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Abstract

Generating protein sequences conditioned on pro-
tein structures is an impactful technique for pro-
tein engineering. When synthesizing engineered
proteins, they are commonly translated into DNA
and expressed in an organism such as yeast. One
difficulty in this process is that the expression
rates can be low due to suboptimal codon se-
quences for expressing a protein in a host or-
ganism. We propose CodonMPNN, which gen-
erates a codon sequence conditioned on a pro-
tein backbone structure and an organism label. If
naturally occurring DNA sequences are close to
codon optimality, CodonMPNN could learn to
generate codon sequences with higher expression
yields than heuristic codon choices for generated
amino acid sequences. Experiments show that
CodonMPNN retains the performance of previ-
ous inverse folding approaches and recovers wild-
type codons more frequently than baselines. Fur-
thermore, CodonMPNN has a higher likelihood
of generating high-fitness codon sequences than
low-fitness codon sequences for the same pro-
tein sequence. Code is available at https://
github.com/HannesStark/CodonMPNN.

1. Introduction
A significant barrier for protein engineering and protein
production is the expression of engineered RNA in host
systems such as yeast (Presnyak et al., 2015). One aspect
leading toward low expression yields is the suboptimality
of the DNA/codon sequence used to express the protein: as
illustrated in Figure 1, multiple codon sequences can encode
the same protein sequence, but each codon sequence can
interact differently with its environment in a cell. This can
lead to different behaviors between codon sequences that
encode the same protein, such as different expression levels.
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Figure 1. Amino acid sequences have corresponding DNA se-
quences with triplets of nucleotides (A, C, G, U) corresponding to
amino acids. Since there are 64 possible triplets called codons and
only 20 amino acids, there are multiple codon sequences for each
protein sequence. Some have higher expression rates than others,
and some are not expressed at all. This expression level depends
on the host in which the codon sequence is expressed.

This suboptimality of codon sequences is also a bottleneck
in the recently prominent protein engineering approach of
generating protein sequences conditioned on a protein back-
bone structure with tools such as ProteinMPNN (Dauparas
et al., 2022) to improve stability, function, or to use in
denovo protein design (Watson et al., 2023). When validat-
ing the proteins obtained from such tools by synthesizing,
expressing, and evaluating them, the obtained amino acid se-
quences also need to be translated into codon sequences for
which optimization methods exist (Bahiri-Elitzur & Tuller,
2021). However, these optimization methods are imperfect
and often fail for less well-studied hosts.

Furthermore, the following workflow misses an opportunity
for optimization toward higher expression yields: 1) obtain
protein structure with hypothesized desired function, 2) gen-
erate amino acid sequence that folds into the structure, 3)
obtain codon sequence that is optimal for the amino acid
sequence. This workflow does not allow for changing the
amino acid sequence such that the codon sequence encoding
the structure has higher expression yields.

To address these shortcomings, we propose CodonMPNN,
which generates codon sequences conditioned on a protein
backbone structure and an organism label for the host sys-
tem. Assuming that naturally occurring DNA sequences
are closer to codon optimality than a random codon se-
quence that encodes the same structure, CodonMPNN
trained on natural protein codon sequences will generate
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Figure 2. CodonMPNN overview. In the prevailing approach (A), an inverse folding model, such as ProteinMPNN, generates an amino
acid sequence. For experimental validation, this is mapped to a codon sequence (DNA sequence) via heuristic codon optimization tools
and expressed in a specific system. As an alternative, we propose CodonMPNN (B), which directly generates codon sequences conditioned
on a structure and the taxon label of the host organism in which the codon sequence should be expressed.

high-expression codon sequences.

Empirically, CodonMPNN trained on the AlphaFold
database produces recovery rates and designability eval-
uation metrics similar to ProteinMPNN (Dauparas et al.,
2022). Further, the codon recovery rate of CodonMPNN is
higher than that of sequences generated by translating our
generated codon sequences to amino acids and choosing
the most frequent codon for that amino acid. Lastly, we
show that CodonMPNN has higher likelihoods for codon
sequences with high fitness than for codon sequences with
lower fitness, even if the sequences encode the same protein.

2. Related Work
Inverse folding, with a different meaning in the biology com-
munity, has been adapted to describe generating a protein
sequence conditioned on a protein structure. For this task,
several generative models with different factorizations of the
sequence distribution and architectures have been proposed
(Dauparas et al., 2022; Hsu et al., 2022; Shanker et al., 2023;
Gao et al., 2023) and found considerable success in protein
engineering (Watson et al., 2023; Sumida et al., 2024; Wang
et al., 2024). These current approaches do not use the in-
formation about the host system in which the engineered
protein will be expressed.

Previous work on generative models for codon sequences
includes codon language models (Outeiral & Deane, 2024),
which replace the vocabulary of protein language models
with codons. Furthermore, Yang et al. (2019) conducted
preliminary explorations of generating codon sequences
conditioned on an amino acid sequence.

