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ABSTRACT

Li et al. (2023) used the Othello board game as a test case for the ability of GPT-
2 to induce world models, and were followed up by Nanda et al. (2023b). We
briefly discuss the original experiments, expanding them to include more language
models with more comprehensive probing. Specifically, we analyze sequences of
Othello board states and train the model to predict the next move based on previous
moves. We evaluate seven language models (GPT-2, T5, Bart, Flan-T5, Mistral,
LLaMA-2, and Qwen2.5) on the Othello task and conclude that these models not
only learn to play Othello, but also induce the Othello board layout. We find that
all models achieve up to 99% accuracy in unsupervised grounding and exhibit high
similarity in the board features they learned. This provides considerably stronger
evidence for the Othello World Model Hypothesis than previous works.

1 INTRODUCTION

Li et al. (2023) used the Othello board game to probe the ability of LLMs to induce world models.
Their network had a 60-word input vocabulary, corresponding to the 64 tiles of an Othello board,
except for the four that are already filled at the start. They trained the network on two datasets:
one on about 140,000 real Othello games and another on millions of synthetic games. They then
trained 64 independent non-linear probes (two-layer MLP classifiers) to classify each of the 64 tiles
into three states: black, blank, and white, using internal representations from Othello-GPT as input.
The error rates of these non-linear probes dropped from 26.2% on a randomly-initialized model to
only 1.7% on a trained model, while linear probes performed close to random. Li et al. (2023) saw
this as evidence that LLMs can induce (non-linear) world models, at least for Othello board games,
supporting the Othello World Model Hypothesis – – the hypothesis that LLMs trained on Othello
move sequences can induce a relevant world model, including the Othello board layout.

Nanda et al. (2023b) did a follow-up study in which they found that linear probes also work if
trained slightly differently. Instead of focusing on tile color, they probed the board state relative to
the current player at each timestep, using labels such as MINE, YOURS, and EMPTY. This reduced
the error rate of the probes to less than 10%. They speculated that world knowledge is often linearly
represented in language models, since ‘matrix multiplication can easily extract a different subset of
linear features for each neuron.’

Now, training a probe as a research methodology comes with several weaknesses, including: a)
probing classifiers can be prone to spurious correlations (Barrett et al., 2019). b) They do not tell us
how information is arranged globally in LLMs.1 c) They therefore only detect a subset of the inter-
esting properties of world models, e.g., excluding the spatial relations that would enable analogical
reasoning (Mikolov et al., 2013).

Contributions We therefore revisit the Othello World Model Hypothesis, reevaluating it
using a methodology that does not suffer from weaknesses a)–c) (see Figure 1), in or-
der to reassess the ability of LLMs to induce world models. If our results are pos-
itive, they will significantly strengthen the case for the hypothesis that LLMs induce

1Li et al. (2023) tried to compensate for this by using PCA to plot the probing classifiers in three dimen-
sions. The PCA plots suggest that the induced global structure is meaningful, but the probing paradigm cannot
quantify its meaningfulness.
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world models; if not, they will suggest that the evidence cited in Li et al. (2023) and
Nanda et al. (2023b) was perhaps a (spurious) effect of the probing paradigm itself.
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Figure 1: Experimental protocol. We re-train
the Transformer-based models to predict the next
move in Othello and see whether the board game
layout is induced (up to isomorphism).

We begin by re-modeling Othello using a range
of model sizes (GPT-2, BART, T5, Flan-T5,
LLaMA-2, Mistral, Qwen2.5), as prior research
has predominantly focused on smaller mod-
els like GPT-2. We retrain these models us-
ing game data of varying scales from the two
datasets presented by Li et al. (2023). Our
analysis extends beyond previous studies by
considering both pretrained and non-pretrained
models (based on upstream language tasks),
evaluating two-hop generation capabilities, and
comparing models of varying sizes. To as-
sess whether these models capture similar un-
derlying game strategies, state representations,
or other key aspects, despite differences in
architecture and size, we employ representa-
tion alignment tools inspired by the literature
on cross-lingual word embeddings (Søgaard
et al., 2019). Finally, we visualize these results
through latent move projections, enabling a deeper analysis of the internal mechanisms of models
trained on the Othello game. Through these probing methods, we show that the language models –
exhibit solid one-hop performance when trained on large amount of game sequence moves. We find
that in some cases, all models can achieve up to 99% accuracy in unsupervised grounding, which
means that absent any cross-modal supervision, a model trained to play Othello can identify the
right positions on a board. More importantly, the alignment similarity score of the board features
learned by these models is surprisingly high. Additionally, the latent move projection demonstrates
that the models can learn the spatial structure of the chessboard. This provides a counter-example to
previous claims that mono-modal models cannot solve visual question answering problems (Bender
& Koller, 2020) – or, more generally, symbol grounding problems (Harnad, 1990). Beyond that,
these results are significantly stronger than those in Li et al. (2023); Nanda et al. (2023b) and, in our
view, provide more direct evidence of the Othello World Model Hypothesis2.

