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Abstract

Conversational query clarification enables001
users to refine their search queries through inter-002
active dialogue, improving search effectiveness.003
Traditional approaches rely on text-based clar-004
ifying questions, which often fail to capture005
complex user preferences, particularly those006
involving visual attributes. While recent work007
has explored single-turn multi-modal clarifica-008
tion with images alongside text, such methods009
do not fully support the progressive nature of010
user intent refinement over multiple turns. Mo-011
tivated by this, we introduce the Multi-turn012
Multi-modal Clarifying Questions (MMCQ)013
task, which combines text and visual modalities014
to refine user queries in a multi-turn conversa-015
tion. To facilitate this task, we create a large-016
scale dataset named ClariMM comprising over017
13k multi-turn interactions and 33k question-018
answer pairs containing multi-modal clarifying019
questions. We propose Mario, a retrieval frame-020
work that employs a two-phase ranking strat-021
egy: initial retrieval with BM25, followed by a022
multi-modal generative re-ranking model that023
integrates textual and visual information from024
conversational history. Our experiments show025
that multi-turn multi-modal clarification outper-026
forms uni-modal and single-turn approaches,027
improving MRR by 12.88%. The gains are028
most significant in longer interactions, demon-029
strating the value of progressive refinement for030
complex queries.031

1 Introduction032

Conversational search (CS) enables users and sys-033

tems to collaboratively refine queries through dia-034

logue (Radlinski and Craswell, 2017), addressing035

limitations of traditional keyword-matching sys-036

tems where single queries often fail to capture037

complete information needs (Aliannejadi et al.,038

2019; Zamani et al., 2020). Query clarification039

has emerged as a key mechanism for improving040

search accuracy by helping users refine ambiguous041

Sofa
Information Need: Looking for a sofa for my living room 

Are you looking for a modern or traditional sofa?

Probably modern, but I want something clean and simple.

Great! What material do you prefer: leather or fabric?

Leather, but I’m not a fan of textured designs, something 
clean and smooth would be nice.

Do you want a tufted design or a smooth finish?

The right one looks very nice to me.

Single-turn 
interaction

Multi-turn 
interaction

Figure 1: An example conversation comparing the multi-
modal query clarification under single-turn and multi-
turn scenarios.

