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Abstract
Reward models (RMs) for LLM alignment of-
ten exhibit reward hacking, mistaking spurious
correlates (e.g., length, format) for causal qual-
ity drivers (e.g., factuality, relevance), leading
to brittle RMs. We introduce CROME (Causally
Robust Reward Modeling), a causally-grounded
framework using targeted data curation to miti-
gate this. CROME employs: (1) Causal Augmen-
tations, pairs isolating specific causal attribute
changes, to enforce sensitivity, and (2) Neutral
Augmentations, tie-labeled pairs varying spurious
attributes while preserving causal content, to en-
force invariance. Crucially, augmentations target
LLM-identified causal rubrics, requiring no prior
knowledge of spurious factors. CROME signif-
icantly outperforms baselines on RewardBench
(Avg +5.4%, Safety +13.2%, Reasoning +7.2%)
and demonstrates enhanced robustness via im-
proved Best-of-N performance across Reward-
Bench, WildGuardTest, and GSM8k.

1. Introduction
Aligning Large Language Models (LLMs) with human pref-
erences is paramount for their safe and effective deploy-
ment, with Reinforcement Learning from Human Feedback
(RLHF) and its reliance on reward models (RMs) being the
dominant paradigm (Christiano et al., 2017; Ouyang et al.,
2022; Bai et al., 2022a; Shao et al., 2024; Rafailov et al.,
2024). The fidelity of these RMs is critical, as flaws directly
propagate to the aligned policy (Casper et al., 2023).
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Figure 1: The CROME Data Augmentation and Train-
ing Pipeline. From an original QA pair (Q,A1,A2), an
oracle LLM identifies Causal Attributes (CA). This guides
counterfactual generation, producing degraded A1 versions
and upgraded A2 versions. These form the set of Causal
Augmentations which teach the model sensitivity to relevant
attributes. Next, we generate Irrelevant Query Neutrals by
flipping the question on these generated causals which re-
duces reliance on spurious correlates. After verification and
filtration, the combined dataset (Originals, Causals, Neu-
trals) trains the RM, enhancing its robustness (Sec. 4.1).

However, standard RM training faces a significant challenge:
reward hacking (Gao et al., 2023; Skalse et al., 2022). RMs
often learn to assign high scores based on superficial or
spurious attributes—such as response length (Singhal et al.,
2023), specific formatting patterns (Zhang et al., 2024), or
stylistic quirks—because these features are statistically cor-
related with preferred responses in the training data. This
occurs because standard training objectives do not explic-
itly require the RM to disentangle the true causal drivers
of response quality (e.g., factuality, relevance) from these
spurious correlates, leading to brittle RMs and misaligned
policies (Shen et al., 2023; Eisenstein et al., 2023).

Recent efforts to enhance RM robustness have explored var-
ious avenues. Wu et al. (2025) focus on invariance against
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meaning-preserving transformations, while Liu et al. (2024)
employ data augmentations, such as using non-contextuals
and neutrals to disrupt spurious associations. Gupta et al.
(2025) study attribute-based evaluation, often leveraging
LLMs to dynamically generate assessment criteria. Wang
et al. (2025) study the effect of regularization against known
biases like length or sycophancy, and Reber et al. (2024)
explore methods for causal effect estimation like RATE.

Despite these advances, significant limitations persist. Many
approaches target only pre-specified spurious factors, poten-
tially missing unknown correlates, or lack the fine-grained
control needed to truly isolate causal quality drivers from
confounding spurious features within responses. Aug-
mentation strategies can be coarse (Liu et al., 2024), and
evaluation-focused methods (Gupta et al., 2025; Reber et al.,
2024) may not directly equip the RM with mechanisms for
robust training against a wide array of spurious variations
through targeted counterfactual learning. There is thus a
clear need for a framework that systematically leverages a
causal understanding of preference formation to train RMs
that are both sensitive to causal quality attributes and demon-
strably invariant to diverse spurious cues.

Motivated by this, we aim to address the following question
in this paper:

How do we train reward models to be robust against re-
ward hacking, particularly when a) the specific spurious
attributes that an RM may exploit are not known, and
b) only the stable or invariant causal attributes found in
ground truth/human preferences can be accessed ?

To address this question, we propose CROME (Causally
Robust Reward Modeling), a novel framework grounded
in an explicit causal model of answer generation (Figure
1). CROME teaches the RM to differentiate genuine quality
drivers from superficial cues by augmenting the preference
dataset with targeted, LLM-generated counterfactual exam-
ples. It creates two key types of synthetic training pairs: (1)
Causal Augmentations, which introduce changes along spe-
cific causal attributes (e.g., factuality) to enforce sensitivity
to true quality shifts, and (2) Neutral Augmentations, which
reuse the same augmentations to enforce invariance along
spurious attributes (e.g., style) using tie-labels. Training
on this enriched dataset with a modified loss (Section 4)
guides the RM towards causal faithfulness. Our evaluations
show CROME significantly improves robustness, boosting
RewardBench accuracy by up to 4.5%, with substantial
gains in Safety and Reasoning. We list the key contributions
in this work below:

1. Spurious-Unaware Causal Framework. We propose
a causal framework for training reward models (Sec. 3)
that requires intervention only on LLM-identified causal
quality rubrics, eliminating the need for prior specifica-

tion of any of the spurious attributes.

2. Targeted Augmentations from Causal Rubrics. We in-
troduce data augmentations (Sec. 4) generated solely via
LLM-identified causal rubrics: Causal Augmentations
(minimal pairs for sensitivity) and Neutral Augmenta-
tions (spurious variations with tie-labels for invariance).
These augmentations effectively mitigate sensitivity to
a much larger set of spurious correlates without ex-
plicit knowledge of them.

3. State-of-the-Art RM Performance and Robustness.
CROME significantly outperforms baselines on Reward-
Bench (Sec. 6), improving avg. accuracy by up to 5.4%
(Safety +13.18%, Reasoning +7.19%) (Table 3), and
shows superior robustness on reWordBench (Figure 4).

4. Improved Downstream Policy Alignment. CROME-
RM-driven Best-of-N selection yields consistent gains
over baselines on RewardBench, WildGuardTest, and
GSM8K. This highlights CROME’s robustness against
diverse and long-tailed spurious factors, which typically
emerge with larger candidate pools (high N).

2. Related Works
Our work on causally robust reward modeling, CROME, ad-
dresses the challenge of reward hacking in the context of
aligning Large Language Models (LLMs) via Reinforce-
ment Learning from Human Feedback (RLHF) (Ouyang
et al., 2022; Bai et al., 2022a). Standard RLHF relies on
a reward model (RM), typically trained on pairwise pref-
erences using Bradley-Terry (Bradley & Terry, 1952) or
pairwise ranking approaches (Liu et al., 2025; Qin et al.,
2023). A critical limitation of learned RMs is reward hack-
ing (Gao et al., 2023; Skalse et al., 2022), where the RM
assigns high scores based on spurious attributes (e.g., ver-
bosity (Singhal et al., 2023), formatting (Zhang et al., 2024),
sycophancy (Denison et al., 2024)) that are correlated with,
but do not cause, true response quality. This leads to mis-
aligned policies that exploit these spurious cues (Shen et al.,
2023). Various mitigation strategies exist, including ar-
chitectural modifications like ODIN (Chen et al., 2024),
policy-level adjustments (Park et al., 2024), and data-centric
methods involving ensembles (Ramé et al., 2024) or con-
sistency checks (Shen et al., 2023). Recent causal-inspired
approaches include using MMD regularization against pre-
specified spurious factors (Wang et al., 2025) or estimating
effects using corrected rewrites (Reber et al., 2024).

Our approach falls into the data-centric category, using syn-
thetic data augmentation guided by principles of causal in-
ference (Pearl, 2009; Peters et al., 2017). While prior work
has used LLMs for causal reasoning (Kiciman et al., 2023)
or counterfactual data augmentation in NLP (Kaushik et al.,
2019), and related methods like RRM (Liu et al., 2024),
REWORDBENCH (Wu et al., 2025) target RM robustness,
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(Q,C(A))→ R∗ Ground-truth reward R∗ determined by query
Q and causal attributes C(A); stable relation-
ship.

Q↔ SP(A) Query Q and unknown spurious attributes
SP(A) are correlated/confounded by unsta-
ble exogenous factors.

Q→ C(A) Query Q determines relevant causal at-
tributes C(A).

SP(A)↔ C(A) Bidirectional (potentially complex) relation-
ship between spurious SP(A) and causal
C(A) attributes.

Table 1: Conceptual Causal Graph for Reward Modeling. Q
is the query. Answer (A) has causal attributes C(A) and spu-
rious attributes SP(A). dim(C(A)) ≪ dim(SP (A)) ∀A.
SP(A) is unknown. Ground-truth reward R∗ depends only
on C(A) and Q. R∗ ⊥ SP(A)|C(A), Q. Augmentations
heighten R̂θ’s sensitivity to C(A) (approximated by oracle
LLM).

CROME is distinct in its explicit use of a causal graph frame-
work (Section 3.2). We leverage LLMs to generate targeted
causal (attribute-specific upgrade/degradation) and neutral
(spurious-varying, causally-equivalent) counterfactual ex-
amples. By training on this augmented data, CROME aims to
systematically disentangle causal attributes (C) from spuri-
ous ones (SP ), learning a reward function that is inherently
more robust and aligned with the true drivers of quality, as
detailed in our methodology (Section 4). We give a longer
version of related work in Appendix B.

3. Causal Framework for Reward Modeling
We aim to develop a reward model that accurately assesses
the quality of an answer A provided in response to a query
Q. Our approach is grounded in a causal framework de-
signed to distinguish genuine quality drivers from spurious
correlates often present in preference data. This involves un-
derstanding the answer generation process and strategically
augmenting training data with approximated counterfactual
examples.

3.1. Reward Model and Pairwise Preferences

We train a reward model (RM), denoted R̂θ(Q,A), to assign
a scalar quality score to an answer A for a query Q. This

RM is typically optimized on a dataset preferences pairs
Dpref = {(Q(i), y

(i)
w , y

(i)
l )}Ni=1. Given a pair of answers

(A1,A2), the probability of A1 being preferred over A2

is commonly modeled using the Bradley-Terry framework
(Bradley & Terry, 1952)
P(A1 ≻ A2|Q; θ) =

exp(ŝθ(Q,A1))

exp(ŝθ(Q,A1)) + exp(ŝθ(Q,A2))

where ŝθ(Q,A) represents the underlying scalar score (or
logit) assigned by the model to answer A for query Q.1

The parameters θ are learned by minimizing the negative
log-likelihood of preferences.

3.2. A Causal Model of Answer Generation
We propose a causal model (Figure 1) for answer generation
and quality perception. For a query-answer pair (Q,A), we
distinguish two attribute types:

• Causal Attributes C(A) = {C1, . . . ,Cℓ}: Fundamental
quality dimensions (e.g., factuality, relevance) genuinely
determining quality relative to Q.

• Spurious Attributes SP(A) = {SP1, . . . ,SPk}: Other
features (e.g., length, formatting) correlated with pref-
erences or Q in Dpref , but not intrinsically determining
quality. SP(A) can be high-dimensional and unknown.

The ground-truth reward R∗(Q,A) is assumed to be
solely a function of causal attributes: R∗(Q,A) =
f∗(Q,C(A)). This implies conditional independence:
R∗ ⊥ SP(A)|Q,C(A).

We explicitly assume the following stability property: If the
entire process of answer generation and reward labeling
were repeated (e.g., with a different labeler or answer gen-
erator), the relationship (Q,C(A))→ R∗ determining the
reward is stable/invariant. In contrast, correlations involv-
ing SP(A) (e.g., SP(A)↔ C(A) or SP(A)↔ Q) can arise
from various, potentially unstable or unknown exogenous
factors, and thus these correlations may vary across such
repetitions.

The primary challenge is that standard reward models R̂θ

may inadvertently learn high sensitivity to these unsta-
ble correlations with SP(A) (due to its unknown, high-
dimensional nature). Our goal is to train R̂θ such that its
dependence on A is primarily mediated through the identi-
fied, stable causal attributes C(A), ensuring robustness to
unspecified SP(A).

3.3. Approximating Counterfactuals for Attribute
Intervention

To instill causal sensitivity and spurious invariance in R̂θ,
CROME leverages counterfactual reasoning about how an-
swer quality changes if specific attributes were altered. For

1The score ŝθ(Q,A) can be the direct output of a reward head
or, in some pairwise preference models, ŝθ(Q,A1)− ŝθ(Q,A2)
might be directly modeled as the logit of preferring A1 over A2.
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Figure 2: Visualizing CROME’s core augmentation strate-
gies (detailed in Appendix G). (Top) Causal Augmentation:
For a given query, we use an LLM-driven counterfactual
generation process to alter a specific causal attribute, yield-
ing Answer 2. Some spurious attributes may co-vary. The
RM is trained with a preference (e.g., A1 ≻ A2 if A2 is
a degradation), teaching causal sensitivity. (Bottom) Ir-
relevant Query Neutral: The same answer pair (A1, A2)
is re-contextualized with a new, irrelevant question. Their
original causal attributes become effectively spurious or ir-
relevant (greyed-out bar). The RM is trained with a tie-label
(A1 ≈ A2), teaching invariance to the attribute differences
when no true causal signal for the current query exists.

an answer A with attributes (C(A),SP(A)), an ideal coun-
terfactual, A(Cj←c′j)

(u), would manifest if only its j-th
causal attribute Cj were set to c′j , considering its causal
effects on other features, while all other exogenous factors
u (that produced the factual answer a) remained constant.
Formally, PU (A(Cj←c′j)

(U)|A(U) = a).

As generating such ideal counterfactuals is intractable,
CROME employs Large Language Models (LLMs) to pro-
duce approximations. These LLM-generated answers,
denoted Ã(Cj←target), are rewrites of a given answer A,
prompted to modify Cj (e.g., to a degraded state, lowering
reward) while making minimal changes to other attributes.

Remark 3.1. For brevity, we denote these LLM approxi-
mations as Ã(Cj←c), dropping the explicit u conditioning,
assuming the generation approximates such a sample. While
imperfect, these approximations provide the targeted varia-
tions crucial for the RM learning of the decision boundary.

Table 2: Summary of CROME’s synthetic data augmenta-
tion strategies using LLM-approximated counterfactuals.
Ã(Cj←target) signifies an LLM-generated counterfactual of
A with its j-th causal attribute Cj modified.

