [12] and multiple view stereo [29]. 39

Those works have shown that existing methods can perform 40

poorly on RS data or even fail completely and that incorpo- 41

rating some sort of RS camera model can solve these issues. 42

In [2] authors tackled the problem of RS absolute pose using 43

a non-linear optimization with the initial guess obtained by a 44

linear method using 81/2 points and assuming a planar scene. 45

We present the first minimal solution to the RS absolute pose 46

problem from 6 non-planar points. 47

Another non-linear optimization method is presented in [12] 48

which is well-suited for video sequences, where camera poses 49

are computed sequentially taking the previous camera pose as 50

an initial guess. In [18], the authors compensated for the RS 51

effect prior to the optimization using estimated camera motion 52

parameters from subsequent video frames. In contrast, our 53

solvers work for single images exactly as P3P for perspective 54

cameras. 55

A globally optimal solution using polynomial equations 56
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and Gloptipoly [14] solver to solve rolling shutter PnP is57

shown in [23]. Authors show that the method is capable of58

providing better results than [2] with the use of seven or more59

point correspondences. However, the runtime of this approach,60

which uses Gloptipoly, is at least 500 times longer than our61

solvers (0.3ms) and therefore [23] is not practical for using62

in a RANSAC loop. Moreover, when using more points, this63

approach is more sensitive to mismatches.64

A first minimal solution to RS absolute pose was presented65

in [3]. It uses the Gröbner basis method to produce a solver66

which computes the camera pose and velocities from six67

correspondences (R6P). Due to the linearized model used for68

camera rotation matrix it requires an initial estimate of the69

camera orientation.70

This paper is an extended version of [3] that presents a71

new solution to the R6P problem which does not require72

any initial estimate of camera orientation. Furthermore, we73

present a more efficient version of the original R6P double-74

linearized solver [3] which reduces computation time signif-75

icantly. Lastly, this work provides a thorough comparison of76

the minimal solutions to non-linear optimization alternatives77

and gives a more thorough insight on the capabilities of R6P78

minimal solvers in various real-world experiments.79

A. Motivation80

It is important to note that rolling shutter effects are present81

even in still images and not only video sequences. Therefore it82

is desirable to have methods which only require a single image,83

which can be used for structure from motion, camera or object84

localization in cases where we don’t have a video sequence85

or are too limited in computing resources to process every86

frame of a video. An example could be an unmanned aerial87

vehicle equipped with a camera for on-board localization or88

doing a large scale structure from motion reconstruction from89

a camera mounted on a car.90

Contribution. This paper contains two non-iterative minimal91

solutions to the rolling shutter absolute pose (RnP) problem.92

These solutions provide more accurate camera pose estimates93

than standard P3P solution when images are affected by RS94

distortion and they work for still images as well as video95

sequences. Feasibility of several different RS camera models is96

analyzed and interesting experimental observations are made97

showing the benefits and limits of a RS camera model and a98

standard P3P model on a rolling shutter data.99

We present a new solution for RnP from six-100

correspondences based on the cayley transform model101

(R6P-1lin). Unlike with the double-linearized model used102

in [3] the new solution does not require an initial estimate103

of camera orientation. Furthermore, using the hidden variable104

trick [7] to simplify the system of polynomial equations, we105

produced a more efficient solution to the original R6P [3]106

(R6P-2lin) reducing the computation time significantly.107

Instead of solving six equations in six unknowns we solve a108

system of equations in only three unknowns.109

In addition to comparing the results of R6P-1lin, R6P-2lin110

and P3P minimal solvers we investigate the influence of subse-111

quent local optimization. We compare the results obtained by112

RS solvers to using non-linear optimization with P3P result as 113

an initial estimate. Local optimization is done using the full 114

RS rotation model in LO-RANSAC and subsequent bundle 115

adjustment. Extensive experiments are conducted in order to 116

show what kind of improvement can be made and which 117

approach provides the best results. 118

We investigate several rolling shutter camera models in 119

section III and we discuss and verify their feasibility for a 120

minimal solution to the RS absolute pose problem. In section 121

IV we describe how to prepare the equations of the two models 122

to be solved by a polynomial solver. Section V presents a 123

method how to keep the data close to the linearization point 124

where the double-linearized model works well. The resulting 125

R6P solvers and subsequent local optimization approaches are 126

thoroughly tested in section VII. 127

II. ABSOLUTE POSE WITH ROLLING SHUTTER 128

The computation of absolute camera pose using 2D and 3D 129

point correspondences under the rolling shutter effect (RnP) 130

brings new challenges. Standard PnP for perspective cameras 131

uses the projection function 132

λixi = RXi + C (1)

where R and C is the rotation and translation bringing a 133

3D point Xi from world coordinate system to the camera 134

coordinate system with xi = [ri, ci, 1]
>, and scalar λi ∈ R. 135

For RS cameras, every image row will be captured at different 136

time and hence at different positions when the camera is 137

moving during the image capture. R and C will therefore be 138

functions of the image row ri being captured. 139

λixi =

 rici
1

 = R(ri)Xi + C(ri) (2)

Next, we will describe functions R(ri) and C(ri). 140

III. ROLLING SHUTTER CAMERA MODELS 141

In this section we will consider several rolling shutter 142

camera models and investigate their applicability for the RnP 143

problem. For the camera translation we choose a simple 144

constant velocity model which was used in [29], [23], [24], 145

[12], [2]. Good results achieved by previous works suggest that 146

constant velocity is a sufficient approximation for the short 147

time-span of a frame capture. We can write C(ri) as 148

C(ri) = C + (ri − r0)t (3)

where C is the camera center corresponding to the perspective 149

case, i.e. when ri = r0, and t is the translational velocity. By 150

changing r0 we can set the image line for which the rolling 151

shutter model reduces to a perspective camera model. For our 152

purposes we choose r0 to be the middle row of the image, 153

which will be justified later. 154
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A. SLERP model155