or incomplete queries (Hancock et al., 2019; Rao 042

and III, 2018). 043

Current approaches to query clarification, while 044

showing promise, face critical limitations in ad- 045

dressing complex information needs. Traditional 046

systems rely predominantly on text-only clarify- 047

ing questions (Aliannejadi et al., 2021; Zamani 048

et al., 2020), proving insufficient when users need 049

to understand or express preferences about visual 050

characteristics. This limitation becomes inherent 051

in certain query types or domains like healthcare 052

(symptom identification), e-commerce (product se- 053

lection), and technical support (problem diagnosis), 054

where visual context is crucial for precise under- 055

standing (Siro et al., 2025). 056

Recent work (Yuan et al., 2024) introduces 057

single-turn multi-modal clarifying questions, al- 058

lowing systems to present images with text. How- 059

ever, limiting the interactions to only one set of 060

images limits intent inference, making it difficult 061

to capture user needs accurately. For example, in 062

Figure 1, when searching for a sofa, users need 063

to progressively refine their preferences from gen- 064

1



eral style (modern vs. traditional) to specific ma-065

terials (leather vs. fabric) and finally to detailed066

attributes (tufted vs. smooth). Such natural progres-067

sion in preference articulation cannot be achieved068

in a single turn without overwhelming users with069

numerous options. While existing multi-turn ap-070

proaches (Aliannejadi et al., 2020) support dia-071

logue flow, they lack the crucial visual context for072

grounding language understanding.073

To address these limitations, we introduce the074

novel task of Multi-turn Multi-modal Clarifying075

Questions (MMCQ) within open-domain CS sys-076

tems. MMCQ enables systems to gradually refine077

user intent over multiple turns, where each inter-078

action builds on the previous one by incorporating079

both textual questions and relevant images. This080

step-by-step process enhances the depth and accu-081

racy of the clarification process, leading to more082

precise disambiguation of user intent and improved083

retrieval performance. To facilitate research in this084

direction, we create a new dataset named ClariMM085

that builds upon existing single-turn multi-modal086

clarification data (Yuan et al., 2024), comprising087

over 13k instances of multi-turn interactions with088

over 14k images and 33k question-answering pairs.089

Furthermore, we propose a novel ranking model,090

called Mario (Multi-turn Multi-modal Query Clar-091

ification), devising a two-phase ranking method to092

rank documents based on multi-modal conversa-093

tional history. Mario adopts the BM25 method for094

initial retrieval, followed by a multi-modal gener-095

ative model with a constrained generation mecha-096

nism to refine and re-rank the results. Specifically,097

our model leverages a pretrained multi-modal large098

language model (LLM) to generate the keywords099

sequence of relevant documents by integrating tex-100

tual and visual information from the conversational101

interaction history.102

We compare the performance of Mario against a103

range of models, from traditional retrieval methods104

to several open-sourced LLMs, and analyze the im-105

pact of multi-modal vs. uni-modal approaches. Our106

experiments on ClariMM show that incorporating107

images in multi-turn scenarios improves MRR by108

up to 12.88% with Mario. Additionally, a compari-109

son between ClariMM and its single-turn counter-110

part shows that multi-turn interactions consistently111

outperform single-turn approaches across all re-112

trieval metrics in the multi-modal setting. Further113

analysis highlights Mario’s superiority, particularly114

in longer interactions, demonstrating the benefits115

of multi-turn multi-modal clarification for CS.116

In summary, our contributions are as follows: 117

• We introduce MMCQ as a novel task within 118

mixed-initiative CS, allowing the system to 119

refine user queries through multi-turn inter- 120

actions by integrating both textual and visual 121

cues. 122

• We propose a large-scale dataset called 123

ClariMM to support multi-modal interactive 124

search, which will be publicly available. We 125

also propose Mario for effective multi-modal 126

document retrieval in this setting. 127

• We demonstrate the effectiveness of our model 128

on retrieval performance by comparing it with 129

its uni-modal and single-turn counterparts. 130

2 Related Work 131

Conversational question clarification. Query 132

clarification improves search by refining user 133

queries with additional context (Wang et al., 2023), 134

addressing ambiguities in various tasks including 135

entity disambiguation (Coden et al., 2015), voice- 136

based interactions (Kiesel et al., 2018), question 137

answering (Nakano et al., 2022) and recommenda- 138

tion (Zou et al., 2020). In mixed-initiative search 139

systems, where the conversational initiative alter- 140

nates between users and agents, targeted clarifying 141

questions have been shown to improve retrieval 142

performance and user satisfaction (Rahmani et al., 143

2024; Siro et al., 2024). For instance, Alianne- 144

jadi et al. (2020) introduced the ClariQ bench- 145

mark, which employs clarifying questions to disam- 146

biguate vague queries. Building on these founda- 147

tions, Yuan et al. (2024) advanced the field further 148

by developing Melon, a system that integrates vi- 149

sual inputs into the clarification process, thereby 150

helping users refine their queries more effectively. 151

Despite these advances, challenges remain in ef- 152

fectively merging multi-modality with multi-turn 153

conversational interactions. 154

Multi-modal information retrieval. Multi- 155

modal information retrieval has gained substantial 156

growth by integrating different modalities to pro- 157

vide accurate search results (Mohammad Ubaidul- 158

lah Bokhari, 2013). These modalities, including 159

text, images, audio, and video, are effective in ad- 160

dressing queries across diverse scenarios (Moham- 161

mad Ubaidullah Bokhari, 2013; Yuan et al., 2024). 162

By leveraging multi-modal data, retrieval systems 163

can offer better and more accurate responses, which 164
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result in user satisfaction and engagement (Narayan165

et al., 2003). Inspired by the advancements in gen-166

erative large language models, new waves of multi-167

modal pretrained generative models have emerged168

which further exploit the capabilities of IR systems169

(Radford et al., 2021; Gao et al., 2020). Recent170

work has demonstrated the effectiveness of these171

multi-modal models in various IR tasks, such as172

query reformulation (Garg et al., 2021), question173

answering (Xu et al., 2019), and cross-modal re-174

trieval (Gao et al., 2020). Based on this, our work175

focuses on asking multi-modal clarifying questions176

in a multi-turn CS system and investigates whether177

it results in better retrieval performance.178

3 Dataset Construction179

We describe how we build ClariMM, our multi-turn180

multi-modal dataset.181

3.1 Data Collection182

Our dataset builds upon Melon (Yuan et al., 2024),183

a single-turn dataset containing clarifying ques-184

tions with images. We use Melon’s topics and185

facets (user information needs), which originate186

from TREC Web Track 2009–2012 (Clarke et al.,187

2009, 2012), and the corresponding documents for188

each facet.189

Multi-turn conversation synthesis. We construct190

multi-turn conversations by systematically combin-191

ing QA pairs from Melon that share the same topic.192

For each topic, we exhaustively generate all possi-193

ble combinations of single-turn QAs to create two-,194

three-, and four-turn dialogues. Each turn retains its195

corresponding images from Melon. This approach196

ensures both diversity in clarification patterns and197

semantic coherence within each conversation.198

Data sampling. The synthesis process gener-199

ates extremely large subsets for two-, three-, and200

four-turn conversations, with the two-turn subset201

alone exceeding 1 million conversations. This vast202

dataset poses challenges for post-processing and203

analysis while also containing redundant and un-204

natural conversations. To address this issue, we205

randomly sample 10,000 conversations from each206

subset. This selection balances dataset size while207

maintaining diversity and relevance.208

Data refinement. To enhance the naturalness of209

synthetic data and ensure more realistic conversa-210

tions, we develop an automated refinement method211

using GPT-4o (Algorithm 1). While manual re-212

Algorithm 1 Multi-turn Conversation Refinement
Input: Conversation d with T turns, hidden intention F
Output: Refined conversation c