Category Strategy Generation Pair Example Assigned
Label

Training
Objective (Pθ)

Causal Augmentation (Dcausal) - Enhancing Sensitivity to C

Causal Attribute
Upgrada-
tion/Degradation

(Ã(Cj←upgraded),A) or
(A, Ã(Cj←degraded))

≻ → 1

Neutral Augmentation (Dneutral) - Enforcing Invariance to SP

Neutral Pairing with
Irrelevant Queries

(B1,B2) with new Qirrelevant
s.t. C(B1|Qirrelevant) ≈
C(B2|Qirrelevant) ≈ 0

≈ (tie) ≈ 0.5

3.3.1. CAUSAL AUGMENTATION PAIRS

CROME’s strategy causal pairs Dcausal focus on isolating
the impact of important causal attributes.

3.4. Augmented Training Data for Causal
Disentanglement

We augment the original preference dataset Dpref with syn-
thetically generated examples Daug designed to enforce spe-
cific causal properties on R̂θ. This augmented dataset Daug

comprises two principal categories: Causal Augmentation
Pairs (Dcausal) and Neutral Augmentation Pairs (Dneutral),
summarized in Table 2.

Attribute Upgradation and Degradation. For an orig-
inal answer A (from Dpref ) and a specific causal attribute
Cj , we generate LLM-approximated counterfactuals. If A
is of lower quality regarding Cj , we create an upgraded ver-
sion Ã(Cj←upgraded). The pair (Ã(Cj←upgraded),A) is added
to Dcausal with label Ã(Cj←upgraded) ≻ A post-verification.
Conversely, if A is of higher quality on Cj , we generate a de-
graded version Ã(Cj←degraded). The pair (A, Ã(Cj←degraded))

is added to Dcausal with label A ≻ Ã(Cj←degraded). These
pairs collectively teach R̂θ sensitivity to changes along indi-
vidual causal dimensions.

3.4.1. NEUTRAL AUGMENTATION PAIRS

Dneutral pairs (with tie-labels) teach invariance to SP(A)
when C(A) is held constant/ is irrelevant.

Irrelevant Query Neutrals (IQN). We pair two an-
swers, B1,B2 (often from Dcausal, e.g., A and
Ã(Cj←target)), with a new, unrelated query Qirrelevant.
This makes their causal attributes w.r.t. Qirrelevant (i.e.,
C(B1|Qirrelevant),C(B2|Qirrelevant)) minimal. The pair
(B1,B2) under Qirrelevant receives a tie-label, training the
RM to disregard spurious differences when causal relevance
is absent. Their causal distinction becomes moot, isolating
spurious variations under Qirrelevant.
Further details on these generation strategies, their relation-
ship with other methods (like Relevance Contrast or direct
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Spurious Perturbation), and the rationale for CROME’s spe-
cific choices are discussed in Appendix F. We provide the
prompts for the generations described in Section K.

4. Methodology: Training a Robust Reward
Model

The CROME framework trains robust reward models using
a causally-motivated data augmentation strategy, outlined
in Figure 3. This involves two main phases: (1) generat-
ing attribute-aware counterfactual data based on our causal
model (Section 3), and (2) training the reward model R̂θ

with a specialized loss on the combined data.

4.1. Attribute-Aware Counterfactual Data Generation
This phase prepares the augmented dataset Daug =
Dcausal ∪ Dneutral required for robust training, involving
three conceptual steps:

Step 1: Attribute Identification. As a prerequisite,
we identify the Principal Causal Components C =
(C1, . . . ,Cℓ) relevant to the task, leveraging the causal
framework from Section 3.2. This typically involves LLM
prompting and refinement (Details in Appendix H.1).

Step 2: Counterfactual Generation. Using the identified
attributes C, we generate synthetic data pairs via LLM-
approximated counterfactuals, as defined in Section 3.3.
Following the strategies summarized in Table 2 and detailed
conceptually in Section 3.4, we create:

• Causal Augmentation Pairs (Dcausal): Examples en-
forcing sensitivity to individual causal attributes Cj

via Attribute Upgradation and Degradation, with
standard preference labels (≻).

• Neutral Augmentation Pairs (Dneutral): Examples en-
forcing invariance to spurious attributes SP while ensur-
ing C is irrelevant. These are generated via Irrelevant
Pair Comparison (using query modification). These
receive tie labels (≈).

LLM prompts are in Appendix K. This yields the raw Daug.

3. Data Filtering. Daug is filtered to Daug filtered by re-
taining pairs where a baseline RM (trained on Dpref ) is
uncertain or incorrect, focusing training on informative ex-
amples (details: Section 6, Appendix H.3). This yields the
final training datasets Dpref and Daug filtered.

4.2. Robust Reward Model Training
Given the original data Dpref and the filtered augmented
data Daug filtered, the final CROME reward model R̂θ is
trained by minimizing a composite loss function L(θ) over
the combined dataset D = Dpref ∪ Daug filtered:

L(θ) = −
∑

(Q,yw,yl)
∈Dpref∪Dcausal

log
[
σ(∆wl)

]
︸ ︷︷ ︸
Preference Loss (Causal Sensitivity)

− λ
∑

(Q,A1,A2, y=tie)
∈Dneutral

(
−1

2

[
log σ(∆12) + log σ(−∆12)

])
︸ ︷︷ ︸

Neutral Tie Loss (Spurious Invariance)

where ∆wl = R̂θ(Q,Aw) − R̂θ(Q,Al) and ∆12 =
R̂θ(Q,A1)− R̂θ(Q,A2). The first term (Preference Loss)
trains sensitivity to causal quality using Dpref and Dcausal.
The second term (Neutral Tie Loss, weighted by λ ≥ 0)
trains invariance to spurious features using Dneutral by en-
couraging ∆12 ≈ 0 for tie-labeled pairs. For our current set
of experiments we keep λ = 1.

This optimization guides R̂θ to be sensitive to causal at-
tributes C while remaining robust to variations in spurious
attributes SP. We demonstrate CROME’s effectiveness in
mitigating reward hacking and improving downstream pol-
icy performance in Section 6.

5. Theoretical Analysis
We provide a theoretical analysis, detailed in Appendix I,
to formalize how CROME’s causal augmentation isolates
true reward drivers from spurious correlates. Under an
idealized model, we show that training on data with targeted
interventions on causal attributes enables the learned reward
model to accurately identify causal reward determinants,
even in the presence of numerous, unspecified spurious
features. To formalize this, we consider a setting where:

(i) Causal attributes C(A) and spurious attributes SP(A)
are modeled as boolean variables.

(ii) True reward R∗ is a sparse quadratic polynomial of
C(A) only.

(iii) The learned R̂θ can be a denser quadratic polynomial
including SP(A) and C(A)SP(A) terms.

(iv) Spurious attributes SP(A) are not descendants of
causal attributes C(A).

(v) Causal augmentation is an ideal counterfactual that
(given same exogenous factors leading to the answer)
intervenes one Ci → ¬Ci, leaving other Cj inter-
vened to be their factual versions.

We frame learning the coefficients of R∗ as an ℓ1-
constrained linear regression (Lasso) on features derived
from attribute differences between an augmented answer
Aaug and its original A. The key insight is that the feature
matrix F from such augmented pairs exhibits properties con-
ducive to sparse recovery, such as low column coherence
or satisfying a Restricted Isometry Property (RIP) variant.
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Figure 3: The CROME data augmentation pipeline. Original preference data (Dpref ) is used as a basis to generate: (1)
Causal Augmentations (Dcausal) by performing Attribute Upgradation and Degradation on specific attributes to enforce
sensitivity to genuine quality drivers, and (2) Neutral Augmentations (Dneutral) via Irrelevant Query Neutrals (with tie-labels)
to teach spurious feature invariance. After optional filtering, the reward model is trained on the combined original and
augmented dataset.

Specifcally, compared to the original training set, the aug-
mented one has a much lower RIP.

5.1. Main Theoretical Result (Informal)
This structure leads to the following result (formalized as
Theorem I.3 in Appendix I):

Theorem 5.1 (Informal Statement). Under the ide-
alized model assumptions, ℓ1-constrained regression
on m causally augmented examples recovers the
true causal reward coefficients a with an ℓ2-error
∥θ − θ̂∥2 that scales (ignoring constants and terms
related to imperfect sparsity recovery) roughly as

O

(
∥θN c∥1( 1k +

√
log(k+ℓ)

m )

)
whereN is the top O(k)

coefficients in the R∗ true reward model. This highlights
a primary dependence on the number of causal attributes
k and samples m, and only a weak, logarithmic depen-
dence on the spurious attribute dimension ℓ.

Implications: This theorem suggests that CROME’s causal
augmentation, by promoting favorable properties (like RIP
or low incoherence) in the effective design matrix, guides
the reward model towards genuine causal drivers. Further,
the error vector has ℓ2 norm is linear in the causal dimension
k in the worst case and zero in the best case where R∗ has
sparser dependence on the causal factors. If it was the
preference training dataset, the error could be proportional
to ∥θ∥1 (which is O(k2)).

6. Experiments
Our experiments are designed to address the following re-
search questions:

RQ1: RM Performance and Robustness: How does
CROME perform on standard preference prediction
tasks and how robust is it against spurious correla-
tions(Table 3, Figure 4)?

RQ2: Best-of-N Alignment: Does the robustness achieved
by CROME lead to favorable results in a Best-of-N
setup as well, when compared to strong baselines
(Figures 7, 8, Table 4)?

RQ3: Neutral Augmentations: How effective are different
neutrals augmentation strategies in enforcing invari-
ance to unknown spurious correlates (Figures 6, 9)?

6.1. Experimental Settings

CROME and baseline reward models (Vanilla RM, RRM
(Liu et al., 2024)) are trained on the UltraFeedback dataset
(Cui et al., 2023), with counterfactuals generated using Gem-
ini 2.0 Flash. We evaluate performance on RewardBench
(Lambert et al., 2024) and robustness on reWordBench (Wu
et al., 2025) 2. Experiments utilize diverse base LLMs
(Gemma-2-9B-IT, Qwen2.5-7B, Gemma-2-2B) for
both Pairwise Preference (PairPM) and Bradley-Terry (BT)
reward models. Downstream alignment impact is assessed
via Best-of-N selection on tasks including RewardBench,
GSM8K, and WildGuardTest. Comprehensive details on
datasets, model specifics, augmentation procedures, filter-
ing, training hyperparameters, and all experimental configu-
rations are provided in Appendix E.

6.2. Experimental Results addressing Research
Questions (RQ1-3):

On RewardBench (Table 3), CROME consistently im-
proves ranking accuracy over RRM across diverse base
models and reward modeling techniques (PairPM, BT).
These improvements are particularly notable on the chal-
lenging Safety (up to 13.18%↑) and Reasoning (up to
7.19%↑). CROME also demonstrates superior robustness on
reWordBench, which tests for robustness of RMs against
meaning-preserving transformations (Figure 4). With
Gemma-2-9B-IT, CROME-PairPM shows an aggregate
accuracy gain of up to 9.1%↑ and is superior on (21/23)
transformations.

2Since reWordBench has not been released, we follow the paper
and communicated with the authors to reproduce it, see Appendix
Section D
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Table 3: Performance Comparison of Pairwise Preference Model and Bradley-Terry Reward Model on RewardBench trained
using various base models

Method
PairPM BT

Average Chat Chat-Hard Safety Reasoning Average Chat Chat-Hard Safety Reasoning

G
e
m
m
a
-
2
-
9
B
-
I
T Vanilla RM 80.61 98.18 63.38 76.08 84.80 79.23 97.49 59.49 68.25 91.71

RRM 82.53 96.93 72.04 73.78 87.36 83.22 97.49 68.53 73.18 93.68

CROME 87.93 97.49 72.70 86.96 94.55 85.33 96.09 66.12 82.84 96.27

∆CROME - RRM +5.40↑ +0.56↑ +0.66↑ +13.18↑ +7.19↑ +2.11↑ -1.40↓ -2.41↓ +9.66↑ +2.59↑

Q
w
e
n
2
.
5
-
7
B Vanilla RM 78.18 97.21 52.85 73.99 88.68 72.73 97.21 46.27 68.04 79.39

RRM 82.04 97.21 64.80 75.27 90.86 78.20 98.04 59.65 72.43 82.66

CROME 83.15 96.37 61.73 82.23 92.26 80.81 96.93 58.66 78.92 88.71

∆CROME - RRM +1.11↑ -0.84↓ -3.07↓ +6.96↑ +1.40↑ +2.61↑ -1.11↓ -0.99↓ +6.49↑ +6.05↑

G
e
m
m
a
-
2
-
2
B Vanilla RM 53.75 92.88 33.33 42.03 46.74 65.52 94.27 38.27 50.20 79.34

RRM 66.23 94.13 43.75 47.64 79.38 66.95 94.97 49.34 50.07 73.42

CROME 70.69 92.18 50.00 55.14 85.42 72.45 92.74 53.62 60.00 83.45

∆CROME - RRM +4.46↑ -1.95↓ +6.25↑ +7.50↑ +6.04↑ +5.50↑ -2.23↓ +4.28↑ +9.93↑ +10.03↑
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Figure 4: Absolute robustness comparison of RM, RRM and CROME on reWordBench.

Key Takeaway: CROME improves RM performance
on standard benchmarks while significantly improving
performance and mitigating ranking accuracy drops on
diverse transformed inputs, without ever being explicitly
trained on such spurious transformations.

BoN for Robust LLM Alignment Across Chat, Reason-
ing, and Safety Following the method used by Wu et al.
(2025), in Table 4 we perform best-of-n selection using
CROME across RewardBench categories, which consists
of datasets such as AlpacaEval. Across all values of N ,
CROME provided significant improvements over baselines
in a head-to-head comparison.

Key Takeaway: CROME’s emphasis on causal attributes
enhances its discriminative power in Best-of-N selec-
tion, leading to more consistent identification of superior
responses.

N CROME vs RM CROME vs RRM

CROME RM Ties CROME RRM Ties

4 28.08 13.85 58.07 28.03 14.13 57.84
8 34.32 17.24 48.43 34.36 17.19 48.45

16 39.93 20.54 39.53 41.14 20.40 38.46
32 44.79 21.88 33.33 45.46 22.01 32.53

Table 4: Win rates for CROME, on RewardBench

Ranking Accuracy Improvements: In Fig. 5, we test
difference between RewardBench and reWordBench scores
(following the macro-avg metric used in Wu et al. (2025)).
CROME exhibits a smaller ranking accuracy drop from Re-
wardBench to reWordBench (In case of PairPM: 19.78% vs.
RRM’s 21.54%. See Appendix C and D for more details.

Key Takeaway: Assuming sufficient concentration of
spurious elements in the prompt as well as the N re-
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Figure 5: % improvement in ranking accuracy between
RewardBench and reWordBench.

sponses, CROME is better at selecting the best response
based on causal attributes only. For e.g., in safety, harm-
ful prompts and responses may be disguised as benign.

