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ABSTRACT

Accurately predicting fluid dynamics and evolution has been a long-standing chal-
lenge in physical sciences. Conventional deep learning methods often rely on the
nonlinear modeling capabilities of neural networks to establish mappings between
past and future states, overlooking the fluid dynamics, or only modeling the ve-
locity field, neglecting the coupling of multiple physical quantities. In this paper,
we propose a new physics-informed learning approach that incorporates coupled
physical quantities into the prediction process to assist with forecasting. Central
to our method lies in the discretization of physical equations, which are directly
integrated into the model architecture and loss function. This integration enables
the model to provide robust, long-term future predictions. By incorporating phys-
ical equations, our model demonstrates temporal extrapolation and spatial gener-
alization capabilities. Experimental results show that our approach achieves the
state-of-the-art performance in spatiotemporal prediction across both numerical
simulations and real-world extreme-precipitation nowcasting benchmarks.

1 INSTRUCTION

The prediction and analysis of fluid dynamics play a crucial role across many fields of physical
science. Fluid phenomena span a wide range of scales, from macroscopic atmospheric circulation
to microscopic intracellular transport, underscoring the complexity and significance of fluid motion.
However, noisy data, experimental limitations, and the inaccessibility of physical quantities present
substantial challenges in learning the underlying dynamical systems and accurately predicting future
fluid evolution.

These challenges primarily arise for two reasons. First, latent physical quantities are inherently
difficult to obtain. For example, the advection and diffusion of substances within fluid flows are
governed by the Navier-Stokes (NS) equations, which couple multiple variables—such as velocity,
pressure, and concentration—into a complex, interdependent system. Capturing real-time data, like
velocity and pressure, without interference is highly challenging. Successful approaches usually rely
on supervised learning for these quantities, but such data is not easy to obtain in practical scenarios.
While the HFM (Raissi et al.,2020) has made notable progress by inferring latent physical quantities
from PDEs and observed concentration data, it still falls short of predicting future fluid evolution.

Second, the complexity of the NS equations presents a substantial obstacle. These nonlinear equa-
tions couple multiple physical quantities, making the direct prediction of future fluid behavior nearly
impossible. A promising approach is the use of neural operators, which predict future physical fields
based on past observations without explicitly solving the NS equations (e.g., [Li et al.| (2020), [Tran
et al. (2023))). These models leverage the powerful nonlinear approximation capabilities of neural
networks to map past fluid states to future. However, the absence of physical constraints often lim-
its their interpretability and generalization ability. Another approach involves approximating and
simplifying the NS equations through methods like kernel methods or other theorems and applying
neural networks to estimate the fluid velocity field. By combining the estimated velocity field with
simplified equations, these methods attempt to predict future fluid behavior (e.g.,|Deng et al.|(2023)),
Xing et al.|(2024)). However, these methods lack intuitive clarity, and focusing solely on the velocity
field overlooks the complex multivariable coupling intrinsic to the NS equations.

In this paper, we propose the Physics-Informed Neural Predictor (PINP), a new approach designed
to address the challenges outlined above. For fluid dynamics prediction, we discretize the NS equa-
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Figure 1: Model has the following capabilities: (a) Temporal extrapolation, (b) Spatial generaliza-
tion, (c) Latent physical quantities Estimation.

tions in both time and space, incorporating them into the model architecture and loss function.
Neural networks are employed to establish a mapping function from past measurement (observed
data) to both intermediate observed quantities and latent physical variables, enabling predictions
through the discretized NS equations. Unlike methods that solely establish mappings between past
and future states or focus only on velocity modeling, our approach estimates multiple physical quan-
tities (such as velocity and pressure) to assist in the prediction. To ensure the physical validity of
the inferred physical quantities, we impose both physical and temporal constraints. By explicitly
modeling physical quantities and incorporating the NS equations into the model, our method inher-
ently possesses interpretability and enhances the extraction of latent fluid dynamics from observed
data. This integration further improves the model’s temporal extrapolation and spatial generalization
capabilities in prediction.

To evaluate the effectiveness of the proposed method, we conducted a comparative study against
several state-of-the-art models for predicting future observed data. The evaluation was performed
using both numerically simulated 2D and 3D datasets, as well as real-world nowcasting benchmarks.
The predictive accuracy of the models was quantitatively assessed across various scenarios.

Experimental results demonstrate that our approach achieves SOAT performance in predicting ob-
served data, while simultaneously estimating multiple latent physical quantities for interpretability,
and exhibiting better temporal extrapolation and spatial generalization capabilities (Figure|[T).

In summary, our main technical contributions align to tackle the key challenges, given by:

1) Estimation of Multiple Physical Quantities and Assisted Prediction: We estimate latent
physical quantities, which can assist in the prediction of observable physical quantities and
serve as interpretable evidence to support our predictions.

2) Temporal Extrapolation and Spatial Generalization: Our model demonstrates the ability
to extrapolate beyond the training steps and generalize across varying spatial domains.

3) Superior Performance: Our model consistently achieves SOTA performance across a wide
array of benchmark tests, including synthetic and real-world datasets (both 2D and 3D).

2 RELATED WORK

Modeling fluid flows has always been a significant challenge. Since it is typically impossible to cal-
culate explicit solutions for NS equations, scientists have developed numerous numerical methods
to address this problem, such as the finite element method (Donea & Huertal, [2003)), finite difference
method (Godunov & Bohachevskyl [1959), finite volume method (Jasak [1996)), and spectral method
(Orszag, [1979). However, these numerical methods heavily rely on initial conditions, which are
often difficult to obtain in practical applications. Moreover, numerical methods face high computa-
tional costs, especially when dealing with complex and variable scenarios and large computational
domains. The complexity of modeling and the lengthy computation times render numerical meth-
ods impractical in such cases. In recent years, the development of deep learning technologies has
provided new possibilities for solving this problem. Based on whether latent physical quantities are
modeled, we can broadly categorize these approaches into the following methods.

Neural Operator methods. This category of methods primarily leverages the powerful nonlinear
modeling capabilities of neural networks to approximate the complex mapping between inputs and
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outputs, thereby enabling predictions based on past fluid data. For example, DeepONet
[20214), which is derived from the universal approximation theorem, employs a branch-trunk archi-
tecture. FNO approximates the integral operator by employing linear transforma-
tions in the Fourier space. U-FNO 2022) and U-NO (Rahman et al., 2022) enhance FNO
with U-shaped multi-scale frameworks. Geo-FNO (Li et al.| handles complex geometries by
transforming irregular input physical domains into latent spaces with uniform grids. F-FNO
2023) improves FNO through separable spectral layers and residual connections. Addition-
ally, MWT (Gupta et al 2021) introduces a multiwavelet-based neural operator. LSM
decomposes complex nonlinear operators into multiple base operators, using neural spectral
blocks to solve high-dimensional PDEs. However, these methods do not explicitly model latent
physical quantities, leading to a lack of physical interpretability. Overlooking the fluid dynamics,
they perform poorly in temporal extrapolation.