1: c← {} // Initialize refined conversation
2: for t = 1 to T do
3: if t == 1 then
4: A’

t ← Θinitial(Qt, At, F ) // Qt, At denote the
question-answer pair at turn t, Θ denotes the prompting
strategy

5: else if t < T then
6: A’

t ← Θpartial(Qt, At, F )
7: else
8: A’

t ← Θfinal(Qt, At, F )
9: end if

10: c← c ∪ {(Qt, A
’
t)}

11: end for

finement would be ideal for ensuring conversation 213

quality, it is impractical given our dataset scale. 214

Our automated approach significantly reduces the 215

required effort while maintaining high-quality dia- 216

logue refinement. 217

At the start of the conversation, we prompt GPT- 218

4o to act as a user, interpreting the multi-modal 219

conversational history and refining its responses 220

without revealing the user’s intent based on the 221

given facet. This approach encourages a natural 222

extension of the interaction, requiring additional 223

exchanges to fully clarify the user’s needs. As 224

the conversation progresses, we iteratively refine 225

responses to gradually unveil the hidden intent, ef- 226

fectively simulating the natural flow of the clarifica- 227

tion phase. We apply this method to the filtered 30k 228

dialogues, ensuring that the generated dialogues re- 229

main coherent and engaging while gradually reveal- 230

ing the hidden intent, preventing it from being dis- 231

closed too early. The detailed annotation pipeline 232

and all prompts used are provided in Appendix A. 233

3.2 Quality Control 234

To validate the quality of our synthetic dataset, we 235

conducted a human evaluation assessing four key 236

metrics: relevance, coherence, diversity, and in- 237

tent reveal. These metrics were chosen to evaluate 238

critical aspects of our dataset construction process, 239

where single-turn QA pairs from the Melon dataset 240

(Yuan et al., 2024) were combined and refined into 241

multi-turn dialogues. Given our dataset’s scale, we 242

randomly sampled 10% of the topics for annota- 243

tion. Two of the authors independently evaluated 244

178 conversations using a 5-point Likert scale (1: 245

poor to 5: excellent) (detailed definition of the 246

metrics see Appendix B). Our human evaluation 247

results (Table 1) demonstrate the effectiveness of 248

our construction approach. Relevance scores show 249
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Metric Mean Std Dev Median

Relevance (Turn 1) 3.62 1.29 3.00
Relevance (Turn 2) 3.56 1.24 3.00
Relevance (Turn 3) 3.78 1.09 3.00
Relevance (Turn 4) 4.11 0.97 4.00
Coherence 3.36 1.10 3.00
Diversity 4.01 0.97 4.00
Intent reveal 4.65 0.87 5.00

Table 1: Human evaluation scores for relevance, coher-
ence, diversity, and intent reveal.

Metric Value

# topics 298
# facets 1,070
# all questions 4,969
# images 14,869
# answers 33,477
# 2-Turn Conversations 7,782 (59.36%)
# 3-Turn Conversations 3,391 (25.86%)
# 4-Turn Conversations 1,935 (14.78%)

Table 2: Statistics of the ClariMM dataset.

