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Abstract

Machine unlearning is a challenging task in the federated
learning (FL) ecosystem due to its decentralized nature. Many
existing approaches rely on retraining the model from scratch,
which is computationally inefficient. We propose a novel fed-
erated unlearning method that addresses this inefficiency by
partitioning the global and local model parameter spaces into
subspaces. During federated training, we cluster the gradient
space from all clients and map it to corresponding neurons in
the global and local models. When an unlearning request is
made, neurons specific to the unlearning class are frozen, ef-
fectively neutralizing its contribution. Evaluated on MNIST
and CIFAR-10 datasets, the method achieves complete un-
learning for targeted classes, with accuracies dropping to
0.00% for ”Airplane” in CIFAR-10 and digit 9 in MNIST,
while preserving baseline performance for other classes, such
as 98.50% for digit 1 and 69.50% for ”Ship.” On average, the
method retains 95.2% accuracy for unaffected classes.

Introduction
Federated learning (FL) has emerged as a powerful
paradigm for training machine learning models across de-
centralized data sources while preserving user privacy (Yang
et al. 2019). By enabling collaborative learning without the
need for raw data sharing, FL addresses significant pri-
vacy concerns associated with traditional centralized train-
ing. However, as FL gains adoption, the need for feder-
ated unlearning has become apparent. Federated unlearn-
ing refers to the ability to remove the influence of specific
client data or subsets of training data from a collaboratively
trained model without requiring full retraining from scratch.
This capability is critical for addressing legal obligations,
such as compliance with regulations like the General Data
Protection Regulation (GDPR) (Romandini et al. 2024), and
maintaining user trust in privacy-preserving machine learn-
ing systems.

The process of federated unlearning is complex due to
the decentralized nature of FL and the dependency of global
models on aggregated updates from multiple clients. In this
work, we investigate the problem of federated unlearning
using popular benchmark datasets, MNIST and CIFAR-
10, which represent different modalities and complexities.
Specifically, we propose a novel unlearning framework that
efficiently removes the impact of selected data subsets from

the global model while minimizing accuracy degradation on
the remaining data. Our framework ensures that the compu-
tational overhead of unlearning remains low, making it fea-
sible for large-scale deployments.

This paper makes the following contributions:

1. We proposed a novel federated unlearning framework
that removes specific data contributions without retrain-
ing, addressing computational overhead.

2. We introduced a parameter partitioning approach, en-
abling selective freezing of neurons for targeted class un-
learning.

3. We validate the proposed framework on the MNIST and
CIFAR-10 datasets, showing its effectiveness in remov-
ing data influence while maintaining the overall accuracy.

Related Work
Federated learning has been widely studied for its ability to
collaboratively train models without sharing raw data. Early
works, such as McMahan et al.’s Federated Averaging (Fe-
dAvg) algorithm (McMahan et al. 2017), laid the foundation
for efficient aggregation in FL systems. Privacy preserva-
tion in FL has been further enhanced through techniques like
differential privacy (Dwork et al. 2006) and secure aggrega-
tion (Bonawitz et al. 2017). While these methods ensure data
privacy, they do not address the challenge of data removal af-
ter training, highlighting the need for federated unlearning.

The concept of unlearning in machine learning was first
explored in centralized settings. Cao and Yang (Cao and
Yang 2015) proposed an efficient unlearning method for lin-
ear models, while Ginart et al. (Ginart et al. 2019) intro-
duced the idea of certified data removal. Federated unlearn-
ing extends these concepts to distributed settings, requir-
ing the removal of data influence without centralized ac-
cess to the data. Recent advances in federated unlearning
include gradient-based methods and knowledge distillation
approaches (Wu, Zhu, and Mitra 2022), which aim to recon-
struct global models without the unlearned data. However,
these methods often suffer from performance trade-offs and
scalability issues.

MNIST and CIFAR-10 are widely used benchmarks in
FL research due to their simplicity and relevance. MNIST, a
dataset of handwritten digits, is often used for testing the



fundamental capabilities of FL algorithms, including un-
learning. CIFAR-10, on the other hand, is a more com-
plex dataset of 10 classes of natural images, offering a ro-
bust platform for evaluating unlearning algorithms in diverse
settings. Studies such as (Zhao et al. 2018) and (Kairouz,
McMahan et al. 2021) have demonstrated the applicability
of unlearning techniques on these datasets, providing in-
sights into model performance and unlearning efficiency.