Latent physical quantity modeling methods. This category of methods is based on existing NS
equations and explicitly models the required physical quantities, such as velocity, for fluid predic-
tion. One approach is to directly incorporate the NS solutions as parameters of the deep model and
formalize the constraints, e.g., PDEs, corresponding initial and observed data, as a loss function
(Raissi et al.| 2019} 2020} [Cu et al [2021b). enabling the inference of hidden physical quantities
from observed data. However, this method is not effective for predicting future fluid behavior. An-
other approach is to approximate and simplify NS equations and estimate the fluid velocity field,
then use the velocity field and the simplified equations to predict future fluid behavior. For instance,
Zhang et al. (2022)) initially provided estimates using an optical flow predictor constrained by the
NS equations. DVP 2023) combines vortex particles with a vortex-to-velocity dynam-
ics mapping to capture complex flow dynamics. HelmFluid integrates learned
Helmholtz dynamics to generate future fluid behavior. However, this method does not achieve ex-
plicit incorporating of the NS equations, lacking intuitiveness. In addition, since fluid dynamics is
a complex system involving the coupling of multiple physical quantities, models that rely solely on
the velocity field have inherent limitations.

3 PHYSICS-INFORMED NEURAL PREDICTOR

Let us consider a real-world scenario: the transport of dye in water. The dye is transported and
diffused with the flow of water, and it does not affect the flow of the water itself. Under normal tem-
perature and pressure, water approximately satisfies the incompressible Navier-Stokes equations.
We aim to predict the future evolution of the dye concentration only based on observed dye con-
centration data, while also estimating the unobserved velocity and pressure fields of the water as
interpretable evidence.

Figure 2] illustrates the overall architecture of our PINP model. Herein, the dye flows from left to
right through a pipe with obstacles. The observed data includes dye concentration ¢ and spatial
information 7). Using these observed data, and based on a physics-informed neural network, we
simultaneously estimate the concentration field at time ¢’ and the underlying velocity and pressure
fields (unmeasured). With these inferred fields and the Discrete PDEs Prediction Network, we can
predict the concentration field ¢’ for the next time step.

In the Discrete PDEs Prediction Network, we construct the predictor using discretized PDEs. Since
this discretization naturally introduces numerical errors, we use a correction network to refine the
predicted concentration field, resulting in the final prediction ¢’. Additionally, the simultaneously
estimated velocity and pressure fields at time ¢’ serve as interpretable evidence.

Notation. Throughout the paper, V = Vy denotes spatial gradients, ¢ = % time derivatives,
V - u = tr(Vu) divergence, and - tensor inner product. k € {1,2, ..., N} denotes the k-th frame,
ty, the time of k-th frame, and At the time interval between ¢, and 1.

3.1 DISCRETIZATION PDESs

We considered the transport of a passive scalar c(x,t) € RE*W by a flow velocity field u(x, ) €
R2XHXW The passive scalar is advected by the flow and diffused but has no dynamical effect on
the fluid motion itself, which satisfies the incompressible NS equations:

é(x,t) = —u(x, t) - Ve(z, t) + Pe ' V2¢(x, t), (1)
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Figure 2: Schematic architecture of the proposed Physics-Informed Neural Predictor (PINP).

where Pe denotes the Peclét number, c(x, t) the concentration of the passive scalar , which can be
observed without interfering with the state of fluid flow.

According to the aforementioned equations, if we need to predict the concentration at future time
points, we can derive the expression for the future concentration as follows:

ti41
C(il?.,tk+1)=/ . ¢(a, t)dt + c(x, ty). ?2)

123

The integration term in Eq. [2]is undoubtedly extremely complex and challenging to solve. However,
considering the continuity of material concentration c(x, t) over time, based on the Lagrange Mean
Value Theorem, there must exist a moment ¢’ between time ¢, and ¢, such that:

tk+1
/ c(x, t)dt = c(z, t') AL, t' € [ty tgr1]- 3)

tr
Therefore, the prediction process can be described by the following equation:
c(x, thr1) = (@, ty) + c(z, ')At
=c(z,ty) + (—u(z,t') - Ve(z, ') + Pe ' Vie(z, t)) At. @
Eq. @]is the final discrete form of the NS equations that we utilize.

3.2 PHYSICAL INFERENCE NEURAL NETWORK

Based on Eq. [4 we can predict the concentration. We need a way to model concentration data
c(z,t'), velocity data u(x, t'), and the Peclét number (Pe) included in the equation. Considering the
powerful nonlinear fitting capabilities of neural networks, we utilize them to establish the mapping
function from past K frames of data to the physical quantities at time ¢’:

QS(:IZ,ﬂ) = ‘F9¢ (C(.’I}, < tk’)a 7#)7 t/ € [tkH tk?-‘rl]v (5)

where ¢ denotes the physical quantities, c(x, < ) = [c(@, tir1-K), .., (@, tp—1), c(x, tg)] €
REHXW o)y ¢ REXHXW g the spatio embeddings.

For spatial information v, we define it as ¢ = (x,d, b), where & € R2*7*W denotes the coordi-
nates of grid points. For bounded fluids, d and b collectively characterize the internal positions and
boundary information of the space. d € R *"W denotes the Signed Distance Function (SDF,
(1988)), which describes the shortest distance from each position in the physical field to
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the obstacles. b € R¥>*W s used to describe various attributes of each position in the physical field,
with different values of b representing boundaries and regions that permit fluid flow.

We set Pe as a learnable parameter in the network since the Pe is a constant.

3.3 DISCRETE PDES PREDICTION NETWORK

Based on Eq. 4] we define the Discrete PDEs Predictor:
& (@, thr1) = c(z, ty) + (—u(z,t') - Ve(z,t') + Pe ' Vie(z, 1)) At. (6)

Since the discretized PDE predictor may introduce errors, the predicted concentration field is cor-
rected using a correction neural network (Gy):

&, thyr) = Go(& (, thyn), é(x, tg)). (7)
3.4 SPECIFIC MODEL IMPLEMENTATION

In Eq. 5] the mapping function we need to establish is a complex nonlinear function with coupled
multiple physical quantities and multi-scale features. Since U-Net (Ronneberger et al.,[2015) is well-
suited for modeling multi-scale information, 3D U-Net is considered more effective in capturing
spatiotemporal features. Here, we adopt 3D U-Net (Cicek et al., 2016) for the mapping:

fec)(c(mﬂ < tk)a “) = F3p U—Nel(c(w, < tk), ?;/)). (8)

Similarly, in Eq. [7} we establish our correction network using the U-Net architecture. Since the cor-
rection task is relatively simple, the model used here is more lightweight. Appendix[A]presents more
details, including the gradient operator, signed distance field, mask settings and model structure.

Go (¢ (@, tyt1), E(x, 1)) = G uNet tightweighy (¢ (2, thr1), &(@, ). 9

3.5 Loss FUNCTION
Our loss function consists of three components: Data, Physical, and Temporal constraints. These
components ensure the prediction accuracy and inference of underlying physical quantities.

Data constraints. Using the observed data (training labels), we impose constraints on the predicted
values both before and after correction:

Loual®, te) = |12 (@, 1) — (@, )|} + [[é(, 1) — el t0)] 3. (10)

Physical constraints. We consider the physical constraints of the incompressible NS equations:

aw(x,t) = —u(z,t) - Vu(z,t) — Vp(z,t) + Re ™' VZu(z, t),

V- u(z,t) =0. (1

Over a very short time interval, we assume that u(x,t') ~ w(x,t;) and p(x,t’) ~ p(x,t;). We
establish the residual terms by discretizing and non-dimensionalizing the aforementioned equations:

e1(z, ty) = Au(z, ty) + (—u(w, t) - Vu(z, ty) — Vp(x, ty) + Re ! V2u(zx, tr)) A, (12)
ea(x, ty) = (V- u(zx, ty)) At.