consistent improvement from Turn 1 (3.62, σ=1.29)250

to Turn 4 (4.11, σ=0.97), validating our GPT-4o251

refinement strategy for maintaining topical focus.252

While coherence (3.36, σ=1.10) indicates some253

minor inconsistencies, the strong diversity score254

(4.01, σ=0.97) confirms that our sampling strategy255

captured varied aspects of topics without repeti-256

tion. Most notably, the high intent completion score257

(4.65, σ=0.87) validates our approach of gradually258

revealing user intent across turns. These results259

prove that our data generation pipeline success-260

fully produces well-structured and semantically261

rich multi-turn conversations, making ClariMM262

a valuable resource for training multi-turn multi-263

modal retrieval systems.264

3.3 Dataset Statistics265

Table 2 provides an overview of the basic statis-266

tics of ClariMM. The dataset comprises a total of267

298 search topics and 1070 facets. It consists of268

4,969 clarifying questions accompanied by 14,869269

images, resulting in an average of 2.99 images per270

question. Additionally, the dataset includes 33,477271

answers and every question has its own answer.272

Overall, the dataset consists of over 7k two-turn273

conversations, 3k three-turn conversations, and 1k274

four-turn conversations.275

4 Our Method276

4.1 Problem Formulation277

Following (Yuan et al., 2024), we consider a set278

of topics denoted as T = {t1, t2, . . . , tk}, serve279

as user queries. Each topic ti is associated with 280

a set of facets, defined as Fi = {f1
i , f

2
i , . . . , f

ni
i }, 281

where ni represents the number of facets for ti. 282

Each facet f j
i captures a distinct aspect of ti, speci- 283

fying a particular user information need. Given a 284

topic t and an information need (facet) f , the user 285

engages in a conversation C consisting of k turns. 286

Each conversation comprises a sequence of multi- 287

modal clarifying questions Q = {q1, q2, . . . , qk} 288

and their corresponding text-only answers A = 289

{a1, a2, . . . , ak}. Each question qi consists of text 290

and may optionally include some images. At the 291

end of each conversation, a set of documents D 292

is retrieved and ranked based on the conversation. 293

The goal is to determine the hidden facet f and 294

learn a retrieval function R(·) that maps the con- 295

versation context and topic to a ranked list of docu- 296

ments, such that R(C, t) → D. 297

4.2 Framework Overview 298

As shown in Figure 2, we propose a framework 299

called Mario to retrieve relevant documents given 300

the multi-modal conversational history (details see 301

Section 4.3). The process begins with the system 302

receiving the user’s query as input. It then refines 303

the query by incorporating the conversation his- 304

tory to generate an inferred query. Next, BM25 305

is applied for first-phase retrieval, retrieving the 306

top 100 most relevant documents. Then, we intro- 307

duce a multi-modal generative re-ranking model 308

that incorporates the inferred query to refine and 309

re-rank the initial results. Specifically, we train 310

the model to generate keywords for the top rele- 311

vant documents, leveraging both textual and visual 312

information. By incorporating multi-modal infor- 313

mation, the model effectively re-ranks the retrieved 314

documents to enhance relevance. 315

4.3 Multi-modal Two-phase Retrieval 316

4.3.1 First-phase Retrieval 317

In the first phase of our retrieval process, we em- 318

ploy BM25 to retrieve an initial set of relevant doc- 319

uments from the document base given the query 320

t and conversational history context C. Since C 321

is lengthy and might contain noise, we extract an 322

inferred query Φ from C using GPT-4o (prompts 323

see Appendix D). Given the inferred query Φ, the 324

set of retrieved documents is obtained as: 325

Dinitial = BM25(t,Φ, D) , (1) 326

where D is the initial document set and Dinitial 327

is the first-ranked result. The retrieved documents 328
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Figure 2: Overview of the Mario two-phase retrieval framework.

are then passed to subsequent stages for further329

refinement and re-ranking using multi-modal infor-330

mation with generative models.331

4.3.2 Multi-modal Re-ranking332

To integrate multi-modal information, we propose333

a generative re-ranking model based on a multi-334

modal LLM.335

Image and text encoding. Our model encodes336

the input image I using the SigLIP (Zhai et al.,337

2023) vision encoder fimg to extract image fea-338

ture z: z = fimg(I). The image feature is then339

projected into the LLM’s embedding space using340

a learned projection matrix W and concatenated341

with the text embedding τ , where τ is obtained342

from the text embedder ftext: τ = ftext(t,Φ). The343

final output e is then computed as:344

e = fLLM([Wz; τ ]) , (2)345

where fLLM is the LLM responsible for generating346

the final re-ranking output.347

Keyword extraction. Following previous work348

in generative retrieval (Tang et al., 2024; Li et al.,349

2023), we train the multi-modal LLM to generate a350

ranked sequence of document IDs. Each document351

d is identified by a unique keyword-based ID de-352

noted as Kd, ensuring efficient retrieval and seman-353

tic relevance. Specifically, we extract five represen-354

tative keywords per document using YAKE (Cam-355

pos et al., 2020). These keywords serve as compact356

semantic descriptors that capture each document’s 357

core information. 358

Model training. We train the model to generate 359

a ranked sequence of document IDs based on the 360

multi-modal input x, refining the initial BM25 rank- 361

ing Dinitial. To improve the model’s ability to dis- 362

tinguish between good and bad ranking results, we 363

train it to generate keywords for relevant and ir- 364

relevant documents sequentially, with individual 365

documents separated by a [SEP] token. Relevant 366

and irrelevant samples are identified based on their 367

overlap with the ground-truth labels in Dinitial. For 368

the loss function, we use the Margin Ranking Loss 369

for ranking which is defined as: 370

Lrank = max(0,m+ Lpos
LM − Lneg

LM) , (3) 371

where m is the margin, Lpos
LM and Lneg

LM are the lan- 372

guage modeling loss for the relevant and irrelevant 373

samples respectively. In detail, the language mod- 374

eling loss can be represented as: 375

LLM = −
T∑
t=1

logPθ(yt | y<t, x) (4) 376

where y<t denotes the sequence of tokens gener- 377

ated before time step t, and θ represents the model 378

parameters. 379

The final loss is a combination of the positive 380

sample’s language modeling loss and the ranking 381

loss: 382

L = Lpos
LM + λrank · Lrank , (5) 383
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here λrank is the weighting factor.384