3. Method
CodonMPNN uses the same framework as ProteinMPNN
(Dauparas et al., 2022), adapted to predict 64 codons in-
stead of 20 residue types, and with the additional option of
conditioning on the host system in which the DNA should
be expressed. Thus, CodonMPNN is an any-order autore-
gressive model (Shih et al., 2022) over codon sequences
conditioned on protein structures. To state this in more
detail, let s ∈ {1, . . . , 64}L be a codon sequence and
x ∈ RL×4×3 a protein structure of 3D coordinates of L
residues with their 4 backbone atoms. We train Codon-
MPNN to predict p(sσ(i) | sσ(<i), x;σ) for any permutation
σ : {1, . . . , L} 7→ {1, . . . , L} and i ∈ {1, . . . , 64}. From
this, we construct and sample an autoregressive factorization
of the density over codon sequences p(s) =

∏L
i=1 p(sσ(i) |

sσ(<i), x;σ) for any order σ.

Architecture. We use ProteinMPNN’s encoder-decoder ar-
chitecture where the encoder takes the protein structure x as
input and produces structure embeddings which the decoder
uses together with the partial codon sequence sσ(<i) to pre-
dict p(sσ(i) | sσ(<i), x;σ). Both the encoder and decoder
are 3 message passing neural network layers (Gilmer et al.,
2017) over a graph with residues as nodes. Each node has
edges to the 48 nearest nodes in terms of Euclidean distance
between alpha carbons. Next to the graph connectivity, the
only information drawn from the protein structure are edge
features constructed from all pairwise distances between the
backbone atoms of connected residues. Thus, the predicted
probabilities are invariant with respect to Euclidean transfor-
mations of x. We implement the decoder’s autoregressive
prediction by masking messages from residues that have
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Figure 3. Recovery rates per amino acid types. Codon Recovery and Amino Acid Recovery show the recovery rates of CodonMPNN’s
generated sequences. Naive Codon Recovery is the recovery rate of codon sequences obtained by translating CodonMPNN’s codons to
amino acids and choosing their most frequent codons. Oracle Codon Recovery shows the same for the ground truth amino acids.

a higher index in the permutation σ than the residue that
receives the messages.

Taxon Conditioning. The diversity of cellular environ-
ments among organisms leads to different expression levels
of a codon sequence depending on the host. Typically, the
host cell for protein expression is predetermined and known
to the user of the inverse folding model, providing an oppor-
tunity to condition generated sequences to suit the particular
cellular environment. As a mapping from protein to host
organism, we use the taxonomy map of the National Cen-
ter for Biotechnology Information (NCBI) (Schoch et al.,
2020). This database provides a hierarchical classification
of organisms, enabling us to group organisms into clusters
with common cellular environments.

A naive approach to clustering the tree is to group all organ-
isms by shared ancestors corresponding to a specified taxo-
nomic rank (e.g., phylum or order). However, for any given
rank, this leads to imbalanced cluster sizes and missing as-
signments for organisms without a corresponding ancestor.
Very large clusters would group cellular environments with
different expression behaviors together. Furthermore, many
proteins (e.g., 6,826 for the choice of order as taxonomic
rank) would fall into clusters of size 1 with overly specific
expression environments that will not generalize. Lastly,
under this naive partitioning, the taxon identifier of a host
system at test time might fall into its own cluster that was
never observed during training, and CodonMPNN would be
unable to learn which codon sequences are preferential for
the targeted cellular environment.

To obtain more useful taxon clusters to condition Codon-

MPNN on, we instead implement a tree partitioning algo-
rithm that creates approximately balanced subgroups while
still preserving hierarchical information. Given a tree on
n nodes and a desired number of clusters k, the algorithm
traverses the tree and tries to keep all subtrees in the same
cluster without exceeding the ideal cluster size ⌈nk ⌉. The
full algorithm is described in appendix A. After obtaining a
k-clustering of the taxons, we pass the cluster labels into an
embedding layer and add the output to the initial node and
edge embeddings of CodonMPNN. Additionally, for 50%
of the training examples, we pass a null token to Codon-
MPNN that indicates the absence of a taxon label and can
be employed for generating a sequence from the marginal
distribution without taxon conditioning.

4. Experiments
Data: We train and evaluate CodonMPNN (and Protein-
MPNN for comparison) on AFDB (Varadi et al., 2024)
structures with pLDDT> 0.9. We cluster the proteins to
30% sequence identity and choose one representative for
each cluster. The test set has a maximum of 30% sequence
identity to the training data.

Metrics: We evaluate recovery rates, designablity TM-
Scores, and model likelihoods. Recovery rates are the per-
centage of generated codons or amino acids that match the
wild-type sequence of a structure. Furthermore, we report
the TMScore between the input structure and the structure
that ESMFold predicts for a generated sequence. Assuming
ESMFold’s correctness, this evaluates whether the gener-
ated sequence takes on the same structure as the model input
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Table 1. CodonMPNN recovery rates and designability. Shown
are the fraction of recovered codons as Codon %, and amino acids
as AA %, and the TM-Score as TM between the input structure and
ESMFold’s predicted structure for the models’ generated sequence.

