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ABSTRACT

Reinforcement Learning with Verifiable Rewards (RLVR) has recently emerged
as a core paradigm for enhancing the reasoning capabilities of Large Language
Models (LLMs). To address the lack of verification signals at test time after RLVR,
prior studies incorporate the training of model’s self-verification capabilities into
the standard RLVR process, thereby unifying reasoning and verification capabilities
within a single LLM. However, previous practice requires the LLM to sequentially
generate solutions and self-verifications using two separate prompt templates,
which doubles the inference cost per sample and significantly reduces efficiency. In
this work, we theoretically reveal that the closed-form solution to the RL objective
of self-verification training can be approximately reduced to a remarkably simple
form: the true reasoning reward of a solution is equal to its last-token self-
rewarding score, which is computed as the difference between the policy model’s
next-token log-probability assigned to any pre-specified token at the solution’s
last token and a pre-calculated constant, scaled by the KL coefficient. Based on
this insight, we propose LaSeR (Reinforcement Learning with Last-Token Self-
Rewarding), an algorithm that simply augments the original RLVR loss with a
Mean Squared Error (MSE) loss that aligns the last-token self-rewarding scores
with the verifier-based reasoning rewards, and jointly optimizes the reasoning
and self-rewarding capabilities of LLMs. The optimized self-rewarding scores
serve as auxiliary reward signals in both training and testing to enhance model
performance. Notably, our algorithm derives these scores from the predicted next-
token probability distribution of the last solution token immediately after solution
generation, thereby incurring only the minimal extra cost of at most one additional
token inference. Experimental results show that our method not only improves the
reasoning performance of the model also equips it with remarkable self-rewarding
capability, thereby further boosting its inference-time scaling performance.1

1 INTRODUCTION

In the past few years, Large Language Models (LLMs) (Achiam et al., 2023; MetaAI, 2024a; Qwen
Team, 2024; Liu et al., 2024a) have advanced significantly, excelling in various domains (Li et al.,
2023; Wang et al., 2024b). However, they still face limitations in complex reasoning tasks (AI-MO,
2024a; OpenCompass, 2025; Rein et al., 2024; Jain et al., 2025). Recently, Reinforcement Learning
with Verifiable Rewards (RLVR) has shown great promise in enhancing the complex reasoning
abilities of LLMs, as demonstrated by OpenAI o1 (Jaech et al., 2024) and DeepSeek-R1 (Guo
et al., 2025). By rewarding reasoning paths based on the consistency between final outcomes and
ground-truth answers through a deterministic verifier, RLVR incentivizes LLMs to produce more
deliberate reasoning chains while effectively mitigating the risk of reward hacking (Gao et al., 2023).

∗Work done during an internship at Tencent.
†Corresponding author.
1Code and models are available at https://github.com/RUCBM/LaSeR.
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Figure 1: The full illustration of our method LaSeR. During training, our approach augments the
standard RLVR process with an additional MSE loss between the verifier-based rewards (rv) and the
last-token self-rewarding scores (rs), where rs is the difference between the policy model’s next-token
log-probabilities of a pre-specified special token at the final response token and a pre-calculated
constant cref, scaled by the KL coefficient βv. The optimized self-rewarding scores can serve as
auxiliary reward signals in both training and testing to enhance model performance.

Despite its effectiveness, a limitation of standard RLVR is its inability to continue providing verifica-
tion signals for model outputs in scenarios where ground truth answers are unavailable, such as during
test-time inference (Zuo et al., 2025). To address this, the standard approach has been to train an
external verifier (Lightman et al., 2023; Snell et al., 2024; Zhang et al., 2024; Gao et al., 2024; Yang
et al., 2025b) to evaluate candidate solutions. More recently, in pursuit of endowing models with the
ability for autonomous and continual self-improvement (Zuo et al., 2025), several works (Sareen et al.,
2025; Liu et al., 2025a; Zha et al., 2025; Jiang et al., 2025) have instead explored jointly optimizing
the reasoning and self-verification capabilities of a single policy model within the RLVR framework.
However, we argue that these methods have a major issue of inefficiency: the external verifier
requires additional training on a separate LLM during or after reinforcement learning (RL); while joint
optimization involves generating both solutions and self-verifications sequentially under two separate
prompt templates, which doubles the per-sample inference cost and reduces generation efficiency.

In this work, we propose LaSeR (Reinforcement Learning with Last-Token Self-Rewarding), a
lightweight and highly effective algorithm that achieves this goal, jointly optimizing reasoning
and self-verification capabilities at nearly zero additional cost. Our core insight is that a model’s
assessment in its own solution can be captured in the last token’s predicted probability distribution.
We first show theoretically that the RL objective of self-verification has a closed-form solution,
where the true reasoning reward from the verifier is equal to the next-token log-probability ratio
between the policy and reference models for a pre-specified special token (an unused token like
“<|vision start|>” that serves as the pre-defined ground truth for verifications on correct candidate
solutions) at the last response token, scaled by the KL coefficient. We refer to this scaled log-
probability ratio as the last-token self-rewarding score. Furthermore, we observe that for a randomly
chosen special token, its predicted log-probability under the reference model is practically a constant,
small value across all problems and solutions (see Figure 7 and Figure 8). This enables us to simplify
the self-rewarding score into a remarkably simple form that depends only on the policy model’s
outputs and a pre-calculated constant, making it exceptionally efficient to compute.

Building on above analysis, we replace the explicit RL optimization for self-verification with a simple
Mean Squared Error (MSE) loss. As illustrated in Figure 1, we train the model to align its last-token
self-rewarding score with the true reasoning reward from the verifier. In specific, after the policy
model generates the solution for each problem, we calculate the last-token self-rewarding score based
on its last token’s next-token log-probability for the pre-specified special token, and construct the
corresponding MSE loss. This MSE objective is added directly to the standard RLVR loss, allowing
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for seamless joint optimization for both the reasoning and self-rewarding capabilities of the policy
model. At both training and testing time, our method generates each candidate solution and computes
the self-rewarding score in a single forward pass, incurring the cost of at most one additional token
inference with no extra generation required. This is significantly more efficient than prior approaches,
which require a separate inference step. The optimized self-rewarding scores can not only complement
the original reasoning rewards during RLVR to further enhance training performance, but also be
used at test time to rank and weight solutions for more accurate answer aggregation.

We conduct experiments on both LLaMA3.2 (MetaAI, 2024b) and Qwen2.5 (Qwen Team, 2024)
architectures, including pre-trained, mid-trained and reinforced variants, to demonstrate the effective-
ness of our method in broader math reasoning tasks. Experimental results show that our methods
not only effectively improve the reasoning performance of the policy model, but also allows its
self-rewarding accuracy to reach a high level, thereby equipping the model with better confidence
calibration of its own outputs and improving its inference-time scaling performance.

2 RELATED WORK

RLVR for LLM Reasoning Reinforcement Learning with Verifiable Rewards (RLVR), which sorely
calculates binary rewards based on the final answers, has been shown to be highly effective in enhanc-
ing the reasoning capabilities of LLMs (Jaech et al., 2024; Guo et al., 2025; Team et al., 2025b). Cur-
rent studies can be categorized into several directions, including but not limited to (1) designing more
efficient and effective RLVR algorithms (Schulman et al., 2017; Shao et al., 2024; Yu et al., 2025a;
Yue et al., 2025b; Liu et al., 2025b; Zheng et al., 2025; Dai et al., 2026), (2) extending RLVR to gen-
eral reasoning domain (Ma et al., 2025; Zhou et al., 2025; Yu et al., 2025b) and agent scenarios (Wang
et al., 2025b; Team et al., 2025a; Dong et al., 2025), (3) collecting diverse verifiable datasets (Hu et al.,
2025; He et al., 2025; Liu & Zhang, 2025; Ma et al., 2025; Fan et al., 2025), and (4) analyzing the
mechanisms of RLVR (Mukherjee et al., 2025; Yue et al., 2025a; Wen et al., 2025; Huan et al., 2025).

External Verifiers for LLM Reasoning Training external verifiers to identify the correctness of the
LLM-generated solutions is an effective way to enhance the reasoning performance of LLMs in the in-
ference time. External verifiers usually fall into two categories: (1) Scalar Reward Models: Outcome-
supervised Reward Models (ORMs) (Cobbe et al., 2021; Yang et al., 2024) and Process-supervised
Reward Models (PRMs) (Lightman et al., 2023; Wang et al., 2024a; Skywork-o1, 2024; Yuan et al.,
2024) are two representative approaches. ORMs provide supervision by evaluating the final answer,
while PRMs offer more fine-grained feedback by assessing the intermediate reasoning steps. (2) Gen-
erative Verifiers: Recent studies have explored the potential of training LLMs to perform natural lan-
guage critiques of reasoning solutions generated by the LLM generators, and then to judge their final
outcomes (Zhang et al., 2024; Gao et al., 2024; Yang et al., 2025b; Zhao et al., 2025). This paradigm
has demonstrated stronger verification performance than scalar reward models, as it enables the LLM
verifier to conduct deliberate chain-of-thought reasoning before arriving at the final judgment.