So, we define the Physical constraint as:
['Physical(xv tkr) - Hel(w-, tl.)”é + HeQ (iE./ tk)”é (13)

Notably, in Eq. we have introduced the pressure term p(x,t’) € R¥*W and the Reynolds
number Re. Similar to our approach for handling concentration and velocity, we utilize neural
networks to establish the mapping from the past observed data to the pressure. Re is treated as a
learnable parameter. In this way, we introduce H x W + 1 new variables while adding 2 x H x W
constraint equations, further enhancing the physical constraints.

Temporal constraints. In Eq. 3| we have t’ € [t;, t.11]. However, directly imposing constraints on
t’ is both challenging and unnecessary. Instead, we applying constraints directly on ¢(x, t'). Over a
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Figure 3: Overview of the data with spatial resolution.

very short time interval, assuming steady flow, we can approximate the temporal evolution of ¢(x, t)
as a monotonic bounded function. Since ¢ lies between ¢, and ¢ 1, we have:

lea, #) = e(@, )3 < lle(@, tis) — el t0)]3. (14)
Based on this, we establish the residual term as follows:
c(x,t") — c(x, tp)||3 — ||e(x, the1) — c(z, t1)]]3,0}. (15)

This implies that if ||c(x, ') — c(x,t;)||3 is less than or equal to ||c(x, 1) — c(x, t1)||3, we
consider the concentration at time ¢’ to be optimized within an acceptable error range, and the loss
term for this component is set to 0. However, if ||c(x, ') — c(x, },)||3 is greater than ||c(x, ;1) —
c(zx,t;)||2, we consider the concentration value at time ¢’ to require further optimization.

In summary, our loss function assembles the above constraints and is written as:

['Temporal(w3 tk) = max{

N

1
Z (EData(ma tk) + EPhysical ($ tkz) + LTemporal (.’E, tk:) (16)
i=1

NHW

4 EXPERIMENTS

We extensively evaluate our model across four benchmarks, including both simulated and real-world
scenarios, as well as 2D and 3D settings. The training and testing data consist solely of observable
data. Overview of the data with spatial resolution can be found in Figure [3]

Table 1: Comparison of prediction performance on synthetic
data with test metrics of MSE (}.) and MAE (). For clarity, the
Given the simulated Pestresultis shown in bold and the second best is underlined.

4.1 SIMULATED DATA

Baselines.
data, we compare our model with Flow 2D Smoke 2D Smoke 3D

seven recognized advanced mod- MAE MSE MAE MSE MAE MSE

els, including five baselines that
are purely data-driven to approxi- 0.0362 0.0076 0.0346 0.0140 0.1397 0.0385
0.0424 0.0092 0.0412 0.0192 0.1460 0.0419

mate complex mapping functions: 0.0300 0.0029 0.0303 0.0118 0.1465 0.0413
FNO (Li et al| [2020), F-FNO : : : : : :
0.0183 0.0008 0.0284 0.0092 0.1386 0.0363

e(lffl‘n 26(;2321'1’ m’ Ilzjalfggl 0.0187 0.0011 0.0335 0.0125 0.1237 0.0314
_Lzozi |_|)d L oM wq—ll o 0.0336 0.0055 0.0282 0.0107 0.1124 0.0250
2022) an (Wu et al/ [2023), LSM%@LD 0.0338 0.0037 0.0311 0.0109 0.1193 0.0293

and a baseline that utilizes es-  yelmFluid (2024) 0.1222 0.0503 0.0254 0.0085 0.1217 0.0298
tablished velocity fields to assist -
prediCtiOnS, aka, HelmFluid PINP (thlS WOrk) 0.0107 0.0003 0.0209 0.0057 0.1073 0.0249

[2024), and two other base-
lines for vision tasks, aka, U-Net (Ronneberger et al.,[2015) and ResNet (He et al.,[2016).

Fluid 2D. We consider a scenario where a substance is transported by fluid flow through a pipe. An
incompressible fluid with a certain concentration flows from left to right, passing through multiple
solid objects with varying positions and shapes. The substance is advected and diffuses with the
fluid, and its concentration is the observed data. The real-world scenario involves the transport of
dye carried by water flow through a pipe. To evaluate the model’s temporal extrapolation and spatial
generalization capabilities, the training process involves predicting the next 5 frames of concentra-
tion based on the previous 4 frames. During testing, the model is challenged to predict 40 future
frames of concentration from the 4-frame input. Additionally, the test set includes variations such
as the addition, removal and shape changes of obstacles, which were not present in training set.




Under review as a conference paper at ICLR 2025

(a) Flow2d (b) Smoke2d (c) Smoke3d
-14
0.03 0.05
o~ 2-
2 0.04
o 3] 002 “
= 2 2 0.031
® -4
2 0.01 0.02
54
0.00 0.01
0 10 20 30 40 0 25 50 75 100 2’5 5.0 7.5 10.0
Frame Frame Frame
[ B FNO B UNO B UFNO B LSM Bl HelmFluid EE PINP

Figure 4: Comparison of MSE for different models on each prediction frame.

(a) Concentration prediction and comparison (b) Latent physical quantities Prediction
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U-FNO. (b) The inferred and predicted velocity and pressure fields at the 40th frame.

As shown in Table|[T] PINP significantly outperforms other models, achieving a notable reduction in
error compared to the second-best model (MAE: 0.0107 vs. 0.0183). In the frame-by-frame fluid
prediction comparison (Figure 4] (a)), our model also outperforms others.

To further illustrate the effectiveness of our model, Figure [5] (a) presents several examples. Com-
pared to U-NO and U-FNO, our model predicts fluid evolution more accurately, particularly in
regions where the substance interacts with boundaries. Additionally, our model estimates velocity
and pressure fields at each prediction step, providing interpretable evidence that supports the predic-
tions and highlights its advantages in capturing complex dynamics. Figure[5](b) shows the estimated
latent physical quantities at the 40th predicted frame. The inferred physical quantities have physical
significance, including the velocity distribution at the edges of obstacles and the pressure changes
before and after the obstacles. These quantities can serve as interpretable evidence for predictions.

In Figure [ (a), some of the baseline models exhibit periodic oscillations in the MSE as the number
of prediction frames increases. This phenomenon is quite unusual because, under normal circum-
stances, a well-trained model should not exhibit such erratic oscillations. This might be due to
rollout training with a small number of steps. We have discussed this issue in Appendix [G]

Smoke 2D. Smoke rises and diffuses in an enclosed space, with smoke concentration as the ob-
servable data. During training, the model predicts the next 10 frames of concentration based on the
previous 4 frames. During testing, the model need to predict 100 future frames based on the first 4
frames input, with variations in smoke source locations between the training and testing sets.