Causal Attributes help in detecting jailbreaks In Fig.
7, BoN with CROME shows significant improvements on
safety as measured on WildGuardTest (Gemma-2-9B-IT
base model). In particular the attack success ratio (ASR)
on harmful prompts is much lower compared to models
aligned with RM and RRM and this gap increases with N.
This improved ASR comes at at a similar refusal-to-answer
rate on benign prompts.

Key Takeaway: CROME’s causal augmentations achieve
a superior trade-off between safety and over-refusals, be-
cause its contrastive pairs delineate the decision bound-
ary for harmful content more faithfully. This leads to
safer content, while avoiding excessive refusals on be-
nign prompts.

Disentangling Content related features from stylistic
(spurious) ones helps in reasoning In Fig. 8, CROME
shows a consistent gap over baseslines across different val-
ues of N on GSM8K (Gemma-2-9B-IT base model).
Non robust reward models may focus on stylistic details.
Good looking, detailed but wrong reasoning steps may mis-
guide non-robust RMs into giving a higher score to the
response.

Key Takeaway: Reasoning correctness is dependent
on focusing on correctness over stylistic features. Our
training ensures CROME is good at capturing content-
features over other attributes.

Neutrals help in spurious suppression Neutral augmen-
tations significantly improve robustness compared to causal-
only training (Figures 6 and 9). All neutral variants out-
perform the causal-only CROME-C model. Among them,
CROME-IQN achieves the best overall performance on Re-
wardBench, with a gain of +5.4%↑ over the RRM baseline.
Meanwhile, CROME-CAN achieves the best performance
on reWordBench, with a gain of +12.5%↑.

Key Takeaway: Explicit suppression of spurious corre-
lates via neutral augmentations mitigates reward hacking
by learning invariant reward signals, thereby improving

downstream performance.

In Fig. 6, we plot the performance on subsets of Reward-
Bench, of different CROME variants including: CROME-C
(only causals), CROME-IQN (causals + irrelevant query
neutrals), CROME-PARA (causals + paraphrased neutrals),
CROME-CAN (causals + causally-aligned neutrals), and
CROME-IQN+CAN (causals + irrelevant query neutrals +
causally-aligned neutrals). On the especially challenging
Chat-Hard subset, CROME-IQN performs best. We discuss
the reasons for these variations in Appendix F. Prompts for
obtaining these neutrals is given in Appendix K.

Key Takeaway: A combination of well-designed aug-
mentation strategies, e.g. causal upgradations and degra-
dations, along with irrelevant query neutrals, produces
the most robust and generalizable reward models.
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SUPPLEMENTARY MATERIAL

These supplementary materials provide additional details, derivations, and experimental results for our paper. The appendix
is organized as follows:

• Section A discusses potential limitations of this work.

• Section B provides a broader overview of recent related literature. This is an expanded version of the literature covered in
the main paper.

• Section C provides some additional set of results. This is an expanded version of the results covered in the main paper.

• Section D provides the detailed steps we took to reproduce the reWordBench benchmark, as proposed in Wu et al. (2025).

• Section E provides a detailed overview of our experimental setup.

• Section F provides a detailed walk through of how our causal model extends to prior method. We revisit prior works in
light of our causal model. It extends on the shorter version provided in Section 3.

• Section G provides a walkthrough of the causal details of the core data augmentation strategies.

• Section H provides a detailed walk through of the method used to train the reward model. It extends on the shorter version
provided in Section 4.

• Section I provides a detailed analysis of the theory relating to Reward Hacking and how our proposed method mitigates it.

• Section J presents a qualitative example of augmented data created from original data using which is used to train CROME.

• Section K presents a lists of prompt templates that we use to query our models for generating the data.

• Section L presents a qualitative view common failure modes or biases commonly observed in reward models.

A. Limitations and Future Work
While CROME demonstrates significant improvements, we acknowledge certain limitations which also suggest avenues for
future research:

• Idealized Assumptions in Theoretical Analysis: Our theoretical justification (Section 5, Appendix I) relies on
simplifying assumptions such as boolean attributes, quadratic reward models, and perfect counterfactual interventions.
These idealizations, necessary for analytical tractability, mean our formal guarantees are indicative of CROME’s potential
mechanism rather than absolute predictions of real-world performance, where the complexities of LLM behavior and
data are greater.

• Scalability and Cost of Data Augmentation: The generation of targeted causal and neutral augmentations, while
effective, involves multiple LLM inference calls per original data point. Although filtering helps optimize the final
dataset size, the initial augmentation phase can be computationally intensive and potentially costly for extremely
large-scale applications. Future work could explore more sample-efficient augmentation strategies or methods to distill
the benefits of augmentation into smaller datasets.

• Generalization to Highly Novel Spurious Correlations: CROME is designed to be robust against unspecified spurious
correlations by focusing on causal signals and diverse neutral examples. However, its ability to generalize to entirely
novel types of spuriousness, drastically different from any patterns implicitly covered or contrasted during augmentation,
remains an empirical question. The breadth and nature of the neutral augmentations play a role here, and continuous
adaptation or more abstract invariance learning might be needed for extreme out-of-distribution spuriousness.
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• Fidelity of LLM-Generated Counterfactuals: The efficacy of CROME is linked to the quality of the LLM-generated
counterfactuals. While current LLMs are powerful, ensuring perfect attribute isolation in causal augmentations or
complete causal content preservation in neutral pairs is challenging. Imperfections in these LLM-approximated
interventions can introduce noise. While our empirical results show strong benefits, further research into enhancing the
precision and verifiability of LLM-driven textual counterfactual generation could yield additional improvements.

Future research could focus on extending the theoretical framework to encompass more realistic settings, developing more
cost-effective and adaptive augmentation techniques, and further exploring the boundaries of generalization against emergent
spurious correlations.

B. Extended Related Works
Our work on CROME, a framework for causally robust reward modeling, intersects with and builds upon several key areas of
research: the alignment of Large Language Models (LLMs) via human feedback, techniques for reward model training,
the persistent challenge of reward hacking, the application of causal inference principles to machine learning, and data
augmentation strategies for enhancing model robustness.

LLM Alignment and RLHF. The dominant paradigm for steering LLM behavior towards desired attributes like help-
fulness, honesty, and harmlessness is Reinforcement Learning from Human Feedback (RLHF) (Christiano et al., 2017;
Stiennon et al., 2020; Ouyang et al., 2022; Bai et al., 2022a; Askell et al., 2021). The standard RLHF process involves
training a reward model (RM) on human preferences (typically pairwise comparisons) and subsequently using this RM as a
reward signal to fine-tune the LLM policy via RL algorithms such as PPO (Schulman et al., 2017). The quality, calibration,
and robustness of the RM are paramount, as flaws in the RM directly impact the alignment outcome (Casper et al., 2023).
While alternative alignment algorithms like Direct Preference Optimization (DPO) (Rafailov et al., 2024) and its extensions
(e.g., IPO (Azar et al., 2024), KTO (Ethayarajh et al., 2024), ORPO (Hong et al., 2024), SimPO (Meng et al., 2024))
bypass explicit RM training by directly optimizing the policy on preference data, they still implicitly rely on the preference
information learnable from the data, making the problem of distinguishing true quality from spurious correlates equally
relevant.

Reward Modeling Techniques. Learning accurate reward models from preference data remains a central challenge.
Methodologies include Bradley-Terry style pointwise models that learn a scalar score r(x, y) (Bradley & Terry, 1952;
Ouyang et al., 2022; Bai et al., 2022a), and pairwise ranking models that directly predict preference probabilities, often
implemented within the LLM architecture itself (PairPM) (Liu et al., 2025; Qin et al., 2023). Other approaches explore
Q-function based rewards (Li & Li, 2024) or process supervision (Khalifa et al., 2025). Significant effort focuses on
improving specific RM properties like calibration (Zhu et al., 2025; Zhao et al., 2023), training efficiency (Tunstall et al.,
2023), uncertainty quantification (Lou et al., 2024), interpretability through multi-aspect rewards (Wang et al., 2024; Yang
et al., 2024b), and scalability via reasoning or chain-of-thought mechanisms (Zhang et al., 2025; Zhao et al., 2025). Our
work complements these efforts by focusing specifically on enhancing the causal robustness of the learned reward function
R̂ against spurious attributes.

Reward Hacking and Spurious Correlations. Learned reward models are notoriously susceptible to reward hacking or
over-optimization (Gao et al., 2023; Skalse et al., 2022; Pan et al., 2022). Because RMs are trained on finite, potentially
biased data, they often learn to associate high rewards with superficial or spurious features that are merely correlated with
desirable responses in the training set. Common examples include excessive length or verbosity (Singhal et al., 2023),
specific formatting patterns like lists or markdown (Zhang et al., 2024), adherence to stylistic conventions like politeness, or
even sycophantic agreement with user views (Denison et al., 2024). Policies optimized against such RMs learn to exploit
these spurious cues, leading to outputs that maximize the predicted reward but fail to align with genuine human preferences
or task goals (Shen et al., 2023).

Approaches to Mitigating Reward Hacking. Various strategies have been proposed to address reward hacking. Model-
centric approaches include using ensembles of RMs to average out idiosyncratic biases (Coste et al., 2023; Eisenstein et al.,
2023; Ramé et al., 2024), incorporating explicit calibration methods (Zhao et al., 2023), or designing architectures that
factorize reward components, such as ODIN’s disentanglement of quality and length (Chen et al., 2024). Policy-optimization
techniques might involve adding explicit penalties for spurious features (e.g., length penalties (Park et al., 2024)) or using
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specific regularization methods during fine-tuning. Data-centric approaches aim to improve the training data or process
itself. Examples include iterative re-labeling or refinement (Bai et al., 2022b), performing consistency checks across related
prompts (Shen et al., 2023), or augmenting the dataset with synthetic examples designed to improve robustness (Pace et al.,
2024; Shen et al., 2024). Our work, CROME, falls firmly in this data-centric category. It is closely related to RRM (Liu et al.,
2024), which also uses data augmentation (non-contextual and neutrals) for robustness. However, CROME is distinct in its
use of an explicit causal framework and its generation of targeted, attribute-specific counterfactuals to disentangle causal
from spurious factors.

Causal Inference in Machine Learning. Causal inference provides formal tools, such as Structural Causal Models (SCMs)
and DAGs (Pearl, 2009; Peters et al., 2017), for reasoning about cause-effect relationships, confounding, and counterfactuals.
Applying causal principles in machine learning aims to build models that are more robust, fair, and interpretable by focusing
on underlying causal mechanisms rather than potentially brittle statistical correlations (Schölkopf et al., 2021). Techniques
like Invariant Risk Minimization (IRM) seek models that perform well across different environments by relying on invariant
(presumably causal) predictors (Arjovsky et al., 2019). Our work adopts this causal perspective, framing spurious attributes
as non-causal factors whose influence on the learned reward model should be minimized.

Causality in LLMs and NLP. The intersection of causality and LLMs is rapidly evolving. Research includes probing the
innate causal reasoning abilities of LLMs (Kiciman et al., 2023; Chi et al., 2024), leveraging LLMs as tools for automating
parts of the causal discovery or analysis pipeline (Long et al., 2023; Tu et al., 2023), and applying causal methods to enhance
NLP tasks. For instance, counterfactual reasoning and data augmentation have been used to improve robustness against
biases in text classification (Kaushik et al., 2019; Feder et al., 2021) and assess fairness (Feder et al., 2022). CROME uniquely
employs a predefined causal graph to structure the generation of counterfactual data specifically for training a robust RM,
using LLMs as the generation engine.

Data Augmentation for Robustness. Data augmentation is a cornerstone technique for improving model generalization.
Beyond traditional NLP methods like synonym replacement or back-translation (Wu et al., 2025), more recent approaches
leverage LLMs for sophisticated augmentations, including paraphrasing, style transfer, generating adversarial examples
(Qiang et al., 2024), or creating counterfactuals (Mishra et al., 2024; Feder et al., 2021). Counterfactual generation, often
using LLMs as rewriters, is also central to evaluation methods like RATE (Reber et al., 2024), which uses “rewrites of
rewrites” to estimate causal effects robustly. Methods based on sampling, like Gumbel temperature sampling, have also been
explored for counterfactual generation (Ravfogel et al., 2025). In the specific context of reward modeling, data augmentation
aims to enhance robustness against spurious correlations; examples include the non-contextual and query-independent pairs
used by RRM (Liu et al., 2024) or consistency checks via paraphrased inputs as explored in REWORDBENCH (Wu et al.,
2025). Furthermore, generating entirely synthetic preference pairs (Pace et al., 2024; Shen et al., 2024) represents another
data-centric approach to improving reward models. Counterfactual data augmentation, particularly generating minimally
different pairs to isolate specific features (Kaushik et al., 2019), is highly relevant to disentangling causal factors. Our work,
CROME, operationalizes this concept within an explicit causal framework, generating targeted ”causal” (attribute-isolating)
and “neutral” (spurious-varying) pairs via LLM rewriting to enforce specific invariance and sensitivity properties in the
trained RM.

Positioning of CROME. CROME integrates insights from causal inference and data augmentation to address the critical
problem of reward hacking in LLM alignment. While related works like RRM (Liu et al., 2024) use data augmentation
for robustness and CARMO (Gupta et al., 2025) uses LLMs for criteria generation, CROME is distinguished by its explicit
grounding in a causal graph model of answer attributes. It systematically generates attribute-specific counterfactual and
neutral examples via guided LLM prompting to directly train the RM to distinguish causal quality drivers (C) from spurious
correlates (SP ). This allows CROME to potentially handle a wider range of spurious attributes beyond commonly studied
ones like length, aiming for a more principled and generalizable form of robustness. We provide the methodology and
empirical validation (Section 6) demonstrating that this causally-informed data augmentation leads to more robust reward
models and better downstream policy alignment compared to standard baselines.
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C. Additional Results
Our main findings presented in this section are as follows:

• Stable and Significant Performance Gains: CROME consistently outperforms baseline reward models (Vanilla RM
and RRM) on RewardBench across multiple independent training runs, with small standard deviations indicating
stable performance. The improvements, particularly on reWordBench transformations, are substantial and typically
exceed multiple standard deviations of the baselines, underscoring their statistical significance (Sec. C.1, C.2).

• Robustness to Oracle LLM Choice: CROME’s methodology for attribute extraction and augmentation demon-
strates effectiveness even when using different oracle LLMs (e.g., transitioning from Gemini-2.0-Flash to
Gemma-3-27B-IT), achieving notable improvements in robustness, such as an average of +4.0% on reWordBench
with Gemma-3-27B-IT (Sec. C.3).