Self-Verification for LLM Reasoning Several recent studies (Sareen et al., 2025; Liu et al., 2025a;
Zha et al., 2025; Jiang et al., 2025; Lu et al., 2025) aim to unify the roles of generator and verifier
by equipping a single policy model with self-verification capability. The trained self-verification
capability can be used in both the RL training and inference-time scaling stages to enhance the
model performance. However, these approaches require generating solutions and self-verifications
sequentially during training and inference. In contrast, our method derives the self-rewarding signal
directly from the next-token probability distribution of the final token of the generated sequence,
achieving a more efficient and effective unification of generation and self-verification. We note
that a recent study (Lee et al., 2025) also aims to obtain the self-verification result after producing
the solution. As discussed in Section 3.4 and Appendix C, our framework is more general and
accommodates it as a special case.

3 METHODOLOGY

3.1 PRELIMINARIES

RL Objective We denote πθ as the target policy model to be optimized, and πref as the reference
model from which πθ is initialized. D is the query set, x is an input and y is the generated response
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to x. The standard optimization objective of RL is formalized as
Oπθ

=max
πθ

Ex∼D,y∼πθ(⋅∣x) [r(x,y) − βDKL(πθ ∣∣πref)] , (1)

where r(x,y) is a reward function, DKL is the Kullback–Leibler (KL) divergence loss.

RLVR Recently, RLVR (Guo et al., 2025; Hu et al., 2025) has emerged as an effective paradigm for
enhancing the reasoning capabilities of LLMs. In RLVR, the reward function r is typically chosen as
a deterministic verifier rv , such as a rule-based verifier, to evaluate whether the final extracted answer
a ⊂ y matches the ground-truth answer a∗, and to produce binary feedback (e.g., {0,1}). That is,

rv(x,y) = 1{a≡a∗} = {
1 if a is semantically equivalent to a∗,
0 otherwise.

(2)

Policy Gradient Method Policy Gradient (Sutton et al., 1998) is a widely adopted algorithm to
optimize the objective of Eq. (1), which updates the policy model via the estimated gradient

∇θOπθ
= Ex∼D,y∼πθ(⋅∣x) [

T

∑
t=1

At∇θ logπθ(yt∣x,y<t)] , (3)

where At is the advantage function measuring the relative value of the action at (i.e., token yt)
compared to the baseline value under state st (i.e., sequence (x,y<t)). In practice, At can be
estimated in various ways (Schulman et al., 2017; Ahmadian et al., 2024). For example, Group
Relative Policy Optimization (GRPO) (Shao et al., 2024) estimates the baseline value as the average
reward within a sampled group {y1,⋯,yK} for the same problem, and computes the relative
advantage for each token yit in sequence yi as

Ai
t = (r

i
v −mean(r1v,⋯, r

K
v ))/std(r1v,⋯, r

K
v ), riv = rv(x,y

i
). (4)

Implicit Reward Previous studies (Rafailov et al., 2023; Peters & Schaal, 2007) have identified that
the optimal solution to the objective Eq. (1) satisfies that

rv(x,y) = β log[πθ(y∣x)/πref(y∣x)] + β logZ(x), (5)

where Z(x) = ∑y πref(y∣x) exp(
1
β
rv(x,y)) is a partition function. β log πθ(y∣x)

πref(y∣x) is termed as the
implicit reward, which has been used in prior works (Mitchell et al., 2024; Liu et al., 2024b) to
analyze the behavioral shift induced by the alignment process.

3.2 LASER: REINFORCEMENT LEARNING WITH LAST-TOKEN SELF-REWARDING

3.2.1 FORMAL FORMULATION

In training, ground-truth answers can be reliably used to determine the correctness of solutions. At
test time, however, when ground-truth answers are unavailable, the use of verifiers becomes crucial for
evaluating solution quality and providing feedback signals. To address this problem, in this work, we
explore the promising paradigm of jointly optimizing the self-verification and reasoning capabilities
of LLMs within the RLVR framework, thereby enabling them not only to produce high-quality
reasoning paths but also to evaluate their own outputs at test time.

According to Eq. (5), as Z(x) remains the same for all y, a straight-forward idea is to utilize the
implicit reward β log πθ(y∣x)

πref(y∣x) as the indicator to rank different generations at test time. However, this
approach has a critical drawback: the absolute value of the implicit reward is length-biased, since the
absolute value of β log πθ(y∣x)

πref(y∣x) = β∑i log
πθ(yi∣x,y<i)
πref(yi∣x,y<i) increases proportionally with the response

length. In reasoning tasks, the incorrect solutions are usually longer than the correct solutions (Hassid
et al., 2025), making the implicit reward unreliable in evaluating solution correctness (see Ap-
pendix D). Furthermore, disregarding Z(x) and directly aligning the implicit reward with the true rea-
soning reward during training degrades the policy model’s generation ability (Cui et al., 2025), since a
fundamental gap (i.e., β logZ(x)) exists between the solution to RLVR and that to reward modeling.

In this work, we begin by formulating our approach from the RL objective of verification. Given a
problem x, and a candidate solution y, the model is required to produce a verification z to identify the
correctness of the solution: z ∼ πθ(⋅∣x,y). Thus, the RL objective of verification can be written as

Vπθ
=max

πθ

Ex∼D,y∼πg(⋅∣x),z∼πθ(⋅∣x,y) [r̂(x,y,z) − βvDKL(πθ ∣∣πref)] , (6)
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where πg is the generator to solve the problem (can also be the target model πθ itself in the
self-verification setting), r̂(x,y,z) is the verification reward that measures the consistency between
the true correctness of y and the verification result of z. In practice, z can be either a single
token—for instance, “Yes” or “No” to directly indicate whether the solution is verified as correct
or incorrect—or a sequence that includes both a chain of thought and the final judgment. In this
work, we focus on the former setting and simplify the ground-truth label space to two single tokens
zc (e.g., “Yes”) and zi (e.g., “No”). That is, the verification reward can be formulated as2

r̂(x,y,z) = {
1 (z = zc and rv(x,y) = 1) or (z = zi and rv(x,y) = 0)

0 otherwise.
(7)

Similarly, following from Eq. (5), the close-form solution to Eq. (6) can be written as

r̂(x,y,z) = βv log
πθ(z∣x,y)
πref(z∣x,y)

+ βv logZ(x,y), Z(x,y) = ∑
z

πref(z∣x,y) exp(
1

βv
r̂(x,y,z)). (8)

Now, let’s take a closer look at Z(x,y). First, for z ∈ {zc, zi}, πref(z∣x,y) is a extremely small
positive value for any problem-solution pair (x,y), i.e., πref(z∣x,y) ≈ 0, for z ∈ {zc, zi}. The
reason is that the model is not specifically optimized for predicting the next token once it completes
the generation and produces the final token (typically the “<EOS>” token). We present a numerical
analysis to validate this claim in Figure 7 and Figure 8, and we can see the value of πref(z∣x,y) is
less than e−9 for common tokens and even less than e−20 for unused special tokens. Then, under
an appropriate choice of βv we can get

Z(x,y) = ∑
z

πref(z∣x,y) exp(
1

βv
r̂(x,y,z)) = ∑

z∉{zc,zi}
πref(z∣x,y) exp(

1

βv
r̂(x,y,z))

+ πref(zc∣x,y) exp(
1

βv
Irv(x,y)=1) + πref(zi∣x,y) exp(

1

βv
(1 − Irv(x,y)=1))

≈ (1 − 0 − 0) exp(0) + 0 + 0 = 1 Ô⇒ logZ(x,y) ≈ 0.

(9)

The above analysis reveals that, under our formulation, the partition function can be naturally
discarded. Consequently, the optimal solution to Eq. (6) can be approximately reduced to:

r̂(x,y,z) = βv log[πθ(z∣x,y)/πref(z∣x,y)]. (10)

In particular, the true verification reward when the model verifies a solution as correct is:

r̂(x,y, zc) = rv(x,y) = βv log[πθ(zc∣x,y)/πref(zc∣x,y)]. (11)

The first equation is derived from the definition in Eq. (7). The second equation reveals that the true
reasoning reward is equal to log-probability ratio of the policy model to the reference model at
zc, scaled by the KL coefficient. Thus, to optimize the model’s verification capability, we do not need
to explicitly perform a RLVR procedure. Instead, we can directly optimize the following MSE loss:

L = Ex∼D,y∼πg(⋅∣x) (βv log[πθ(zc∣x,y)/πref(zc∣x,y)] − rv(x,y))
2
. (12)

Thus, in the self-verification setting where πg = πθ , we can directly adds the above loss into the origi-
nal RLVR loss to jointly optimize the reasoning and self-verification capabilities of the policy model:

Sπθ =max
πθ

Ex∼D,y∼πθ(⋅∣x)
⎧⎪⎪⎨⎪⎪⎩
rv(x,y) − βDKL(πθ ∣∣πref) − α [βv log

πθ(zc∣x,y)
πref(zc∣x,y)

− rv(x,y)]
2⎫⎪⎪⎬⎪⎪⎭

, (13)

where α is a loss balancing coefficient. We refer the term rs = βv log
πθ(zc∣x,y)
πref(zc∣x,y) to the last-token

self-rewarding score, since it depends on the log-probability distributions of the last token in y.