2 RELATED WORK

Past work on Othello Most past works on Othello (Chang et al., 2018; van der Ree & Wiering,
2013) use reinforcement learning to search for moves. The first attempt to model Othello with deep
neural networks dates back to 2018 (Liskowski et al., 2018), focusing on using CNNs to train a
strong player. Based on it, Noever & Noever (2022) focus on designing an effective Othello player
with LLMs. Motivated by Toshniwal et al. (2021), Li et al. (2023) shift the focus to treating the
game as a diagnostic tool for inducing world models from text. Following this, Nanda et al. (2023b)
provide evidence of a closely related linear representation of the board and propose a simple yet
powerful way to interpret the model’s internal state. Takizawa (2024) recently presents a provably
optimal strategy for playing Othello, delving into the complexity of these strategies and paving the
way for future research to explore whether LLMs adopt similar approaches. Hua et al. (2024) adopt
the idea of Othello sequence generation and introduce a multilingual Othello task to aid in cross-
lingual representation alignment.

World models The success of language models in NLP tasks, to many, seems to turn on their
ability to simulate, predict, and reason about dynamic environments as portrayed in text (Hao et al.,
2023; Huh et al., 2024; Patel & Pavlick, 2022; Xiang et al., 2023). The seminal work of Li et al.
(2021) presents an example of fine-tuning LLMs on synthetic NLP tasks to find evidence that world
states are weakly encoded in their activations. Wang et al. (2024) evaluate how well LLMs can serve
as text-based world simulators with a benchmark. Inspired by Othello-GPT, research have explored
more detailed probing (Yun et al., 2023; Hazineh et al., 2023) and more complex scenarios to assess

2Detailed definition see Appendix A.
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Method Type P CHAMPIONSHIP SYNTHETIC
2k 20k full 2k 20k 200k 2M full

GPT-2 D % 49.8 17.7 5.6 49.2 26.8 13.6 10.4 <0.1
Bart E-D % 25.2 16.6 4.7 73.6 31.7 14.2 16.3 <0.1
T5 E-D % 20.9 15.2 4.3 65.8 28.7 15.7 10.1 <0.1
Flan-T5 E-D % 23.4 4.8 3.6 35.6 23.7 21.2 7.7 <0.1
LlaMa-2 D % 27.8 16.5 5.7 57.1 35.4 16.9 10.2 <0.1
Mistral D % 22.1 14.8 4.2 48.2 34.4 17.7 8.3 <0.1
Qwen2.5 D % 25.2 17.3 5.5 45.9 37.8 20.1 9.2 <0.1
GPT-2 D ! 52.6 19.7 13.6 74.4 32.4 19.9 14.1 <0.1
Bart E-D ! 54.0 14.6 13.7 77.2 35.8 24.4 16.6 <0.1
T5 E-D ! 45.5 19.6 3.8 69.4 36.9 32.6 13.9 <0.1
Flan-T5 E-D ! 31.7 4.8 3.7 70.3 25.4 45.0 8.7 <0.1
LlaMa-2 D ! 43.1 14.7 7.0 74.6 41.5 33.4 7.6 <0.1
Mistral D ! 16.8 15.0 3.3 33.8 30.6 18.2 7.7 <0.1
Qwen2.5 D ! 20.9 18.2 6.0 46.5 39.3 23.4 10.8 <0.1

Table 1: The error rate (%) of 1-hop game move generation in terms of different size of training
data. ‘Type’ refers to the model type, ‘P’ denotes if the model is pretrained with upstream language
modeling tasks or not. Numbers in bold represent best-performing models.

the ability of LLMs to understand board states, including for games like chess, checker and maze
navigation (Karvonen, 2024; Joshi et al., 2024; Ivanitskiy et al., 2023). Our work aims to revisit the
Othello World Hypothesis using novel probing methods across a number of different LLMs.