In the 2D smoke concentration prediction task, PINP significantly outperforms other models (Table
[[). In the frame-by-frame prediction comparison (Figure [ (b)), both HelmFluid and U-NO ini-
tially perform better than our model. But their prediction errors increase rapidly as the prediction
progresses. This demonstrates the temporal extrapolation capability of our model.

Figure[6] (a) presents an example showing that, compared to U-NO and HelmFluid, our model pre-
dicts the movement of smoke more accurately, particularly the shape of the smoke plume and the
direction of the smoke column. Additionally, Figure[6](b) shows a comparison between our inferred
and predicted latent physical quantities and the ground truth in the smoke region. The velocity and
pressure fields, estimated solely from observable data, resemble the true values, effectively serving
as evidence for the interpretability of our method.
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Figure 6: (a) A comparison of prediction results

(b) Latent physical quantities Prediction

Real

50

Pred.

Real

t=100
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(c) Correlation

t=50

Correlation

Uy 0.9039
Uy 0.9099
p 0.9251
t=100
Correlation
Uy 0.9207
Ug 0.9123
p 0.9061

between our method and U-NO, Helmfluid. (b) A

comparison between our predicted latent physical quantities and the ground truth and (c) Correlation.

As shown in Figure [f] (c), a high correlation (> 0.9) demonstrates the similarity of our estimated
latent physical quantities with the true data, indicating that the estimated physical quantities con-
tribute to understanding the future motion process. However, it is important to note that, due to the
unknown physical scale, a scaling relationship exists between the estimated latent physical quanti-
ties and their true values. To obtain the true values of these estimated quantities, the initial values of
the real physical quantities or any real data point are necessary to determine the scaling constant. A
detailed discussion of this is provided in the Appendix [D]

Smoke 3D. Similar to the 2D smoke sce-
nario, we extend our method to a 3D set-
ting. During training, the model predicts
the future 4 frames of concentration based
on the past 4 frames. During testing, the
model is required to predict the future 10
frames of concentration using the past 4
frames, with varying smoke source loca-
tions and concentrations between the train-
ing and testing sets.

In the 3D smoke concentration prediction
task, PINP significantly outperforms other
models (Table [I). In the frame-by-frame
prediction comparison (Figure El (c)), our

model also outperforms others. Figure

HelmFluid Real

PINP

Figure 7: A comparison between our method and
Helmfluid for 3D smoke prediction, with the predicted
frames increasing from left to right.

presents an example. Compared to Helmfluid, our model preserves more detailed features. The
prediction results on the top surface are significantly better than those predicted by Helmfluid.

4.2 REAL-WORLD DATA

Table 2: Comparison of prediction performance on SEVIR. The test metrics are MSE(]) and CSI(?).
For clarity, the best result is shown in bold and the second best result is underlined.

Method MSE (le-3) CSI-M CSI-219 CSI-181 CSI-160 CSI-133 CSI-74 CSI-16
4.0082  0.3490 0.0340 0.1441 0.2003 0.3274 0.6574 0.7293

4.0383  0.3382 0.0155 0.1203 0.1880 0.3252 0.6551 0.7283

3.8508 0.3567 0.0709 0.1496 0.1997 0.3212 0.6562 0.7424

44029  0.3585 0.0661 0.1663 0.2163 0.3400 0.6428 0.7196

3.8883  0.3743 0.0803 0.1811 0.2351 0.3515 0.6635 0.7339

PINP (this work) 4.1684  0.3800 0.0989 0.1952 0.2448 0.3573 0.6556 0.7279
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We consider the nowcasting prediction problem in real scenarios, which can be viewed as the trans-
port problem of water-bearing clouds driven by wind. Unlike the simulated data, nowcasting data is
boundary-less and contains noise. It is important to note that the baseline from the simulated data
test is not applied to this task, and we establish new baselines for this problem.

Baselines. The baselines for nowcasting include video prediction models: ConvL.STM (Shi et all}
[2015), PredRNN 2022), SimVP (Gao et al.l[2022a) and Earthformer (Gao et al.| 2022b).
And a physics-driven prediction model: NowcastNet (Zhang et al} [2023). NowcastNet uses a de-
terministic prediction model (Evolution network) paired with a probabilistic model (GAN). The
Evolution network outperforms the GAN-based model in most metrics. Results for the Evolution
network are shown in Table 2] while full comparisons of NowcastNet are in Appendix [A](Table[ST).

SEVIR. The Storm EVent ImageRy (SE-
VIR) dataset (Veillette et al, 2020) con-
tains meteorological events across the
United States between 2017 and 2019.
For nowcasting, we use the NEXRAD
radar composite of Vertically Integrated
Liquid (VIL), which covers an area of 384
km x 384 km with a spatial resolution of
1 km and a temporal interval of 5 minutes.
Following (2022b), we evaluate
nowcasting by predicting VIL for up to
60 minutes (12 frames) based on 65 min-
utes of past VIL data (13 frames). Due to
computational limitations, we downsam-
ple the resolution to 96 x 96.

10 min 20 min 30 min 40 min 50 min 60 min

Real
"

PredRNN  ConvLSTM

SimVP

Vo d ha e Maa
As shown in Table 2] while our model p ﬁ ‘ ﬁ ﬁ
does not lead in MSE or low CSI met-

rics, it achieves the best results in the aver- A

age CSI and high CSI metrics, highlight-
ing its potential in extreme precipitation
prediction. Figure [§]presents an compari-
son of our model against other baselines.
In nowcasting, the NS equations are not
strictly satisfied. This test evaluates the
model’s predictive performance and ro-
bustness to noise under conditions where
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Figure 8: Comparison of results on the SEVIR dataset.
Appendix [B] presents more details, including the generation methods, data scale, details of SEVIR
and the evaluation metrics for the test results. Details regarding the training setup, hyperparameter

configuration, and multi-loss function training can be found in Appendix [C| Further baseline results
and physical field inference results can be found in Appendix [F]

5 ABLATION STUDIES AND MEMORY CONSUMPTION

We conduct ablation experiments Table 3: Ablation Experiment Setup and Results

on constraints, model components, Ablation Studies Setting MAE MSE
and the discrete PDEs Predictor. C1. Normal 0.0209 0.0057
Results are shown in Table[3] while Constraint  C2 1 Physical Constraint 0.0272 0.0089
Figure El illustrates the Change n C3. no Temporal Constraint 0.0293 0.0108
MSE with the frame under differ- C4. no Velocity-Pressure Constraint 0.0262 0.0087
ent ablation experiments. The leg-

O MI. Normal 0.0209 0.0057
igffeif)fﬁ’ dct(‘)’ tl;l/lel ;B;t)i:)‘:ll“;‘agg‘g‘;? Model M2. no Correction Network 0.0316 0.0098
bels in Table Bl Details for these . DI. Normal 0.01070.0003
ablation experiments can be found Discrete PDEs D2. changl.ng Dls,cretg PDEs 0.0197 0.0010
in Appendix[E] D3. replacing ¢(t") with ¢(tr) Inf Inf
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Figure 9: Ablation experiments: (a) constraint, (b) model, and (c) discrete PDEs.

Constraint Ablation. In our method, We introduced multiple constraints. We performed experi-
ments by removing the physical and temporal constraints to evaluate the impact on performance.
Besides, to validate whether the inclusion of pressure p is beneficial for prediction, we also designed
an experiment: no Velocity-Pressure Constraint, which removes e; in Eq. [T2} Results in Figure[J]
(a) and Table|3| show that the inclusion of constraints and p is beneficial for prediction.