To accommodate for camera rotation during frame capture we156

could interpolate between two orientations. A very popular157

method to interpolate rotations is SLERP [30], which was158

used in [12]. It works with quaternions and the formula to159

interpolate between two rotations represented by q0 and q1160

SLERP (q0, q1, t) = q0
sin (Ω− tΩ)

sin Ω
− q1

sin tΩ

sin Ω
(4)

where Ω = arccos
(
q0
>q1

)
. It is a linear interpolation on161

the sphere of quaternions, which in practice means that there162

will be a constant angular velocity. This is a nice property,163

which could even hold true in some special cases in reality164

(e.g. a camera mounted on a rotating platform or a car,165

which is turning with constant angular velocity). However,166

the presence of sine and cosine prevents us from using this167

model directly in a polynomial solver. We could substitute the168

sine and cosine with new variables and obtain a polynomial169

equations but that leads to high order polynomials and too170

complicated computations to get a fast solver. Moreover,171

with the increasing number of variables the solution becomes172

numerically unstable. This parameterization can be, however,173

utilized in the subsequent optimization step, such as bundle174

adjustment in [12].175

B. Euler vector model176

Euler vector is co-directional with the rotation axis and the177

length of the vector is equal to the rotation angle. One can178

then write a rotation matrix associated with Euler vector e179

using the Rodriguez formula180

R(e) = I +

[
e

||e||

]
×

sin ||e||+
[

e

||e||

]2
×

(1− cos ||e||), (5)

where [·]× is a skew symmetric matrix. Using Euler vector181

to describe camera rotation during capture yields the same182

advantages and drawbacks as using SLERP, i.e. multiplying183

the Euler vector by ri provides constant rotational velocity,184

but we have to deal with sine and cosine which makes185

it not practical for a minimal solver. It is, however, more186

practical than SLERP since we don’t have to carry around two187

quaternions. The minimal solver we present in this paper is188

based on a linearization of this model, which makes it easier189

to convert between those two and therefore easily initialize190

subsequent local optimization.191

C. Cayley transform model192

Another way to represent rotations is the Cayley trans-193

form [11]. For any vector a = [x, y, z]
> ∈ R3 there is a194

map195

R(a)=
1

K

[
1+x2−y2−z2 2xy−2z 2y+2xz

2z+2xy 1−x2+y2−z2 2yz−2x
2xz−2y 2x+2yz 1−x2−y2+z2

]
(6)

where K = 1+x2+y2+z2 which produces the rotation matrix196

corresponding to the quaternion w+ ix+ jy+ kz normalized197

so that w = 1. The vector a is a unit vector of the axis of198

rotation scaled by tan θ/2, where θ is the rotation angle, thus199

180 degree rotations are prohibited.200

D. R6P formulation with Cayley transform model 201

We can prescribe (2) such that R is a combination of two 202

rotations written using Cayley transform as 203

λi

 rici
1

 = R((ri − r0)w)R(v)Xi + C + (ri − r0)t (7)

to represent the camera initial orientation by v and the change 204

of orientation during frame capture by (ri− r0)w. This repre- 205

sents a rotation around the axis w which is close to uniform 206

in angular velocity around ri = r0. Equation (7) is a rational 207

polynomial and we must multiply it by 1 + x2 + y2 + z2 for 208

both R(v) and R(w) to get a pure polynomial for the polynomial 209

solver. We obtain a system of polynomial equations of degree 210

five in 18 (3+3+3+3+6 for C,v,t,w and λ1 . . . λ6 respectively) 211

variables which contains 408 monomials. Such a system is 212

difficult to solve and the Gröbner basis solution for this 213

system involves eliminating a 8000x8000 matrix, which is 214

time consuming and numerically very unstable. Due to these 215

reasons we will not consider this model as feasible for our 216

purposes. 217

E. R6P formulation with linearized model - R6P-1lin 218

To reduce the degree of the polynomials and the number of 219

monomials we can use a linearization of rotation matrices. We 220

will linearize R(w) around the initial rotation R(v) using the 221

first order Taylor expansion such that 222

λi

 rici
1

 = (I + (ri − r0)[w]×) R(v)Xi + C + (ri − r0)t (8)

where [w]× is the skew-symmetric matrix 223

[w]× =

 0 −w3 w2

w3 0 −w1

−w2 w1 0

 (9)

Such model, with the rolling shutter rotation linearized, was 224

used in [23]. This function will deviate from the reality with 225

increasing rolling shutter effect. However, we have observed 226

that this model is usually sufficient for the amount of rolling 227

shutter rotation present in real situations. It is practical to set 228

r0 as the middle row of the image, so that the error of the 229

model is spread over the image symmetrically. We now have 230

a system of degree three polynomials in 18 variables with 64 231

monomials. In section IV-C we will show how to simplify the 232

equations and produce a viable polynomial solver. 233

F. R6P formulation with double linearized model - R6P-2lin 234

Let us simplify the model even further by linearizing also the 235

initial rotation. We obtain 236

λi

rici
1

=(I+(ri−r0)[w]×)(I+[v]×)Xi+C+(ri−r0)t (10)

which are simpler polynomial equations of degree two and 237

28 monomials. The model has an obvious drawback and that 238

is, unlike w representing the rolling shutter motion and being 239
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presumably small, v can be arbitrary. Therefore, the model’s240

accuracy would depend on the initial orientation of the camera241

in the world frame. A possible solution is to force v to be close242

to zero and we propose a way how to do this in section V .243

In section IV we will show how to simplify equations (10)244

to make the computation more efficient and produce a fast245

polynomial solver.246

IV. R6P FOR RANSAC247

In previous section we presented several rolling shutter camera248

models and in this section we show how to produce efficient249

solvers for the single and double linearized models suitable250

for RANSAC environment. To solve the polynomial equations251

of the two viable models (10,8) we use the Gröbner basis252

method [7]. This method for solving systems of polynomial253

equations has been recently used to create very fast, efficient254

and numerically stable solvers to many difficult problems. The255

method is based on polynomial ideal theory and special bases256

of the ideals called Gröbner bases [7].257

A. Preparing the equations258

We start with the first part that is similar for both solvers.259

The minimal number of 2D-to-3D point correspondences260

necessary to solve the absolute pose rolling shutter problem261

is six. For six point correspondence, both models (10,8) result262

in a quite complex system of 3 × 6 = 18 equations in 18263

unknowns (λ1, . . . , λ6, v, w, C, t). Such a system is not easy264

to solve for the Gröbner basis method and therefore it has to265

be simplified.266

To simplify the input system (10,8) we first eliminate the267

scalar values λi by multiplying all equations (10,8) from the268

left by the skew symmetric matrix269  0 −1 ci
1 0 −ri

−ci ri 0

 . (11)