3 MODELING OTHELLO WITH LLMS

Following previous works (Liskowski et al., 2018; Li et al., 2023; Nanda et al., 2023b), we formulate
the problem of playing the board game as a sequence generation problem. Specifically, we fine-tune
generative pretrained models in an autoregressive manner to predict the next move given the current
Othello board state. We then evaluate whether the predicted move is legal or not. Each game is a
sequence, with each move represented as a token, and in each round, we predict the next move. Our
vocabulary consists of 60 words, each representing one of the 60 playable tiles where players place
discs, excluding the 4 center tiles, which are already occupied at the start of the game. See Figure 1
for an example move. Our modeling of Othello, in brief, can be represented as:

pθ(Xi+k|X<i) =

k∏
m=0

pθ(Xi+m|X<i) =

k∏
m=0

softmax (fi+m(x1, x2, ..., xi+m−1)) (1)

where x1, x2, ..., xi−1 represent history moves, Xi+k represents the sequence after k generation
steps. During inference, we input the previously generated game moves X<i at step i into the model
and prompt it to generate the next steps. Unlike previous works, we not only prompt the model
to generate the next move (k = 1) but also introduce a new test where the model generates two
consecutive moves (k = 2), for it prompts models to simulate high-level reasoning, revealing how
well LLMs understand game strategy in a zero-shot manner.

3.1 EXPERIMENTAL SETUP

We use two datasets in our experiments, CHAMPIONSHIP and SYNTHETIC. Both of them were
collected by Li et al. (2023). CHAMPIONSHIP comes from real online Othello gaming sources,
whereas SYNTHETIC is artificially generated according to the rules of Othello game play. Detailed
statistics see Appendix B. We use the last 20,000 games from each dataset for testing and validation
(10,000 games each). Following Li et al. (2023), we report the top-1 error rate of the generated
move. That if a generated move is not legal, we count it as an error. Specifically, we extend the 1-hop
step generation setting in Li et al. (2023) and investigate 2-hop move generation for investigating
the model’s capability to anticipate more strategic, long-term planning in Othello. This involves

3
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Method Type P CHAMPIONSHIP SYNTHETIC
2k 20k full 2k 20k 200k 2M full

GPT-2 D % 78.5 34.7 28.1 76.3 70.8 43.6 29.0 5.2
Bart E-D % 54.2 31.1 23.4 86.5 67.2 44.8 35.7 4.2
T5 E-D % 48.8 28.7 24.4 88.2 67.7 46.9 35.9 3.4
Flan-T5 E-D % 51.8 20.8 21.9 79.6 63.1 48.6 26.7 2.8
LlaMa-2 D % 60.9 36.3 26.4 87.3 67.8 45.2 36.3 5.5
Mistral D % 51.4 31.7 22.3 71.2 77.1 47.9 26.4 3.0
Qwen2.5 D % 55.9 25.4 22.8 77.6 65.3 44.2 28.7 3.3
GPT-2 D ! 92.2 43.4 37.2 99.6 72.6 45.5 34.4 6.2
Bart E-D ! 87.0 34.5 27.1 97.8 76.9 64.0 44.5 5.1
T5 E-D ! 86.5 36.4 27.0 99.6 78.8 59.9 46.9 4.6
Flan-T5 E-D ! 67.9 31.8 26.5 98.6 80.8 79.7 35.3 3.9
LlaMa-2 D ! 66.9 33.4 33.0 94.2 77.6 62.1 33.2 5.2
Mistral D ! 52.0 40.8 25.4 80.3 76.0 42.3 35.0 3.8
Qwen2.5 D % 63.1 38.4 25.8 85.0 79.3 45.1 36.0 3.9

Table 2: The error rate (%) of 2-hop game move generation.
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Figure 2: Othello 1-hop generation error rate under different model sizes. All models are non-
pretrained versions fine-tuned with 20k game sequences.

verifying whether the top-1 prediction is legal when the model is prompted to generate one and two
moves at a time. We present the average error rate across all game sequences. We implement all of
the baselines under the Pytorch framework and the HuggingFace model repository. We conduct all
of our experiments using 8 A100 GPUs. We use all the default parameters in the repository when
fine-tuning.