3.3 OTHER TECHNIQUES

Here, we discuss several practical techniques to further simplify and improve the efficiency and
effectiveness of the self-rewarding MSE loss introduced above.

2In Appendix C, we further provide the derivations to demonstrate the general form of our framework.
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Simplification of the Log-Probability in the Reference Model As illustrated in Figure 7 and
Figure 8, the quantity logπref(zc∣x,y) remains almost constant and stable during policy model’s
training. Therefore, we can regard it as a pre-calculated constant cref in calculating the last-token
self-rewarding score during both training and inference. This eliminates the need for forwarding y
through the reference model and thus further enhances efficiency. In specific, cref is the mean value
of logπref(zc∣x,y) on a small set of pre-generated set of (x,y). Furthermore, based on the findings
in Figure 7, we select an unused special token as zc to make πref(zc∣x,y) closer to 0 and to further
minimize its impact on the approximation of Z(x,y) = 1 and the stability of training.

Self-Rewarding Loss Re-Weighting During training, the numbers of correct and incorrect solutions
are imbalanced, and their ratio dynamically changes. To prevent the last-token self-rewarding score
from being biased toward the class with more samples, we apply a class-level loss re-weighting
strategy within each optimization step. In each step, we calculate the total numbers of correct and
incorrect solutions (identified by the verifier) for all problems in the current batch as Nc and Ni.
Then, we apply the loss re-weighting as

l = 1

Nc +Ni
∑
x

∑
y

[wc1{rv(x,y)=1} +wi1{rv(x,y)=0}] [βv logπθ(zc∣x,y) − βvcref − rv(x,y)]2 , (14)

where wc =
Nc+Ni

2×Nc
and wi =

Nc+Ni

2×Ni
are re-weighting factors. This practice achieves a more balanced

self-verification capability. We provide empirical validations on this in Appendix J.

Integration of Verifier-based and Self-Rewarding-based Advantages The last-token self-rewarding
scores can not only be used at test time, but also facilitate the training process through the integration
of verifier-based and self-rewarding-based advantages. We believe such practice can help mitigate
the issue of misjudgments by rule-based verifiers, which often occur when the format of ground-truth
answer is overly complex, and produce more fine-grained rewards. For example, in GRPO, the final
advantage can be calculated as:

Âi
t = (1 − τ)

riv −mean(r1v,⋯, rKv )
std(r1v,⋯, rKv )

+ τ r
i
s −mean(r1s ,⋯, rKs )

std(r1s ,⋯, rKs )
,

where riv = rv(x,yi) and ris = βv logπθ(zc∣x,yi) − βvcref.

(15)

To stabilize training, we adopt a filtering strategy that sets τ = 0 for any group whenever the standard
deviation std(r1s ,⋯, r

K
s ) within this group falls below a threshold T , which is set to 0.1.

Separate Warm-Up of Reasoning and Self-Rewarding Capabilities During the initial phase of
training, we optimize only the last-token self-rewarding score, without integrating self-rewarding-
based advantages into the learning process. After a certain steps when the last-token self-rewarding
loss is sufficiently small, we proceed to integrate verifier-based and self-rewarding-based advantages.
Moreover, when training from base (i.e., pre-trained) models, we first perform standard RLVR without
incorporating the last-token self-rewarding loss in order to warm up the model’s reasoning capability,
followed by a warm-up phase for the self-rewarding capability before the advantage integration.

By combining all the aforementioned techniques, our full algorithm Reinforcement Learning with
Last-Token Self-Rewarding (LaSeR), is summarized in Algorithm 1 and illustrated in Figure 1.
During the testing phase, once the model generates a solution, we compute the last-token self-
rewarding score based on rs = βv logπθ(zc∣x,y) − βvcref. We then clip it into the interval [0,1].
Notably, we point out that this clipping is optional: after optimization, the self-rewarding scores
naturally fall within [0,1] (refer to Table 7), further validating the boundedness of our self-scoring
mechanism. The comparison between this score and 0.5 determines the self-verification outcome of
the solution, or the score itself can be further used to perform weighted majority voting.

3.4 BRIEF DISCUSSION

Comparison Between LaSeR and Prior Approaches Compared with previous methods (Sareen
et al., 2025; Liu et al., 2025a; Zha et al., 2025) that requires the policy model to perform separate
generations for solutions and verifications, our method directly derives the self-rewarding result from
the next-token log-probability of the final solution token. In the RL process, the computation of token
log-probabilities is typically carried out after all the generations are completed (Sheng et al., 2024).
Therefore, we can directly replace the token id of the first padding token with the token id of the
pre-specified token before computing the log-probabilities of the sequences, thereby incurring no
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additional computation cost during training. During inference, our method requires only one
more token inference after the solution is completed, which substantially reduces the computational
cost compared to previous methods.

Difference Between Last-Token Self-Rewarding Loss and Supervised Fine-Tuning Loss An
alternative to train the self-verification capability is to optimize the following SFT/BCE loss by
maximizing the next-token probability of the token zc or zi based on the context (x,y):

LSFT = −Ex∼D,y∼πg(⋅∣x) [rv(x,y) ⋅ logπθ(zc∣x,y) + (1 − rv(x,y)) ⋅ logπθ(zi∣x,y)] . (16)
The major difference between SFT loss and our last-token self-rewarding loss in Eq. (12) is that the
SFT loss drives πθ(zc∣x,y) to fit 1 when rv(x,y) = 1, which may lead to strong interference with
the optimization of reasoning capability. In contrast, our loss drives πθ(zc∣x,y) toward exp(1/βv) ⋅

πref(zc∣x,y) for rv(x,y) = 1.0. When βv is relatively large, πθ(zc∣x,y) remains still very small,
thereby exerting only a negligible influence on the original RLVR optimization (e.g., πθ(zc∣x,y) =
e−13 when πref(zc∣x,y) = e

−23 and βv = 0.1). We provide further discussions in Appendix C and put
the empirical comparison in Appendix K.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Base Models and Baselines We conduct empirical validations on both LLaMA3.2 MetaAI (2024b)
and Qwen2.5 (Qwen Team, 2024) architectures, including three base models: OctoThinker-3B-Short-
Base (Wang et al., 2025a) (mid-trained version of LLaMA3.2-3B-Base), Qwen2.5-7B-Base (Qwen
Team, 2024) (pre-trained model) and Open-Reasoner-Zero-7B (Hu et al., 2025) (reinforced version of
Qwen2.5-7B-Base). In principle, our method can be seamlessly integrated into any RLVR framework,
as it only introduces an additional MSE loss term. In the main experiments, we adopt the widely
used GRPO (He et al., 2025) as the base algorithm and primarily investigate the effectiveness of
applying our method within GRPO. We also conduct experiments with PPO (Schulman et al., 2017) to
demonstrate the generalizability of our method, and present the corresponding results in Appendix Q.

Training and Evaluation Datasets We adopt DeepMath-103K (He et al., 2025), a large-scale
and high-quality mathematical reasoning dataset, for our RL training data. In testing, we evaluate
both the reasoning and self-verification performance of each model on five typical math reasoning
benchmarks: MATH500 (Hendrycks et al., 2021), AMC23 (AI-MO, 2024b), AIME24 (AI-MO,
2024a), AIME25 (OpenCompass, 2025), and OlympiadBench (He et al., 2024). Additionally, we
also perform experiments in the general reasoning domain to validate the effectiveness of our method
in general reasoning tasks beyond math reasoning. The results and analysis are in Appendix R.

Training Settings The detailed training hyper-parameters of GRPO are put in Appendix G. The
prompt template for each model is in Appendix T. When applying our method, we set the hyper-
parameters (βv, α, τ) = (0.1,0.1,0.1) (refer to Appendix I). zc is selected as “<vision start>”
for Qwen2.5-7B-Base and Open-Reasoner-Zero-7B, and “<reserved special token 0>” for
OctoThinker-3B-Short-Base. The simplified constant of the reference log-probability, cref, is −23.0
for Qwen2.5-7B-Base and Open-Reasoner-Zero-7B, and −25.0 for OctoThinker-3B-Short-Base, as
estimated from the results in Figure 7. More details are in Appendix G.