Inference. During inference, to prevent the model385

from generating arbitrary tokens, we employ a386

constrained generation technique (Post and Vilar,387

2018) to ensure that only valid keywords are se-388

lected and generated. That is, we restrict the model389

vocabulary to a predefined set of allowed keywords390

from Dinitial. Specifically, at each decoding step t,391

let the current partial sequence be y<t. We define392

the allowed set of tokens At as:393

{v ∈ V | ∃z ∈ T , s.t. y<t ⊕ v = prefix(z)} , (6)394

where V is the vocabulary, T is the trie encoding395

for all valid keyword sequences, and ⊕ denotes396

sequence concatenation. By masking the probabil-397

ity distribution for the next token to consider only398

those in At, we ensure that the generated output399

adheres strictly to the allowed keywords.400

5 Experiments401

5.1 Experimental Setup402

We split ClariMM’s facets into 80% for training,403

10% for validation, and 10% for testing, and create404

the corresponding datasets accordingly. As a result,405

the training set consists of 9,688 conversations and406

856 facets, while the validation and testing set each407

contains 672 conversations and 107 facets. To cre-408

ate the single-turn comparison set, we adopt only409

the first turn of each conversation and we obtain410

the inferred query as input. We choose LLaVA-411

OneVision-7b as the base model for Mario. For412

retrieval evaluation, we employ Mean Reciprocal413

Rank (MRR), Precision (P@k), and Normalized414

Discounted Cumulative Gain (nDCG@k) where415

k ∈ {1, 3, 5}. The ground truth relevance doc-416

uments are sourced from the TREC Web Track417

2009-2012 (Clarke et al., 2009, 2012). All hyper-418

parameters are detailed in Appendix C. We report419

the performance of Oracle image selection. Our ex-420

periments are conducted using the PyTorch frame-421

work, with training and evaluation performed on422

one NVIDIA V100 and two NVIDIA A100 GPUs.423

5.2 Compared Methods424

We first adopt several uni-modal baselines by re-425

moving image information from the model input to426

simulate a text-only interaction.427

BM25 (Robertson and Zaragoza, 2009) ranks doc-428

uments based solely on the text input, without429

any re-ranking.430

Bert (Devlin et al., 2019) reranks the BM25 results 431

with Bert model. We adopt the implementa- 432

tion from MacAvaney et al. (2019). 433

T5 (Raffel et al., 2019) is trained to perform re- 434

ranking by generating keyword sequences of 435

relevant documents given a query. We use the 436

T5-base version in our experiment. 437

Qwen-2 (Yang et al., 2024) ranks documents sim- 438

ilar to T5, but uses Qwen-2-7b as the base 439

model. 440

We also compare our method with several multi- 441

modal baselines: 442

VisualBert (Li et al., 2019) is a multi-modal 443

model with Bert structure and is trained with 444

pairwise softmax loss for re-ranking. 445

VLT5 (Cho et al., 2021) takes multi-modal input 446

and is trained to output the keyword of the 447

documents with constrained generation. 448

5.3 Experimental Results 449

We report the performance of multiple baselines on 450

multi-turn and single-turn settings in Table 3 and 451

4. We observe that language-model-based rankers 452

such as T5 and Bert outperform the traditional lexi- 453

cal method BM25. We further analyze the impact 454

of incorporating images in the document retrieval 455

task. Our findings indicate that using images en- 456

hances retrieval performance, particularly in multi- 457

turn conversations, compared to models that rely 458

solely on text. For instance, in the multi-turn case, 459

VLT5 achieves a P@1 of 42.34%, outperforming 460

its uni-modal counterpart T5, which records a P@1 461

of 41.30%. These results highlight the advantage 462

of multi-modal information in capturing a more 463

comprehensive user intent over longer conversa- 464

tional histories. However, this benefit diminishes 465

in the single-turn scenario where we see a 1.47% 466

decrease in P@1 comparing Bert with VisualBert. 467

This is due to the image being misleading in the 468

first turn, as the model benefits less from visual 469

information when there is limited context. Results 470

further show that all models perform notably bet- 471

ter in multi-turn conversations than in single-turn 472

ones, as added context helps capture user intent 473

more effectively. Notably, Mario consistently out- 474

performs the other baselines in the multi-turn and 475

single-turn settings, achieving the highest scores 476

across key metrics and emphasizing its superior 477

ability to leverage contextual cues. 478

6



Img. MRR P@1 P@3 P@5 nDCG@1 nDCG@3 nDCG@5

BM25 ✗ 50.74 39.62 36.16 36.03 25.80 23.39 24.56
Bert ✗ 56.36 46.08 41.50 41.37 35.70 33.82 34.01
T5 ✗ 52.15 41.30 37.64 38.63 41.30 38.82 39.39
Qwen-2 ✗ 46.48 42.26 39.72 39.23 40.08 37.96 36.88