We perform our experiments using several existing baselines, with both Encoder-Decoder or
Decoder-only structures. We first adopt some popular PLMs such as GPT-2 (Radford et al., 2019),
T5 (Raffel et al., 2019), and Bart (Lewis et al., 2019). We then adopt several LLMs to see the their
performance on this task, including Flan-T5 (Chung et al., 2022), LlaMa-2 (Touvron et al., 2023),
Mistral (Jiang et al., 2023), and Qwen2.5 (Hui et al., 2024). Details see Appendix C.

3.2 EVALUATION OF LLM PERFORMANCE IN OTHELLO MOVE GENERATION

We perform experiments using various methods and present the results in Tables 1 and 2. From our
observations, several key findings emerge. Firstly, there is no clear winner between models with an
Encoder-Decoder architecture, such as T5 or Flan-T5, and those with a Decoder-only architecture,
such as GPT-2, LLaMA-2, or Qwen2.5 in terms of performance on this task. This indicates that the
architectural differences between these models do not significantly impact their ability to generate
Othello game steps. However, one consistent trend is the positive correlation between the amount of
training data and overall model performance. As we increase the scale of the training data, all mod-
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Figure 3: Analysis of 1-hop error rates on the SYNTHETIC dataset with varying data scales.

els tend to improve, underscoring the importance of data availability in mastering complex tasks
like Othello move generation. In comparison to smaller language models, LLMs such as Mistral
and Flan-T5 demonstrate clear superiority in this task, suggesting that model size and capacity are
critical factors in understanding Othello game step generation. Larger models are better equipped
to capture the intricate patterns and strategies within the game, likely due to their increased repre-
sentational capacity. Interestingly, we also find that pretrained language knowledge, while generally
beneficial for a wide range of natural language tasks, sometimes negatively impacts a model’s abil-
ity to understand and generate game steps. Specifically, the pretrained versions of many models
perform worse than their non-pretrained counterparts in this task, which could indicate that knowl-
edge learned from upstream language tasks introduces biases or distracts from learning the specific
structure and rules of Othello. Furthermore, while fine-tuning models on a large amount of data
leads to reasonable performance in generating a single step (1-hop), generating more than one step
consecutively remains a significant challenge. Even with large-scale data, models struggle to ac-
curately predict two or more consecutive moves. This shows the potential limitation of the 1-hop
evaluation since while it mostly focuses on the immediate next move based on the current board
state, it inherently overlooks the deeper decision-making process required for gameplay strategies.

3.3 IMPACT OF MODEL SIZE ON OTHELLO MOVE GENERATION

To further explore the impact of model size on the ability to model Othello moves, we analyze the
performance of various models across different size configurations, as depicted in Figure 2. For
each model, we evaluate performance in small, medium, and large size versions, allowing us to
compare how scaling up model capacity affects accuracy in generating game moves. The results
show a clear trend: as model size increases, the error rate consistently decreases across both
datasets. This trend is particularly pronounced in the SYNTHETIC dataset, where larger models
achieve significantly lower error rates compared to their smaller counterparts. The stronger improve-
ment in the SYNTHETIC dataset suggests that larger models are better at capturing the structured
patterns present in the synthetic data, likely due to their enhanced capacity for learning complex
representations and generalizing across more varied scenarios. These findings highlight the impor-
tance of model scaling, showing that increasing the model size can lead to substantial performance
gains in Othello move generation, especially in environments where the data is highly structured or
synthetic in nature. Furthermore, the results emphasize that larger models are not just marginally
better, but often significantly outperform smaller models, reinforcing the need to consider model
capacity as a critical factor when tackling tasks that require a deep understanding of game strategies
and sequential decision-making processes.

3.4 IMPACT OF DATA SIZE ON OTHELLO MOVE GENERATION

In Table 2, we observe a sharp decrease in model error rates as the dataset size increases from 2k
to 20k. To investigate this further, we conduct an analysis by gradually enlarging the SYNTHETIC
dataset from 2k to 32k. According to Figure 3, the performance of all models improves gradually
as the dataset size increases. Interestingly, non-pretrained models exhibit a faster reduction in er-
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ror rates within the 2k to 12k data size range, with diminishing improvements beyond that point
compared to pretrained models. In contrast, pretrained models take longer to achieve comparable
performance, highlighting their slower adaptation to the task. This suggests that non-pretrained
models are better suited for quickly learning game rules and adapting to fundamental patterns in the
data. Furthermore, it indicates that the prior natural language knowledge embedded in pretrained
models does not significantly enhance their understanding of the game. This observation aligns
with our findings discussed in Section 3.2, where we also observed the limited impact of pretrained
knowledge in tasks requiring specialized domain adaptation.