• Strong Out-of-Distribution Generalization: CROME exhibits strong generalization from in-distribution (Ultra-
Feedback validation) to out-of-distribution benchmarks (RewardBench, reWordBench). Notably, it often achieves
the highest OOD accuracy (e.g., +7.02% over RRM on reWordBench PairPM) while having similar ID accuracy,
suggesting its augmentations teach more generalizable preference representations (Sec. C.4).

C.1. Variance in Performance on RewardBench

To assess the stability of our findings, we conducted three independent training runs for reward models built upon
the Gemma-2-9B-IT base model. Table 5 for PairPM and BT reports the mean accuracy and standard deviation on
RewardBench categories. The standard deviations for average RewardBench accuracies are consistently small across all
methods (e.g., ±0.09 on average for CROME-PairPM, ±0.12 on average for RRM-PairPM), indicating stable performance.
While there is some variation in specific sub-categories, CROME’s average performance advantage over baselines remains
robust.

Table 5: Mean Accuracy and Standard Deviation across 3 different training runs of Gemma-2-9B-IT based Reward
Models in both PairPM and Bradley-Terry Reward Model settings. Results on RewardBench.

Method
PairPM BT

Average Chat Chat-Hard Safety Reasoning Average Chat Chat-Hard Safety Reasoning

G
e
m
m
a
-
2
-
9
B
-
I
T Vanilla RM 81.22 ± 0.56 97.90 ± 0.48 63.64 ± 0.28 77.48 ± 1.21 85.88 ± 1.34 79.14 ± 0.68 97.26 ± 0.40 58.85 ± 1.14 69.30 ± 3.61 91.17 ± 1.17

RRM 82.54 ± 0.12 97.12 ± 0.21 71.05 ± 0.87 74.70 ± 0.98 87.27 ± 0.21 83.46 ± 0.26 97.21 ± 0.28 69.15 ± 0.54 73.13 ± 0.61 94.35 ± 0.59

CROME 87.84 ± 0.09 97.54 ± 0.21 72.30 ± 0.39 87.14 ± 0.16 94.39 ± 0.21 85.46 ± 0.27 96.28 ± 0.32 65.83 ± 0.81 84.05 ± 1.10 95.70 ± 0.52

∆CROME - RRM +5.30↑ +0.42↑ +1.25↑ +12.44↑ +7.12↑ +2.00↑ -0.93↓ -3.32↓ +10.92↑ +1.35↑

Remark C.1. Note that main paper Table 3 have results of only the first out of the three training runs considered in these
variance experiments.

C.2. Variance in Performance on reWordBench

For reWordBench, we plot mean performance numbers and error bars showing std. deviation in Figures 10 and 11. Here
we depict mean accuracies with error bars representing standard deviations. Across most transformations, the error bars are
relatively small, particularly for the average performance over all transformations. The observed improvements of CROME
compared to RRM and Vanilla RM are substantial and typically exceed multiple standard deviations of the respective models,
suggesting that these gains are statistically significant.

C.3. Experiments with a different Oracle LLM: Gemma-3-27B-IT

CROME depends on an Oracle LLM for generating attributes and creating augmented data. In the main paper we use a
low cost API based model, Gemini-2.0-Flash. In this section we show that our method is effective at improving
robustness, even with open-weights based models. In particular, we use Gemma-3-27B-IT to perform attribute extraction
and augmentations following which we train CROME on the augmented data. See Table 6 for RewardBench results and
Figure 12 for reWordBench results. Our results indicate an average improvement of 4.0% with an improvement in 18/23
transformations.
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Figure 10: Standard deviation error-bars for absolute robustness comparison of RM, RRM and CROME in the Bradley-
Terry setup, for reward models built over Gemma-2-9B-IT. Mean values and std deviation plotted are for 3 independent
training runs.
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Figure 11: Standard deviation error-bars for absolute robustness comparison of RM, RRM and CROME in the PairPM
setup, for reward models built over Gemma-2-9B-IT. Mean values and std deviation plotted are for 3 independent training
runs.
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Figure 12: Absolute robustness comparison of RM, RRM and CROME on reWordBench. Here all reward models are
Gemma-2-9B-IT based, in the PairPM setting.

C.4. Effective Robustness of CROME and Baselines

We evaluate the generalization capabilities of the trained reward models by comparing their performance on in-distribution
(ID) data (UltraFeedback validation split) against out-of-distribution (OOD) benchmarks (RewardBench, reWordBench).
Table 7 presents these results for models based on Gemma-2-9B-IT. CROME demonstrates strong OOD performance,
particularly on reWordBench. For instance, in the PairPM setup, CROME achieves the highest reWordBench accuracy
(72.71%), while having similar ID accuracy, suggesting that its learned robustness translates well to challenging, unseen
transformations. Similarly, for Bradley Terry models, CROME shows the best reWordBench accuracy (69.81%) and similar
ID accuracies compared to baselines. Overall, these results indicate that CROME’s augmentations effectively teach more
generalizable representations of preferences.
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Table 6: Performance of Pairwise Preference Methods (PairPM) on RewardBench with Gemma-2-9B-IT as base model
and Gemma-3-27B-IT as oracle LLM used for augmentations.

Method
PairPM

Average Chat Chat-Hard Safety Reasoning

Vanilla RM 80.61 98.18 63.38 76.08 84.80

RRM 82.53 96.93 72.04 73.78 87.36

CROME (Gemma-3-27B-IT Oracle) 85.15 97.21 68.75 83.51 91.13

CROME (Gemini-2.0-Flash Oracle) 87.93 97.49 72.70 86.96 94.55

Table 7: Comparison of In-Distribution (UltraFeedback-Val) and Out-of-Distribution (RewardBench, reWordBench)
Accuracy (%) for Gemma-2-9B-IT RMs

PairPM

Model Ultrafeedback
(ID)

reWordBench
Accuracy (OOD)

RewardBench Accuracy (OOD)

Chat Chat-Hard Safety Reasoning Avg

RM 74.55 59.97 97.90 63.64 77.48 85.88 81.22
RRM 75.20 64.68 97.12 71.05 74.70 87.27 82.54
Ours 74.02 72.71 97.54 72.30 87.14 94.39 87.84

Bradley Terry

Model Ultrafeedback
(ID)

reWordBench
Accuracy (OOD)

RewardBench Accuracy (OOD)

Chat Chat-Hard Safety Reasoning Avg

RM 74.60 61.48 97.26 58.85 69.30 91.17 79.14
RRM 74.75 65.69 97.21 69.15 73.13 94.35 83.46
Ours 74.00 69.81 96.28 65.83 84.05 95.70 85.46

C.5. Extended Results on Safety Prompts from WildGuardTest

To complement the Best-of-N (BoN) safety results in Figure 7 (Sec. 6.2), we provide the complete Attack Success Rate
(ASR) on harmful prompts and Refusal to Answer (RTA) on benign prompts in Table 8. We note that lower numbers are
better for both ASR as well as RTA. Significantly, the results indicate that without too much regression on RTA (< 0.5%
decrease), we show consistent gains in ASR (%) numbers and these gains increase as N becomes larger. For instance, at
N=32, CROME reduces ASR to 39.39%, compared to 42.11% for RM and 41.70% for RRM. In practice, reward models
are used to detect jailbreak attacks, and hence our model performance indicates a favorable trade-off as the reward model
detects harmful content (resisting jail-break attempts) while maintaining utility (low refusal-to-answer rate).

C.6. Additional Results on reWordBench

We provide additional results on reWordBench in this section. See Figures 13 to 17 for reWordBench results on various base
models over which we build our Reward Models, such as Gemma-2-9B-IT, Gemma-2-2B and Qwen2.5-7B, across
Bradley-Terry and pairwise-preference Reward Models.

D. reWordBench Reproduction
The primary motivation reWordBench is the observation that contemporary reward models—key components of RLHF
systems—often latch onto superficial formatting cues or benign artifacts in their training data, leading to dramatic drops in
pairwise-preference accuracy under minor, semantically neutral edits. To diagnose and quantify this brittleness in a systematic
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Table 8: Comparison of Attack Success Rate (ASR) on harmful prompts and Refusal to Answer (RTA) on benign prompts
for CROME compared to baselines (RM, RRM) in the Best-of-N setup for varying N. Lower values are considered better for
both metrics.

RM RRM Ours

N ASR (%) RTA (%) ASR (%) RTA (%) ASR (%) RTA (%)

2 32.76 7.39 32.47 7.39 32.18 7.58
4 36.13 6.97 35.88 7.18 34.63 7.46
8 38.49 6.29 38.24 6.10 36.42 6.97

16 39.33 6.27 39.33 5.89 36.71 6.39
32 42.11 5.80 41.70 6.30 39.39 6.01
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Figure 13: Absolute Robustness Comparison of RM, RRM and CROME in the Bradley-Terry RM setup, for reward models
built over Gemma-2-2B-IT.
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Figure 14: Absolute Robustness Comparison of RM, RRM and CROME in the PairPM setup, for reward models built over
Gemma-2-2B-IT.
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Figure 15: Absolute Robustness Comparison of RM, RRM and CROME in the PairPM setup, for reward models built over
Qwen2.5-7B.
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Figure 16: Absolute Robustness Comparison of RM, RRM and CROME in the Bradley-Terry RM setup, for reward models
built over Gemma-2-9B-IT.
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Figure 17: Absolute Robustness Comparison of RM, RRM and CROME in the Bradley-Terry RM setup, for reward models
built over Qwen2.5-7B.

way, (Wu et al., 2025) introduce reWordBench, a new benchmark built by applying 28 carefully designed, meaning-preserving
transformations to the original RewardBench instances. The authors organize these edits into three overarching families each
targeting different potential failure modes of reward models. Together, transformations systematically stress-test reward
models’ invariance to innocuous changes, revealing large accuracy drops even under minor edits and motivating the need for
robust-training methods.

1. Controlled Transformations: These are template-based edits that guarantee semantic equivalence by construction.
They include:

a. Add Quotes: Surrounding the entire prompt and responses with a fixed number of quotation marks.

b. Punctuation Spaces: Inserting spaces around each punctuation mark.

c. Twitter Handle/URL: Appending a randomly generated (harmless) Twitter handle or URL to the text.

d. StressTest: Repeating semantically vacuous conjunctions (e.g. “and true is true” or “and false is not true”) to the
end of the text.

e. Ignore Above/Below: Injecting the response before or after the prompt with an explicit instruction to ignore it.

f. Rot-N Encoding: Applying simple character-shift ciphers (Rot-13 or Rot-2) to the prompt text while leaving
responses in plain form.
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2. Naturalistic Transformations: These simulate the kinds of noise and variation that occur “in the wild” and may not
perfectly preserve meaning, but reflect realistic robustness challenges:

a. Paraphrase: Rewriting prompt and response via a strong LLM (Llama-3-70B-instruct) under a paraphrasing
instruction.

b. Back-translation: Translating English → Spanish → English for several rounds using OPUS-MT, accepting only
those with high semantic similarity.

c. Back-transcription: Converting text to audio and back using a TTS model (fairseq S2) and an ASR model
(Whisper-base).

d. Homoglyph Substitution: Replacing Latin characters with visually identical Unicode glyphs (e.g. Cyrillic “e” for
Latin “e”).

e. Character-level Edits: Randomly swapping, inserting, deleting, or substituting characters at rates reflecting real-
world typos (including QWERTY-adjacent substitutions).

f. Word Deletion: Omitting a randomly chosen word from prompt and response, subject to a similarity filter.

3. Domain-Targeted Transformations: These focus on specialized subsets of RewardBench—code, mathematics, and
safety prompts—where specific artifacts may bias reward models:

a. Code Minification: Automatically renaming variables, removing whitespace, and otherwise “minifying” Python
snippets without changing functionality.

b. Add Comment: Inserting “# bad” annotations after each line of chosen responses (and optionally “# good” after
rejected ones).

c. Append Other Code: Concatenating the losing snippet after the winning one (and vice versa), taking advantage of
Python’s return-ended semantics.

d. Swap Format: Exchanging the usual answer formats (e.g. LaTeX vs. markdown “# Answer”) in arithmetic
problems.

e. Jailbreak Prompts: Prepending known “jailbreak” instructions (from the ChatGPT-Jailbreak-Prompts dataset) to
safety-critical queries to see if the RM prefers harmful completions.

Since the original dataset is not publicly available3 and since the author suggested that most details to reproduce the
benchmark were part of Wu et al. (2025), we reconstructed the data independently following the instructions in the original
paper. Paraphrasing and back-translation transformations are generated using foundation models or translation tools for
which we use OpenAI API, specifically the ”gpt-4o-2024-08-06” model. For generating back-transcription transformations
we use the ”gpt-4o-transcribe” and ”gpt-4o-mini-tts” models available on the OpenAI API.

3confirmed by Wu et al. via personal communications.
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E. Experimental Setup Details
This appendix provides supplementary details to the experimental settings outlined in Section 6.1 of the main paper.

E.1. Best-of-N Experimental Methodology

Algorithm 1 Best-of-N Selection with Pairwise Preference Model

1: Input: Query Q; responses A = (A1, . . . , AN ) with N ≥ 1
2: Input: Pairwise model R̂θ : (Q,Ai, Aj)→ {1, 2}

▷ The output {1, 2} from the Pairwise preference model indicates if the first answer is better or the second, given the
query.

3: Output: Selected best response Abest
4: Abest ← A1

5: for i← 2 to N do
6: Acand ← Ai

7: if R̂θ(Q,Abest, Acand) = 2 then
8: Abest ← Acand
9: end if

10: end for
11: return Abest

For all our Best-of-N results using PairPM models, we follow a simple procedure to find the best response out of N responses
generated by a base LLM. In particular, PairPM models take responses 2 at a time, and provide the better response for the
given query. Given N response A = (A1, . . . , AN ) with N ≥ 1, in a randomly shuffled order, we sequentially compare
responses 2 at a time (starting from A1 and A2) using the PairPM reward model and keep track of the best response. At each
iteration, the best response is compared to the next response in the list and the best response is updated. The best response
after N − 1 iterations is taken as the selected response. The algorithm for this procedure is given in Algorithm 1.

E.2. Experimental setting for Calculating Win Rates on RewardBench Prompts

To show the performance of CROME on general purpose datasets, we follow reWordBench (Wu et al., 2025) and use all
2985 prompts from RewardBench (Lambert et al., 2024). We use Gemma-2-9B-IT as the base model and sample N
responses for each prompt in this set. Following this, we use the PairPM reward models (RM, RRM and CROME) to select
the best response among the N responses, as described in supplementary Section E.1. We use GPT-4 as a judge to compare
CROME’s responses with baselines RM and RRM.