VisualBert ✓ 56.50 46.57 46.24 44.02 35.33 36.65 36.28
VLT5 ✓ 53.22 42.34 38.83 39.43 42.34 39.90 40.26
Mario ✓ 59.36 48.10 47.09 45.48 46.90 45.77 43.98

Table 3: Experimental results (%) on multi-turn conversations.

Img. MRR P@1 P@3 P@5 nDCG@1 nDCG@3 nDCG@5

BM25 ✗ 42.94 32.07 30.81 30.37 20.39 20.15 21.02
Bert ✗ 49.34 39.22 37.42 36.27 29.66 29.42 29.13
T5 ✗ 41.37 28.08 28.97 28.88 28.08 29.16 31.92
Qwen-2 ✗ 44.30 40.56 37.68 35.97 38.40 35.94 33.68

VisualBert ✓ 45.95 37.75 33.50 32.55 28.43 25.83 25.20
VLT5 ✓ 43.18 30.46 28.92 28.94 30.46 29.69 30.42
Mario ✓ 53.24 46.54 43.48 40.02 41.85 39.56 38.68

Table 4: Experimental results (%) on single-turn conversations.

6 Extensive analysis479

6.1 Impact on different turns480

We further report the retrieval performance under481

the different number of turns for VLT5, VisualBert,482

and Mario in Figure 3. As shown in the figure,483

VLT5 indicates only a modest improvement from484

38.59 (two-turn) to 41.30 (four-turn), indicating485

limited gains from the additional turns. Visual-486

Bert’s performance even declines as the conversa-487

tion length increases, starting at 45.58 for two-turn488

data and dropping to 40.19 for four-turn data. This489

suggests that VisualBert struggles to leverage the490

increasing context effectively in longer conversa-491

tions. In contrast, Mario demonstrates consistent492

and substantial improvements with each additional493

turn, with P@5 increasing from 43.60 (two-turn)494

to 48.12 (four-turn). This significant gain confirms495

that Mario excels in multi-turn conversational re-496

trieval and outperforms VLT5 and VisualBert in497

longer interactions. This highlights the model’s498

ability to effectively capture the evolving intent and499

incorporate context across turns making it particu-500

larly well-suited for handling long conversations.501

6.2 Impact on different topics502

We further evaluate the performance of various503

models on seen and unseen topics to evaluate their504

robustness and generalization capabilities. We re-505

VisualBert VLT5 Mario
Models

0

10

20

30

40

50

60

P@
5

2-turn
3-turn
4-turn

Figure 3: P@5 scores under different turn counts in
ClariMM.

split the ClariMM dataset into training, unseen, and 506

seen testing sets. The unseen testing set consists 507

of 10% of all topics, entirely excluded from the 508

training process. In contrast, the seen testing set 509

includes topics that are also present in the training 510

set. As shown in Table 6, Bert-based models (i.e., 511

VisualBert & Bert) and our model demonstrate a 512

relatively consistent performance across both seen 513

and unseen topics, with minimal differences in eval- 514

uation metrics. T5-based models (i.e., VLT5 & T5), 515

however, show a more significant decline between 516

the seen and unseen sets, which suggests greater 517

sensitivity to new topic distributions. Furthermore, 518

we observe that the impact of using images in the 519

unseen topics is more noticeable than in the seen 520

topics. We can see a 4.8% increase in MRR when 521
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Idx Topic Facet Turn Num Inferred Query Image Image Effect

1 Teddy bears Find giant teddy bears

multi-turn
Looking for giant teddy
bears

+0.2

single-turn
Exploring options related
to teddy bears

0

2 Hobby Stores
Where can I buy
radio-controlled planes?

multi-turn
Places to buy
radio-controlled planes

+0.8

single-turn Finding a new hobby
+0.2

3 Wilson’s Disease What are the symptoms of
Wilson’s disease?

multi-turn
Understanding symptoms
of Wilson’s disease

+0.2

single-turn
Understanding the
condition of Wilson’s
disease

-0.4

Table 5: Case study on Mario. A positive Image Effect indicates an increase in performance after adding the image,
while a negative effect indicates a performance drop.