4 OTHELLO REPRESENTATION ALIGNMENT ACROSS LANGUAGE MODELS

Drawing inspiration from the literature on cross-lingual word embeddings, we perform Othello rep-
resentation alignment across different models to compare how each model, despite differences in
architecture and size, internalizes and represents game strategies and states. This helps us assess
whether the learned representations in Section 3 are consistent across models and whether they cap-
ture similar underlying patterns essential for accurate Othello move generation.

4.1 ALIGNMENT METHOD

To validate the Othello World Model Hypothesis, we directly evaluate the internal representation of
the Othello board in language models. Using the representations from different models, denoted as
F1, F2 from the same input sequence X<i, we perform mapping training under both supervised and
unsupervised scenarios3. A linear mapping W is learned to map F1 and F2 into the same space:

W ∗ = argmin
W∈Mi(R)

||WF1 − F2|| (2)

where F1, F2 ∈ Ri×h are representations from the final hidden Decoder layer in different language
models trained for Othello generation. Mi(R) is the space of i× i matrices of real numbers.

Supervised training. We consider the internal representations of different models within different
source and target spaces. For supervised training (see Algorithm 1)4, we use the pairwise data to
learn a mapping from the source to the target space using iterative Procrustes alignment (Gower &
Dijksterhuis, 2004). We use representations from two models as training pairs. Specifically, the
representations of the ith step within the same game from the two models are considered a pair,
denoted as hθ1(X<i) and hθ2(X<i), respectively. In our experiment, we randomly select 1,000
game sequences from the validation set as training pairs.

Algorithm 1: Supervised Training for Othello Representation Alignment
Inputs :
hθ1(·), hθ2(·) representations from the final hidden layer of Decoder in two models: Θ1, Θ2

X<i = {x1, ..., xi−1} input game sequence at time step i
r number of refinement iterations

Output:
s Similarity score of the aligned feature learned from the two models

F1 ← hθ1(X<i), F2 ← hθ2(X<i)
for i = 1 to r do

if i! = 1 then
F1 ← BuildDic(F1), F2 ← BuildDic(F2) // build a dictionary from aligned
embeddings containing best aligned pairs

W ← Procrustes(F1, F2)
F1 ←WF1

s← CosSim(F1, F2)

Unsupervised training. For unsupervised training, without any parallel data or anchor points, fol-
lowing Conneau et al. (2018), we learn the mapping through a combination of adversarial training

3Both of the algorithms are implemented using MUSE, a library designed for multilingual embedding align-
ment (https://github.com/facebookresearch/MUSE).

4More details (e.g. BuildDict() of Algorithms 1, 2) see Conneau et al. (2018).
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and iterative Procrustes refinement (Lample et al., 2018) (see Algorithm 2). The process involves
first learning an initial proxy of the mapping W using an adversarial criterion. Where an additional
Discriminator model is trained to identify the origin of an embedding, yet the target mapping W
aims at preventing the discriminator from doing so. Then, the mapping W is further refined via Pro-
crustes using the same strategy in supervised training. We then report the average cosine similarity
of the aligned features on the test set.

Algorithm 2: Unsupervised Training for Othello Representation Alignment
Inputs :
hθ1(·), hθ2(·) representations from the final hidden layer of Decoder in two models: Θ1, Θ2

X<i = {x1, ..., xi−1} input game sequence at time step i
k, r number of adversarial training iterations, number of refinement iterations

Output:
s Similarity score of the aligned feature learned from the two models

F1 ← hθ1(X<i), F2 ← hθ2(X<i)
RandomInitialize(W )
for i = 1 to k do
D ← TrainDiscriminator(W,D,F1,F2) // train the discriminator D
W ← FoolDiscriminator(W,D,F1,F2) // train W to fool the discriminator

F1 ←WF1

for i = 1 to r // refine W
do
F1 ← BuildDic(F1), F2 ← BuildDic(F2)
W ← Procrustes(F1, F2)
F1 ←WF1

s← CosSim(F1, F2)

4.2 MAPPING RESULT

We probe different models by aligning their representations into one joint vector space. We report
the cosine similarity of the aligned features score under both supervised (Conneau et al., 2018) and
unsupervised (Lample et al., 2018) settings in Table 35.

Src. Trg. Supervised Unsupervised
CHAM. SYN. CHAM. SYN.