E.3. WildGuardTest and GSM8K experimental settings

For both WildGuardTest results (main paper Figure 7 as well as supplementary Table 8), as well as GSM8K results
(main paper Figure 8), we use Gemma-2-9B-IT as the base model and sample N responses from it. Following this,
we use the PairPM reward models (RM, RRM and CROME) to select the best response among the N responses, as
described in supplementary Section E.1. For WildGuarTest, for obtaining results given the final responses, we use the
WildGuard model (Han et al., 2024) to obtain annotations for prompt-harmfulness, response-harmfulness,
response-refusal, is-parsing-error, as described in the WildGuard repository4. Using these annotations, we
obtain ASR and RTA for CROME and baselines.

E.4. Datasets and Augmentation

For human preference data (Dpref) we use Ultrafeedback (Cui et al., 2023), which furnishes approximately 60,000 preference
pairs across diverse domains.

The data augmentation process, central to CROME (Section 4), employs Gemini 2.0 Flash. This LLM is first used to
identify ℓ = 5 principal causal attributes relevant to response quality. Subsequently, Gemini 2.0 Flash generates (a) causal

4https://github.com/allenai/wildguard
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upgrade/degradation pairs targeting these attributes (Dcausal), and (b) neutral pairs (Dneutral).

The raw augmented data, Daug, undergoes a filtering step. This involves applying a model-based confidence filter, using a
baseline RM (trained solely on Dpref) with a threshold of τ = 0.2. This filtering focuses the training on more informative
examples. The amplification process involves initially generating approximately 10x data from causal augmentations (5
attributes, 2 versions per original response) and 1x data from neutral augmentations, followed by verification and the
confidence-based filtering. The final training dataset D = Dpref ∪ Daug filtered typically contains about 3.5 times the number
of examples in the original Dpref, similar to RRM (Liu et al., 2024).

E.5. Models and Training

Reward Models (RMs): We instantiate RMs using Qwen2.5-7B (Yang et al., 2024a) and Gemma-2-9B-IT,
Gemma-2-2B (Team et al., 2024) as base transformer architectures. Our RM variant, CROME-PairPM, processes in-
puts formatted as ‘Q, A, B‘ and predicts a preference token (’A’ or ’B’) via a cross-entropy loss. An alternative variant,
CROME-BT, implements the Bradley-Terry model by deriving scalar scores for each answer.

Policy Models: For downstream alignment tasks, we use the Best-of-N setup where we generate N responses using
Gemma-2-9B-IT and use CROME as well as baseline reward models to select the best candidate response.

Training Hyperparameters: All models are trained in PyTorch with the Hugging Face Transformers library. For RM
training, following Liu et al. (2024), we use the AdamW optimizer (Loshchilov & Hutter, 2017) for 1 epoch, with a learning
rate of 1e−6, a global batch size of 256, and a cosine learning rate schedule. We use a warmup ratio of 0.03. For training all
models, we use 8 NVIDIA A100 80GB GPUs. RM training runs require time between 10-16 hours for 2B to 9B mdoels we
consider.

E.6. Baselines, Ablations, and Evaluation

Baselines: Our full CROME approach is compared against two primary baselines:

1. A Base RM, trained solely on the original Dpref.

2. The RRM Baseline (Liu et al., 2024), which employs a distinct augmentation strategy using non-contextual examples
and responses from different queries, not specifically aligned with identified causal or spurious attributes.

Ablations: We conduct several ablations to understand the contributions of CROME’s components:

1. Training CROME with only causal augmentations (CROME-Causal).
2. Training CROME with only neutral augmentations (CROME-Neutral).
3. Comparisons of CROME’s neutral generation method against alternatives like paraphrasing.

Evaluation Benchmarks: RM quality is assessed by accuracy on RewardBench (Lambert et al., 2024) (overall and
per category: Chat, Chat-Hard, Safety, Reasoning) and robustness on Re-word Bench (Wu et al., 2025). BoN Policy
performance is evaluated using RewardBench, WildGuardTest (Han et al., 2024), GSM8K (Cobbe et al., 2021).

23



F. Causal Model and Augmentation Details
This appendix provides further details on the causal framework underpinning CROME and discusses various data augmenta-
tion strategies in the context of robust reward modeling.

F.1. Elaboration on the Causal Model

The causal graph presented in Figure 1 (Section 3.2) models the generation of an answer A and the formation of its attributes.
The query Q influences the generator’s latent intent I . This intent, along with unobserved generator-specific confounders U ,
leads to the textual answer A. The answer A then manifests both causal attributes C(A) and spurious attributes SP(A).
The true reward R∗ is assumed to be a function only of Q and C(A). The challenge is that SP(A) can become correlated
with R∗ in training data, leading R̂θ to learn spurious correlations. CROME’s augmentations aim to disentangle C(A) from
SP(A).

F.2. CROME’s Causal Augmentation: Attribute Isolation

CROME’s primary strategy for enhancing sensitivity to causal attributes involves Attribute Upgradation/Degradation. This
generates pairs (Ã(Cj←upgraded/degraded),A) or (A, Ã(Cj←upgraded/degraded)) by prompting an LLM to modify an original answer
A along a single causal attribute Cj while attempting to keep other attributes constant. This provides a targeted signal about
the marginal contribution of Cj , offering more specificity than broader relevance contrasts alone.

F.3. Neutral Augmentation Strategies for Spurious Invariance

Neutral augmentations are crucial for training the reward model R̂θ to be invariant to spurious attributes SP(A) when causal
content C(A) is either held constant or is irrelevant to the query. Our experiments (main paper Figure 6) evaluate several
types of neutral augmentations in conjunction with our Causal Augmentations:

1. Paraphrased Neutrals (PARA): This common strategy involves taking an answer A and generating a paraphrase
Ãpara that aims to preserve its causal content C(A) while altering superficial textual characteristics (spurious attributes
like phrasing or sentence structure). The pair (A, Ãpara) is then assigned a tie-label. The goal is to teach the RM that
meaning-preserving textual variations should not affect the reward. Hypothesized Limitation: While useful for surface-level
textual invariance, paraphrasing may not address deeper structural spurious cues (e.g., list format vs. paragraph, argument
structure) or more subtle spurious correlates that RMs might learn. It might also inadvertently alter nuanced causal meaning
if the paraphrasing is imperfect. As seen in our ablations (Figure 6), PARA often provides some benefit over no neutrals
(CROME-C) but is generally outperformed by other strategies.

2. Causally-Aligned Neutrals (CAN): This method directly leverages the original preference pairs or the outputs of
causal augmentation.

• Given an original preference pair from Dpref , say (A1,A2) where A1 ≻ A2, we generate Ã
(C←C(A1))
2 by rewriting A2

to match the causal attribute profile of A1, while instructing the LLM to retain the spurious characteristics SP (A2) of
the original A2. The pair (A1, Ã

(C←C(A1))
2 ) is then labeled as a tie. A symmetric pair can also be generated.

• Similarly, if we have an answer A and its causally degraded version Ã(Cj←degraded) (from Dcausal), we can attempt
to reconstruct the degraded version by prompting an LLM to restore Cj to its state in A, while aiming to preserve
the spurious features of Ã(Cj←degraded). If successful, this reconstructed version, Ã′reconstr, would form a neutral pair
(A, Ã′reconstr) labeled as a tie.

The core idea is to teach invariance to the spurious differences that remain after causal attributes have been aligned or
restored. Moreover, applying CAN to counterfactually generated data from Dcausal helps mitigate imperfections in oracle
rewrites—an issue highlighted in the RATE paper (Reber et al., 2024), which notes that LLM edits often unintentionally
modify ”off-target attributes” (e.g., introducing formality, removing HTML tags). CAN thereby enhances robustness on two
fronts: (1) disentangling spurious correlations in original data, and (2) neutralizing new biases introduced during causal
augmentation. This helps in enhancing model’s robustness against confounding signals in the data. While this method is
sound theoretically, we qualitatively find that the approximation of C(Aw) by C(Ãl) is not perfect. Furthermore, some
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spurious attributes SP ′(Ãl) ⊂ SP (Ãl) vary when we move causal attributes. Invariance to these attributes SP ′(Ãl) is not
captured by CAN. For these reasons, we encourage future work for improving this neutral augmentation strategy.

3. Irrelevant Query Neutrals (IQN) (Primary CROME Strategy): CROME generates these neutral pairs efficiently
by leveraging its existing pool of answers (original or causally augmented). Given two answers, B1 and B2, that were
generated or selected for a specific query Qorig, CROME creates a neutral pair by associating them with a new, unrelated query
Qirrelevant. For this Qirrelevant, both B1 and B2 are now contextually irrelevant; their causal attribute scores C(B1|Qirrelevant)
and C(B2|Qirrelevant) are effectively zero (or very low). Despite potentially different spurious attributes SP (B1) and
SP (B2), the pair (B1,B2) is presented to the reward model with query Qirrelevant and labeled as a tie. This teaches the RM
that when answers are equally and maximally irrelevant to the current query, their differing spurious features should not
induce a preference.

F.4. Rationale for Superior Performance:

• Robustness to Unknown Spurious Correlates: IQN does not require identifying or directly manipulating specific
spurious features. By nullifying the causal signal (relative to Qirrelevant), any remaining differences between B1 and B2

are, by definition in that context, spurious. Training for a tie forces the RM to become invariant to these arbitrary
spurious differences. This is particularly effective against unforeseen spurious cues an RM might otherwise learn.

• Strong Invariance Signal: The contrast between causally relevant (original query) and causally null (new query)
contexts for the same textual content provides a strong signal. The RM learns that the value of certain textual features
(which might be causal for one query) can become entirely spurious for another.

• Data Efficiency: It efficiently reuses answers generated for causal augmentation or present in the original dataset,
creating diverse neutral pairs without requiring new LLM rewrites specifically for spurious feature manipulation.

• Effectiveness on Chat-Hard: As observed in Figure 6, IQN (and CROME-IQN+CAN) performs exceptionally well on
the Chat-Hard subset. This subset often contains nuanced interactions where subtle, query-independent cues (e.g., tone,
style, response structure) might act as spurious correlates. IQN’s ability to enforce invariance to broad, unspecified
spurious differences when causal relevance is stripped away appears highly beneficial in these challenging scenarios.

The combination CROME-IQN+CAN, which leverages both the broad spurious invariance from IQN and the targeted causal
disentanglement from CAN, often yields the best overall results, suggesting these strategies are complementary.

G. Detailed Mechanistic View of Augmentation Strategies
This appendix section provides a more granular, node-based representation (Figure 18) to elaborate on the hypothesized
attribute interactions and the counterfactual generation process. This detailed view aims to offer a causal understanding that
complements the main paper.

Figure 18 aims to provide a deeper, causal understanding of the causal perturbation process through which we obtain our
causal upgradations and degradations. We term the spurious attributes that move when causal attributes are intervened upon
as SP2(A) ⊂ SP (A) for any answer A.

Part 1: Causal Augmentation (Attribute Upgradation/Degradation). We first generate a counterfactual Answer 2
from an original Answer 1 (for query Q) via an LLM-driven ”Counterfactual Generation Process.” This process intervenes
to modify a specific causal attribute Cj within Answer 1’s causal profile C(A1) to a target state C ′, resulting in C(A2).
We aim to keep spurious attributes fixed by asking for a minimal perturbation. Therefore attributes SP1(A1) are ideally
preserved. Yet, SP2(A1) (which may co-vary with C(A1)) might transition to SP2(A2) ̸= SP2(A1). The goals of this
transformation are to ensure A2 reflects the intended causal change. The RM is then trained on the pair (A1, A2) with a
preference label reflecting the upgrade/degradation, teaching sensitivity to isolated causal attribute modifications.

Part 2: Neutral Augmentation (via Irrelevant Query). As illustrated in Figure 18, we need spurious invariance to SP2

which are hard to disentangle as well. This illustrates the need for an intervention free method for neutral augmentation
like IQN. When we present an answer pair (A1, A2) from Dpref ∪ Dcausal, re-contextualized with a new, unrelated query
Qirrelevant, we teach the model invariance to (SP1, SP2). This is because, the primary differences between A1 and A2 in this
new context are their spurious attributes (SP1,SP2). Note that the causal difference between A1 and A2 in Dpref ∪ Dcausal
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in presence of irrelevant query is now spurious, and hence there need not be any sensitivity to it. This mechanism is
summarized as

By setting the training objective to recognize the pair as equivalent, the model learns to not latch onto spurious correlates.

Attribute Upgradation  and Degradation
 Input: A1 from Dpref                   Goals: Obtain A2 ~ P(A1{Cj(A1 | Q) ← c}

        Answer 1

   Answer 2 =    
Upgraded Answer 1 on 
a single aŞribute cj

SP1(A1) SP2(A1) C(A1)

SP1(A2) 
(= SP1(A1))

SP2(A2) 
≠

SP2(A1)

C(A2) =                  
C(A1)cj <- c

A small part of spurious 
aŞributes 
SP2 ⊂ SP change upon 
changing the Causal C.

Counterfactual 
Generation Process

LLM proposes A2 and 
verifies that the j’th 
causal aŞribute
         Cj(A2)= c

Training Objective: P(A1 > A2) = 0 for upgradation P(A1 > A2) = 1  for degradation

Subset of spurious 
attributes are dependent 
on causal attributes 

Figure 18: Detailed mechanistic diagram of CROME’s Causal Attribute Upgradation and Degradation, illustrating attribute
components and transformations. This causal diagram indicates that on changing causals some spurious features also can get
dragged along (we call these SP2). Hence separating these is very hard. This illustrates the need for a neutral augmentation
strategy that provides invariance to SP2 attributes.

Figure 18 aims to provide a deeper, causal understanding of the attribute transformations, interventions, and interactions
that CROME’s data augmentation process is designed to leverage. It complements the more abstract, intuitive visualization
presented in Figure 2 of the main paper by explicitly showing the component attributes and process steps.
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H. Detailed CROME Methodology
This appendix provides the detailed implementation steps for the CROME framework introduced in Section 4, covering
attribute identification, counterfactual data generation, filtering, and the specific training objective.

H.1. Step 1: Attribute Identification

The foundation involves identifying the attributes that genuinely determine answer quality versus those merely correlated
with it, as defined in Section 3.2. For a query Q and example answers (yw, yl) from Dpref , we define: Causal attributes
C = (C1, . . . ,Cℓ) (e.g., factuality) and Spurious attributes SP = (SP1, . . . ,SPk) (e.g., verbosity).

Automated Attribute Extraction. We employ an LLM prompted with Q and example responses (see Appendix K for
prompt). The primary output is the set of attributes C.

Refinement and Verification. The LLM-generated list C is reviewed for coherence and consistency in this verification
phase. The verification prompts are provided in Appendix K.

H.2. Step 2: Generating Counterfactual Augmented Data

Using identified attributes C, we generate Daug via LLM-approximated counterfactuals (Section 3.3).