Evaluation Settings During generation, we set both the temperature and top p to 1.0 for all models.
The max generation len is 8192. On MATH500 and OlympiadBench, we sample 2 solutions for
each problem; whereas on AMC23, AIME24, and AIME25, we sample 32 solutions per problem.
We then report the average Pass@1 accuracy of each model on each benchmark. We also evaluate
the self-verification performance of each model by computing the self-verification F1 score, defined
as the harmonic mean of self-verification accuracy on self-generated correct and incorrect solutions.
Baselines perform self-verification based on the prompt in Appendix T. Any solution without a final
answer is automatically treated as incorrect and excluded from the verification accuracy calculation.
Detailed self-verification accuracy results are provided in Appendix N.

4.2 MAIN RESULTS AND ANALYSIS

We put the main results in Table 1. The key conclusion is that, across different model variants,
our method not only yields better reasoning performance for the policy model compared with
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Table 1: Reasoning and self-verification performance of each model on five mathematical reasoning
benchmarks. We do not report the results of OctoThinker-based models on AIME24-25, as the
number of correct solutions is quite insufficient for a reliable evaluation.

Method
Reasoning Accuracy Self-Verification F1 Score

MATH-
500

AMC-
23

AIME-
24

AIME-
25

Olym.-
Bench Avg. MATH-

500
AMC-

23
AIME-

24
AIME-

25
Olym.-
Bench Avg.

OctoThinker-3B-Short-Base
Base 3.7 1.3 - - 1.0 2.0 22.3 11.2 - - 13.7 15.7
GRPO 49.8 25.3 - - 17.3 30.8 56.9 47.3 - - 48.8 51.0
LaSeR 53.1 27.0 - - 18.2 32.8 73.6 70.2 - - 73.6 72.5

- SWA 52.9 26.1 - - 18.2 32.4 80.4 70.9 - - 66.0 72.4

Qwen2.5-7B-Base
Base 35.8 20.6 3.5 1.6 12.3 14.8 36.4 30.8 27.6 32.9 36.9 32.9
GRPO 79.9 55.9 16.2 13.8 43.3 41.8 54.6 59.7 36.6 41.5 53.5 49.2
LaSeR 80.2 58.1 15.4 15.7 44.1 42.7 83.2 82.5 79.6 74.3 78.3 79.6

- SWA 78.0 58.3 15.4 12.3 41.7 41.1 79.7 80.2 81.3 74.9 83.3 79.9

Open-Reasoner-Zero-7B
Base 81.9 60.3 15.6 15.1 46.9 44.0 26.7 51.3 45.9 55.2 37.5 43.3
GRPO 83.1 61.9 18.1 15.0 47.1 45.0 57.1 44.8 14.6 28.1 49.5 38.8
LaSeR 82.8 62.7 19.1 15.1 47.8 45.5 87.2 79.7 64.6 77.7 78.7 77.6

- SWA 83.2 62.6 19.0 14.5 47.6 45.4 87.5 77.7 63.3 77.3 77.9 76.7

Table 2: Comparison of verification F1 scores between LaSeR (self-rewarding) and external reward
models on responses generated by the same policy model Open-Reasoner-Zero-7B-LaSeR. Bold
indicates the best result, and underline indicates the second-best.

Method MATH500 AMC23 AIME24 AIME25 Olym. Avg.

Qwen2.5-Math-7B-PRM800K (7B RM) 56.3 42.5 51.4 50.8 38.5 47.9
Qwen2.5-Math-PRM-7B (7B RM) 86.0 79.6 70.8 67.3 76.0 75.9
Qwen2.5-Math-RM-72B (72B RM) 86.8 79.4 71.0 71.4 75.5 76.8
Open-Reasoner-Zero-7B-RM (7B RM) 85.9 78.1 73.8 79.2 77.3 78.9
LaSeR (7B Self-Rewarding) 87.2 79.7 64.6 77.7 78.7 77.6

the baseline, but also substantially enhances its self-verification capability by enabling the
self-rewarding scores to achieve remarkably high F1 scores.

Regarding reasoning performance, applying our algorithm leads to higher accuracy in most settings
and consistently yields higher average accuracy on the three base models. We think there are two main
reasons for this improvement: (1) First, our method encourages the model to encode its assessment of
the overall solution in the final response token, which leads to better confidence calibration. Improved
calibration itself can have a positive impact on the model’s learning. (2) Second, by integrating self-
rewarding-based advantages into verifier-based advantages, our approach enables more fine-grained
advantage estimation, which in turn facilitates more effective learning. For comparison, we report
the results without self-rewarding-based advantages (-SWA) in Table 1. Regarding self-verification
performance, applying a simple last-token self-rewarding MSE loss substantially enhances the self-
rewarding capability of the models, achieving around 80% F1 scores. This demonstrates strong
self-verification accuracy on both correct and incorrect solutions. To further highlight the self-
rewarding capabilities, we display the comparison results of verification F1 scores between LaSeR
and several advanced external reward models (Qwen2.5-Math-7B-PRM800K (Zhang et al., 2025),
Qwen2.5-Math-PRM-7B (Zhang et al., 2025), and Qwen2.5-Math-RM-72B (Yang et al., 2024)) on
evaluating the solutions generated by the different reinforced models by LaSeR. The full results are
in Table 6, while here we only display the results on Open-Reasoner-Zero-7B-LaSeR in Table 2.
Moreover, to ensure a fairer comparison, we additionally train an ORM using the same backbone
(Open-Reasoner-Zero-7B) and on the same data distribution (a total of 500K responses generated
by Open-Reasoner-Zero-7B-LaSeR on DeepMath-103K), resulting in Open-Reasoner-Zero-7B-RM.
The comparison results demonstrate the great effectiveness of self-rewarding. Moreover, it is worth
noting that training and employing external reward models introduces additional computational
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Figure 2: The majority voting (Maj@K) and weighted majority voting (RM@K) results.

overhead during both training and inference. In contrast, our method jointly optimizes the reasoning
and self-rewarding capabilities within the RLVR framework and obtains the verification outcomes
directly after solution generation, incurring no extra computational cost at either training or test time.
Furthermore, in Appendix P, we show that the model optimized through LaSeR can even score the
outputs of other models, demonstrating strong generalization in cross-model verification.

4.3 INFERENCE-TIME SCALING RESULTS

Here, we explore the effectiveness of self-rewarding in the inference-time scaling via weighted
majority voting. We compare majority voting results with (RM@K) and without (Maj@K) weighting
by the last-token self-rewarding scores, on MATH500 and OlympiadBench. The results are shown in
Figure 2. We denote the three base models by “OT-3B”, “Qwen2.5-7B”, and “ORZ-7B”. The suffixes
“-GRPO” and “-LaSeR” indicate the variants trained with GRPO and our method LaSeR, respectively.
The results show that the optimized self-rewarding capability of the model is highly effective on
improving its own inference-time scaling performance.

5 ANALYSIS

5.1 MORE CALIBRATION ANALYSIS OF SELF-REWARDING SCORES

In this section, we conduct additional calibration analysis to better understand the properties of our
self-rewarding scores. We take Open-Reasoner-Zero-7B-LaSeR as the experimental model. To ensure
reliability, we sample 32 times for each query in the following analysis.

We first visualize the distribution of optimized self-rewarding scores on OlympiadBench in Figure 3.
Furthermore, we analyze the average AUROC score of the self-rewarding scores with respect to
correctness. The AUROC is defined as the probability that, within the same query group (solutions
generated for the same query), a correct solution receives a higher self-rewarding score than an
incorrect one. The full results are in Table 9. These results re-validate the high discriminative power
of the self-rewarding score between correct and incorrect solutions.

Then, we calculate and report the Expected Calibration Error (ECE) of all self-rewarding scores
on each test set. ECE quantifies the discrepancy between a self-rewarding score and its empirical
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Figure 3: Self-rewarding score
distribution on OlympiadBench.
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tween response lengths and self-
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Table 3: Comparison of reasoning and self-verification performance with and without reference
log-probability simplification in our method. Based model is Open-Reasoner-Zero-7B.

Method
Reasoning Accuracy Self-Verification F1 Score

MATH-
500

AMC-
23

AIME-
24

AIME-
25

Olym.-
Bench Avg. MATH-

500
AMC-

23
AIME-

24
AIME-

25
Olym.-
Bench Avg.

w/ Simpl. 82.5 61.6 18.8 16.2 46.5 45.1 82.3 79.3 77.9 79.2 78.4 79.4
w/o Simpl. 81.0 61.2 17.3 17.3 48.3 45.0 81.8 79.2 79.0 78.9 77.5 79.3

accuracy. The results on OlympiadBench are in Figure 4, while we put the full results in Table 10.
As shown, our method demonstrates strong confidence calibration results.

Finally, we analyze the effect of response lengths. We visualize the relationship between response
lengths and self-rewarding scores within a single chosen query group from OlympiadBench in
Figure 5 as a preliminary analysis. Then, we calculate and report the average Spearman Rank
Correlation between self-rewarding scores and response lengths over all query groups on each test set
in Table 11. These results reveal that shorter responses generally tend to receive higher self-rewarding
scores, which is consistent with recent findings (Hassid et al., 2025; Yang et al., 2025c) that shorter
CoTs on the same query are generally more preferable.