This leads to 18 equations, from which only 12 are linearly270

independent. For the double linearized model (10) they contain271

22 monomials and 12 unknowns, i.e., the rotation parameters272

w, v and the translation parameters C and t.273

For the single linearized model (8) we also need to multiply274

the equations by (v21+v22+v23+1) to get rid of the denominator275

coming from the cayley parameterization of R(v) (6). We need276

to keep in mind that C and t get multiplied as well and we277

obtain Ĉ = C(v21 + v22 + v22 + 1) and t̂ = t(v21 + v22 + v22 + 1)278

and after solving for Ĉ and t̂ we need to use v to obtain C279

and t. The equations now contain 86 monomials in w, v, Ĉ, t̂.280

The 12 linearly independent equations are linear in the281

unknown translation parameters C and t (or Ĉ, t̂ for the single282

linearized model). Therefore, they can be easily eliminated283

from these equations. This can be done either by performing284

Gauss-Jordan (G-J) elimination of a matrix representing the285

12 linearly independent equations or by expressing the six286

translation parameters as functions of the rotation parameters287

w and v and substituting these expressions to the remaining288

six equations.289

After the simplification we obtain a system of six equations 290

in six unknowns and 16 monomials for the double linearized 291

model and 80 monomials for the single linearized models. This 292

system has 20 solutions for the double linearized model and 293

64 solutions for the single linearized model. 294

The system of six equations in six unknowns can be directly 295

solved using the Gröbner basis method and the automatic 296

generator of Gröbner basis solvers [20]. The Gröbner basis 297

solver generated using the automatic generator [20] performs 298

one G-J elimination of the elimination template matrix. This 299

matrix contains coefficients which arise from specific mea- 300

surements, i.e., six 2D-to-3D point correspondences. Then the 301

solutions to the rotation parameters w and v are found from 302

the eigenvectors of the multiplication matrix created from the 303

rows of the eliminated template matrix. 304

Such a Gröbner basis solver for the R6P rolling shutter 305

problem using the double linearized model was proposed 306

in [3], it requires the G-J elimination of a 196×216 matrix and 307

computing the eigenvectors of a 20 × 20 matrix and it runs 308

about 1.7ms. For the single linearized model the generated 309

Gröbner basis solver was too large and unstable. In the next 310

part we will describe how to simplify the problem further to 311

produce better solvers. 312

B. R6P-2lin solver for the double linearized model 313

Here we present a much smaller solver to the R6P-2lin 314

rolling shutter problem than the one proposed in [3]. First, 315

note that six equations in six unknowns obtained from (10) by 316

eliminating the scalar values λi and the translation parameters 317

C and t are bilinear in the rotation parameters, i.e. they are 318

linear with respect to w and v. Therefore, we can rewrite these 319

six equations as 320

M(w)

[
v

1

]
= 0 (12)

where M(w) is a 6 × 4 matrix whose elements are linear 321

polynomials in w = (w1, w2, w3). 322

Since M(w) has a null vector, it must be rank deficient. There- 323

fore, all the 4× 4 sub-determinants of M(w) must equal zero. 324

This results in
(
6
4

)
= 15 polynomial equations which only 325

involve the rotation parameters w. These fifteen polynomial 326

equations can be written in a matrix form as 327

Mm = 0, (13)

where M is a 15×35 coefficient matrix and m is a 35×1 vector 328

of monomials in three unknowns w1, w2 and w3. 329

Note, that in this way we have eliminated additional three 330

unknowns (v1, v2 and v3) from our original system (10). 331

Similar technique for eliminating unknowns from a bilinear 332

system of polynomial equations was recently used in [34] to 333

solve a minimal problem of estimating the motion of a multi- 334

camera rig. 335

The system of fifteen polynomial equations in three un- 336

knowns (13) can be solved without the automatic generator 337

of Gröbner basis solvers [20]. In this case, after performing 338

G-J elimination of a coefficient matrix M we directly obtain 339

a Gröbner basis for the ideal generated by the input fifteen 340

polynomial equations. Therefore, to construct a special 20×20 341
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multiplication matrix [7] A it is sufficient to perform G-J342

elimination of a 15 × 35 coefficient matrix M (13). Then the343

solutions to the rotation parameters w are found from the344

eigenvectors of the multiplication matrix A extracted from the345

eliminated M. Solution to the remaining unknowns (v, C, t) are346

found by back-substitution. The R6P-2lin solver constructed347

this way in C++ takes about 0.3 ms on a 2.5 GHz i7 CPU.348

C. R6P-1lin solver for the single linearized model349

For the single linearized model (8) we can use a similar350

approach as in the case of the double linearized model to351

obtain equations in only three unknowns. With the single lin-352

earized model the equations after the simplifications described353

in section IV-A are linear with respect to w. This time we can354

rewrite these six equations as355

M(v)

[
w

1

]
= 0 (14)

where M(v) is again a 6 × 4 matrix which elements are now356

second degree polynomials in v = (v1, v2, v3). Again we have357 (
6
4

)
= 15 polynomial equations in the rotation parameters v358

coming from the 4× 4 subdeterminants of M(v) that must be359

equal to zero. However, since the elements of M(v) are now360

quadratic in v this yields equations of degree 8.361

These fifteen polynomial equations can again be written in362

a matrix form as363

Mm = 0, (15)

where M is a 15 × 165 coefficient matrix and m is a 165 × 1364

vector of monomials in three unknowns v1, v2 and v3.365

Unfortunately this time we introduced a two-dimensional366

family of false solutions when we eliminated w. These solu-367

tions correspond to the first three columns of M(v) becom-368

ing linearly dependent. Then there will exist vectors in the369

nullspace of M(v) on the form,370

M(v)

[
w

0

]
= 0, (16)

which are not solutions to the original system. Studying these371

solutions revealed that they are all complex and satisfy372

1 + v21 + v22 + v23 = 0. (17)

These do not correspond to valid scaled rotation matrices, e.g.373

the solution v = (i, 0, 0) corresponds to374

R(v) =

 0 0 0
0 2 −2i
0 2i 2

 . (18)