CODON % AA % TM

PROTEINMPNN 20.5% 49.8% 0.83
PROTEINMPNN-TAXON 20.8% 50.3 0.86
CODONMPNN 24.8% 49.4% 0.84

structure and is a widely used indicator of “designability”
(Yang et al., 2023; Campbell et al., 2024).

Question 1: Does CodonMPNN retain ProteinMPNN’s
performance? Table 1 shows that CodonMPNN recovers
wild-type amino acids of a protein structure as frequently
as ProteinMPNN and has the same designability in terms of
TM-Score between the input structure and refolded structure.
We additionally train ProteinMPNN with the same taxon
conditioning as CodonMPNN (ProteinMPNN-taxon in the
table) to verify that CodonMPNN also retains any potential
performance improvement in ProteinMPNN with taxon con-
ditioning and find the metrics to largely stay the same. Thus,
CodonMPNN retains ProteinMPNN’s performance.

Question 2: Does CodonMPNN improve over choosing
the most frequent codon per amino acid? The codon
recovery rates in Table 1 show that CodonMPNN more fre-
quently recovers the wild-type codon than determining the
codon sequence via choosing the most frequent codon per
amino acid that was generated from ProteinMPNN. More-
over, the codon recovery obtained from CodonMPNN by
translating it to an amino acid sequence and then choos-
ing the most frequent codon for each amino acid is 20.9%.
This is distinctly lower than CodonMPNN’s 24.8% recovery
rate. Similar insights can also be attained per amino acid
from Figure 3, which shows for which amino acids Codon-
MPNN’s choice of codon differs the most from the naive
frequency-based codon choice.

Question 3: Does CodonMPNN have higher likelihoods
for highly expressed codon sequences than for low ex-
pression codon sequences that encode the same protein?

To answer this question, we use yeast mutant data from
(Shen et al., 2022). This data contains the fitness effects
of 8,341 point mutations in 21 genes in budding yeast. In
particular, the authors found that synonymous mutations,
which alter the codon sequence but not the resulting protein
sequence, can still have significant fitness effects. We only
consider the 250 synonymous mutations with the most sig-
nificant fitness effects, measured as the absolute difference
between wild type and mutant fitness levels.

For each wild type sequence, we predict the corresponding
protein structure using Alphafold 2 (Jumper et al., 2021;

Figure 4. Likelihoods For Synonymous Coding Sequences.
Each point is a pair of synonymous coding sequences. Points
above the dashed line correspond to correct predictions. Pair dif-
ference in expression yields is the difference between the higher
and lower expression yields of sequences in each pair. Pair differ-
ence in log-likelihoods is the difference in log-likelihoods between
the highly- and lowly-expressed sequences.

Ahdritz et al., 2022). This structure is passed as condi-
tioning information to CodonMPNN, which then predicts
likelihoods for both the wild-type and mutated sequences.
Across the 250 synonymous mutations, we found that for
181 of them (72.4%), CodonMPNN correctly predicts higher
likelihoods for the more highly expressed codon sequences
(the pairs above the horizontal line in Figure 4).

5. Discussion and Future Work
To aid structure-based protein engineering via inverse fold-
ing methods, we developed CodonMPNN as a drop-in re-
placement for ProteinMPNN. By directly generating codon
sequences instead of amino acid sequences, CodonMPNN
directly generates codon sequences that are closer to codon
optimality than naively choosing the most frequent codon
per amino acid. Further, the user can condition on the host
system in which they aim to express the generated codon
sequence - information that often is available to experimen-
talists but has not been used in previous inverse folding
approaches. We experimentally verified that CodonMPNN
retains ProteinMPNN’s performance and assigns higher like-
lihoods to more highly expressed codon sequences than
lower expression codon sequences that encode the same
amino acid sequence.

Future Work. In many codon optimization tasks, no pro-
tein structure is available, and the goal is to obtain an amino
acid sequence’s most highly expressed codon sequence for
a given host system. While CodonMPNN can be a useful
drop-in replacement for inverse folding models such as Pro-
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teinMPNN, it fails to address this related task. Thus, we
aim to fine-tune a protein language model to generate codon
sequences conditioned on amino acid sequences and our
taxon label.
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A. Taxonomy tree partitioning
We use the following algorithm to cluster our proteins according to taxonomic information. We create groupings with
k ∈ {50, 100, 500, 1000, 5000, 10000, 20000, 50000} and find that k = 20000 leads to optimal performance for the
conditioned CodonMPNN.

Algorithm 1 Balanced Tree Partitioning

1: Input: Tree tree, number of clusters k
2:
3: function AssignToCluster(node, cluster id):
4: clusters[cluster id].append(node.name)
5: cluster sizes[cluster id]← cluster sizes[cluster id] + 1
6: for child in node.children do
7: if child.is leaf() or (cluster sizes[cluster id] + child.subtree size ≤max cluster size) then
8: AssignToCluster(child, cluster id)
9: else

10: next cluster id← index of min(cluster sizes)
11: AssignToCluster(child, next cluster id)
12: end if
13: end for
14:
15: clusters← {}
16: cluster sizes← [0] ∗ k
17: max cluster size← (tree.subtree size + k − 1)//k
18: AssignToCluster(tree, 0)
19: return clusters
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