Model Ablation. We introduced a correction network to refine the gradient operator. We conducted
experiments to evaluate performance without this network. The results are shown in Figure [9] (b).
The correction network notably improves accuracy, especially in later predicted frames.

Discrete PDEs Ablation. In Eq. @ the prediction operator use ¢(t’) to predict, which might be re-
placed with c(¢x). We conducted two sets of experiments: one where ¢(t') replace c¢(t,) and another
involving modifications to the prediction operator. The results, presented in Figure [J] (c), show that
while these adjustments improve accuracy in the initial frames, the error increases significantly as
the number of predicted frames increases.

2D Model 3D Model
Figure illustrates  our L ®
model’s performance during 0030/® @ 01
testing alongside its memory wlo13
consumption. Our model £ 0025 P g ° o
employs a 3D structure in ' o1ze
both 2D and 3D scenarios, this 0020 ° 0.1
results in higher memory usage B t't 1000 1500 2000 Bettd000 2000 3000 4000 5000
in 2D scenes. COHVerSCly, in etter GPU Memory Consumption (Mb) etler —5pu Memory Consumption (Mb)
3D scenes, our model exhibits ( ®FNO OUNO @UFNO @ LSM @ HelmFluid @ PINP_ |

relatively lower memory usage.  Figure 10: Comparison of GPU memory consumption and MAE

6 CONCLUSIONS AND FUTURE WORK

This paper introduces the Physics-Informed Neural Predictor (PINP) model, designed for predicting
spatiotemporal evolution. The PINP model leverages latent multi-quantity modeling and integrates
PDEs directly into the neural network framework, enabling enhanced understanding and accurate
prediction of dynamical systems.

A key feature of the PINP model is its ability to estimate latent physical quantities that are not
directly observed in the data. This provides more comprehensive analysis of the physical processes
underlying the observed dynamics. The model’s architecture embeds the governing PDEs, ensuring
that physical constraints are adhered to during both training and prediction phases. This integration
leads to improved consistency with physics, facilitating robust long-term forecasts.

When evaluated against a range of baseline methods, the PINP demonstrates better prediction ac-
curacy, particularly in its ability to extrapolate over extended temporal horizons and generalize spa-
tially. This was confirmed through testing on multiple benchmark datasets, where PINP’s predictions
aligned more closely with ground truth than those of competing approaches. In future research, we
aim to expand the application of the PINP model to more complex and comprehensive tasks, ac-
counting for other type of governing PDEs.
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APPENDIX

A IMPLEMENTATION DETAILS

In this section, we provide additional details on key aspects of the paper, including the Gradient
Operator, Signed Distance Field (SDF), Mask Settings and Model Structure.

For the gradient operator, we discuss its approximation and the associated errors, particularly in
fluid-boundary interactions. To address these issues, we introduce specific masks—Mask1 for the
first-order gradient operator and Mask?2 for the second-order operator—to reduce these errors.

The Signed Distance Field (SDF) helps define boundary points and enhances spatial understanding,
which is crucial for handling irregular shapes and obstacles. The SDF also plays a key role in the
boundary point identification process (Figure [ST).

Considering that the established mapping function in Eq. [8]is nonlinear and multiscale, our archi-
tecture employs a structure similar to 3D U-Net to build complex mappings and multiscale features.

These detailed approaches contribute to improving the accuracy and robustness of the overall pre-
diction model.

A.1 GRADIENT OPERATOR

Using the Navier-Stokes equations, we transform the partial derivative of concentration with respect
to time into spatial gradient terms. For these gradient terms, we employ the second-order central
difference method to achieve estimation. Letting = be an interior point with x — Ax and z + Ax be
points neighboring it to the left and right respectively:

Flat An) = f(o) + Aaf (@) + 2020 At IO 6 € oot )
1" " (Sl)
f(z—Azx) = f(z) — Azf'(z) + AmeT(x) — AngT(gg),«fg € (z,x — Ax).
Solving the linear system, we derive:
oy o f (@A) — f(x— Ax)

To achieve better optimization results, we exclude gradients of boundary points from the training
loss calculation.

A.2 SIGNED DISTANCE FUNCTION

d(z) = min(d[z, boundary|) L(z) ==0, ze€{z|dz) < M,Va}

Figure S1: An example of Signed distance function and Mask

A signed distance field (SDF) measures the orthogonal distance from a given point x in a metric
space to the boundary of a set €2, with the sign determined by the location of « relative to ). Specif-
ically: If z is inside €2, the signed distance is positive. The distance decreases as x approaches the
boundary of €. If z is outside (2, the signed distance becomes negative. In essence, the signed
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distance field provides both a magnitude of the shortest distance to the boundary of the set and a
sign indicating whether the point is inside or outside the boundary.

In this paper, we define €2 as the set of external boundaries and obstacle boundaries. Since no fluid
flows through the obstacles, we do not assign negative values to the points inside the obstacles;
instead, we set them to zero.

In addition to providing richer spatial information, the directed distance field helps us identify
boundary points. As mentioned earlier, to achieve better optimization results, we exclude the gra-
dients of boundary points from the training loss calculation. While boundary points on the external
boundary are easy to identify, determining the boundary points for internal obstacles, especially
those with irregular shapes, is more challenging. This problem can be addressed using the directed
distance field. We define the orthogonal distance from point z to the boundary of set 2 as d. Points
with a distance less than M from the boundary are considered boundary points. Therefore, the set
of boundary points is given by {z|d(z) < M, Vz}.

Figure [ST|illustrates an example, including the definition of distance(left) and the setting of the loss
at boundary points to zero(right).

A.3 MASK SETTINGS

Vi3

[
S
w
U‘%S‘ﬁ““““
vl | wl | ©
[
S

1
1
1
1
V2
V5
3 13|33 [vio
V17

4| a| a4 |vi7|ovs

Figure S2: Mask1 and Mask?2.

The specific boundary handling is illustrated in Figure[S2] Since the gradient operator in Formula
[S7] introduces approximations, these approximation errors become more pronounced during fluid-
boundary interactions. To reduce such errors, we employ a masking approach. For first-order gradi-
ent operators, we define Mask1:

Maskl1 := {z|d(x) < 2.5,Vz}. (S3)
and for second-order gradient operators, we define Mask2:
Mask?2 := {z|d(x) < 3.5,Vz}. (S4)

This helps ensure better handling of boundary interactions and minimizes the impact of approxima-
tion errors in fluid simulations.

A.4 MODEL STRUCTURE

The model adopts a recurrent prediction structure, utilizing a sliding window approach for fore-
casting. Each time, it predicts one frame based on the previous four frames and incorporates the
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Figure S3: Detailed structure of our model, using the complex mapping from ¢(< t), 1) to u(t’) as
an example.

predicted frame into the window for subsequent predictions. The prediction architecture for each
step is illustrated in Figure 2]

In Figure 2] we use Physical Inference Neural Network to establish the mapping function from
past data to the physical quantities at time ¢’. Considering that the established mapping function is
nonlinear and multiscale, our architecture employs a structure similar to 3D U-Net to build complex
mappings and multiscale features.