Fortunately the 15 polynomials were all divisible by (17).375

After dividing we have 15 equations of degree 6, which are376

only satisfied by the original 64 solutions.377

Using the recent automatic generator technique from [21]378

we created a minimal solver for this system. The minimal379

solver uses an elimination template of size 99×163 to recover380

the 64 × 64 multiplication matrix Av3 [7]. Solution to v3 can381

then be extracted fromthe eigenvalues of Av3 and solutions to382

v1 and v2 from its corresponding eigenvectors. After finding383

the solutions in v =
[
v1 v2 v3

]>
the remaining unknowns384

(w, C, t) are found by back-substitution. The R6P-1lin solver 385

constructed this way in C++ takes about 1.4 ms on a 2.5 GHz 386

i7 CPU. 387

D. Pruning the solutions and improving performance 388

Usually only one of the 20 or 64 solutions of R6P-2lin 389

and R6P-1lin is geometrically feasible, i.e., is real and of a 390

reasonable values of parameters. Specifically, if we consider 391

only reasonable values of the rolling shutter angular velocity w 392

we can eliminate many solutions that are not feasible. Authors 393

of [23] used the same linearization for w and showed that 394

when ||w|| > 0.05 the model loses its accuracy. We decided to 395

discard solutions with ||w|| > 0.2 which corresponds to angular 396

velocity of approximately 11 degrees per frame. Solutions 397

beyond this threshold are not interesting, since they are far 398

from the linearization point. In our experiments, this criterion 399

successfully eliminated 90-95% of solutions to be verified by 400

RANSAC, which sped up the process significantly by avoiding 401

lots of work in model verification. 402

For the R6P-1lin a significant portion of the computation 403

time is spent computing the eigendecomposition of the 64x64 404

multiplication matrix Av3 . The multiplication matrix Av3 is 405

constructed in such way, that the eigenvalues are the solutions 406

for the variable v3. To avoid expensive eigendecomposition of 407

Av3
we can form the characteristic polynomial of the matrix 408

Av3 − λI, e.g. by the Danilevsky method [8] and then find 409

its roots using the Sturm sequences [16]. The roots of the 410

characteristic polynomial will correspond to the eigenvalues 411

of Av3
. This method of speeding up the computation was 412

described in [5]. 413

Note that the above method only gives us the values of the 414

third Cayley parameter v3 for the real solutions. To recover 415

the full solutions we compute the eigenvectors corresponding 416

to these eigenvalues (i.e. the values of v3). This can be done 417

by for each solution solving the 64× 64 linear system, 418

(Av3 − v3I)x = 0. (19)

The values for the remaining parameters v1 and v2 can then be 419

extracted from x which has the following form (up to scale), 420

x = [v73 , v
3
2v

3
3 , v

2
1v

4
3 , . . . , v1, v2, v3, 1] ∈ R64. (20)

However, since we already know the value of v3 and we know 421

the structure of eigenvector x, we can use this to slightly speed 422

up the back-substitutions. Inserting the values for v3 into x, 423

instead yields a 21× 21 linear system in the unknowns 424

x̂ = [v51 , v
4
1v2, v

3
1v

2
2 , . . . , v

2
2 , v1, v2, 1] ∈ R21. (21)

The resulting linear system is smaller since some monomials 425

collapse, e.g. the monomials v21v
2
3 , v

2
1v3 and v21 end up only 426

yielding the single unknown v21 in the new linear system. 427

V. R6P-2LIN - GETTING CLOSE TO THE LINEARIZATION 428

POINT 429

As mentioned in section III, the double linearized model will 430

only be a good approximation when close to the linearization 431

point. That is the case when R(v) is close to I. We can enforce 432
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this condition if we have an approximation Ra to R(v). Then433

we can transform the 3D points as434

X̂i = RaXi i = 1, . . . , 6 (22)