Causal Augmentation (Dcausal). Pairs (A,A′) are generated to differ primarily along a single causal attribute Cj . We
use LLM prompts (Appendix K) for upgradation (generating an improved A′ from a ground-truth rejected answer A) and
degradation (generating a degraded A′ from a ground-truth selected answer A), aiming to keep other attributes constant.
Pairs are labeled ≻ accordingly.

Neutral Augmentation (Dneutral). Notice that when we causally augment an answer in Dcausal, we might in-advertantly
move spurious correlates (as illustrated in Figure 2). Furthermore, even in our dataset, there could be a systematic effect
where spurious attributes highly correlate with the better (or worse) answer. In such cases, we need to create a dataset of
equivalent pairs, with a tie label to teach the model invariance to spurious correlates.

Our technique is irrelevant query neutrals (IQN). Here, the idea is that given a new query, the causal attribute C becomes
irrelevant. Essentially, for the new irrelevant query, the causal attributes are spurious. Hence, by taking any two answers for
a given query, and labeling them a tie, given an irrelevant query, the reward model learns invariance to these features. For
example, if the reward model has spuriously learnt that bullet points in an answer should be rewarded, our tie labels teach
them that bullet points should be rewarded only if the content of the answer is relevant to the query. Specially, creating such
pairs with our own causally augmented data in Dcausal, enables us to teach the model invariance to the spurious pairs that
move when the causal attributes (CA) are perturbed.

H.3. Step 3: Filtering Augmented Data

The raw Daug is then filtered to Daug filtered.

Model-based Confidence Filtering. Using a baseline R̂base, we calculate p = Pbase(B ≻ A) for each augmented pair
(A,B) with target label y. We retain the pair only if |p− I(y = B ≻ A)− 0.5 · I(y = tie)| > τ . We use threshold τ = 0.2,
focusing training on examples where the baseline is uncertain or incorrect (Liu et al., 2024).

Quality Verification. Further checks (e.g., automated fluency scoring) verify pair validity. The result is Daug filtered.

H.4. Step 4: Training the Robust Reward Model

The final model R̂θ is trained on D = Dpref ∪ Daug filtered by minimizing the composite loss:
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L(θ) =−
∑

(Q,yw,yl)∈Dpref∪Dcausal

log sigmoid(R̂θ(Q, yw)− R̂θ(Q, yl)) (1)

− λ
∑

(Q,A1,A2,y=tie)∈Dneutral

Ltie(θ; Q,A1,A2)

where Ltie is defined as in Eq. 4.2. The hyperparameter λ ≥ 0 weights the neutral tie loss and is tuned on a validation set
(Section 6).

I. Theoretical Analysis
In this section, we provide a formal justification for why the CROME training framework, specifically the composite loss
function operating on causally augmented data, mitigates spurious reward hacking. We demonstrate that the optimization
objective inherently discourages the reward model from relying on spurious correlations, guiding it towards the true causal
drivers of quality.

I.1. Formal Setup

We adopt the notation and causal framework established in Section 3. Our analysis considers a query Q, an answer
A with corresponding Principal Causal Components C(A) and spurious attributes SP(A). The idealized ground-truth
reward is R∗(Q,A) = f∗(Q,C(A)), and the learned reward model is denoted R̂θ(Q,A). The model parameters θ are
optimized by minimizing the composite loss function L(θ) = Lpref(θ) + λLtie(θ) (Eq. 4.2) over the training dataset
D = Dpref ∪ Daug filtered, which combines original preferences Dpref with filtered causal Dcausal and neutral Dneutral

augmentations. For theoretical analysis, Lpref and Ltie represent expectations over the respective data distributions:

Lpref(θ) = −E(Q,yw,yl)∼Dpref∪Dcausal

[
log σ(R̂θ(Q, yw)− R̂θ(Q, yl))

]
Ltie(θ) = −E(Q,A1,A2,y=tie)∼Dneutral

[
−1

2
(log σ(∆12) + log σ(−∆12))

]
where ∆12 = R̂θ(Q,A1)− R̂θ(Q,A2).

I.2. Justification under the Boolean variable causal model for attributes

Assumption I.1. Assume that:

1. Causal attributes {Ci(Q,A)}ki=1 and spurious attributes {Sj(A)}ℓj=1 are all boolean variables taking values in
{+1,−1}

2. All spurious variables are non-descendants of all causal variables.

3. Reward function is trying to fit a quadratic polynomial in causal and spurious attributes, i.e.

R̂ =
∑
i

αiCi(Q,A) +
∑
j

βjSj(A) +
∑
i ̸=i′

αi,i′Ci(Q,A)Ci′(Q,A)+

∑
j ̸=j′

βj,j′Sj(A)Sj′(A) +
∑
i̸=j

γi,jCi(Q,A)Sj(A). (2)

4. Assume that the true reward function is a sparse quadratic polynomial depend on only the causal attributes.

R∗ =
∑
i

θiCi(Q,A) +
∑
i̸=i′

θi,i′Ci(Q,A)Ci′(Q,A) (3)

Here, ∥θ∥0 ≤ s << k2 and θi and θi,i′ variables form the vector θ. All other coefficients for other features that
involves the spurious variables are set to 0 in θ. Let I be the support set of the true coefficient.
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From the reward modeling objective, we try to fit a model ∆(R̂) to a target which is the difference between true rewards
to two answers A1 and A2 for the same question, i.e. R∗(Q,A1) − R∗(Q,A2). From the assumption in 2, this is
equivalent to fitting a linear model with coefficients αi, αi,i′ , βj , βj,j′ , γi,j and differences in features (across the two
answers), i.e. Ci(Q,A1) − Ci(Q,A2), Sj(A1) − Sj(A2), Sj(A1)Sj′(A1) − Sj(A2)Sj′(A2), Ci(Q,A1)Ci′(Q,A1) −
Ci(Q,A2)Ci′(Q,A2), Ci(Q,A1)Sj(A1) − Ci′(Q,A2)Sj(A2) respectively. To simplify notation, we drop the reference
to A1, A2 and Q and call Ci(Q,A1) − Ci(Q,A2) as ∆Ci. Similarly, we use ∆Sj ,∆Ci,i′ ,∆Sj,j′ and ∆(CiSj). The
dependence of these features on the A1, A2 and Q are understood.

Let Fq,a1,a2 ∈ {+1,−1}k+ℓ+kℓ+(k2)+(
ℓ
2) be the boolean vector with features

{∆Ci}, {∆Sj}, {∆Ci,i′}, {∆Sj,j′}, {∆(CiSj)} stacked row wise for the triplet q, a1, a2.

Consider two types of triplets, one drawn from the natural distribution of the preference training dataset Dpref and the
others drawn from augmented distribution Daug. Let us assume for the sake of the theoretical results to follow, that we
upgrade/degrade answer a2 to aaug1 by changing only one causal factor at a time while all the other causal factors are fixed
to their factual version and all things remaining the same to form Daug. The degradation aspect only serves to reinforce the
phenomenon we seek to show formally below.

Assumption I.2. (Model for Counterfactual Generation)

We assume that:

1. aaug1 is formed by generating Ci(Q,A) and Sj(A) following an counterfactual generation where the following set
of intervention is made Ci(Q,A) ← ¬Ci(Q,A), Cj(Q,A) ← Cj(Q,A), ∀j ̸= i which propagates to potential
descendants of variable Ci and not affecting Sj (due to no Sj being a descendant of Cj) with all other factors remaining
as in answer a2.

2. Let us assume that we have m augmentations where a triplet is randomly sampled from the training preference data
distribution Dpref and then augmented using the above counterfactual with a randomly chosen causal attribute negated.

Remark There are the main assumptions - 1) Sj being a non-descendant of Ci, 2) Reward model is a quadratic sparse
boolean model (The treatment could be extended to boolean polynomials of higher degree too with lot more algebraic
technical work).

Theorem I.3. Let the feature matrix of the counterfactually augmented triplets, that is formed by stacking feature vectors
Fq,aaug

1 ,a2
row wise, be denoted F. Consider the following ℓ1 constrained regression problem:

θ̂ = argmin
b
∥b∥1 s.t.Fb = ∆R∗ (4)

Here, ∆R∗ is vector of the difference in the true reward between the reward applied to the augmented answer and the
non-augmented one across augmented triplets. Let N be the top c2k non zero entries of vector a by magnitude. Then, we
have:

∥∆θ∥2 = ∥θ − θ̂∥2 ≤ c3∥θI−N ∥1
(

4
k +

√
8 log(k+ℓ)

m

)
w.h.p.

Remark: If the true sparsity s < c2k, then it ensures perfect recovery since I − N = ∅. Since s < k2, and if every
coefficient is O(1), the bound becomes O(k) which is independent of the spurious dimension.

Proof. Under the model assumptions I.1 and assumptions on counterfactual generation I.2, we seek to show that F when
restricted to feature set ∆Ci,∆Ci,i′ ,∆CiSj

has smaller incoherence (by multiplicative factor of k) than an feature matrix
made of i.i.d triplets sampled from the preference distribution. This accommodates recovering the s = O(k) sparse solutions
exactly and in the general case, the error in coefficient estimation is O(k) independent of spurious dimension ℓ.

First, we show that features ∆(Sj,j′) = 0,∆(Sj) = 0 for the augmented triplets. This is because all Sj variables are
ancestors to Ci variables. Therefore, a counterfactual intervention on the answer a2 leaves the two spurious attribute sets
(for the original and its counterfactual) unchanged.
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Intervention fixed all causal variables to the factual ones (but fixed through intervention) and intervenes on variable to
change. There are many types of correlation between non zero features because of this. We consider them one by one:

1) ∆Ci = 0 if is Ci is not intervened. This occurs with probability 1− 1/k. 2) ∆Ci∆Cj = 0 with probability 1− 2/k. 3)
∆Ci,i′∆Cj,j′ = 0 if all i, i′, j, j′ are distinct indices. 4) ∆Ci,j∆Cj,k = 0, with probability 1− 1/k. 5) ∆Ci,j∆CiSj = 0
with probability 1 − 1/k. 6) ∆Ci,i′∆CjSk = 0 always if all four indices not equal. 7) ∆Ci∆CjSk = 0 always. 8)
∆Ci∆CiSk = 0 with probability 1-1/k.

If any of the these products is non zero, conditioned on that event, they equal the correlation on the preference training
dataset (every correlation between features is bounded by at most 4).

Therefore, expected pairwise correlation amongst two features for a randomly chosen augmented triple is at most 4/k.
Given every augmented triple is obtained by counterfactual generation applied to an i.i.d sample from preference dataset,
there is a deviation of at most 8 log(k+ℓ)√

m
with probability 1− 1

(k+l)4 .

Therefore,

∥ 1
m
FTF− I∥∞ ≤

4

k
+

8 log(k + ℓ)√
m

w.p. 1− (k + ℓ)−4 (5)

This means that the data matrix is incoherent with high probability. We now follow standard Lasso analysis. Recall the cone
condition (Negahban et al., 2012): For a subsetN of indices that have non zero values in θ, ∥∆θNc∥1 ≤ ∥∆θN∥1+2∥θNc∥1.
This implies:

∥∆θ∥1 ≤ 2
√
|N |∥∆θ∥2 + 2∥θNc∥1. (6)

We have the following chain:

0 =
1

m
∥A∆θ∥2 ≥ ∥∆θ∥22 − ∥∆θ∥21∥

1

m
FTF− I∥∞

≥ ∥∆θ∥22 −
(
8|N |∥∆θ∥22 − 8∥θN c∥21

)
∥ 1
m
FTF− I∥∞ (7)

Let us set m such that 1√
m

< 8 log(k+ℓ)
k . Let |N | < k/80, c2 < 1/80 in the theorem. Substituting these parameters in 7,

we get: ∥∆θ∥2 = ∥θ − θ̂∥2 ≤ 4
√
2∥θI−N ∥1

(
4
k +

√
8 log(k+ℓ)

m

)
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J. Qualitative Example Walkthrough
In this section, we show qualitative examples of augmented data created from original data using which is used to train
CROME.

User Prompt

Question: Can you provide a table showing two potential causes for global warming?

Chosen Response

Sure, here is a table showing two potential causes for global warming:

Potential Causes Description
Greenhouse Gas Emissions Release of gases such as carbon dioxide, methane, and nitrous oxide from

human activities like burning fossil fuels, deforestation, and agriculture.
These gases trap heat in the atmosphere, causing the planet to warm.

Land Use Changes Alteration of the earth’s surface for human activities like urbanization,
agriculture, and forestry can result in changes in albedo, water cycling, and
energy balance, leading to warming effects. For example, when forests
are cleared, the land reflects less sunlight back into space, which leads to
more warming.

It is important to note that global warming is a complex issue with multiple causes. The two potential causes listed
above are just a few of the many factors that contribute to climate change.

Rejected Response

Potential Causes Description
Greenhouse Gas Emissions Release of gases such as carbon dioxide, methane, and nitrous oxide from

human activities like burning fossil fuels, deforestation, and agriculture.
Land Use Changes Alteration of the earth’s surface for human activities like urbanization,

agriculture, and forestry can result in changes in albedo, water cycling,
and energy balance, leading to warming effects.

See Table 1 for additional information.

Attributes and their Relative Importance Scores

Accuracy 0.3
Completeness 0.25
Clarity 0.2
Format 0.15
Conciseness 0.1
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Causal Attributes with Elements:

1 {"causal_elements":
2 "Accuracy": [
3 {
4 "element": "Providing scientifically accurate descriptions of the causal

mechanisms by which greenhouse gas emissions lead to global warming (
e.g., trapping heat)",

5 "impact": "increases Accuracy"
6 },
7 {
8 "element": "Providing scientifically accurate descriptions of the causal

mechanisms by which land use changes lead to global warming (e.g.,
altering albedo)",

9 "impact": "increases Accuracy"
10 },
11 {
12 "element": "Including irrelevant or factually incorrect details in the

descriptions of the causes.",
13 "impact": "decreases Accuracy"
14 },
15 {
16 "element": "Omitting key details or causal links in the explanation of

how the causes contribute to global warming.",
17 "impact": "decreases Accuracy"
18 },
19 {
20 "element": "Presenting information suggesting a single cause when the

phenomenon has multiple contributors",
21 "impact": "decreases Accuracy"
22 }
23 ],
24 "Completeness": [
25 {
26 "element": "Providing a mechanism by which each potential cause

contributes to global warming",
27 "impact": "Increases Completeness because it explains *how* the causes

lead to the effect, rather than simply stating the cause."
28 },
29 {
30 "element": "Including specific examples to illustrate the effects of the

land use changes",
31 "impact": "Increases Completeness by providing concrete instances that

support the description of a potential cause."
32 },
33 {
34 "element": "Acknowledging the multifactorial nature of global warming and

that the listed causes are not exhaustive",
35 "impact": "Increases Completeness by providing appropriate context and

preventing the impression of a single, simple answer to a complex
problem."