Methodology
Machine Unlearning
Machine unlearning refers to the process of effectively re-
moving the influence of specific data points or subsets of
data from a trained machine learning model (Bourtoule et al.
2021). In the context of federated learning (FL), this task be-
comes particularly challenging due to the decentralized na-
ture of data and the lack of direct access to individual data
points (Li et al. 2023). The goal of machine unlearning is to
ensure that the model behaves as though the unlearned data
was never used in its training.

Formally, let D = {(xi, yi)}Ni=1 represent the entire train-
ing dataset, where (xi, yi) is the pair of input and it’s label.
Assume Dr ⊂ D is the subset of data to be removed, and
Dretained = D \ Dr is the remaining dataset. Given a trained
model fw with parameters w, the task of unlearning Dr is to
find updated model parameters wunlearned such that:

fwunlearned(x) ≈ fwretrained(x), ∀x ∈ Dretained,

where fwretrained is the model retrained only on Dretained. The
goal is to make wunlearned equivalent to wretrained in terms of
performance and behavior on Dretained, without the computa-
tional cost of retraining.

Our proposed method partitions the parameter space of
a neural network into class-specific subsets, enabling selec-
tive unlearning by isolating and freezing neurons relevant
to a specific class. The neural network f(x) is decomposed
into two components: f(x) = h(g(x)), where g(x) repre-
sents the shared feature extraction layers (e.g., convolutional
or fully connected layers), and h(x) represents the class-
specific output heads. The output heads,

h(x) = [h1(x), h2(x), . . . , hk(x)],

are tailored for each class, where hi(x) corresponds to the
output head for class i, and k is the total number of classes.

During training, each class c is assigned a specific sub-
set of neurons Nc,l in each intermediate layer l (e.g., neu-
rons 10–19 for class 0, 20–29 for class 1, etc.). Training
updates only the neurons in Nc,l when processing data for
class c, with binary masks Mc,l isolating the gradients for
class-specific training. These masks ensure that the gradient
∇Wl is updated as:

∇Wl = Mc,l · ∇Wl,

where Mc,l activates only the neurons relevant to class c.
To unlearn a specific class c, the method modifies both

the forward and backward passes. In the forward pass, ac-
tivations in the corresponding subset Nc,l are set to zero
(ac,l = 0∀l), effectively removing the influence of the class.

In the backward pass, gradients of parameters associated
with Nc,l are nullified:

∂L

∂Wc,l
= 0 and

∂L

∂bc,l
= 0,

freezing the parameters and ensuring the removal of class c’s
contribution without retraining.

Mathematically, the training data Dc for class c influences
the model parameters θc through training, represented as:

θc = Train(Dc, θ).

The overall influence of Dc on the parameters θ is expressed
as:

∆θc =
∑
l

(
∂Lc

∂Wc,l
·Wc,l

)
.

By freezing the subset Nc,l, the term ∆θc is nullified, effec-
tively eliminating class c’s contribution to the model.

Federated Training
Federated learning (FL) enables multiple clients, such as
mobile devices or edge servers, to collaboratively train a
global machine learning model without sharing their raw
data. Each client computes model updates locally using its
private dataset, and a central server aggregates these updates
to refine the global model. In the training phase, the pro-
cess begins with gradient clustering (Briggs, Fan, and An-
dras 2020). Each client Ci computes local gradients ∆θi,
which are then collected by the server into a set:

G = {∆θ1,∆θ2, . . . ,∆θN}.
These gradients are analyzed and clustered into K distinct
clusters, where each cluster represents a unique pattern of
contribution. Specifically, a gradient ∆θi is assigned to clus-
ter k if it belongs to the set Gk, the k-th cluster.

Following clustering, the server maps each cluster Gk to
a specific subset of neurons Nk in the global model, ensur-
ing that Nk and N ′

k are disjoint for k ̸= k′. This mapping
guarantees that neurons within each subset are exclusively
updated by the clients associated with their corresponding
cluster. Collectively, the neurons N in the model are the
union of all cluster-specific subsets:

N =

K⋃
k=1

Nk, Nk ∩N ′
k = ∅ for k ̸= k′.