GPT-2 Bart 81.4 93.1 80.3 91.3
GPT-2 T5 83.0 85.0 76.4 80.1
Bart T5 69.2 84.5 85.2 81.1
GPT-2 Mistral 90.3 77.2 80.3 82.6
Bart Mistral 88.0 79.1 96.1 97.2
LlaMa-2 Mistral 80.1 74.2 76.2 72.6
Qwen2.5 LlaMa-2 84.2 80.1 81.3 84.9

Table 3: Representation alignment cosine similarity (%) results. Src. and Trg. represent source and
target space. CHAM., SYN represent CHAMPIONSHIP and SYNTHETIC dataset.

From the results, we observe consistently high similarity scores across different language models,
indicating that despite architectural differences, these models capture similar underlying representa-
tions when tasked with the Othello game. For instance, the SYNTHETIC supervised similarity score
between GPT-2 (a Decoder-only model) and Bart (an Encoder-Decoder model) reaches an impres-
sive 93.1%. This suggests that, although these models process information differently due to their
structural variances, they still converge on shared knowledge and representations when learning to
model the Othello task. Such a high similarity score points to the possibility that both model types
learn similar strategic patterns and rules intrinsic to the game, reinforcing the idea that fundamental
aspects of the Othello task are captured across architectures.

5We use the non-pretrained version based on 20k training data for all models.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

4.3 PCA VISUALIZATION

In order to vividly show such alignment, we also demonstrate the dimension-reduced PCA
coordinate of 60 step features hθ(X) within one entire random game in Figure 4. We
also observe highly similar step representations across different models. This suggests
that these models are learning comparable internal representations of the game states, in-
dicating that the models are aligned in how they interpret the sequential nature of Oth-
ello. Even though they may be built differently (e.g., Decoder-only versus Encoder-Decoder),
the core representations they learn about the game states converge to a similar space.

Figure 4: PCA visualization of the 60 steps from
various models within one game.

This result highlights a level of consistency and
robustness in the way generative models pro-
cess game-related information. Despite differ-
ences in architecture or training objectives, the
models seem to internalize and represent Oth-
ello game states in a similar manner. This
convergence suggests that these models, when
trained on the Othello task, are not only learn-
ing task-specific patterns but are also aligning
on a shared understanding of the underlying
problem space. To sum up, such alignment
enhances the interpretability of these models,
as their internal representations become more
comparable.

4.4 MAPPING
ACROSS DIFFERENT LAYERS

We compare the mapping similarity across different Decoder hidden layers in GPT-2 and
Flan-T56 to understand how each model progressively learns to represent the Othello
game, evolving from simple board states to more complex strategies. As shown in Fig-
ure 5, despite their structural differences, GPT-2 and Flan-T5 exhibit similar learned rep-
resentations at corresponding layers. Both models, when trained on Othello game se-
quences, seem to converge toward learning comparable internal representations, as high-
lighted by the heatmap. This conclusion is supported by the following observations:

0 1 2 3 4 5 6 7 8 9 10 11
GPT-2

0
1
2
3
4
5
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7
8
9

10
11

Fl
an

T5

0.5

0.6

0.7

0.8
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Figure 5: Decoder feature similarity heatmap
across different layers.

(1) High Similarity in the Upper Right Diag-
onal. The heatmap reveals a prominent diag-
onal pattern where corresponding layers from
GPT-2 and Flan-T5 show high similarity, espe-
cially in the upper half of the heatmap. This
suggests that, despite their differing architec-
tures (GPT-2 being autoregressive and Flan-T5
following an Encoder-Decoder structure), mod-
els eventually learn something in common (par-
ticularly at layer 11, where high similarity is
observed) despite the difference from the begin-
ning. This alignment indicates that their layer-
wise learning processes evolve in comparable
ways as they both adapt to the Othello game
environment. (2) Layer-Specific Correspon-
dences. We notice that specific layers in GPT-2
show high similarity with certain layers in Flan-
T5, even though they may not follow a strict di-
agonal pattern, this suggests that both models are learning certain shared features or patterns in game
sequences at particular stages of their processing pipelines.

6We use GPT-2-small and Flan-T5-Base trained on 20k SYNTHETIC dataset, as both have 12 decoder
hidden layers.
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Figure 6: Othello latent move projection from two best performed models. Colors indicate the
likelihood of the position of the next step. Shadows highlight the top three tiles with embeddings
closest to the top candidate, with the darkest color in the black box.