We present the detailed structure of our model, using the complex mapping from ¢(< t), ¢ to u(t’)
as an example (Figure[S3). The structures of the remaining mapping functions are similar to this.

A.5 NOWCASTNET SETTING AND RESULT

It is important to note that NowcastNet utilizes a deterministic prediction model (Evolution network)
combined with a probabilistic generative model (GAN). Given that this is a deterministic prediction
task, the Evolution network outperforms the combined generative model (GAN) in most evaluation
metrics. In the main text, we selected the best prediction results from the deterministic model. In
this section, we provide the complete results.

B DATA AND EVALUATION

In this section, we provide a detailed explanation of the data and evaluation metrics, including details
such as the data generation method, data scale, and the specifics of the prediction tasks.

15



Under review as a conference paper at ICLR 2025

Table S1: Comparison of NowCastNet results under different settings with Our Model

Method MSE (1le-3) CSI-M CSI-219 CSI-181 CSI-160 CSI-133 CSI-74 CSI-16

pySTEPS (2019) 8.4682 03373 0.0912 0.1756 0.2162 0.3244 0.5848 0.6313
Evolution network
(wrap mode = ’bilinear’)  3.8883  0.3743 0.0803 0.1811 0.2351 0.3515 0.6635 0.7339

Evolution network
(wrap mode = "nearest’) 6.1783 0.3529 0.0971 0.1858 0.2220 0.3110 0.5986 0.7027

NowcastNet (2023) 577999  0.3549 0.0933 0.1844 0.2179 0.3104 0.6131 0.7106
PINP (this work) 4.1684  0.3800 0.0989 0.1952 0.2448 0.3573 0.6556 0.7279

B.1 DATASET

Table S2: Data description includes spatial resolution, number of training samples, and train-
ing/testing setup:

Data Spatial Resolution Training datasets Training Testing

Flow 2D 640 x 256 2500 4t04 41040

Smoke 2D 256 x 256 1500 41010 4 to 100

Smoke 3D 64 x 64 x 64 340 4t04 41010

SEVIR 96 x 96 (down) 35718 13to0 12 13to0 12

 6y(H—y) W =2.2m
v= T[m/ ]
p=1x10%kg/m?] T =293.15[K]
0= I8 it =1x107°

I7E p=1x10"[Pa-s]  p_ 1[atm]

D, =1x10"%[m?/s] H =0.88m

Figure S4: The configuration chart for data generation settings.

Fluid 2D. In this study, the dataset used consists of image sequences of fluid-driven mass diffu-
sion, generated using the Computational Fluid Dynamics (CFD) method through COMSOL soft-
ware (Multiphysics| [T998)). The physical setup involves an active flow field of width W and height
H, filled with a fluid of density p and viscosity coefficient 1. At the left side of the field is the input,
where a material with a diffusion coefficient D, and concentration ¢ flows and diffuses, driven by
an initial velocity u. The temperature is set to standard conditions, and the pressure is one atmo-
sphere. The data used in the experiments consists only of concentration data. The parameters for
data generation are shown in Figure [S4]

This dataset, generated by COMSOL, is used for training and evaluating the model. The training
dataset consists of five subsets, each containing 500 concentration images representing the diffusion
of materials in the fluid. These images form a time series, with each image having a resolution of
640 x 256 pixels. The test dataset is divided into seven subsets, each containing 200 images of the
same resolution, also forming time series data. Differences in physical field parameters across the
subsets are primarily reflected in changes in obstacle positions.

To evaluate the spatial generalization ability of the model, the test set includes three special subsets:
one involves changes in the shape of obstacles, another simulates the removal of an obstacle, and the
third adds a new obstacle to the original physical field. These conditions are absent in the training
data to assess the model’s generalization performance and to determine if it has successfully learned
the underlying physics.

To evaluate the model’s temporal extrapolation ability, we used a strategy during training where the
model predicts the subsequent four frames based on the first four frames. In the testing phase, the
model is tasked with predicting up to 40 frames using the first four frames.
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Smoke 2D. Compared to the fluid dataset, the smoke dataset features more complex scenes. We
focus on the process of smoke rising and diffusing in the air, with a square boundary defining the
space. The data was generated using ®p, (Holl & Thuerey, 2024)), with each image having a
resolution of 256 x 256 pixels, and the location of the smoke source varies between the training and
test sets. The data used in the experiments consists only of concentration data.

Similar to the fluid dataset, we use a strategy where the model predicts the next ten frames based on
the first four frames during the training phase. In the testing phase, the model is required to predict
up to 100 frames using the initial four frames. Different data has varying smoke source location.

Smoke 3D. We extend the 2D smoke dataset to a 3D setting, considering the process of smoke
ascending and expanding in a confined 3D space with a resolution of 64 x 64 x 64. The boundary
is defined as a cube, and the location of the smoke source varies between the training and test sets.
The data used in the experiments consists only of concentration data.

Similar to the fluid dataset, we use a strategy where the model predicts the next four frames based
on the initial four frames during the training phase. In the testing phase, the model is required to
predict up to 10 frames using the first four frames. We used FactFormer (Li et al.;[2023al)) to generate
340 sets of data for training. Different data has varying smoke source location.

SEVIR. Storm Event Imagery (SEVIR) (Veillette et al.| 2020) is a dataset encompassing thousands
of meteorological events, including various storms, lightning strikes, and precipitation events in the
United States from 2017 to 2019. Each event is documented with image sequences covering a 4-
hour period over a 384 km x 384 km area. The dataset includes data from five sensors: satellite
imagery, infrared (water vapor), infrared (window), NEXRAD radar composites of Vertically Inte-
grated Liquid (VIL), and lightning data. All sensors provide data with a spatial coverage of 384 km
x 384 km and a temporal resolution of 5 minutes.

For nowcasting, we selected the NEXRAD radar VIL composites. The VIL data has a spatial reso-
lution of 1 km and is recorded at 5-minute intervals. Following the approach of |Gao et al.|(2022b),
we use 65 minutes of VIL data (13 frames) to predict up to 60 minutes ahead (12 frames) for pre-
cipitation nowcasting. Due to computational limitations, we downsample the spatial resolution to
96 x 96. This downsampled dataset includes 35,718 training samples, 9,060 validation samples, and
12,159 test samples.

The data overview is presented in Table[S2] including spatial resolution, number of training samples,
and training and testing setup.

B.2 EVALUATION METRICS

In the simulated data evaluation, MSE and MAE are used as the evaluation indexes. In the real data
evaluation, for the adjacent precipitation prediction index, we follow |Veillette et al.| (2020), and use
the Critical Success Index (CSI) to evaluate the prediction quality.