Method Seen Unseen
MRR P@5 MRR P@5

Bert 54.55 40.31 51.50 34.00
T5 53.12 34.23 38.55 24.16
VisualBert 53.53 39.46 51.85 35.17
VLT5 55.31 34.46 43.35 25.49
Mario 58.68 46.17 57.79 43.23

Table 6: Comparison between seen and unseen topics.

comparing T5 and VLT5 on unseen data, however,522

this difference is smaller (2.29%) on the seen do-523

main. This suggests that incorporating visual infor-524

mation provides a greater advantage when dealing525

with unfamiliar topics.526

6.3 Case study527

To demonstrate the effect of adding images to the528

multi-turn and single-turn conversations, we per-529

form a case study in Table 5. In most cases, in-530

cluding images provides valuable contextual infor-531

mation which enhances the model’s performance.532

Notably, adding images in multi-turn conversations533

tends to have a more significant positive effect com-534

pared to single-turn cases. For example, in case535

2, adding an image in the multi-turn setting im-536

proves the P@5 score by 0.8 whereas adding an537

image in the single-turn scenario only boosts P@5538

by 0.2. However, there are instances where images539

can negatively impact performance. In case 3, the540

inferred query from the single-turn conversation 541

focuses on understanding the condition of Wilson’s 542

disease. Unfortunately, due to the insufficiency 543

of the inferred query, the returned image fails to 544

align with the user’s hidden intent, as it includes 545

treatment-related information. The user is primar- 546

ily interested in learning about the symptoms of 547

this disease, not its treatment and this image leads 548

to a negative impact on the P@5 score. By con- 549

trast, in the multi-turn scenario, the image displays 550

symptoms, thereby providing valuable information 551

that enhances the model’s performance. 552

7 Conclusion 553

We investigate the novel task of asking multi- 554

modal clarifying questions in multi-turn CS sys- 555

tems. To enable research in this domain, we intro- 556

duce a large-scale dataset named ClariMM, which 557

contains over 13k multi-turn multi-modal interac- 558

tions and 33k question-answer pairs, accompanied 559

by 14k images. We also propose a multi-modal 560

query clarification framework named Mario, which 561

adopts a two-phase retrieval strategy by combining 562

initial BM25 ranking with a multi-modal genera- 563

tive re-ranking model. We further compare Mario 564

with state-of-the-art models. Experimental results 565

show that multi-turn multi-modal interactions sig- 566

nificantly help users refine their queries, leading to 567

improved retrieval performance. 568
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Limitations569

Several limitations remain for future work. First,570

we synthetically developed our dataset from Melon,571

which despite our best efforts to refine it for realism,572

may not fully capture the spontaneity and complex-573

ity of true user interactions. Future work could ad-574

dress this limitation by leveraging techniques like575

data augmentation or reinforcement learning from576

human feedback (RLHF) to bridge the gap between577

synthetic and natural interactions. Additionally, it578

remains an open question how much images truly579

enhance the user experience in the MMCQ task.580

Since the effectiveness of visual information can581

depend heavily on its contextual relevance and the582

specific user intent, our current approach might not583

optimally handle ambiguous or noisy visual inputs.584

Future work should explore methods to better in-585

tegrate and disambiguate visual data to maximize586

their contribution to the overall user experience.587

Ethical Statement588

All images and user topics in our dataset are589

sourced from publicly available datasets, ensuring590

that no private or sensitive information is included.591

The collection and use of these resources strictly592

comply with the terms of use and licensing agree-593

ments set by the original dataset providers. We594

have diligently verified that all materials originate595

from public sources, conducting our research with596

the highest regard for data privacy and ethical in-597

tegrity.598
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A Dataset Creation and Prompts808