5 LATENT MOVE PROJECTION: WHAT ELSE DOES LLMS LEARN?

To gain deeper insights into how models learn strategies and predict future moves, we project latent
features onto a visual space. For a given game sequence X<i, we highlight the top-5 candidate tile
positions with the highest predicted probabilities for the next move. Additionally, we compare the
embeddings of the top candidate tile with those of the other tiles. We mark the top three tiles whose
embeddings are closest to the top candidate to examine their spatial relationships on the board.

We perform latent move projection on the Othello game steps of two models in Figure 6 (results
for other models in Appendix G). It shows that both models successfully predict legal moves given
a game sequence. Moreover, other legal moves are also assigned high prediction scores (tiles with
lighter blue) by the models. This proves that with a large amount of game sequence data, the model
learns the rule of the game. To further investigate whether the models can capture the physical
position of each tile, we use shadow marks to highlight the tiles with the closest embedding distance
to the tile in the black box. The intensity of the shadow reflects the degree of similarity. We observe
that the top-1 tile with the highest similarity (F2 in Figure 10(a), G4 in Figure 10(g)) is the one
adjacent to the black box tile in both models. This indicates that the models not only understand the
game mechanics but also capture the spatial relationships between tiles.

6 LIMITATIONS

Although this work demonstrates the ability of different language models to understand Othello
game rules, several limitations persist that require further investigation:

Challenges in Multi-step Move Generation. While language models can predict the next move
with reasonable accuracy, they struggle to predict entire game sequences. The key question is
whether strong multi-step performance is a reasonable expectation. Othello is a dynamic game
where optimal play often involves sacrificing short-term gains for long-term advantages. The com-
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plexity arises from the interplay of distinct player strategies and the rotational invariance of the
board, leading to many game states where the subjectively or objectively best move is inherently
underdetermined. As a result, the ability to accurately predict entire sequences may remain elusive,
given the complexity and variability of decision-making in the game.

Limitations in Data Requirements. Our experiments show that reducing the 1-hop error rate to
less than 0.1% demands a large volume of training data. This reliance on vast datasets presents
a scalability issue, as access to Othello game data is limited. Moreover, training on such large
datasets is computationally expensive and time-consuming, which can be a prohibitive factor for
many researchers or organizations without access to substantial computational resources.

7 POTENTIAL IMPACT

Training language models on Othello game sequences can imply that LLMs function as a world
model because it showcases their ability to learn and internalize the structured dynamics and rules
of a complex system, rather than merely memorizing patterns. Investigating the parallels between
how language models learn structured representations and how humans internalize similar concepts
can shed light on the cognitive processes underlying reasoning, strategy, and language. This could
deepen our understanding of human cognition and inform theories of learning and representation.
The observation that language models, regardless of architecture or scale, learn similar patterns from
Othello game sequences suggests that these models converge on universal representations when
trained on structured data. This implies that the underlying mechanisms of representation learning
in LLMs are robust and consistent, highlighting their ability to capture the rules and dynamics
of structured systems. The ability of language models to learn patterns from Othello sequences
provides more hints on the idea that LLMs can act as world models, capable of internalizing rules,
strategies, and dynamics. This has far-reaching implications for tasks requiring reasoning about
complex environments, such as planning, simulation, and autonomous decision-making.

8 FUTURE DIRECTIONS

We list several possible future directions to study how our results could generalize to other broader
scenarios.

More Complicated Games. Since this work is primarily limited to the Othello game, an intrigu-
ing question arises: could similar findings be observed in other games such as chess, checkers, or
Go? These games, like Othello, involve strategic planning, dynamic state transitions, and trade-offs
between short-term gains and long-term advantages. Exploring how large language models (LLMs)
learn and represent strategies in these contexts could be highly valuable.

Multimodal Support. Leveraging Multimodal LLMs (MLLMs) to train models and investigate fea-
ture alignment across different modalities is also a highly relevant and promising research direction.
In the context of Othello, this approach could involve aligning visual representations of the game
board with text-based sequencial moves. Such alignment can help bridge the gap between symbolic
reasoning and natural language understanding, enabling models to not only predict optimal moves
but also provide hints if the world model theory could also be applied in other modalities.