5.2 THE IMPACT OF SIMPLIFYING THE REFERENCE LOG-PROBABILITIES TO A CONSTANT

As discussed in Section 3.3, we approximate the log-probability of the pre-specified token under the
reference model, logπref(zc∣x,y), by its mean computed over a small sample set when calculating
the last-token self-rewarding scores. Here, we empirically validate this practice by conducting
comparison experiments on Open-Reasoner-Zero-7B, with and without reference log-probability
simplification in our method. We evaluate the checkpoint after 200 optimization steps in each setting
(corresponding to the last checkpoint before advantage integration). The results are reported in
Table 3. As shown, the simplification does not affect the optimization of reasoning and self-
rewarding capabilities, since the performance under the two settings remains comparable. However,
it effectively reduces the computational cost of calculating the last-token self-rewarding value by half.

6 CONCLUSION

In this work, we propose LaSeR, a lightweight and effective algorithm that jointly optimizes the
reasoning and self-rewarding capabilities of LLMs. By deriving the closed-form solution to the RL
objective of verification, we uncover a concise yet intriguing formula: the true reasoning reward
provided by the verifier is equal to the last-token self-rewarding score produced by the model. This
self-rewarding score depends on the model’s next-token log-probability for a pre-specified token at
the final response token, a pre-calculated constant, and the KL coefficient. Based on this insight, our
method simply adds a MSE loss between the verifier-based reasoning rewards and the corresponding
last-token self-rewarding scores into the standard RLVR process. The optimized self-rewarding
scores can not only be incorporated back into the RL process to further enhance training, but also
achieve high verification accuracy at test time, thereby improving solution ranking and selection.
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Our work aims to jointly optimize the reasoning and self-rewarding capabilities of LLMs. Our method
enables the LLMs to self-verify the correctness of its solutions with minimal extra computational
cost and high verification accuracy, improving both performance and efficiency. Our method has the
positive impact on the field of LLM reasoning by enabling LLMs to produce not only higher-quality
and more interpretable solutions, but also accurate self-verifications. All datasets and models used in
this study are publicly available.
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on hyper-parameters in Appendix I. All prompt templates used in our experiments are presented in
Appendix T.
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A THE STATEMENT ON THE USE OF LARGE LANGUAGE MODELS

In this work, we only use LLMs to correct grammatical issues and polish the writing. We do not use
LLMs for research ideation or full paper writing.

B ADDITIONAL RELATED WORK

RLHF for LLMs Reinforcement Learning with Human Feedback (RLHF) (Ouyang et al., 2022)
has been a key technique for aligning a model’s capabilities and behaviors with human preferences.
The standard pipeline typically consists of three stages: supervised fine-tuning on high-quality
instructional data, learning a reward model from pairwise human preference data, and optimizing
the policy model via reinforcement learning to maximize the learned reward. Prior work in RLHF
spans a broad range of directions, including but not limited to: (1) Developing more effective or
efficient RLHF algorithms and frameworks (Schulman et al., 2017; Ahmadian et al., 2024; Rafailov
et al., 2023); (2) Constructing diverse, large-scale, and high-quality preference datasets (Bai et al.,
2022; Cui et al., 2024); (3) Training stronger or domain-specific reward models to improve RLHF
performance (Dong et al., 2024; Cai et al., 2024; Yuan et al., 2025); (4) Exploring multi-objective
alignment (Guo et al., 2024; Li et al., 2025).

C GENERAL FORM OF SELF-REWARDING MSE LOSS

In the main content, we derive the self-rewarding MSE loss in Eq. (12) by instantiating the verification
reward in Eq. (7) under the binary 0/1 setting (though this is common choice). Here, we make further
derivations to obtain the general form of our self-rewarding MSE loss by allowing the rewards for
correct and incorrect verifications to take arbitrary real values, denoted as r̂c and r̂i, respectively.
Then, we clarify why our method adopts the MSE loss instead of the BCE loss, and highlight that
the solution to the BCE loss in Eq. (16) is in fact a special case of all available solutions in our
framework.

Under the general definition, following the same derivation as in Eq. (9), we obtain Z(x,y) =

exp( r̂i
βv
), which indicates logZ(x,y) = r̂i

βv
(still a constant but not necessarily to be 0). Therefore,

logZ(x,y) = 0 in Eq. (9) is a special case when we define r̂i = 0. Then, the optimal solution to the
original RL target can be reduced to a general form

r̂(x,y,z) = βv log[πθ(z∣x,y)/πref(z∣x,y)] + r̂i.

That is,
r̂(x,y,z) − r̂i = βv log[πθ(z∣x,y)/πref(z∣x,y)].

Now, we can see that the left-hand side of the equation is no longer a 0/1 binary reward but
rather two arbitrary scalar values. Therefore, it is natural to model this objective using an
MSE loss rather than a BCE loss.

Following above, the true verification reward when the model verifies a solution as correct is

r̂(x,y, zc) = r̂cIrv(x,y)=1 + r̂iIrv(x,y)=0 = βv log[πθ(zc∣x,y)/πref(zc∣x,y)] + r̂i.

Note that the reasoning rewards rv(x,y) defined in Eq. (2) can also be two arbitrary values, but we
simplified them to {0,1} and this will not affect our derivation. This formulation indicates that the
probability πθ(zc∣x,y) alone is sufficient to model the reward score. In this general framework, our
self-rewarding MSE loss is

L = Ex∼D,y∼πg(⋅∣x) (βv log[πθ(zc∣x,y)/πref(zc∣x,y)] + r̂i − (r̂cIrv(x,y)=1 + r̂iIrv(x,y)=0))
2
.

Now, we show that the solution to the SFT/BCE loss in Eq. (16) is in fact a special case of all
available solutions in our framework. After optimization (i.e., the optimal solution to the MSE
loss), we can see that when rv(x,y) = 0 (i.e., the solution is incorrect based on the deterministic
verifier), πθ(zc∣x,y) = πref(zc∣x,y), which means the πθ(zc∣x,y) remains unchanged (almost
near zero, consistent with the solution to SFT loss when rv(x,y) = 0). When rv(x,y) = 1 (i.e.,
the solution is correct based on the deterministic verifier), our method drives πθ(zc∣x,y) to fit
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πref(zc∣x,y) exp(
r̂c−r̂i
βv
). As we can see, when βv continues to decrease, the optimized probability

πθ(zc∣x,y) approaches 1, which is exactly the solution to the BCE loss. However, in our framework,
we can explicitly control the value of βv , allowing πθ(zc∣x,y) to converge to any desired target.
As shown in Appendix K, this controllability provides greater flexibility compared with directly
forcing πθ(zc∣x,y) toward 1, while also exerting much less interference on the optimization of the
reasoning ability. Thus, our framework is a fundamentally different but more general method.

D THE LENGTH BIAS IN IMPLICIT REWARD

Here, we present the trend of the cumulative implicit reward values (log πθ(y<i∣x)
πref(y<i∣x) where πref

is Qwen2.5-7B-Base) across 32 reasoning trajectories sampled from Open-Reasoner-Zero on an
AIME2024 problem, showing how they vary with the increasing trajectory lengths. As illustrated in
Figure 6, the curves of all samples exhibit a positive correlation between the implicit reward and the
number of tokens, and longer trajectories tend to yield higher final implicit reward scores, indicating
a strong length bias in implicit reward. Since incorrect solutions are generally longer than correct
ones in reasoning tasks (Hassid et al., 2025), implicit reward is therefore not a reliable indicator of
the relative quality of reasoning paths at test time.

E STATISTICS OF logπREF(zc∣x,y)
We present the mean and standard deviation of − logπref(zc∣x,y) computed over 300 input-output
pairs. The reference model πref is chosen as either Qwen2.5-7B-Base or OctoThinker-3B-Short-Base,
and the evaluation is performed under two different choices of zc for each reference model (one
common token and one unused special token): “Yes” and “<vision start>” for Qwen2.5-7B-
Base, “Yes” and “<|reserved special token 0|>” for OctoThinker-3B-Short-Base. The results in
Figure 7 indicates that − logπref(zc∣x,y) remains nearly constant and extremely small, with only a
low standard deviation across different x and y. Thus, we can consider logπref(zc∣x,y) as a constant
when calculating the last-token self-rewarding scores, which effectively reduces the computational
cost by half.

Furthermore, in the term logπref(zc∣x,y), the sequence y is generated by the policy model, whose
parameters evolve during training. To ensure that our simplification continues to hold throughout
the optimization process, we report the dynamics of both the mean and the standard deviation of
− logπref(zc∣x,y) over the course of training. Specifically, we calculate the mean and standard
deviation of − logπref(zc∣x,y) based on the 300 generated samples from the policy model at training
steps 0, 100, 200, . . . , and 1000. We conduct evaluations by taking Qwen2.5-7B-Base as the
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Figure 8: The dynamics of mean and standard deviation of − logπref(zc∣x,y) during policy model’s
training.