Given predictions {Z, 1 5., } and corresponding ground truth {z, ¢ hw}s Tn,thws Tnthw € R,
n=1...,N,t=1,..., T, h=1,...,H,w = 1,..., W, the above-mentioned metrics can be
calculated as follows:

w
Z Hxn,t,h,w - En,t,h,w”i

M=
M=

1 N
MSE = S >

n=1t=1 h=1w=1
1 N T H W (SS)
MAE = —— -7 .
NTHT ; ; }2_:1 w; 1Z0,e,h0 = B tlly

For the inferred and predicted latent physical quantities, referring to |[Kochkov et al.| (2021), we
quantitatively evaluate them by calculating the Correlation.

n ~ =\ /.. SE—
Zi:l Tnt,hyw — Tn,t,hw (~I«r1,,t,}1,,’t1,' - J/'n,,f,h,.'ur)

2
n ~ = n —  \2
Zizl (3771“1‘,}1,,u~ - wn,t.h,u‘) \/Ei:l (‘T'n,.,t,h,w — il,‘n,t,h.'u‘)

(S6)

Correlation =
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Specifically, [Veillette et al.|(2020) used six precipitation thresholds which correspond to pixel values
[219,181,160, 133, 74, 16]. The prediction Z,, ; ., and the ground-truth x,, ; j, ., are rescaled back
to the range 0 — 255.

#HitS(T) = #{/x\n,t,h,w ‘ /x\n,t,h,w 2 T, Tn,t,hw Z T}

#MiSSCS(T) = #{Zv\n,t,h,w ‘ /x\n,t,h,w Z T, mn,t,h,w < 7—} (S7)
#FAIarmS(T) = #{{E\n,t,h,w ‘ En,t,h,w < T, Ty thw > ’7—}7
Hit
CSI— 7 7 Hits(7)

- #Hits(7) + #Misses(7) + #F.Alarms(7)

S8)
1 (
CSIM = ¢ " CSI-7, 7 € [219,181,160, 133,74, 16].

# represents the number of elements in the set, 7 € [219, 181, 160, 133, 74, 16] is one of the thresh-
olds. We denote the average CSI- 7 over the thresholds [219, 181, 160, 133, 74, 16] as CSI-M.

It must be stated that the extreme point of MSE and the extreme point of CSI are usually not consis-
tent, and the model with the smallest MSE on the validation set is selected for testing.

C TRAINING DETIALS

In this section, we present the training details of our experiments, including hyperparameter settings,
training setup, and the specifics of multi-loss training.

C.1 HYPERPARAMETERS AND TRAINING SETUP

The hyperparameters and experimental setup used in our experiments are shown in the table below:

Table S3: Hyperparameter and Training setup

Type Name Meaning Value
Hyperparameter Mask1 First-order gradient operator mask Eq.
Hyperparameter Mask2 Second-order gradient operator mask Eq. [S4]
Training setup LR Learning Rate le-3
Training setup Epoch Number of training epochs 100
Training setup Optimizer Type of model optimizer Adam
Training setup Scheduler Schedule the learning rate of the optimizer StepLR
Training setup Batch Size the number of samples processed together (2,2,2,32)"

()*: Value is different for each dataset, in the order of 2D fluid, 2D smoke, 3D smoke, and SEVIR.

C.2 MuLTI-LoSS FUNCTION TRAINING

0 — Main Loss1 0.0125 — Temporal Loss
| — Mai — validation A
Main Loss2 0.01004
s — Physical Loss
s — Temporal Loss 0075 -2
2 24 D w 0.0075 "
w = 0.00501 =
2 -3
41 0.0025 .
-4 . .
0.0000- . °
0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
Epoch Epoch Epoch

Figure S5: Training loss versus training epochs (left), loss of validation versus training epochs
(middle) and Temporal loss versus training epochs (right).
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Since the model training process involves a multi-loss optimization problem (Eq. [T6), we further
show the training details.

Figure [S3| (left) shows the change of Loss with the number of training rounds during training, and
Figure [S5|(right) shows the change of validation metrics with the number of training rounds.

As shown in Figure[S3](left) and Figure[S3](right) , the loss corresponding to the data constraint re-
mains the largest, indicating that despite the introduction of multiple loss functions, the other losses
do not significantly affect the primary constraint. Additionally, the loss associated with the temporal
constraint reaches a value of zero, demonstrating that we can effectively bound the temporal loss in
|c(z,t + 1) — c(x, t)||3, preventing it from degrading into:

Lemporat (2, 1) = [|e(z, t') — c(a, )][3. (9
As shown in Figure [S5] (middle), the test metrics of validation decrease rapidly with the increase in

training epochs and then level off. In a sense, the physical constraints and temporal constraints act
as a form of regularization, providing some resistance to overfitting.

D DISCUSSION ON LATENT PHYSICAL QUANTITIES

In this section, we will compare our estimated latent physical quantities with the baselines and
provide a detailed explanation.

Since the HelmFluid model is capable of estimating the velocity field (but not the pressure field), we
considered it a relevant comparison for our method. The comparative results of correlation on the
estimated latent physical quantities are shown in Table[S4] We can see that our estimation subpasses
that of HelmFluid.

Table S4: Correlation between Predicted and True Latent Physical Quantities.

Latent Physical Quantities Correlation (PINP) Correlation (HelmFluid)

Uy 0.9017 0.8891
uy 0.9109 0.8997
p 0.8984 .

Additionally, it’s important to note that due to the unknown physical scale (since only the grayscale
video sequences of the concentration field are provided as the training data), our estimated velocity
fields and the true values have a scaling relationship, expressed as follows:

W= au, (S10)

where « is a scaling constant related to the actual physical scale. When only concentration videos
are available, we cannot determine the exact physical scale of the region represented in the video
(e.g., the scale may lie in any range such as from 10 cm to 1 m in the smoke dataset). This uncertainty
introduces a constant factor difference between the predicted and true values.

Thus, directly computing the MSE might be inappropriate. To address this, we considered two
methods for calibration:

a Using the true initial velocity values (assumed known a priori) to compute c.

b Using just one true data point to estimate cv.

We then apply the computed « to correct the estimated results (note that HelmFluid also requires
calibration). The calibrated MSE values are shown in Table [S3}

The results in Tables [S4] and [S3] highlight the superiority of our approach in predicting the latent
physical quantities. Moreover, even with a constant factor difference, a high correlation (> 0.9)
is sufficient to demonstrate the consistency between our predictions and the true data in terms of
distribution, regardless of scaling. This can serve as supplementary information for concentration
prediction and provide interpretable evidence for the future evolution of fluid dynamics.
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Table S5: Comparison of calibrated MSE for latent physical quantities between our model and
HelmFluid.

Latent Physical Quantities PINP (Case 1) PINP (Case 2) HelmFluid (Case 1) HelmFluid (Case 2)

Uy 0.1056 0.3128 0.1482 0.5035
Uy 0.0806 0.2806 0.1187 0.3407
p 0.1539 0.4653 - -

E ABLATION STUDY

In this section, we conduct ablation studies to assess the contributions of different components of
our method, including constraint ablation, model ablation, and prediction operator ablation.

E.1 CONSTRAINTS
The constraint ablation experiment consists of two parts: removing the physical constraints and

removing the temporal constraints:

Table S6: Comparison of our model’s results with those obtained after removing the physical con-
straints and temporal constraints on 2D fluid data.

Metrics no Physical Constraints no Temporal Constraints no Velocity-Pressure Constrain  Normal

MAE 0.0209 0.0272 0.0293 0.0262
MSE 0.0057 0.0089 0.0108 0.0087

Physical Constraints. We removed the physical constraints while retaining the temporal constraints
and retrained the model. The results show a decline in prediction accuracy due to the absence of
physical constraints (Table[S6), and the inferred latent physical quantities exhibit issues, lacking real
physical significance (Figu%.