and replace Xi in (10) by X̂i. Such solution Rl should then435

be close to I and we can obtain R(v) as RlRa. To get such436

approximation we can use for example an inertial sensor which437

is often present in cellphones, cameras or on-board a robot or438

UAV. However, we don’t want to limit ourselves to having439

additional sensor information so we propose to obtain Ra440

using a standard P3P algorithm [10]. We will show in the441

experiments to which limits this approach works and that it442

can indeed provide a sufficient approximation for our solver443

to work well.444

Notice that this approach requires only an approximation to445

camera orientation not the camera position.446

VI. R6P-1LIN - STAYING IN THE DOMAIN447

Since Cayley parameterization is not able to describe cam-448

eras rotated by 180 degrees, this poses a singular case for449

the R6P-1lin solver. In practice, the accuracy of the solutions450

returned by the solver will decrease when close to 180 degrees451

rotations. In general, not many dataset will contain such452

camera poses, but there is a general method to minimize the453

probability of the algorithm failing due to the presence of454

a singular case. Similar to section V we can pre-rotate the455

3D points Xi i = 1, . . . , 6 as in (22), but this time we use456

a random rotation matrix Ra. Using this approach we assure457

that the probability of being close to the singular case will be458

as low as possible and identical for all datasets. Moreover,459

when used in RANSAC, we can pre-rotate with different460

matrix Ra in each round, making the probability that we will461

encounter only singular cases for a given camera virtually zero.462

This approach was used in the DLS absolute pose solutions463

presented by [15], [25].464

VII. EXPERIMENTS465

We conducted several experiments on synthetic as well as real466

datasets. The synthetic experiments were aimed at analyzing467

the properties of the double and single linearized rolling468

shutter camera models, which brings an interesting insight on469

how the solvers will behave under different conditions. On the470

real datasets, in the absence of ground truth, we focused on471

the number of matches classified as inliers using RANSAC.472

This corresponds to a typical application of absolute pose473

algorithm, where we want our model to be able to fit as474

many matches as possible while avoiding the mismatches. We475

compared our R6P solvers only to P3P solver [10], since to the476

best of our knowledge it is the only alternative with the same477

applicability. It is important to note that [12] can be used only478

on video sequences, [2] requires 9 co-planar points and [23]479

uses global optimization which is sensitive to mismatches and480

due to speed of Gloptipoly (in the orders of seconds) too slow481

for the RANSAC paradigm.482

A. Synthetic data 483

In the synthetic datasets, a calibrated camera was considered 484

with field of view of 45 degrees. It was randomly placed in a 485

distance of 〈1; 3.3〉 from the origin, observing a group of 3D 486

points randomly placed in a cube with side length 2 centered 487

around the origin. Camera initial orientation was different 488

based on the type of experiment. The rolling shutter movement 489

was simulated using the angle axis parameterization, because 490

using the double linearized model or the single linearized 491

model for generating data would allow R6P-2lin or R6P- 492

1lin respectively to always find the exact solution. Although 493

it would be interesting to simulate different kind of camera 494

motions, it is generally agreed that camera motion during tens 495

of miliseconds can be mostly treated as constant velocity mo- 496

tion [24], [23], [29], [12]. Therefore we generated the synthetic 497

image projections using constant velocity camera motion to 498

analyze the expected behavior of the solvers and verified the 499

solvers later on real datasets with arbitrary camera motions. 500

Six points were randomly chosen from the projections to solve 501

for the camera parameters. Since R6P-2lin and R6P-1lin can 502

return up to 20 and 64 real solutions respectively, the one 503

closest to the ground truth was always chosen, as it would be 504

probably chosen in the RANSAC estimation. 505

1) Handling the RS effect: The first experiment focused on 506

varying the two rolling shutter parameters, i.e. the translational 507

and angular velocity. The camera orientation is kept R = I so 508

we avoid the effect of the initial camera orientation lineariza- 509

tion for R6P-2lin. We varied the angular velocity from 0 to 30 510

degrees per frame. Angular velocity 30 deg/frame means that 511

the camera moved by 30 degrees between acquiring the first 512

and the last row. The translational velocity was varied from 0 513

to 1 which is approximately 50% of the average distance of 514

the camera center from the 3D points. The results are shown 515

in Fig. 2. As expected, because the model does not exactly 516

fit the data (as will be the case in real data), with increasing 517

rolling shutter effect the performance of the solver decreases. 518

However, the results are very promising since even at higher 519

angular velocities the solver still delivers fairly precise results. 520

At 28 deg/frame the mean orientation error is still below half a 521

degree and the position error is less than half a percent. When 522

varying the translation velocity only, we found the solver to 523

be giving exact results up to the numerical precision, which 524

was expected, since the model fits exactly the data. 525

2) Effect of the double linearization in R6P-2lin: The 526

second experiment was focused on finding out how well 527

R6P-2lin behaves around its linearization point, i.e. when 528

R 6= I. Rolling shutter parameters were uniformly chosen 529

from values 〈0; 20〉 deg/frame for the angular velocity and 530

〈0; 0.2〉 for the translational velocity, which is approximately 531

ten percent of the average distance of camera center from the 532

3D points. Camera orientation was varied in the interval of 533

〈0; 30〉 degrees. Results are in Fig. 3 and they show that R6P- 534

2lin is very prone to error when being far from its linearization 535

point, with the mean camera orientation error going up to five 536

degrees and mean relative camera center error approaching 537

0.3 when the camera is rotated 30 degrees away from the 538

linearization point. C and R are computed quite accurately, 539
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Fig. 2: Experiment 1 - results of the estimated camera pose and
velocity for varying RS motion, increasing the camera rotation as
well as camera translation velocity. The camera orientation for R6P-
2lin is kept at R = I to avoid the effect of the linearized camera
orientation.
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Fig. 3: Experiment 2 - varying camera orientation, showing the
effect of the double linearization of R6P-2lin. The camera angular
and translational velocities are randomly chosen to not exceed 20
deg/frame and 0.2 respectively.

when R is within approximately 6 degrees from I. It suggests540

that if we can use some standard non-RS method, such as541

P3P to find an initial R0 to align the data, we can then apply542

our solver to get a more accurate camera pose. We tested543

this approach in experiment 3. R6P-1lin is not affected by the544

camera orientation as expected.545

Results in Fig. 3 hint that the linearization is the key issue546

for R6P-2lin solver and that around 7 degrees of distance from547

R = I our solver is surpassed in precision of estimating the548

camera center and at 14 to 17 degrees in the precision of549

estimating camera orientation. Note the interesting discrepancy550

between the error in camera position and orientation. An551

interesting thing to notice from these two experiments is that552
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Fig. 4: Experiment 3 - increasing camera motion and comparing the
single linearized model (R6P-1lin) to the double linearized model
(R6P-lin2) initialized by P3P. A significant improvement is made
using R6P-2lin after being initialized with P3P. R6P-2lin initialized
by P3P provides comparable performance to R6P-1lin but is outper-
formed by R6P-1lin on large RS effects because the initial orientation
provided by P3P is not good enough.

the global P3P solver was capable of bringing the camera 553

orientation within six degrees of the ground truth, even under 554

large RS effect. At that point, if we apply R6P-2lin solver, 555

the precision should improve significantly to values below 0.5 556

deg. 557

3) Initialization of R6P-2lin by P3P: The purpose of exper- 558

iment 3 is to verify that P3P can provide sufficient initialization 559

for R6P-2lin. The camera orientation was chosen randomly 560

and the RS parameters were increasing as in experiment 1. 561

We compared P3P, R6P-1lin and R6P-2lin initialized by P3P 562

by using the orientation provided by P3P to rotate the scene 563

as described in section V. The results in Fig. 4 confirm our 564

hypothesis. If the global P3P, or any other method, is able 565

to compute the camera orientation within 6 degree error then 566

R6P-2lin improves the solution to an average error below one 567

degree. Interesting observation is that unlike in experiment 568

2 here the precision is significantly better for both camera 569

center and orientation. It should also be noted, that R6P-1lin 570

outperforms R6P-2lin as the RS effect increases, due to the 571

deteriorating initialization provided by P3P. 572

B. Real data 573

We show two real world examples where our R6P solvers 574

provide benefits. The first experiment is focused on estimating 575

the camera absolute pose in the wild where the pose needs to 576

be computed from image features possibly containing outliers. 577

In a typical Structure from Motion application, the more 3D- 578

2D matches are verified as inliers by the geometric camera 579

model, the more 3D points will be reconstructed and the model 580

better interconnected. 581

The second experiment shows an augmented reality scenario 582

where known markers are placed in 3D space and they are 583
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detected automatically in the image. As camera absolute pose584

is computed using these markers, virtual objects can be placed585

into the scene. This represents a situation with a lot of camera586

movement and the need for a quick solver to run in real-time.587

C. Structure from motion588

In the first experiment we use datasets from [13] where an589

Iphone 4 camera was placed together with a global shutter590

Canon camera on a rig. Videos were taken when moving this591

rig by hand or walking around. We therefore have for each592

dataset two sets of images of the same scene. One set is with593

rolling shutter effect and one with global shutter.594

1) Obtaining 2D-3D correspondences: To see the behavior595

of our method on real data, we needed to obtain 3D to 2D596

correspondences for the rolling shutter images. We decided to597

do a reconstruction using a standard SfM pipeline [32] using598

the global shutter images first. Then, we matched the rolling599

shutter images with the global shutter matches that had a cor-600

responding 3D point in the global shutter 3D model. That way601

we obtained the correspondences between 2D rolling shutter602

features and 3D global shutter points. It was verified visually603

that this approach provided 2D-3D correspondences with a604

very small number of mismatches, i.e. 2D correspondences605

being matched to wrong 3D points. This is probably due to606

the fact, that all 3D points have already gone through an SfM607

pipeline and only good 3D points which were successfully608

matched in several cameras remained. Still, some mismatches609

were present, but according to our experiments, this number610

was not higher than 10%.611

2) Evaluation: To evaluate our method, we measured the612

number of inliers, i.e. the 2D-3D correspondences in agree-613

ment with the model, after performing RANSAC. This is an614

important measure, since a common use of PnP is to calculate615

the camera pose and tentative 3D points for triangulation. The616

more points will be classified as inliers the more points will617

appear in the reconstruction and will support further cameras.618

We first applied P3P to obtain Ra in equation (22), trans-619

formed the 3D points and then used our R6P-2lin solver620

as described in section V. Since our data contained only621

few mismatches, 1000 iterations of RANSAC proved to be622

enough to obtain a good camera pose. To reduce randomness623

of RANSAC results, we averaged the numbers over 100624

successive RANSAC runs. The inlier threshold in RANSAC625

was set to 0.002 of the image diagonal length which in this626

case was approximately 2 pixels. As it is seen in Fig. 5, R6P-627

2lin is able to classify more points as inliers compared to P3P.628

The difference is significant especially when camera moves629

rapidly and/or the scene is close to the camera. This result630

confirms our expectation that as the camera movement during631

the capture becomes larger the need for a rolling shutter model632

is more significant. Datasets seq20 and seq22 contained more633

camera motion and therefore show a larger gap between results634

of P3P and R6P-2lin.635

A good example is in dataset seq20, where the camera is636

fairly still in the beginning, then undergoes a rapid change637

in orientation (going upwards following the trunk of a palm638

tree), stops and then goes down again. The number of inliers639
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Fig. 5: Examples of experiments on real data. Number of inliers after
running 1000 rounds of RANSAC, averaged over 100 RANSAC runs.
Number of 2D-3D matches from global shutter images to rolling
shutter images are in black, number of inliers obtained by P3P are
in red and number of inliers obtained by R6P-2lin are in green. The
results are averaged over 100 runs to reduce randomness.