Algorithm 1: LaSeR: Reinforcement Learning with Last-Token Self-Rewarding
Input: Initial policy model πθ, prompts D, verifier rv , warm-up hyper-parameters wr and wsr,

coefficient βv , pre-specified token zc, pre-calculated cref = E(x,y)[logπref(zc∣x,y)]
for Step s = 1,⋯, S do

1. Set πold ← πθ;
2. Sample batch prompts Ds from D;
3. Generate solutions {yi}Ki=1 for each x ∈Ds;
4. Calculate verifier-based rewards and advantages (e.g., Eq. (4)), calculate RL loss;
5. If s ≥ wr, calculate last-token self-rewarding loss based on Eq. (14) and add it to RL loss;
6. If s ≥ wsr, calculate self-rewarding-based advantages and perform advantage integration

based on Eq. (15);
7. Update the policy model πθ using any RL algorithm with integrated loss and advantages;

end
Output: πθ

base model and “<vision start>” as the specified special token zc. The dynamics are presented
in Figure 8. As shown, the mean of − logπref(zc∣x,y) remains stable throughout the policy
model updates, which supports our motivation and confirms the feasibility of approximating it as a
pre-computed constant in our method to improve efficiency.

F FULL ALGORITHM

We display the full procedure of our method in Algorithm 1.

G DETAILED TRAINING SETTINGS

We use verl (Sheng et al., 2024) as our RL training framework. The basic training hyper-parameters
in both GRPO training and LaSeR training for each model are put in Table 4, and the newly introduced
training hyper-parameters for LaSeR are put in Table 5. The number of optimization steps is 1000 for
Qwen2.5-7B-Base and OctoThinker-3B-Short-Base, and 500 for Open-Reasoner-Zero-7B. In RL, a
reasoning reward of 1.0 is given if the final answer and the answer format are both correct; otherwise,
it is 0.0. In our method, the reasoning warm-up is performed for Qwen2.5-7B-Base and OctoThinker-
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Table 4: Basic training hyper-parameters of both
GRPO and LaSeR.

Hyper-parameter Value

Train Batch Size 128
Micro Batch Size 128
Rollout n 8
Maximum Prompt Length 2048
Maximum Response Length 8192
Temperature 1.0
Top p 1.0
LR 1 × 10−6
KL Coefficient 0.0

Table 5: Unique training hyper-parameters of
LaSeR.

Hyper-parameter Value

Coefficient βv 0.1
Loss Weight α 0.1
Self-Rewarding Adv. Weight τ 0.1
Reasoning Warm-Up Steps 200
Self-Rewarding Warm-Up Steps 200

Table 6: Comparison of verification F1 scores between LaSeR (self-rewarding) and external reward
models (Qwen2.5-Math-7B-PRM800K, Qwen2.5-Math-PRM-7B, and Qwen2.5-Math-RM-72B) on
responses generated by different policy models.

Method MATH500 AMC23 AIME24 AIME25 Olym. Avg.

Generator: OctoThinker-3B-Short-LaSeR
Qwen2.5-Math-7B-PRM800K (7B RM) 77.0 68.9 - - 68.5 71.5
Qwen2.5-Math-PRM-7B (7B RM) 80.9 63.5 - - 64.1 69.5
Qwen2.5-Math-RM-72B (72B RM) 89.2 71.7 - - 72.9 77.9
LaSeR (3B Self-Rewarding) 73.6 70.2 - - 73.6 72.5

Generator: Qwen2.5-7B-Laser
Qwen2.5-Math-7B-PRM800K (7B RM) 59.4 52.7 58.8 53.8 52.0 55.3
Qwen2.5-Math-PRM-7B (7B RM) 82.5 79.2 75.1 72.3 77.8 77.4
Qwen2.5-Math-RM-72B (72B RM) 87.8 80.7 81.3 74.8 75.4 80.0
LaSeR (7B Self-Rewarding) 83.2 82.5 79.6 74.3 78.3 79.6

Generator: Open-Reasoner-Zero-7B-LaSeR
Qwen2.5-Math-7B-PRM800K (7B RM) 56.3 42.5 51.4 50.8 38.5 47.9
Qwen2.5-Math-PRM-7B (7B RM) 86.0 79.6 70.8 67.3 76.0 75.9
Qwen2.5-Math-RM-72B (72B RM) 86.8 79.4 71.0 71.4 75.5 76.8
LaSeR (7B Self-Rewarding) 87.2 79.7 64.6 77.7 78.7 77.6

3B-Short-Base only, and the self-rewarding warm-up is perform for all models. The number of
reasoning warm-up steps is set to 200 for both Qwen2.5-7B-Base and OctoThinker-3B-Short-Base,
and the number of self-rewarding warm-up steps is 200 across all models.

H COMPARISON OF VERIFICATION PERFORMANCE BETWEEN LASER AND
ADVANCED EXTERNAL VERIFIERS

Here, we display the comparison results of verification F1 scores between LaSeR and three advanced
external reward models (Qwen2.5-Math-7B-PRM800K (Zhang et al., 2025), Qwen2.5-Math-PRM-
7B (Zhang et al., 2025), and Qwen2.5-Math-RM-72B (Yang et al., 2024)) on evaluating the solutions
generated by the different reinforced models, i.e., OctoThinker-3B-Short-LaSeR, Qwen2.5-7B-LaSeR,
and Open-Reasoner-Zero-7B-LaSeR. The full results in Table 6 show that LaSeR outperforms equally
sized state-of-the-art external verifiers in assessing the model’s own solutions, and even matches
the verification performance of a 72B reward model, demonstrating its non-trivial effectiveness in
enhancing self-rewarding capability.
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Figure 9: The curves of training rewards and training self-verification F1 scores under different
combinations of hyper-parameters with EMA smoothing (EMA coef.=0.9).

I ABLATION STUDIES ON SELF-REWARDING HYPER-PARAMETERS

Here, we display the curves (with Exponential Moving Average (EMA) smoothing) of training
rewards and training self-verification F1 scores of our method under different choices of coefficient
βv and self-rewarding MSE loss weight α. The experiments are conducted on Open-Reasoner-Zero-
7B, which help to skip the reasoning warm-up phase compared with using Qwen2.5-7B-Base and
OctoThinker-3B-Short-Base, while the results are similar in other two base models ater reasoning
warm-up. The dynamics of training rewards and training self-verification F1 scores are displayed
in Figure 9. As we can see, assigning a larger weight α to the last-token self-rewarding loss has a
more detrimental impact on the model’s reasoning capabilities. On the other hand, the coefficient βv

has little impact on optimizing the self-rewarding scores, as long as it remains within a reasonable
range (0.1 ∼ 0.5). However, much smaller values of βv can impair the model’s reasoning capability,
as indicated by the analysis in the end of Section 3.4. For example, when βv = 0.05, we should
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(b) Training self-verification F1 scores with EMA smoothing

Figure 10: The curves of training rewards and training self-verification F1 scores of our method with
and without class-level loss re-weighting practice (EMA coef.=0.9).

have πθ(zc∣x,y) = e
−3 ≈ 0.05 under πref(zc∣x,y) = e

−23 and rv(x,y) = 1, then the large value of
πθ(zc∣x,y) causes large interference with the optimization of reasoning capability. In our main
experiments, we choose (βv, α) = (0.1,0.1).

J THE EFFECT OF CLASS-LEVEL RE-WEIGHTING ON THE BALANCED
SELF-VERIFICATION CAPABILITY

We present the training dynamics of our method on Open-Reasoner-Zero-7B, with and without
class-level loss re-weighting, in Figure 10 for comparison. As shown, applying loss re-weighting
leads to a more balanced self-verification performance by mitigating the bias toward the majority
class with larger sample size, while still maintaining high reasoning accuracy.
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Last-Token Self-Rewarding Loss, Coef. v = 0.1, Loss Weight = 0.1 Supervised Fine-Tuning Loss, Loss Weight = 0.1
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(b) Self-rewarding/SFT loss curve on a log scale

Figure 11: The comparison of the training dynamics between the last-token self-rewarding loss and
the SFT loss.

K COMPARISON BETWEEN LAST-TOKEN SELF-REWARDING LOSS AND
SUPERVISED FINE-TUNING LOSS

Following the discussion in Section 3.4, we compare the training performance of our introduced
last-token self-rewarding loss with the supervised fine-tuning (SFT) loss on Open-Reasoner-Zero-7B.
The training dynamics are shown in Figure 11. As observed, applying the SFT loss to optimize the
self-rewarding capability causes substantial interference with the optimization of reasoning capability,
leading to a marked degradation in training rewards. Moreover, the SFT loss degrades extremely
slowly, indicating that directly driving πθ(zc∣x,y) from 0 to 1 for rv(x,y) = 1 is inherently difficult.
However, our method only requires fitting πθ(zc∣x,y) to exp(1/βv) ⋅ πref(zc∣x,y) for rv(x,y) = 1,
which is considerably easier and introduces much less interference.
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Figure 12: The ablation of only using self-rewarding scores for RL.