We use a multi-step refinement process, as shown in809

Figure 4 to address the unnaturalness of synthetic810

data. We first prompt GPT-4o to determine if two811

QA convey similar information in a single conver-812

sation, then we remove entries identified as having813

duplicate QA structures using Prompt A in Table814

8. This step helps detect and remove redundant or815

highly similar QAs.816

Next, We prompt GPT-4o to analyze each con-817

versation turn and identify whether the hidden facet818

intention is revealed prematurely using prompt B819

in Table 8. This Prompt assesses whether the hid-820

den facet intention is revealed too early. It judges821

whether a provided answer can be interpreted as822

the same as the facet intention. For instance, If the823

conversation has four turns and the hidden inten-824

tion is revealed in the second turn, we extract those825

two turns and add them to the two-turn dataset.826

As illustrated in the figure, the four-turn data827

undergoes the most rigorous filtering process com-828

pared to the two-turn and three-turn data, which829

explains its lower count in Table 2. Consequently,830

the amount of available data decreases as the num-831

ber of turns increases because, in most cases, the832

intention is revealed prematurely.833

Finally, we introduce an additional refinement834

step using Algorithm 1 to ensure the conversational835

flow is as realistic as possible. In this algorithm, we836

employ three prompts, Θinitial, Θpartial, and Θfinal, 837

using 2-shot learning. In Table 8 we show that these 838

prompts iteratively refine responses to gradually 839

unveil the hidden intent to effectively simulate the 840

natural progression of the clarification phase. 841

B Quality Control Metric 842

The following metrics were used to assess the qual- 843

ity of ClariMM during human evaluation: 844

• Relevance: Each turn’s alignment with the 845

original topic (assessed per turn); 846

• Coherence: Logical flow between combined 847

QA pairs (assessed per dialogue); 848

• Diversity: Variation in responses and avoid- 849

ance of redundancy (assessed per dialogue); 850

and 851

• Intent reveal: Effectiveness of progressive 852

intent revelation (assessed per dialogue). 853

C Hyperparameter Settings 854

Our code is based on PyTorch (Paszke et al., 2019) 855

and Huggingface Transformers (Wolf et al., 2020). 856

For Llava-OneVision, we use the 7b pretrained 857

version, 1e-4 as the learning rate and 2 for the 858

batch size. For the loss function, we set the margin 859

to 2.0 and λrank to 0.75. For generation, we set the 860

number of beams to 10. For first-phase document 861

retrieval, we retrieved the top 100 documents using 862

BM25, and we used all our other models to rerank 863

these retrieved documents. 864

D Inferred Query Extraction 865

To capture the user’s intent from a multi-turn con- 866

versation, we employ a summarization step using 867

GPT-4o that focuses on what the user is actually 868

interested in. It compresses the conversation into a 869

short “inferred query” discarding irrelevant details 870

such as off-topic remarks. By isolating only the 871

essential user request, the system can more effec- 872

tively guide subsequent retrieval ensuring that the 873

user’s primary goal remains at the forefront. 874

Prompt
Extract the user’s intent based on the conversation.
Only mention what they are interested in.
Conversation: {conversation}

Table 7: Prompts used for dataset creation.
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Figure 4: Dataset creation pipeline.

Type Prompt Content
Prompt A I will provide you with two pairs of questions and answers. Determine if these two question-answer pairs

contain similar information. Output "yes" or "no" and explain why.
Question 1: {question1} Answer 1: {answer1}, Question 2: {question2} Answer 2: {answer2}

Prompt B I will provide you a pair of question-answer and a facet (user’s hidden intention).
Judge whether the answer aligns with the facet intention. If yes, generate: "intention reached".
Facet intention: facet_intention, Question: question, Answer: answer

Prompt Θinitial Examples:
Example 1:
Facet: How to fix a car engine.
Question: Do you want to buy a car? Answer: No, I am not looking to buy a car.
Example 2:
Facet: Find coffee shops near me.
Question: Would you like to make a cup of coffee? Answer: No, thank you, I want to buy one.
I provided you with some examples above. Now, modify the following answer so that it is connected to the question
and doesn’t reveal the hidden intention of the facet like in the examples. Ensure your answer doesn’t violate the facet.
Prompt:
Imagine you are a user answering an agent question. Modify this answer without revealing any hidden intention
of the facet and without violating the facet.
Facet: {facet}, Question 1: {question1}, Answer 1: {answer1}, {examples}

Prompt Θpartial Examples:
Example 1:
Facet: The user wants to buy a red car.
Question: Are you looking for a specific color? Answer: I am considering a color, but I haven’t decided fully yet.
Example 2:
Facet: I’m looking for the car-part.com website.
Question: Do you want to sell used car parts? Answer: For now, I am mainly focused on finding a website.
I provided you with some examples above. Now, modify the following answer to reveal only a partial abstract of the
hidden intention (facet) and hint at the user’s interests without revealing the full intention
Prompt:
Imagine you are a user answering an agent question. Modify the following answer to reveal
only a partial abstract of the hidden intention (facet). Do NOT reveal the full hidden intention.
Facet: {facet} Question 3: {question2} Answer 3: {answer2} {examples}

Prompt Θfinal Examples:
Example 1:
Facet: The user wants to buy a red car.
Question: Are you looking for a specific color? Answer: Yes, I am looking for a red car to buy.
Example 2:
Facet: I’m looking for the car-part.com website.
Question: Do you want to sell used car parts? Answer: No, I am just looking for the car-part.com website.
I provided you with some examples above. Now, modify the following answer to fully reveal the hidden intention
in a clear and direct manner, and ensure that the answer reflects the facet without ambiguity.
Prompt:
Imagine you are a user answering an agent question. Modify the following answer to fully reveal the hidden facet.
Ensure that the answer clearly reflects the facet.
Facet: {facet}, Question 3: {question3}, Answer 3: {answer3}, {examples}

Table 8: Prompts used for dataset creation.
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