returned by R6P-2lin and P3P when the camera is still is 640

comparable, although higher for R6P-2lin since there are some 641

RS distortions caused by handshake. As soon as the camera 642

starts moving, the number of inliers for P3P drops drastically, 643

sometimes even below 10% of the number of matches. R6P- 644

2lin, in contrast, manages to keep the number of inliers above 645

90% of the number of matches. That is a huge difference. 646

Important observation is, that even though P3P fails to clas- 647

sify more than 80% of the matches as inliers it still provides a 648

sufficient estimate of the camera orientation for the R6P-2lin 649

to produce much better result. A detailed visualization of one 650

of the results on seq20 is given in Fig. 6. We don’t visualize 651

the results of R6P-1lin because they were close to those of 652

R6P-2lin and the detailed results can be found in table I. 653

3) Very fast motion: In previous experiments we evaluated 654

the number of inliers as an indicator how well each solver 655

performs. In this experiment we aim at showing the practical 656

impact of using a perspective camera model on heavily dis- 657

torted RS images and the improvement we can obtain by using 658

R6P solvers. 659

We tested our solvers on heavily distorted RS images 660

caused by fast camera motion that can arise in practice. A 661

racing drone, carrying a GoPro camera and performing quick 662

maneuvers is a good example of such data. We reconstructed 663

the model of a building from approximately a hundred of still 664

images from a classic digital camera combined with several 665

images from the GoPro camera mounted on a drone which 666

contained heavy RS distortion. This is a typical scenario where 667

user has a number of images from which certain amount 668

contains distortions caused by RS and fast movement. 669

We used a high quality state of the art SfM pipeline 670

COLMAP [31] to reconstruct the scene, removing the radial 671

distortion first. The building was reconstructed well, due to 672

large amount of image data coming from the still images. 673

Even though there were too few highly distorted RS images to 674
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Fig. 6: Results on dataset seq20, matched correspondences are in blue, inliers after RANSAC using P3P and R6P-2lin are in red and green
respectively. The actual numbers of inliers are displayed on side of each image pair.
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Fig. 7: 3D reconstruction of a building from large number of GS
images (blue camera poses) and several images containing high
level of RS distortion (red camera poses). Several RS cameras were
clearly reconstructed wrong, having the pose under ground. The poses
estimated using R6P-2lin (green) are much more realistic.