Next, in the cluster-specific training phase, only the neu-
rons Nk associated with a specific cluster Gk are updated for
the clients in that cluster. For a client Ci, the local training
involves minimizing a loss function:

Li =
1

|Di|
∑

(x,y)∈Di

ℓ(f(x; θ), y),

where ℓ is the cross-entropy loss, Di is the local dataset,
and θ are the model parameters. To maintain cluster-specific
isolation, gradient updates are masked using a binary mask
Mk, which ensures that only the neurons in Nk are updated
for clients belonging to cluster k. The resulting update is:

∆θi = Mk · ∇Li, if Cluster(i) = k.



Finally, the server aggregates the updates across all clus-
ters. For each cluster k, the global model parameters are up-
dated as:

θt+1 = θt + η · 1

|Gk|
∑

∆θi∈Gk

∆θi,

where η is the learning rate and |Gk| is the number of up-
dates in cluster k. This process ensures that the global model
evolves based on the contributions of each cluster while pre-
serving the distinctiveness of the clustered updates.

Unlearning Request
When an unlearning request is made for a specific data point
or class, the system determines the parameters to neutralize
by leveraging the established clustering. First, the gradients
from clients are analyzed and compared with the clustered
gradients.

G = {∆θ1,∆θ2, . . . ,∆θN}.
The system identifies which cluster Gk the data point be-
longs to based on its contribution pattern.

Once the cluster Gk is determined, the corresponding sub-
set of neurons Nk mapped to the cluster is isolated.

Experimental Setup
Dataset Details
The CIFAR-10 (32×32 color images, 10 classes) and
MNIST (28×28 grayscale digit images) datasets were used
for evaluation. Both datasets were normalized, split into
training and testing sets, and preprocessed for consistency.
The experiments focused on testing models with and with-
out freezing specific neurons.

Training Setup and Hyperparameters
In the federated setting, client models were trained using the
Adam optimizer with a learning rate of 0.001 and a batch
size of 64 for five epochs, across 100 global federated train-
ing rounds. Overall and per-class accuracies were recorded
for analysis.

Results and Discussion
During federated training, gradients from all clients are clus-
tered using t-SNE for dimensionality reduction and k-means
for grouping similar scores. This clustering identifies neu-
rons associated with specific labels, enabling effective un-
learning by freezing these neurons upon request. Figure 1
illustrates the clustering process for the MNIST and CIFAR-
10 datasets, showcasing ten distinct clusters corresponding
to the ten classes in each dataset.

For the MNIST dataset (Table 1), baseline accuracies
range from 90.59% to 98.50% across digits, demonstrating
the global model’s effectiveness. When digit-specific neu-
rons are frozen, the accuracy for those digits drops signifi-
cantly—e.g., 1.94% for digit 0 and 0.00% for digit 9—while
non-frozen digits maintain their baseline accuracies, high-
lighting modularity and independence in the architecture.

Similarly, for the CIFAR-10 dataset (Table 2), freezing
a specific class, such as ”Airplane” or ”Truck,” reduces its

Figure 1: DBSCAN Clustering for CIFAR-10 and MNIST

accuracy to near-zero (e.g., 0.00% for ”Airplane”), while
non-frozen classes experience minimal changes. Minor ac-
curacy shifts in non-frozen classes, such as ”Ship” improv-
ing from 61.60% to 69.50% when ”Airplane” is frozen,
suggest shared dependencies among certain classes. These
trends across MNIST and CIFAR-10 validate the architec-
ture’s generalizability, demonstrating its suitability for di-
verse data and federated learning tasks. The results affirm
the utility of freezing for tasks like machine unlearning and
robustness evaluation.

Limitations and Future Work
Our method partitions the parameter space into subparame-
ter spaces but cannot fully erase the influence of unlearned
data. For instance, in the MNIST dataset, digits 4 & 5 retain
residual accuracies of 6.31% & 9.30%, respectively, even
with frozen neurons, indicating the model’s generalization
retains traces of unlearned data. Future work will investigate
this residual accuracy & explore ways to mitigate it.