9 CONCLUSION

We conduct a detailed probing of language models’ ability to predict legal moves in the Othello
board game, based on the settings in Li et al. (2023). We evaluate seven language models, training
them to predict the next move based on previous moves. All seven models achieve almost ‘perfect’
one-hop move prediction performance when trained with large amount of data. We then adopt
representation alignment tools to align the learned game state features from different models into
one joint space. We observe high similarity in the board features they learned. In addition, latent
move projection is performed to show the models not only understand the game mechanics but
also capture the spatial relationships between tiles. These results, in our view, provide more solid
evidence to date of the Othello World Model Hypothesis presented in previous works.
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CHAMPIONSHIP SYNTHETIC
Num. of Games 132,588 23,796,010

Avg. length 59.8 ± 1.5 60.0 ± 0.8
Min. length 4 9

Full length portion(%) 95.0 99.1

Table 4: Dataset statistics of the two Othello datasets.

to develop internal representations for simple concepts, such as color and direction Patel & Pavlick
(2022); Abdou et al. (2021). Training language models on Othello game sequences further supports
the idea that LLMs can function as a world model. This is demonstrated by their ability to learn
and internalize the structured dynamics and rules of a complex system, rather than merely memo-
rizing patterns. This capacity highlights their potential for understanding and representing intricate
environments through abstract, systematic reasoning.

B DATASET STATISTICS

The details of the two datasets are listed in Table 4.

C COMPARED METHODS

We perform our experiments using several existing baselines, with both Encoder-Decoder or
Decoder-only structures. We first adopt some popular language models such as

GPT-2. We fine-tune GPT-2 to generate the whole game sequence step by step. Specifically, we use
the smallest version of GPT-2.

Bart. We use Bart-base to generate the sequence by feeding the first token into the Encoder and
fine-tuning the model to generate the remaining tokens.

T5. Similar as Bart, we adopt T5-base in our experiment.

We then adopt several LLMs for the task:

Flan-T5. We adopt Flan-T5-XL, which contains 3B parameters in our experiment.

LLaMA-2. We use LlaMa2-7B and only fine-tune the LoRA adapter in our experiment.

Mistral. We use Mistral-7B in our experiments. Similar to LLaMA-2, we also only fine-tune
the LoRA adapter but keep the rest of parameters fixed.

Qwen2.5. We use Qwen2.5-7B in our experiments, one of the most state-of-the-art LLMs for
sequence generation.

D MODEL SIZE ANALYSIS ON TWO-HOP GENERATION

We present the 2-hop performance across various model sizes in Figure 7. As we scale up the model,
the error rate decreases, suggesting that a larger model size positively affects game understanding.
However, the impact of model size diminishes when compared to the 1-hop performance, indicating
a diminishing return on performance gains with increased model size.

E DATA SIZE ANALYSIS ON CHAMPIONSHIP DATASET

We also present the data size analysis on the CHAMPIONSHIP dataset (see Figure 8). We see
similar conclusions as in Figure 3. The prediction accuracy gets better when we increase the data
size. Also, the error rate demonstrates a more steady drop in models pretrained with upstream
language modeling tasks.
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Figure 7: Othello 2-hop generation performance under different model sizes. All models are non-
pretrained versions fine-tuned with 20k game sequences.
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Figure 8: Analysis of 1-hop error rates on the CHAMPIONSHIP dataset with varying data scales.

F SUPERVISED MAPPING HEATMAP

We also present the supervised mapping results for the same setting in Section 4.4. The mapping in
Figure 9 reveals a more pronounced diagonal pattern of similarity, with particularly high similarity
observed in the upper-right corner. This provides further evidence that the models converge and ac-
quire shared knowledge when trained on Othello data, indicating a strong alignment in their learned
representations.
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Figure 9: Decoder feature similarity (supervised) heatmap across different layers.
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Figure 10: Othello latent move projection from two best performed models.

G LATENT MOVE PROJECTION (FULL VERSION)

We attach the prediction from different models of the same game state in Figure 10. By compar-
ing the performance of different models on the task, we find that overall, Mistral shows the best
performance. It consistently demonstrates the best performance across different scenarios, effec-
tively generating legal moves and showing a nuanced understanding of game rules. The Bart model
frequently predicts adjacent tiles, leading to numerous failure cases, particularly when trained with
smaller datasets. Llama-2 exhibits inconsistent performance, with a tendency to favor certain tile
positions or exhibit a bias in move selection. While its predictions are often reasonable, the model
appears to lack the robust policy understanding seen in Mistral, especially under constrained training
conditions.
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