skew the model, the cameras coming from the RS images were675

reconstructed in clearly bad poses (red cameras in Figure 7).676

You can see that several RS images were reconstructed under677

ground.678

We then created a new model using only the still images679

and registered the RS distorted images from GoPro camera680

to this model using method described in section VII-C1. The681

poses estimated using R6P-2lin (green cameras in Figure 7)682

roughly correspond to the poses where images were taken.683

D. R6P and local optimization684

An interesting question is whether one should use one of685

the two proposed R6P solvers or to locally optimize using one686

of the available Rolling-Shutter models starting from a P3P687

initialization. A popular approach called LO-RANSAC [6]688

uses the local optimization step after each accepted hypothesis689

in RANSAC. A camera model obtained by any method can690

be locally optimized using the points classified as inliers691

again using Bundle Adjustment (BA). We compared several692

meaningful approaches that represent possible practical use of693

the R6P algorithms and alternatives using local optimization.694

The key steps are following:695

• P3P/R6P-2lin/R6P-1lin - RANSAC loop the correspond-696

ing solver697

• LO-P - Local optimization inside RANSAC loop, fol-698

lowed by BA. Perspective model.699

• LO-RS - Local optimization inside RANSAC loop, fol-700

lowed by BA. RS model.701

We used LO-RANSAC and BA either with perspective or702

RS camera model with true rotation model from section III-B.703

The local optimization step was implemented using Google704

Ceres [1].705

We tested many possible practical combinations of algo-706

rithms and the results are shown in table I in terms of minimal707

and average number of inliers over the entire sequences.708

Methods in the first, fourth and fifth column represent the most709

straightforward use of the P3P and R6P solvers respectively 710

with no local optimization. Method in the second column rep- 711

resents the best result that can be obtained using a perspective 712

camera model, utilizing LO-P. Third column represent the case 713

when we avoid using R6P solvers, but locally optimize using 714

a RS model. Approaches in the sixth trough eighth column 715

use R6P solvers with LO-RS, therefore utilizing everything 716

available to achieve the best results. 717

We observe again that R6P greatly outperforms P3P in 718

terms of inliers found. P3P with LO-RANSAC and BA using 719

perspective camera model does not improve over P3P itself, 720

signalizing that RS model is certainly needed for this type of 721

data. A significant improvement is made when using P3P and 722

optimizing with RS camera model. Still, it does not achieve 723

the performance of R6P solvers without LO. On most of the 724

datasets, R6P itself provides higher number of inliers as you 725

can see in Fig. 8. It is mostly apparent in the minimum number 726

of inliers, which indicates critical cases when the camera 727

movement is large. This can be explained by the P3P not 728

being able to identify a large enough set of inliers, that would 729

provide a good set to optimize the RS model on. 730

There is a measurable difference between P3P + R6P-2lin 731

and R6P-1lin in the favor of the latter, signalizing that P3P 732

as an initialization of R6P-2lin can hinder the performance of 733

the RS solver in situations where the RS effect is large and 734

that R6P-1lin overcomes this problem. 735

Performance of R6P can be further improved by apply- 736

ing local optimization with RS model. Using R6P solvers 737

with subsequent local optimization with the true RS rotation 738

model III-B provides the best performance across all datasets. 739

E. RANSAC threshold vs inliers 740

In this section we compare the number of inliers obtained by 741

P3P and R6P-1lin with various RANSAC thresholds. As seen 742

in the previous section on the real datasets P3P struggles to 743

identify large portion of inliers on images with RS distortions 744

compared to R6P-1lin with the same threshold. One could 745

argue that increasing the threshold would allow P3P to capture 746

more inliers, perhaps the same amount as in the case of R6P- 747

1lin. To analyze this, we observed the number of inliers in 748

each iteration of RANSAC under various thresholds. We chose 749

dataset seq20 as a representative and average the results over 750

100 runs of RANSAC. The results in figure 9 show that in 751

order to obtain the same percentage of inliers the threshold 752

for P3P would have to be raised to 20 pixels, which is a 753

significant increase compared to 2 pixels for R6P-1lin. Such 754

large threshold could potentially lead to contamination by 755

outliers. 756

F. Performance 757

To provide an idea about the performance of the proposed 758

solvers in comparison to their alternatives we measured the 759

time required by the sub-tasks in the RANSAC routine for 760

each of the methods used in section VII-C. These sub-tasks 761

include computing the camera pose, verifying the hypothe- 762

ses and performing local optimization. Whereas computing 763

the camera pose will always take approximately the same 764
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Fig. 8: Comparison of the minimal and average ratio of inliers provided by R6P-2lin versus P3P with local optimization using RS model.
Notice that R6P alone without local optimization is better on most datasets. In 28 datasets R6P-2lin provided higher minimal inlier ratio
and in 25 dataset better average inilier ratio. In the remaining datasets, the R6P-2lin and locally optimized P3P provided almost identical
results. The results correspond to columns 3 and 4 in table I.

P3P
P3P

LO-P
P3P

LO-RS
P3P

R6P-2lin R6P-1lin

P3P
R6P-2lin
LO-RS

P3P
LO-RS

R6P-2lin
LO-RS

R6P-1lin
LO-RS

min avg min avg min avg min avg min avg min avg min avg min avg
seq01 0.53 0.77 0.48 0.76 0.70 0.91 0.72 0.92 0.72 0.91 0.77 0.94 0.76 0.94 0.77 0.94
seq02 0.34 0.71 0.34 0.76 0.48 0.86 0.60 0.88 0.60 0.88 0.64 0.90 0.64 0.90 0.64 0.90
seq03 0.39 0.76 0.40 0.77 0.60 0.89 0.72 0.89 0.73 0.89 0.75 0.92 0.76 0.92 0.75 0.92
seq04 0.54 0.76 0.56 0.77 0.71 0.87 0.65 0.88 0.67 0.88 0.73 0.92 0.73 0.92 0.73 0.92
seq05 0.37 0.82 0.38 0.82 0.67 0.94 0.83 0.94 0.83 0.95 0.86 0.97 0.86 0.96 0.86 0.97
seq06 0.46 0.81 0.48 0.82 0.52 0.89 0.66 0.89 0.68 0.90 0.75 0.94 0.78 0.95 0.75 0.94
seq07 0.44 0.69 0.44 0.70 0.65 0.85 0.72 0.89 0.70 0.89 0.76 0.92 0.76 0.92 0.76 0.92
seq08 0.32 0.62 0.28 0.60 0.34 0.74 0.46 0.78 0.49 0.78 0.50 0.80 0.50 0.81 0.50 0.80
seq09 0.28 0.42 0.29 0.43 0.58 0.72 0.70 0.80 0.71 0.80 0.78 0.84 0.78 0.84 0.78 0.84
seq10 0.47 0.69 0.48 0.70 0.62 0.85 0.66 0.89 0.67 0.89 0.70 0.91 0.70 0.91 0.70 0.91
seq11 0.57 0.64 0.58 0.65 0.72 0.76 0.78 0.81 0.81 0.82 0.81 0.85 0.83 0.85 0.81 0.85
seq12 0.27 0.57 0.28 0.58 0.54 0.75 0.59 0.80 0.60 0.80 0.63 0.83 0.62 0.83 0.63 0.83
seq13 0.41 0.74 0.42 0.74 0.53 0.89 0.60 0.91 0.63 0.92 0.65 0.93 0.65 0.93 0.65 0.93
seq14 0.55 0.84 0.56 0.84 0.73 0.90 0.77 0.89 0.75 0.89 0.79 0.91 0.78 0.91 0.79 0.91
seq15 0.46 0.68 0.46 0.68 0.51 0.84 0.64 0.87 0.62 0.87 0.65 0.89 0.65 0.90 0.65 0.89
seq16 0.50 0.69 0.52 0.70 0.65 0.83 0.68 0.85 0.70 0.85 0.73 0.88 0.74 0.88 0.73 0.88
seq17 0.65 0.78 0.66 0.80 0.75 0.96 0.74 0.95 0.76 0.95 0.78 0.96 0.79 0.96 0.78 0.96
seq18 0.53 0.74 0.55 0.75 0.66 0.90 0.74 0.92 0.75 0.92 0.80 0.94 0.79 0.94 0.80 0.94
seq19 0.48 0.63 0.49 0.64 0.53 0.68 0.51 0.66 0.53 0.67 0.57 0.71 0.57 0.71 0.57 0.71
seq20 0.20 0.55 0.21 0.56 0.52 0.80 0.81 0.89 0.82 0.90 0.82 0.93 0.83 0.93 0.82 0.93
seq21 0.31 0.59 0.32 0.60 0.51 0.84 0.64 0.90 0.63 0.90 0.67 0.92 0.67 0.92 0.67 0.92
seq22 0.48 0.81 0.48 0.82 0.67 0.94 0.81 0.95 0.81 0.95 0.88 0.97 0.88 0.97 0.88 0.97
seq23 0.37 0.73 0.38 0.74 0.52 0.87 0.57 0.87 0.59 0.88 0.62 0.90 0.63 0.90 0.62 0.90
seq24 0.34 0.78 0.36 0.79 0.82 0.95 0.92 0.96 0.92 0.96 0.95 0.98 0.95 0.98 0.95 0.98
seq25 0.47 0.74 0.48 0.75 0.79 0.90 0.76 0.89 0.77 0.90 0.82 0.92 0.82 0.92 0.82 0.92
seq26 0.21 0.58 0.22 0.59 0.64 0.84 0.74 0.91 0.74 0.91 0.78 0.93 0.79 0.93 0.78 0.93
seq27 0.26 0.61 0.26 0.61 0.63 0.87 0.83 0.95 0.83 0.95 0.85 0.96 0.85 0.96 0.85 0.96
seq28 0.24 0.56 0.27 0.57 0.47 0.78 0.74 0.89 0.75 0.89 0.77 0.91 0.77 0.91 0.77 0.91
seq29 0.37 0.67 0.38 0.67 0.50 0.81 0.60 0.85 0.59 0.85 0.64 0.88 0.62 0.88 0.64 0.88
seq30 0.20 0.49 0.21 0.50 0.33 0.72 0.62 0.85 0.62 0.85 0.66 0.88 0.66 0.88 0.66 0.88
seq31 0.41 0.50 0.42 0.51 0.53 0.59 0.55 0.63 0.56 0.63 0.60 0.67 0.58 0.67 0.60 0.67
seq33 0.29 0.68 0.30 0.69 0.52 0.83 0.61 0.87 0.61 0.87 0.66 0.89 0.66 0.89 0.66 0.89
seq34 0.32 0.79 0.33 0.80 0.73 0.94 0.87 0.96 0.87 0.96 0.89 0.97 0.89 0.97 0.89 0.97
seq35 0.34 0.72 0.35 0.73 0.50 0.87 0.54 0.89 0.54 0.89 0.59 0.91 0.58 0.91 0.59 0.91
seq36 0.40 0.75 0.40 0.76 0.51 0.88 0.56 0.89 0.56 0.89 0.58 0.91 0.60 0.91 0.58 0.91