Additionally, the method is sensitive to cluster assign-
ments for client parameters. Misaligned clusters can unin-
tentionally unlearn data for other labels. We aim to improve
neuron-to-parameter mapping or enhance clustering robust-
ness to reduce such errors.

Conclusion
This paper presents an efficient federated unlearning frame-
work that removes specific data contributions without re-
quiring full retraining. By partitioning model parameters
into class-specific subsets and selectively freezing neurons,
the method ensures complete unlearning for targeted classes
while preserving high accuracy for unaffected ones. Ex-
perimental results on MNIST and CIFAR-10 validate the
approach’s effectiveness in addressing privacy compliance
and computational efficiency, highlighting its potential for
broader federated learning applications.
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Frozen Digit Digit 0 Digit 1 Digit 2 Digit 3 Digit 4 Digit 5 Digit 6 Digit 7 Digit 8 Digit 9

Without Freezing 97.24% 98.50% 96.32% 90.59% 95.32% 93.95% 97.29% 96.40% 95.07% 92.27%
Frozen 0 1.94% 98.50% 96.71% 90.79% 95.32% 94.17% 97.81% 96.40% 95.38% 92.57%
Frozen 1 97.24% 2.20% 95.25% 95.15% 95.32% 95.63% 98.43% 96.40% 92.30% 94.95%
Frozen 2 99.18% 98.59% 0.10% 91.19% 96.23% 94.62% 97.49% 97.08% 96.10% 90.88%
Frozen 3 98.37% 98.41% 96.51% 0.00% 97.15% 96.64% 96.03% 96.40% 94.76% 93.66%
Frozen 4 98.98% 98.41% 94.38% 93.96% 6.31% 96.75% 96.87% 93.00% 94.76% 96.53%
Frozen 5 98.78% 98.06% 96.22% 95.15% 96.13% 9.30% 97.18% 96.30% 94.97% 94.15%
Frozen 6 98.88% 98.59% 96.71% 95.94% 95.42% 96.08% 2.71% 96.30% 90.55% 95.64%
Frozen 7 97.65% 98.59% 96.12% 95.64% 95.93% 95.85% 95.82% 0.10% 92.92% 94.95%
Frozen 8 99.18% 98.85% 96.51% 95.74% 96.95% 94.06% 95.82% 96.11% 10.88% 93.95%
Frozen 9 98.88% 98.77% 97.38% 94.46% 98.47% 96.64% 95.51% 96.30% 90.97% 0.00%

Table 1: Global Accuracy of MNIST digits without freezing and with frozen digits.

Frozen Class Airplane Automobile Bird Cat Deer Dog Frog Horse Ship Truck

Without Freezing 50.80% 45.50% 43.70% 22.70% 20.30% 39.20% 65.00% 55.00% 61.60% 62.30%
Frozen Airplane 0.00% 46.40% 47.60% 23.00% 21.10% 39.40% 65.00% 56.30% 69.50% 63.80%
Frozen Automobile 39.10% 0.00% 33.00% 24.90% 33.70% 33.00% 72.00% 63.30% 72.70% 57.30%
Frozen Bird 59.00% 60.10% 0.00% 27.20% 55.10% 39.10% 62.10% 49.40% 56.60% 52.50%
Frozen Cat 54.90% 65.80% 24.60% 0.10% 55.60% 36.50% 48.00% 59.20% 60.40% 48.40%
Frozen Deer 47.60% 74.10% 40.00% 27.60% 0.00% 39.20% 60.90% 57.50% 54.00% 50.30%
Frozen Dog 58.50% 64.90% 24.50% 44.10% 39.00% 0.00% 54.90% 57.50% 61.70% 59.00%
Frozen Frog 57.40% 71.90% 36.30% 41.20% 47.70% 35.60% 0.00% 40.80% 59.30% 49.40%
Frozen Horse 51.10% 52.90% 48.10% 25.60% 11.90% 53.10% 58.60% 0.50% 64.00% 64.40%
Frozen Ship 49.70% 43.20% 22.30% 22.60% 37.60% 45.90% 63.00% 65.40% 0.60% 69.00%
Frozen Truck 54.60% 75.30% 26.30% 31.40% 46.60% 23.30% 64.10% 57.30% 56.70% 0.10%

Table 2: Global Accuracy of CIFAR-10 classes without freezing and with frozen classes.
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