36 },
37 {
38 "element": "Providing a table with potential causes and descriptions",
39 "impact": "Increases Completeness because the response directly provides

the information requested in the question."
40 },
41 {
42 "element": "Omitting crucial details or explanations about the causes,

assuming the user has prior knowledge",
43 "impact": "Decreases Completeness, as the answer requires additional,

unstated information to be fully understood."
44 }
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45 ],
46 "Clarity": [
47 {
48 "element": "Providing specific examples related to the described cause.",
49 "impact": "Increases Clarity by illustrating the abstract description

with concrete instances, making the explanation more understandable."
50 },
51 {
52 "element": "Explicitly stating the mechanism by which each cause

contributes to global warming.",
53 "impact": "Increases Clarity by directly linking the cause to its effect

on global warming, removing ambiguity about the causal relationship."
54 },
55 {
56 "element": "Omitting relevant contextual information that provides

background or rationale.",
57 "impact": "Decreases Clarity because the information vacuum leaves the

user to fill in the gaps, potentially leading to misunderstanding."
58 },
59 {
60 "element": "Including references to external and unavailable sources (e.g

., \"See Table 1\").",
61 "impact": "Decreases Clarity by creating an incomplete picture. The

reader’s understanding is hindered by the inability to access
referenced information."

62 },
63 {
64 "element": "Acknowledging the complexity of the issue and the existence

of other contributing factors.",
65 "impact": "Increases Clarity by setting appropriate expectations and

preventing the reader from oversimplifying the causes of global
warming."

66 }
67 ],
68 "Format": [
69 {
70 "element": "Presence of a clearly defined table with appropriate column

headers (’Potential Causes’ and ’Description’)",
71 "impact": "Increases Format by structuring the information in an easily

digestible manner."
72 },
73 {
74 "element": "Use of appropriate table delimiters and alignment (e.g., ’|’,

’---’) to create a visually distinct table.",
75 "impact": "Increases Format by visually structuring and separating table

elements, enhancing readability."
76 },
77 {
78 "element": "Absence of extraneous references to external resources (e.g.,

’See Table 1’)",
79 "impact": "Increases Format by preventing fragmentation of the answer and

ensuring all required information is self-contained within the
response."

80 },
81 {
82 "element": "Inclusion of a concise introductory sentence acknowledging

the question and introducing the table.",
83 "impact": "Increases Format by providing context and signaling the

beginning of the structured answer."
84 },
85 {
86 "element": "Adherence to a consistent and readable text formatting style

within the table cells.",
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87 "impact": "Increases Format by promoting clarity and ease of
understanding of the information presented in the table."

88 }
89 ],
90 "Conciseness": [
91 {
92 "element": "Addition of unnecessary introductory or concluding phrases",
93 "impact": "Decreases Conciseness"
94 },
95 {
96 "element": "Omission of essential details or context",
97 "impact": "Increases Conciseness"
98 },
99 {

100 "element": "Inclusion of redundant information",
101 "impact": "Decreases Conciseness"
102 },
103 {
104 "element": "Use of simpler, direct vocabulary",
105 "impact": "Increases Conciseness"
106 },
107 {
108 "element": "Presence of tangential or irrelevant information",
109 "impact": "Decreases Conciseness"
110 }
111 ]
112 }
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Chosen Response Edits (degradations to chosen responses along all attributes)

1 "chosen_response_edits": {
2 "Accuracy": "Sure, here is a table showing two potential causes for global

warming:\n\nPotential Causes | Description |\n|---|---|\n| Greenhouse Gas
Emissions | Release of gases such as carbon dioxide, methane, and nitrous
oxide from human activities like burning fossil fuels, deforestation, and
agriculture. These gases make the sky brighter, causing the planet to warm.
|\n| Land Use Changes | Alteration of the earth’s surface for human
activities like urbanization, agriculture, and forestry can result in changes
in the color of the ground, which leads to warming effects. For example,

when forests are cleared, the land becomes smoother, which leads to more
warming. |\n\nIt is important to note that global warming is a simple issue
with one major cause. The two potential causes listed above are really the
same thing.",

3

4 "Completeness": "Sure, here is a table showing two potential causes for global
warming:\n\nPotential Causes | Description |\n|---|---|\n| Greenhouse Gas
Emissions | |\n| Land Use Changes | |\n\nIt is important to note that
global warming is a complex issue with multiple causes. The two potential
causes listed above are just a few of the many factors that contribute to
climate change.",

5

6 "Clarity": "Sure, here is a table showing two potential causes for global warming
:\n\nPotential Causes | Description |\n|---|---|\n| Greenhouse Gas Emissions
| Release of gases such as carbon dioxide, methane, and nitrous oxide from
human activities like burning fossil fuels, deforestation, and agriculture.
|\n| Land Use Changes | Alteration of the earth’s surface for human
activities like urbanization, agriculture, and forestry can result in changes
in albedo, water cycling, and energy balance. |\n\nIt is important to note

that global warming is a complex issue with multiple causes. The two
potential causes listed above are just a few of the many factors that
contribute to climate change.",

7

8 "Format": "Sure, here is a table showing two potential causes for global warming:
\n\nGreenhouse Gas Emissions Release of gases such as carbon dioxide, methane
, and nitrous oxide from human activities like burning fossil fuels,
deforestation, and agriculture. These gases trap heat in the atmosphere,
causing the planet to warm. Land Use Changes Alteration of the earth’s
surface for human activities like urbanization, agriculture, and forestry can
result in changes in albedo, water cycling, and energy balance, leading to

warming effects. For example, when forests are cleared, the land reflects
less sunlight back into space, which leads to more warming.\n\nIt is
important to note that global warming is a complex issue with multiple causes
. The two potential causes listed above are just a few of the many factors
that contribute to climate change.",

9

10 "Conciseness": "Sure, I can definitely help you with that! Here is a table
showing two potential causes for global warming. It’s important to understand
these causes to get a better grasp of the overall issue:\n\nPotential Causes
| Description |\n|---|---|\n| Greenhouse Gas Emissions | Release of gases

such as carbon dioxide, methane, and nitrous oxide from human activities like
burning fossil fuels, deforestation, and agriculture. These gases trap heat

in the atmosphere, causing the planet to warm. This is because they absorb
infrared radiation, preventing it from escaping into space. Therefore, the
earth warms up. |\n| Land Use Changes | Alteration of the earth’s surface for
human activities like urbanization, agriculture, and forestry can result in

changes in albedo, water cycling, and energy balance, leading to warming
effects. For example, when forests are cleared, the land reflects less
sunlight back into space, which leads to more warming. This is due to the
fact that trees absorb sunlight, and when they’re gone, that sunlight is
reflected back, causing warming. |\n\nIt is important to note that global
warming is a complex issue with multiple causes, as I mentioned earlier. The
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two potential causes listed above are just a few of the many, many factors
that contribute to climate change and its associated effects. There are other
causes as well. So, basically, global warming has many causes."

11 }

Rejected Response Edits (upgradation to rejected responses along all attributes)

1 "rejected_response_edits": {
2 "Accuracy": "| Potential Causes | Description |\n|

-----------------|-------------|\n| Greenhouse Gas Emissions | Release of
gases such as carbon dioxide, methane, and nitrous oxide from human
activities like burning fossil fuels, deforestation, and agriculture. These
gases trap heat in the atmosphere, leading to a warming effect (the
greenhouse effect).|\n| Land Use Changes | Alteration of the earth’s surface
for human activities like urbanization, agriculture, and forestry can result
in changes in albedo, with darker surfaces absorbing more solar radiation
than lighter ones, leading to increased heat retention. These changes also
impact the water cycle, reducing evaporation and transpiration, which can
further contribute to warming. |",

3

4 "Completeness": "| Potential Causes | Description |\n|
-----------------|-------------|\n| Greenhouse Gas Emissions | Release of
gases such as carbon dioxide, methane, and nitrous oxide from human
activities like burning fossil fuels, deforestation, and agriculture. These
gases trap heat in the atmosphere, leading to a rise in global temperatures.
|\n| Land Use Changes | Alteration of the earth’s surface for human
activities like urbanization, agriculture, and forestry can result in changes
in albedo, water cycling, and energy balance, leading to warming effects.

For instance, deforestation reduces the earth’s capacity to absorb carbon
dioxide. |\n\nIt is important to note that global warming is a complex issue
with multiple contributing factors, and this table only lists two potential
causes.",

5

6 "Clarity": "| Potential Causes | Description |\n|
-----------------|-------------|\n| Greenhouse Gas Emissions | Release of
gases such as carbon dioxide, methane, and nitrous oxide from human
activities like burning fossil fuels, deforestation, and agriculture. These
gases trap heat in the atmosphere, leading to a rise in global temperatures.
|\n| Land Use Changes | Alteration of the earth’s surface for human
activities like urbanization, agriculture, and forestry can result in changes
in albedo (reflectivity), water cycling, and energy balance. For example,

deforestation reduces the earth’s ability to absorb carbon dioxide and alters
local weather patterns which can contribute to warming. |",

7

8 "Format": "Here are two potential causes for global warming in a table:\n\n|
Potential Causes | Description |\n| -----------------|-------------|\n|
Greenhouse Gas Emissions | Release of gases such as carbon dioxide, methane,
and nitrous oxide from human activities like burning fossil fuels,
deforestation, and agriculture. |\n| Land Use Changes | Alteration of the
earth’s surface for human activities like urbanization, agriculture, and
forestry can result in changes in albedo, water cycling, and energy balance,
leading to warming effects. |",

9

10 "Conciseness": "Greenhouse Gas Emissions | Release of gases such as carbon
dioxide, methane, and nitrous oxide from human activities like burning fossil
fuels, deforestation, and agriculture. |\nLand Use Changes | Alteration of

the earth’s surface for human activities like urbanization, agriculture, and
forestry can result in changes in albedo, water cycling, and energy balance,
leading to warming effects. |"

11 }
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Verification Verdicts

1 "verification_results_upgradations": {
2 "Accuracy": "Pass",
3 "Completeness": "Pass",
4 "Clarity": "Pass",
5 "Format": "Pass",
6 "Conciseness": "Fail"
7 },
8

9 "verification_results_degradations": {
10 "Accuracy": "Pass",
11 "Completeness": "Pass",
12 "Clarity": "Pass",
13 "Format": "Pass",
14 "Conciseness": "Pass"
15 }

K. Prompt Templates
This section details the prompt templates used for identifying attributes and generating counterfactual examples in the
CROME framework. Placeholders like {question} are replaced with actual content during the process.

K.1. Prompt for Attribute Identification

Identifying Causal Attributes

You are a reward model which means you have to rate answers for a given question across multiple different attributes.
The first step is to identify these attributes as well as give an importance score between 0 and 1 for all these attributes,
based on how important they are for rating a response for that question. The importance score for all attributes should
sum up to 1.
The following is a Question and 2 Candidate Answer for it.

Question: question

Example Answer 1: answer1
Example Answer 2: answer2

Task: Give me 5 **mutually exclusive** and important attributes that are required to rate an answer for the give
question holistically, along with their importance score. These important attributes should be independent of each other,
and should largely depend on the Question given above.

Answer Format: Give your answer in JSON format, for example:

{
Attributes: {
”attribute 1”: attribute 1 score,
”attribute 2”: attribute 2 score,
”attribute 3”: attribute 3 score,
”attribute 4”: attribute 4 score,
”attribute 5”: attribute 5 score
}
}
Where attribute i is the name of the i’th attribute, attribute i score is the importance score of the i’th attribute, and the
Key ”Attributes” is a fixed constant string you should output.
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Summation of attribute i score across all i’s should be 1.

Strictly adhere to the format and only give the json string as output (i.e. start with ”” and end your response
with ””). Do not include any commentary, explanations, chattiness, any extra words, or additional keys outside of the
specified JSON structure.

Answer:

K.2. Prompt for Identifying Causal Elements

Identifying Causal Elements per Attribute

You are an expert in causal reasoning and response evaluation.

You are given:

- A question
- Two example answers

Your task is to identify generalizable causal elements that directly affect the strength of the attribute ”{attribute}” in a
response to the given question.

The two example answers are provided to help you understand how the attribute manifests in this specific
context. Do not restrict your analysis to these examples—use them only to inform your understanding of the attribute in
this setting.

Question: {question}

Accepted Answer: {answer1}
Rejected Answer: {answer2}

### Instructions:

- Identify exactly five causal elements that impact {attribute} in the response.
- Each element must have a clear role in either increasing or decreasing {attribute}. Clearly explain its direct causal
impact on {attribute}.
- Do not include any non-causal heuristics.
- Do not include unnecessary explanations, disclaimers, or formatting—return only the structured JSON output.

### Format:

Return a raw JSON object only without additional text, explanations, or formatting:
“‘json

{causal elements format}

“‘
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K.3. Prompts for Generating Counterfactuals (Causal Augmentation)

Generating Upgraded Responses

**Task:** Given a question and a model’s response, generate a new response with a significantly improved response for
the specified **{ATTRIBUTE}**, while *strictly preserving* all other aspects of the original response.

### **Input:**

- **Question:** {QUESTION}

- **Original Response:** {RESPONSE}

- **Causal Elements for {ATTRIBUTE}:**

{CAUSAL ELEMENTS}

### **Instructions:**

1. **Understand the Context:** Carefully read the question and original response and examine the provided
causal elements that influence {ATTRIBUTE}.

2. **Identify the strength of {ATTRIBUTE}:** Determine which causal elements are **present** and their
**direction of effect** (i.e., whether they increase or decrease {ATTRIBUTE}).

3. **Improve the Response:** Modify the causal elements to significantly improve {ATTRIBUTE}. Ensure
that the improvement is **significant but isolated** to {ATTRIBUTE} leaving the other attributes intact.

4. **Verify the New Response:** Reassess whether {ATTRIBUTE} has been significantly improved. Con-
firm that all **other attributes remain unchanged**. If necessary, improve the response further to better meet the
improvement goal for {ATTRIBUTE}.

5. **Return the New Response:** Provide the final modified response with a significantly improved {ATTRIBUTE}
score. Format your response according to the format given below and in no other format.

### **Output Format:**

Chain of Thoughts: ¡Your analysis of the original response, identification of causal elements, and strategy
for improvement.¿

New Response: ¡The final modified response which is significantly improved on {ATTRIBUTE}.¿
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Generating Degraded Responses (Non-Safety)

**Task:** Given a question and a model’s response, generate a new response with a significantly degraded response for
the specified **{ATTRIBUTE}**, while *strictly preserving* all other aspects of the original response.