TABLE I: Comparison of different uses of P3P and R6P solvers. Table shows the minimum and average number of inliers found by the
approaches described in section VII-D. R6P itself provides most of the time significantly better results than running P3P and LO-RANSAC
and BA with RS model as visualized by the red and green colors in columns 3,4 and 5. The best results overall, marked by a bold font, are
provided by R6P and subsequent local optimization with RS model.
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Fig. 9: Average number of inliers found by P3P and R6P RANSAC
using different thresholds.

P3P P-ver R6P-2lin R6P-1lin RS-ver LO-P LO-RS
0.5 280 300 1400 800 9000 17000

TABLE II: Average timings (in microseconds) for different camera
pose estimation tasks. 1000 correspondences assumed for the verifi-
cation. The verification step also includes the average number of 2
hypotheses returned for both P3P and subsequent R6P-2lin or R6P-
1lin which makes a total amount of 2000 correspondences to be
verified.

time, verification and local optimization will require different765

amount of time depending on the number of correspondences.766

The timings we show for verification and local optimization767

are for 1000 3D-2D correspondences which we chose as a768

reasonable representative case.769

The timings in table II show that, while P3P is very fast770

compared to R6P, the verification is actually much more ex-771

pensive than running P3P. The local optimimzation step is even772

more expensive, an order of magnitude slower than running773

R6P-2lin. Depending on the application, these numbers will774

add to the total computation time which will depend on the775

algorithms used, number of RANSAC iterations, number of776

correspondences and number of local optimization steps. To777

give a better intuition about the total time complexity we778

provide a table III of run-times of the different methods from779

section VII-C based on the assumption that there are 1000780

correspondences in the image, 1000 RANSAC steps and that781

local optimization is used 10 times during the LO-RANSAC782

procedure.783

G. Augmented reality784

We used the Aruco markers in a regular grid to provide an785

environment with known 3D-2D correspondences. A camera786

was used to take video of the scene, with random movement,787

simulating a person looking around. In total around 300788

markers were present in the scene with approximately 120789

markers detected in each image on average. On each frame we790

ran a 20 rounds of RANSAC ensuring at least 30Hz for the791

absolute pose estimation by R6P-1lin and providing robustness792

to approximately 20% outlier contamination and we calculated793

the reprojection errors for the detected markers.794

As soon as the camera started moving, the estimate provided795

by P3P started to be visually inaccurate. R6P provided a much796

more stable reprojection of the virtual objects. The farther the797

virtual object was from the detected markers from which the798

Method Pose Verif. LO Verif. Total

P3P 0.5ms 280ms 280.5ms

P3P
LO-P 0.5ms 280ms 90ms 1.4ms 373.3ms

P3P
LO-RS 0.5ms 280ms 170ms 4ms 454.5ms

P3P
R6P-2lin 300.5ms 1080ms 1380.5ms

P3P
R6P-2lin
LO-RS 300.5ms 1080ms 170ms 4ms 1527.5ms

P3P
LO-RS

R6P-2lin
LO-RS 300.5ms 1080ms 260ms 5.4ms 1645.9ms

R6P-1lin 1400ms 800ms 2200ms

R6P-1lin
LO-RS 1400 800ms 170ms 4ms 2374ms

TABLE III: Average timings for different methods assuming 1000
rounds of RANSAC and 1000 correspondences per image. The
amount of time spent by verification already includes the average
number of hypotheses returned by the solvers.
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Fig. 10: Reprojection errors on the detected aruco markers using the
camera poses obtained by P3P, R6P-lin2, R6P-lin1 and P3P with
subsequent local optimization (Bundle adjustment).

Fig. 11: Placing virtual objects in the scene using absolute camera
pose calculated from P3P (red), R6P (green) or P3P with subsequent
local optimization (magenta). Two subsequent frames from a video
sequence are dislplayed, showing the effect that RS camera motion
has on the classic P3P algorithm. In the closeups you can see how
the cube projected using P3P deviates (right) from its original pose
(left) when the motion starts.
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pose was computed, the more significant was the error of P3P.799

For an example of this effect, see figure 11.800

To express this quantitatively. We calculated the reprojection801

error on the detected markers in each image. The results in802

figure 10 show that the pose computed by R6P provides overall803

much smaller reprojection errors. R6P provides almost as good804

performance as a P3P with subsequent local optimization.805

VIII. CONCLUSION806

In this paper, we addressed the problem of absolute pose for807

cameras with rolling shutter. We presented several different808

models which capture camera translation and rotation during809

frame capture. Two of them were found to be feasible to be810

used in an efficient polynomial solver. Using these solvers,811

camera position, orientation, translational velocity and angular812

velocity can be computed using six 2D-to-3D correspon-813

dences. The R6P-1lin solver, based on Cayley parametereiza-814

tion of the camera orientation is a first self-sufficient minimal815

solution to the rolling shutter camera absolute pose problem.816

The R6P-2lin solver is faster, but uses a linear approximation817

to the camera orientation and therefore requires an initial guess818

of the camera orientation. We showed on synthetic as well as819

real datasets that standard P3P algorithm is able to provide820

this initialization. Further, having an initial guess on camera821

orientation, such as from an inertial measurement unit present822

in cellphones or UAV’s, one could use the faster R6P-2lin823

solver directly. Both of the presented solvers improve on the824

precision of the camera absolute pose estimate when rolling825

shutter effect is present in the images, delivering average826

camera orientation error under half a degree (compared to827

six degrees for P3P) and relative camera position error under828

2% (compared to 6% for P3P) even for large rolling shutter829

distortions in our synthetic experiments. The solvers were830

verified to work on real data, delivering increased number of831

inliers when using R6P over P3P in RANSAC. We evaluated832

the effects of non-linear refinement with both linearized and833

non-linearized rolling shutter rotation models and have shown834

that R6P provides higher number of inliers than P3P with835

subsequent non-linear refinement in most cases.836
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