Table 7: The the range between the minimum and maximum self-rewarding scores over all solutions
in each test set.

Model MATH500 AMC23 AIME24 AIME25 OlympiadBench

OT-3B-Short-LaSeR [0.000, 1.010] [-0.031, 1.001] [-0.023, 0.858] [-0.061, 0.722] [-0.036, 1.013]
Qwen2.5-7B-LaSeR [-0.021, 1.031] [0.013, 1.020] [-0.052, 1.010] [-0.041, 0.986] [-0.056, 1.029]
ORZ-7B-LaSeR [-0.005, 1.013] [-0.085, 1.005] [-0.035, 0.998] [-0.031, 0.963] [-0.036, 1.016]

L ABLATION OF ONLY USING SELF-REWARDING SCORES FOR RL

In our method, after self-rewarding warm-up, we we incorporate self-rewarding–based advantages
into the verifier-based advantages to provide more fine-grained learning signals. Here, we explore the
effect of only using the self-rewarding scores for RL. Specifically, taking Open-Reasoner-Zero-7B
as the base model, we take the checkpoint after 200 training steps with our method as the starting
point. We then continue RL training using only the self-rewarding score as the optimization signal
for reasoning ability (while still using the rule-based rewards to optimize the self-rewarding scores).
The dynamics of training rewards are shown in Figure 12. We observe that after an additional 60
steps, the training collapses. This indicates that using only self-rewarding scores for RL easily leads
to training instability, and should be complemented with the rule-based rewards.

M THE VALUE RANGE OF THE OPTIMIZED SELF-REWARDING SCORE

In Table 7, we show the the range between the minimum and maximum self-rewarding scores over all
solutions in each test set of each model. The results validate that after optimization, the self-rewarding
score naturally falls within the target interval [0,1].

N DETAILED SELF-VERIFICATION RESULTS

We report the detailed self-verification results of each model on self-generated solutions across all
benchmarks in Table 8, including both overall accuracy and F1 score. Our method consistently yields
significant improvements in model’s self-rewarding and self-verification capabilities, while incurring
only minimal additional computational cost.
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Table 8: Detailed self-verification results.

Method
MATH500 AMC23 AIME24 AIME25 Olym.

Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1

OctoThinker-3B-Short-Base
Base 60.2 22.3 52.3 11.2 - - - - 62.0 13.7
GRPO 58.2 56.9 66.7 47.3 - - - - 66.4 48.8
LaSeR 77.0 73.6 77.3 70.2 - - - - 80.3 73.6

- SWA 81.0 80.4 84.1 70.9 - - - - 83.5 66.0

Qwen2.5-7B-Base
Base 45.0 36.4 30.7 30.8 24.5 27.6 28.2 32.9 33.8 36.9
GRPO 76.5 54.6 61.1 59.7 60.4 36.6 72.5 41.5 54.6 53.5
LaSeR 88.0 83.2 81.5 82.5 92.2 79.6 90.5 74.3 79.5 78.3

- SWA 87.8 79.7 79.6 80.2 94.3 81.3 92.2 74.9 83.9 83.3

Open-Reasoner-Zero-7B
Base 79.6 26.7 66.6 51.3 39.6 45.9 47.6 55.2 55.2 37.5
GRPO 52.9 57.1 50.9 44.8 66.9 14.6 78.9 28.1 54.7 49.5
LaSeR 90.1 87.2 77.7 79.7 87.2 64.6 92.8 77.7 80.1 78.7

- SWA 89.0 87.5 76.2 77.7 87.7 63.3 93.6 77.3 80.2 77.9

Table 9: The average AUROC of reward scores on each benchmark. In calculation, we discard query
groups in which all solutions are either correct or incorrect, as such cases provide no meaningful
signal for assessing the effectiveness of the self-rewarding scores. To ensure reliability, we sample 32
times for each query. The generator is Open-Reasoner-Zero-7B-LaSeR.

Method MATH500 AMC23 AIME24 AIME25 Olym. Avg.

Qwen2.5-Math-RM-72B (72B RM) 0.77 0.73 0.71 0.60 0.65 0.69
LaSeR (7B Self-Rewarding) 0.72 0.68 0.77 0.74 0.67 0.72

Table 10: ECE of reward scores on each benchmark (lower is better). To ensure reliability, we sample
32 times for each query. The generator is Open-Reasoner-Zero-7B-LaSeR.

Method MATH500 AMC23 AIME24 AIME25 Olym. Avg.

Qwen2.5-Math-RM-72B (72B RM) 0.178 0.152 0.346 0.384 0.194 0.251
LaSeR (7B Self-Rewarding) 0.077 0.162 0.072 0.071 0.066 0.090

Table 11: The Spearman Rank Correlation between self-rewarding scores and response lengths on
Open-Reasoner-Zero-7B-LaSeR. To ensure reliability, we sample 32 times for each query.

MATH500 AMC23 AIME24 AIME25 Olym. Avg.

Spearman Rank Corr. -0.26 -0.34 -0.58 -0.52 -0.40 -0.42

O FULL RESULTS OF THE CALIBRATION ANALYSIS OF SELF-REWARDING
SCORES

Here, we display the full results of the calibration analysis of self-rewarding scores made in Section 5.1.
We first display the results of average AUROC score (the probability that, within the same query group,
a correct solution receives a higher self-rewarding score than an incorrect one) of the self-rewarding
scores with respect to correctness in Table 9. The results demonstrate the high discriminative power of
the self-rewarding score between correct and incorrect solutions. The comparison results of Expected
Calibration Error (ECE, the discrepancy between a self-rewarding score and its empirical accuracy)
in Table 10 demonstrate that our method achieves better confidence calibration. Finally, we show the
average Spearman Rank Correlation (the direction and strength of the monotonic relationship between
two variables by computing the correlation between their ranked values) between self-rewarding
scores and response lengths in Table 11. The results reveal that shorter responses generally tend to

25



Published as a conference paper at ICLR 2026

Table 12: Cross-model verification results. Each row corresponds to the average verification F1 score
of a given verifier, evaluated on solution sets generated by different generators, as indexed by the
columns.

Verifier ↓
Generator→

OT-3B-Short-GRPO Qwen2.5-7B-GRPO ORZ-7B-LaSeR

OT-3B-Short-GRPO 51.0 42.7 43.6
Qwen2.5-7B-GRPO 56.4 49.2 46.4
ORZ-7B-LaSeR 69.2 77.5 77.6

Table 13: Results of applying our method within PPO framework on Open-Reasoner-Zero-7B.

Method
Reasoning Accuracy Self-Verification F1 Score

MATH-
500

AMC-
23

AIME-
24

AIME-
25

Olym.-
Bench Avg. MATH-

500
AMC-

23
AIME-

24
AIME-

25
Olym.-
Bench Avg.

Open-Reasoner-Zero-7B
Base 81.9 60.3 15.6 15.1 46.9 44.0 26.7 51.3 45.9 55.2 37.5 43.3
PPO 82.1 58.6 16.7 14.8 47.0 43.8 51.8 43.7 14.7 15.4 40.5 33.2
LaSeRPPO 82.9 61.2 15.4 15.7 47.9 44.6 85.6 80.0 76.1 81.6 78.3 80.3

receive higher self-rewarding scores, which is consistent with recent findings (Hassid et al., 2025;
Yang et al., 2025c) that shorter CoTs on the same query are generally more preferable.

P CROSS-MODEL VERIFICATION RESULTS

Here, we explore the cross-model verification performance. In specific, we compare the verification
F1 scores of three models—OctoThinker-3B-Short-GRPO, Open-Reasoner-Zero-7B-GRPO, and
Open-Reasoner-Zero-7B-LaSeR—evaluated on each other’s responses. The results are in Table 12.
Each value in the table represents the average F1 score across all five benchmarks. Surprisingly, we
find that our method not only enables effective self-rewarding, but also achieves high accuracy and
F1 when evaluating the CoTs generated by other models, demonstrating strong generalization
ability.

Q RESULTS OF APPLYING LASER WITHIN PPO

Here, we conduct additional experiments using PPO as the RL algorithm and explore the potential
of applying our method within the PPO framework to validate the generality of our method. We
conduct experiments on Open-Reasoner-Zero-7B. The overall reasoning and self-verification results
are presented in Table 13, and the inference-time scaling results are in Figure 13. We use “LaSeRPPO”
to denote our method based on the PPO framework. As shown, our method also achieves strong ef-
fectiveness in enhancing the reasoning, self-verification, and inference-time scaling performance
of the policy model within the PPO framework.