Velocity-Pressure Constraint. To validate whether the inclusion of pressure p is beneficial for
prediction, we also designed an experiment: no Velocity-Pressure Constraint, which removes e in
Eq.[T2] Results in Figure&ia) and Table[3]show that the inclusion of constraints and p is beneficial
for prediction. In Figure we present this result, where it can be seen that the predicted velocity
field is not correct.

Temporal Constraints. We removed the temporal constraints while retaining the physical con-
straints and retrained the model. The results indicate that the prediction accuracy also declined
due to the lack of temporal constraints (Table [S6), and the inference of latent physical quantities,
especially the pressure field, was problematic (Figure [S6).

E.2 MODELS
In this section, we perform ablation experiments on our model structure by removing the correction
network to verify its necessity.

Correction Network. As shown in Table [S7] after removing the correction network, prediction
accuracy significantly decreased. Figure [S7]illustrates an example where stripes” appeared in the
output after the correction network was removed. These artifacts are caused by errors in the gradient
operator. By using the correction network, this issue can be effectively mitigated.

E.3 DISCRETE PDEs

In this section, we conduct ablation experiments on the discrete PDE operators, including modifying
the discrete PDE operators and replacing ¢(t') with ¢(t).
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Figure S6: An example comparing the results of our model with those obtained after removing the
physical constraints and temporal constraints.

Table S7: Comparison of our model’s results with those obtained after removing the Correction
Network on 2D smoke data.

Metrics Without Correction Network Normal
MAE 0.0316 0.0209
MSE 0.0098 0.0057

Discrete PDEs. We modified the discrete PDE operators, with the original operator:
d(x,t+1)=c(z,t) + (—u(z,t')  Ve(z,t') + Pe ' Vie(z, t)) At, (S11)
and the modified version:
&z, t+1) = c(z, t) + uy(z, ') + uy(x,t'). (S12)
The comparison of results before and after the modification is shown in Table[S8] where the predic-
tion accuracy significantly decreased after the modification.

Replacing c(t') with c¢(¢). In the prediction operator, we use the physical quantities at time ¢’ along
with the discrete PDE prediction operator for forecasting, constraining the observable data between
t and t + 1. If we directly use the observable data at time ¢ to guide the prediction, the experimental
results, as shown in Table indicate that errors accumulate rapidly when predicting beyond the
training time steps. Figure @show an example.

E.4 PHYSICAL LOSS ANALYSIS ON THE SEVIR DATASET.

The nowcasting scenario may not strictly adhere to the NS equations. However, we believe that
incorporating the NS equations helps to capture the motion characteristics of nowcasting.

We conducted the following experiments: (1) Lowered the physical loss weight (weight = 0.1) while
keeping other settings unchanged. (2)Removed the physical loss entirely.

The results are showned on Table [S9} which demonstrate that while nowcasting processes do not
strictly adhere to the NS equations, these equations effectively capture certain underlying motion
characteristics. When the physical loss weight is reduced, loosening the constraints, the MSE de-
creases. However, this relaxation comes at the cost of reduced ability to model essential motion
features, as reflected in the decline of the CSI.

F ADDITIONAL RESULTS

In this section, we provide additional details on the experimental results presented in the main text.
This includes supplementary results for multi-physical quantity inference (Figure [S9] Figure [ST0),
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Figure S7: An example comparing the results of our model with those obtained after removing the
Correction Network.

Table S8: Comparison of our model’s results with those obtained after changing Discrete PDEs and
replacing ¢(t') with ¢(¢) on 2D smoke data.

Metrics Change Discrete PDEs Replacing c(t') with ¢(t) Normal
MAE 0.0197 Inf 0.0107
MSE 0.0010 Inf 0.0003

a comparison between our predicted velocity field and the velocity field predicted by NowcastNet
Figure [ST1] a detailed comparison between our method and baselines on the 2D fluid data (Figure
[ST2] Figure[ST3), 2D smoke data (Figure[ST4), 3D smoke data (Figure[ST3] Figure[ST6)), and SEVIR
data (Figure [S17] Figure[ST8).

t=20 t=30 t=40

Figure S9: An example of 2D fluid prediction and latent physical quantity inference.

Real
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Table S9: Comparison of Evaluation Metrics on the SEVIR dataset under Different Physical Loss
Configurations

Method MSE (1e-3) CSI-M CSI-219 CSI-181 CSI-160 CSI-133 CSI-74 CSI-16

Lowered Physical Loss Weight ~ 4.0305  0.3662 0.0781 0.1724 0.2213  0.3402 0.6563 0.7288
No Physical Loss 4.0092  0.3569 0.0674 0.1541 0.2081 0.3274 0.6547 0.7299

PINP (this work) 4.1684  0.3800 0.0989 0.1952 0.2448 0.3573 0.6556 0.7279

Replacing c(t') with c(t)

o

v

Real

)
HHS

'

NN

Figure S8: An example showing the results after replacing ¢(t') with ¢(¢).
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Figure S10: An example of 2D smoke prediction and latent physical quantity inference.
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Figure S11: The Comparison Between Our Predicted Velocity Field and the Velocity Field Predicted
by NowcastNet and pySTEPS. The black regions in pySTEPS represent NaN values.
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Figure S12: An example comparing our model with the baseline on 2D fluid data.
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Figure S13: An example comparing our model with the baseline on 2D fluid data.
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Figure S14: An example comparing our model with the baseline on 2D smoke data.
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Figure S15: An example comparing our model with the baseline on 3D smoke data.
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Figure S16: An example comparing our model with the baseline on 3D smoke data.
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Figure S17: An example comparing our model with other baselines in nowcasting.
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Figure S18: An example comparing our model with other baselines in nowcasting.
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G DISCUSSION

We observed that in Figure [f] (a), some of the baseline models exhibit periodic oscillations in the
MSE as the number of prediction frames increases, with the oscillation growing larger. This phe-
nomenon is quite unusual because, under normal circumstances, a well-trained model should not
exhibit such erratic oscillations. We discovered that these baselines oscillate with a period of 4,
which is quite specific, as it matches the number of training steps we set. In our training, we use
four frames to predict one frame and train by predicting four steps. During testing, we also use four
frames to predict one frame and predict for forty steps. We suspect that this is because some models
struggle to learn the motion features during short-time sequence training.

To investigate this, we set up three validation experiments on LSM:

(a) Four frames to predict one frame, training with four prediction steps (original experiment),
(b) Four frames to predict one frame, training with four prediction steps, adjusting the batch size,

(c) Four frames to predict one frame, training with six prediction steps.
We found the following:

- In (a) and (b), oscillations with a period of 4 appeared at the start of training and persisted
throughout, even when the epoch reached 200 and the validation set metrics had plateaued at
their minimum, still oscillating (Figure [ST9).

- In (¢), oscillations with a period of 6 initially appeared, but as training progressed, the oscil-
lations gradually weakened (Figure [S20).

We believe these models still need improvement when working under such a training regime with
relatively short steps.
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Figure S19: Four frames to predict one frame, training with four prediction steps. The per-frame
error vs. frame number plot at certain epochs.
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Figure S20: Four frames to predict one frame, training with six prediction steps. The per-frame error
vs. frame number plot at certain epochs.
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