### **Input:**

- **Question:** {QUESTION}

- **Original Response:** {RESPONSE}

- **Causal Elements for {ATTRIBUTE}:**

{CAUSAL ELEMENTS}

### **Instructions:**

1. **Understand the Context:** Carefully read the question and original response and examine the provided
causal elements that influence {ATTRIBUTE}.

2. **Identify the strength of {ATTRIBUTE}:** Determine which causal elements are **present** and their
**direction of effect** (i.e., whether they increase or decrease {ATTRIBUTE}).

3. **Degrade the Response:** Distort the causal elements to significantly degrade {ATTRIBUTE}. Ensure
that the degradation is **significant but isolated** to {ATTRIBUTE} leaving the other attributes intact.

4. **Verify the New Response:** Reassess whether {ATTRIBUTE} has been significantly degraded. Con-
firm that all **other attributes remain unchanged**. If necessary, degrade the response further to better meet the
degradation goal for the {ATTRIBUTE}.

5. **Return the New Response:** Provide the final modified response with a significantly degraded {ATTRIBUTE}
score. Format your response according to the format given below and in no other format.

### **Output Format:**

Chain of Thoughts: ¡Your analysis of the original response, identification of causal elements, and strategy
for degradation.¿

New Response: ¡The final modified response which is significantly degraded on {ATTRIBUTE}.¿
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K.4. Prompts for Generating Causally-Aligned Neutrals

K.4.1. PROMPT FOR COMPARING RESPONSES VIA CAUSAL ELEMENTS

Generating Differences

<| You compare two responses based on content differences using a set of defined attributes and their causal elements.
<|im end|> <|im start|>user I will give you a question, two responses, and a list of attributes with their causal
elements.
Here is the question:

1 {
2 "question": """{QUESTION}"""
3 }

Here are the responses:

1 [
2 {
3 "model": "Response_1",
4 "answer": """{RESPONSE1}"""
5 },
6 {
7 "model": "Response_2",
8 "answer": """{RESPONSE2}"""
9 }

10 ]

Here are the attributes and causal elements:
{CAUSAL_ELEMENTS}

Please compare the responses for each attribute: - Identify key content differences. - Explain those differences using
the causal elements only. - Do not quote the responses directly. - Focus only on what is said, not how it’s said.
Return your output in this format:

1 {
2 "differences": [
3 {
4 "attribute": "<attribute>",
5 "difference": "<summary>",
6 "analysis": {
7 "Response_1": "...",
8 "Response_2": "..."
9 }

10 }
11 ]
12 }

No extra text or explanation outside the JSON object.
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K.4.2. PROMPT FOR GENERATING CAUSALLY-ALIGNED RECONSTRUCTION

Modifying Response Using Attribute-wise Causal Analysis

You modify a given response by adjusting its causal elements to match a target profile based on attribute-wise analysis.
<|im end|> <|im start|>user I will provide you a question, a given response, and an attribute-based comparison
analysis describing how to transform the given response into a target response.
Inputs: 1. Question:
{PLACEHOLDER_FOR_QUESTION}

2. Given Response:
{PLACEHOLDER_FOR_GIVEN_RESPONSE}

3. Attribute-wise Differences Analysis:
{PLACEHOLDER_FOR_ATTRIBUTE_DIFFERENCES_ANALYSIS}

This analysis shows the differences between the given and target responses, broken down per attribute.
Each attribute section contains:

• - Difference: A summary of how the responses differ in content or emphasis.

• - Analysis:

– - Given Response: Describes its content elements, grounding causal elements, and how they lead to
the observed attribute.

– - New Response: Describes the content and causal elements the target response should exhibit instead.

Instructions: 1. Read the question and given response. 2. Carefully study each attribute in the analysis and identify the
causal elements needed to change. 3. Generate a rewritten response that:

• Retains the original meaning and structure.

• Implements the target causal elements.

• Removes or alters original ones as needed.

4. Do not introduce changes beyond the specified elements. 5. Ensure the new response fully reflects the target causal
profile across all attributes.
Output Format:
{{

"Final Response": "<Write the transformed response here>"
}}

Return only the final response JSON. Do not include any explanations or commentary.

K.5. Prompt for Generating Paraphrasing-Based Neutrals

Prompt for Paraphrasing Responses

"""
Paraphrase the following text while maintaining the style:
{text}
Make sure the meaning is completely the same without any changes.
Respond only with the paraphrase and no extra text at all; for example, do NOT preface with anything like:
"Here is the paraphrased text:"
"""
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K.6. GPT4-as-a-Judge Prompt

LLM-as-a-Judge Prompt

<—im start—>system
You are a helpful assistant, that ranks models by the quality of their answers, prioritizing substantive content and
relevance to the query.
<—im end—> <—im start—>user
I want you to create a leaderboard of different large-language models. To do so, I will give you the instructions
(prompts) given to the models, and the responses of two models. All inputs and outputs should be Python dictionaries.
Here is the prompt:

1 {
2 "instruction": """{instruction}"""
3 }

Here are the outputs of the models:

1 [
2 {
3 "model": "model_1",
4 "answer": """{output_1}"""
5 },
6 {
7 "model": "model_2",
8 "answer": """{output_2}"""
9 }

10 ]

Now please rank the models by the quality of their answers, so that the model with rank 1 has the best output. Your
ranking should be based primarily on which response provides the most accurate, relevant, and comprehensive
content in direct relation to the query.
Focus on the core information and how well the query’s intent is addressed, rather than on aspects like writing style,
formatting, length, or politeness, unless these directly impact the clarity or usefulness of the core content requested by
the query.
Your response MUST be a valid JSON object. This JSON object must contain ONLY ONE key named
"ranking list". The value of the "ranking list" key MUST be a list of two dictionaries, where each
dictionary contains the model name and its rank.
The structure should be exactly as follows:

1 {
2 "ranking_list": [
3 {"model": "<model-name>", "rank": <model-rank>},
4 {"model": "<model-name>", "rank": <model-rank>}
5 ]
6 }

Do not include any other text, explanations, or additional keys in the JSON object. Please provide the ranking that a
well-informed human, focusing on these content-centric criteria, would likely give.
<—im end—>
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L. Qualitative Examples of Reward Model Behavior
This section presents several examples illustrating common failure modes or biases observed in standard reward models,
highlighting the types of spurious correlations they may learn.

Example 1: Formatting Bias (Plumbing Diagram)

Question

Construct plumbing diagrams for a two-story house (describe its core in natural language)

Chosen Response

Main floor plumbing diagram for a two-story house: Waste pipes from the sinks, toilets, and bathtubs on the main
floor should all connect to a common pipe that runs to the main drain line in the basement. Similarly, the water supply
lines from the faucets, showers, and other fixtures should all connect to a common supply pipe which then runs to the
first-floor water heater.

Rejected Response

Plumbing diagram for a two-story house:
Ground floor: - Toilet - Bathroom sink - Shower - Dishwasher
Second floor: - Toilet - Bathroom sink - Shower

Remarks

The rejected response uses a list format (a spurious attribute), which might be preferred by a reward model biased
towards formattedness, even though the chosen response provides a more descriptive answer aligned with the prompt’s
request for natural language description.
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Example 2: Politeness Bias (Medical Diagnosis)

Question

Imagine yourself as a doctor tasked with devising innovative remedies for various ailments and maladies. Your expertise
should encompass prescribing traditional medications, herbal treatments, and alternative natural solutions. Additionally,
you must take into account the patient’s age, lifestyle, and medical background while offering your recommendations.
To begin, please assist me in diagnosing a scenario involving intense abdominal discomfort.

Chosen Response

Certainly! To diagnose a scenario involving intense abdominal discomfort, I would first conduct a thorough examination
of the patient’s symptoms and medical history. This would involve a physical examination of the abdomen, including a
pelvic exam, an abdominal X-ray, and a colonoscopy.

If the patient has a history of abdominal pain and nausea, he may be suffering from a condition called gas-
troparesis, also known as ”silent gas pain.” This is a serious condition characterized by severe abdominal pain and
discomfort that can be severe or constant. The discomfort can be accompanied by nausea, vomiting, and diarrhea.
It is important to seek medical attention immediately if the patient experiences any of these symptoms. Once I’ve
determined the cause of the abdominal discomfort, I would then prescribe traditional medications to alleviate any
pain or discomfort. These medications may include pain relievers like ibuprofen or acetaminophen, as well as
anti-inflammatory drugs like ibuprofen and naproxen. If a traditional medication is not effective, alternative natural
treatments may be prescribed. These treatments may include acupuncture, herbal remedies, and home remedies that
may help to increase blood flow to the abdomen and alleviate any pain.

It’s important to note that these are just a few examples of possible causes of abdominal discomfort. If you
have any other symptoms or medical conditions that may be contributing to your discomfort, it is important to consult
with a healthcare professional for a proper diagnosis and treatment plan.

Rejected Response

Sure, I can help you with that. Based on the symptoms you’ve described, it’s possible that the patient may be suffering
from gastroenteritis, commonly known as stomach flu. However, it’s essential to consider other potential causes
such as food poisoning, gastritis, or appendicitis. To determine the root cause, I’d recommend a thorough medical
evaluation, including blood tests and imaging studies. Once the diagnosis is confirmed, appropriate treatment can be
prescribed, which may include medication, hydration, and rest. It’s crucial to consult a healthcare professional for
accurate diagnosis and treatment.

Remarks

The rejected response begins with polite phrases (”Sure, I can help you with that.”), a potentially spurious attribute that
reward models might learn to favor, even if the chosen response provides a more detailed diagnostic thought process
aligned with the persona requested.
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Example 3: Formatting and Instruction Following (Survey Question)

Question

Create a survey question that can help capture insights about the customer experience.

Chosen Response

How likely would you be to recommend our product or service to a friend or colleague?

Rejected Response

Sure! Here’s a sample feedback form that can gather information about the user interface experience:

1. Overall, how would you rate your experience with the user interface? (Scale of 1-5, with 1 being poor
and 5 being excellent)
2. Which specific features of the user interface did you find most useful or intuitive? (Open-ended text response)
3. Were there any features of the user interface that you found confusing or difficult to use? If yes, please provide
details. (Open-ended text response)
4. Did you encounter any technical issues or bugs while using the user interface? If yes, please describe the issue(s)
you faced. (Open-ended text response)
5. How would you rate the visual design and aesthetics of the user interface? (Scale of 1-5, with 1 being poor and 5
being excellent)
6. Were there any specific aspects of the visual design that you particularly liked or disliked? (Open-ended text
response)
7. Did you find the user interface responsive and fast? (Yes/No)
8. Were there any specific areas where you experienced slow loading times or delays? If yes, please specify.
(Open-ended text response)
9. How would you rate the organization and layout of the user interface? (Scale of 1-5, with 1 being poor and 5 being
excellent)
10. Were there any specific areas where you felt the organization or layout could be improved? If yes, please provide
details. (Open-ended text response)
11. Did you find the user interface easy to navigate and find what you were looking for? (Yes/No)
12. Were there any specific areas where you had difficulty navigating or finding information? If yes, please specify.
(Open-ended text response)
13. How likely are you to recommend the user interface to others? (Scale of 1-5, with 1 being not likely at all and 5
being very likely)
14. Do you have any additional comments or suggestions for improving the user interface? (Open-ended text response)

Thank you for taking the time to provide your feedback!

Remarks

The rejected response fails to follow the instruction (provide a single question) and instead provides a lengthy form. A
reward model might erroneously prefer it due to spurious features like length, formatting (numbered list), and politeness
(”Sure!”, ”Thank you!”).
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Example 4: Formatting Bias vs. Content Quality (Electrician)

Question

What is the fastest way to become an electrician in the us

Chosen Response

Obtain a high school diploma or GED. Complete an electrical apprenticeship program, which typically lasts 4–5
years and combines on-the-job training with classroom instruction. Pass the Journeyman Electrician Exam to become
licensed. Note that requirements and the time frame may vary depending on the state you are in.

Rejected Response

To become an electrician in the US, the fastest path typically involves the following steps: Foundational Knowledge:
Formal Education: Consider pursuing a degree in electrical engineering or a related field. This will provide you
with structured courses that cover the basics of electrical theory, circuit analysis, electronics, power systems, elec-
tromagnetism, and more. Online Courses and Tutorials: Websites like Coursera, edX, Udacity, and Khan Academy
offer courses in electrical engineering and electronics. They can serve as an excellent supplement or alternative to
traditional education. Hands-on Experience: DIY Projects: Start with small projects like building basic circuits, then
gradually move to more complex ones. Kits are available online to help beginners learn the basics of circuit design
and assembly. Internships and Apprenticeships: These provide invaluable real-world experience. Working under a
mentor or experienced electrician can greatly enhance your learning. Certifications and Specializations: While not
always mandatory, obtaining certifications can validate your expertise and open doors for specialized roles or areas
within the field of electrics. Continuous Learning: Workshops and Seminars: Regularly attend these to stay updated
with the latest techniques, tools, and best practices in the field. Books and Publications: Regularly read books, journals,
and other publications related to electrical engineering and electronics. Networking: Professional Associations: Joining
organizations like the Institute of Electrical and Electronics Engineers (IEEE) can provide networking opportunities,
resources, and continued education. Online Forums and Groups: Websites like Stack Exchange (for electrical engi-
neering), online forums, and even Reddit have active communities where you can ask questions, share knowledge,
and learn from others. Practice and Experimentation: Regularly challenge yourself with new projects or problems to
solve. The more you apply your knowledge, the more intuitive and deeply ingrained it will become. Stay Updated:
Industry Trends: Electrics, like all fields of technology, is continuously evolving. Ensure you’re aware of the latest tools,
technologies, and methodologies in the field. Regular Refreshers: Periodically revisit foundational concepts to ensure
your foundational knowledge remains strong. Soft Skills: While technical knowledge is crucial, don’t underestimate
the importance of communication, teamwork, problem-solving, and critical thinking skills. These are often essential,
especially if you aim to take on leadership or interdisciplinary roles. Teach and Mentor: Once you’ve gained a certain
level of expertise, consider teaching or mentoring others. This not only benefits the community but can also reinforce
and expand your understanding. Becoming an electrician requires dedication, passion, and a willingness to continually
push your boundaries. With focused effort and the right resources, you can achieve a high level of expertise and enjoy a
fulfilling career in the world of electronics.

Remarks

The rejected response, while containing much unnecessary and potentially irrelevant information (e.g., suggesting an
electrical engineering degree), uses extensive formatting (numbered lists with sub-points). A reward model overly
sensitive to formattedness might prefer it over the more concise and directly relevant chosen response.
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