R THE GENERALIZABILITY OF LASER TO GENERAL REASONING DOMAIN

We conduct additional experiments to explore the generalizability of our method to general rea-
soning domain. We use a filtered version (Yu et al., 2025b) of WebInstruct-verified dataset (Ma
et al., 2025), and conduct RL experiments on Qwen3-4B-Base (Yang et al., 2025a). We use the
general-verifier-1.5B model from Ma et al. (2025) as the model-based verifier and adopt GRPO
as the RL algorithm. The basic training and testing hyper-parameters for experiments on WebInstruct-
verified are the same as those in Table 4 and Table 5, while the number of optimization steps here is
800. The simplified constant of the reference log-probability cref is −23.0. For our method, we do not
perform the advantage integration strategy here. The reason is that we observe the self-verification F1
score of our method during training is relatively low in the general reasoning setting (only between
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Figure 13: The majority voting (Maj@K) and weighted majority voting (RM@K) results of
Open-Reasoner-Zero-7B-PPO (ORZ-7B-PPO) and Open-Reasoner-Zero-7B-LaSeRPPO (ORZ-7B-
LaSeRPPO) on MATH500 and OlympiadBench.
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Figure 14: The generalizability of LaSeR on general reasoning tasks.

65% and 70%, and the self-rewarding score distributions in the test sets shown in Figure 14(b) and
Figure 14(c) also reveal this phenomenon). This leads to large noise in the self-rewarding-based
advantage estimation, and consequently, the integration of self-rewarding-based advantages results in
performance degradation. We conduct evaluations on two general reasoning benchmarks: MMLU-
Pro (Wang et al., 2024b) and GPQA-Diamond (Rein et al., 2024). We sample 4 solutions per problem
on each dataset for each model, and calculate both the average accuracy and the (weighted) majority
voting accuracy.

We have several findings: (1) First, from Figure 14(a), we observe that jointly optimizing the self-
rewarding capability does not impact the model’s general reasoning ability, allowing the policy model
to achieve comparable average reasoning accuracy to the baseline. (2) However, as mentioned above,
the optimized self-rewarding score on general reasoning tasks does not achieve the high accuracy
seen in math reasoning tasks. We can see that the self-rewarding score distributions for correct and
incorrect solutions on MMLU-Pro exhibit certain overlap, and the distinction further diminishes on
the more challenging benchmark GPQA-Diamond. We speculate that two factors may contribute to
this: (a) The model’s general reasoning ability is inherently weaker than its math reasoning ability,
which limits the upper bound of its self-rewarding capabilities in the general reasoning domain. (b)
The model-based verifier used in the experiment (general-verifier-1.5B) has limited verification
ability, resulting in high noise in the reasoning rewards, which in turn affects the optimization of the
self-rewarding capability. (3) Though not perfect, the optimized self-rewarding scores can still
provide useful signals during inference time, leading to better weighted majority voting results.
To examine this effect, we analyze the distribution of self-rewarding scores across solutions generated
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Table 14: The average self-rewarding AUROC score of Qwen3-4B-LaSeR to assess how well the
self-rewarding score separates correct from incorrect solutions. In calculation, we discard query
groups in which all solutions are either correct or incorrect, as such cases provide no meaningful
signal for assessing the effectiveness of the self-rewarding scores. To ensure reliability, here, we
sample 32 times for each query. For computational efficiency, we evaluate on 1000 samples (Yu et al.,
2025b) from MMLU-Pro.

MMLU-Pro-1000 GPQA-D

AUROC 0.61 0.58

for the same query. We calculate and report the average AUROC score, which is the probability
that a correct solution sampled from the same query group (solutions generated for the same query)
receives a higher self-rewarding score than an incorrect one. The results are reported in Table 14.
We find that the AUROC scores are around 0.6, indicating that within the same query group, the
self-rewarding scores assigned to correct solutions are generally higher than those assigned to
incorrect ones. This reveals that, though not perfect, the self-rewarding signal can still effectively
support solution re-ranking, thereby improving the performance of weighted majority voting.

S FURTHER REDUCTION OR INCREASE OF SELF-REWARDING COST

In this section, we discuss two additional variants of LaSeR for future work. In the current method,
we calculate the last-token self-rewarding score based on the next-token log-probability distribution
of the “<EOS>” token, requiring one additional token inference compared with standard inference.
One potential way to further reduce the inference cost of LaSeR is to derive the last-token self-
rewarding score directly from the predicted log-probability of pre-specified token zc at the “<EOS>”
token position. Specifically, let yT denote the “<EOS>” token in y. Then, the reduced last-token
self-rewarding score can be defined as rs = βv logπθ(zc∣x,y<T ) − βvcref, as we have observed that
πref(zc∣x,y<T ) remains nearly constant across (x,y) (e.g., approximately e−28 for Qwen2.5-7B-
Base). In this case, we can achieve ideally zero additional inference cost for self-rewarding
compared with standard generation by directly calculating the self-rewarding score from the
log-probability distribution at the “<EOS>” token position, without requiring any extra token inference.
In theory, this works because setting a relatively large βv still yields a small value of πθ(zc∣x,y<T )
(e.g., πθ(zc∣x,y<T ) = e−18 when βv = 0.1 and cref = −28), thereby allowing πθ(<EOS>∣x,y<T ) to
still dominate the probability mass. However, although the probability is very low, we observe that
the generator may still select zc at the end of the sequence in few cases during training, which can
adversely affect training stability as the generator continues to generate after zc. One straight-forward
solution may be to set the sampling hyper-parameter top p to a value less than 1.0. Future work can
further investigate advanced strategies to make the above adjustment more principled and robust.

While reducing the self-rewarding cost improves efficiency, an alternative is to increase the in-
ference cost in exchange for stronger self-rewarding capability. That is, instead of com-
puting the self-rewarding score based on the log-probability distribution of a single token only,
we can increase the number of additional inference tokens by calculating it over M tokens as
rs = βv∑

M
m=1 logπθ(zc∣x,y, zc,⋯, zc

´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶
m−1 times

)) −Mβvcref. It is a promising direction for future research to

explore whether increasing the number of additional inference tokens can yield positive inference-time
scaling effect for latent self-rewarding capability.

T PROMPT TEMPLATES

We show the training, evaluation and self-verification prompt templates used in our experiments in
the end.
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Training and Evaluation Prompt Template for OctoThinker-3B-Short-Base

<bos token> A conversation between User and Assistant. The user asks a question, and the
Assistant solves it. The assistant first thinks about the reasoning process in the mind and then
provides the user with the answer.
User: You must put your answer inside \boxed{} and Your final answer will be extracted
automatically by the \boxed{} tag.
{question}
Assistant:

Training Prompt Template for Qwen2.5-7B-Base

<bos token> A conversation between User and Assistant. The User asks a question, and the
Assistant solves it. The Assistant first thinks about the reasoning process in the mind and
then provides the User with the answer. The reasoning process is enclosed within <think>
</think> and answer is enclosed within <answer> </answer> tags, respectively, i.e., <think>
reasoning process here </think> <answer> answer here </answer>.
User: You must put your answer inside <answer> </answer> tags, i.e., <answer> answer here
</answer>. And your final answer will be extracted automatically by the \boxed{} tag.
This is the problem:
{question}
Assistant: <think>

Zero-Shot Evaluation Prompt Template for Qwen2.5-7B-Base

< ∣im start∣ >system
You are a helpful assistant.< ∣im end∣ >
< ∣im start∣ >user
{question}
Please reason step by step, and put your final answer within \boxed{}.< ∣im end∣ >
< ∣im start∣ >assistant

Training and Evaluation Prompt Template for Open-Reasoner-Zero-7B

A conversation between User and Assistant. The User asks a question, and the Assistant
solves it. The Assistant first thinks about the reasoning process in the mind and then provides
the User with the answer. The reasoning process is enclosed within <think> </think> and
answer is enclosed within <answer> </answer> tags, respectively, i.e., <think> reasoning
process here </think> <answer> answer here </answer>.
User: You must put your answer inside <answer> </answer> tags, i.e., <answer> answer here
</answer>. And your final answer will be extracted automatically by the \boxed{} tag.
{question}
Assistant: <think>

Training and Evaluation Prompt Template for Qwen3-4B-Base

< ∣im start∣ >user
{question}
Please reason step by step, and put your final answer within \boxed{}.< ∣im end∣ >
< ∣im start∣ >assistant
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Prompt Template for Self-Verification (Modified from Liu et al. (2025a))

Below you are presented with a question and a tentative response. Your task is to evaluate the
response and assign a rating to the response based on the following clear criteria:
Rating Criteria:
1. Missing final answer, or incorrect response with the wrong final answer: assign \boxed{0}.
2. Correct response with the correct final answer: assign \boxed{1}.
### Question Begin ###
{question}
### Question End ###
### Response Begin ###
{response}
### Response End ###
First provide your evaluation process, then clearly state your final rating value enclosed in
\boxed{} at the end.
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