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Abstract
Retrieval-Augmented Generation (RAG) has001
emerged as a crucial method for addressing hal-002
lucinations in large language models (LLMs).003
While recent research has extended RAG mod-004
els to complex noisy scenarios, these explo-005
rations often confine themselves to limited006
noise types and presuppose that noise is inher-007
ently detrimental to LLMs, potentially deviat-008
ing from real-world retrieval environments and009
restricting practical applicability. In this paper,010
we define seven distinct noise types from a lin-011
guistic perspective and establish a Noise RAG012
Benchmark (NoiserBench), a comprehensive013
evaluation framework encompassing multiple014
datasets and reasoning tasks. Through empir-015
ical evaluation of eight representative LLMs016
with diverse architectures and scales, we reveal017
that these noises can be further categorized into018
two practical groups: noise that is beneficial to019
LLMs (aka beneficial noise) and noise that is020
harmful to LLMs (aka harmful noise). While021
harmful noise generally impairs performance,022
beneficial noise may enhance several aspects023
of model capabilities and overall performance.024
Our analysis offers insights for developing ro-025
bust RAG solutions and mitigating hallucina-026
tions across diverse retrieval scenarios.027

1 Introduction028

Large language models (LLMs) (OpenAI, 2023;029

Meta, AI, 2024) have demonstrated remarkable pro-030

ficiency across various tasks (Bubeck et al., 2023).031

Despite impressive capabilities, LLMs face chal-032

lenges such as reliance on outdated knowledge and033

hallucination (Huang et al., 2023; Kandpal et al.,034

2023). Retrieval-Augmented Generation (RAG)035

has recently emerged as a promising approach to036

mitigate these limitations (Lewis et al., 2020; Gao037

et al., 2024). RAG enhances LLMs’ performance038

by augmenting inputs with additional information039

retrieved from external sources during inference.040

However, external sources often contain vari-041

ous non-standard noises, including fake news, out-042

Figure 1: An example from NoiserBench illustrating
effects of different RAG noises. Initially, the model is
misled by counterfactual noise. Interestingly, upon in-
troducing beneficial noise, it successfully discriminates
between correct and incorrect information and produces
the accurate answer ‘D’.

dated content, spelling errors, and data contamina- 043

tion, which may potentially influence model per- 044

formance (Shi et al., 2023; Xie et al., 2024). It is 045

crucial to explore how noise affects RAG systems 046

and understand the underlying mechanisms. 047

Recently, several studies (Chen et al., 2024; Xi- 048

ang et al., 2024) have attempted to extend RAG 049

systems to complex real-world scenarios, investi- 050

gating the impact of noisy documents and strategies 051

to enhance the system’s robustness. For example, 052

Cuconasu et al. (2024) defines three types of noise 053

in retrieved documents and examines their impacts 054

on LLMs. Despite highlighting one noise’s posi- 055

tive effect, the study lacks a comprehensive noise 056

definition and in-depth investigation of underlying 057

principles. Fang et al. (2024) applies adversarial 058

training to dynamically adjust the model’s training 059

process in response to retrieval noises. RobustRAG 060

(Xiang et al., 2024) proposes a defense framework 061
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to improve the robustness of RAG models against062

retrieval corruption attacks. Nevertheless, these in-063

vestigations typically focus on a limited number of064

noise types (usually no more than three) and lack065

clear classification, which fails to fully capture the066

complexity of real-world noise environments. Ad-067

ditionally, these studies often assume that noise is068

harmful, neglecting its potential positive effects and069

lacking systematic evaluation datasets. As shown070

in Figure 1, introducing beneficial noise allows the071

LLMs to avoid the harmful effects of counterfac-072

tual noise, concentrate on the golden context, and073

produce accurate responses. Thus, there’s an ur-074

gent need to redefine and describe noisy scenarios075

in RAG, and systematically explore the specific076

impacts of retrieval noises.077

In this paper, we conduct a comprehensive anal-078

ysis to reveal the role of RAG noises in LLMs. We079

first define seven types of noise from a linguistic080

perspective. Based on this definition, we propose a081

systematic framework to create diverse noisy doc-082

uments and establish NoiserBench, a novel noise083

RAG benchmark. Then, we evaluate eight represen-084

tative LLMs with different architectures and scales.085

Extensive results show that RAG noises can be cat-086

egorized into two practical groups: beneficial noise087

(semantic, datatype, illegal sentence) and harm-088

ful noise (counterfactual, supportive, orthographic,089

prior). While harmful noise impairs performance,090

beneficial noise surprisingly enhances model capa-091

bilities and leads to improved performance. Fur-092

ther analysis reveals that beneficial noise facilitates093

more standardized answer formats, clearer reason-094

ing paths, and increases confidence in responses095

with golden context. These contrasting effects096

are analogous to opening Pandora’s Box (harmful097

noise) versus unlocking Aladdin’s Lamp (beneficial098

noise). We hope this study will advance efforts to099

mitigate harmful noise and leverage the positive100

effects of beneficial noise in future research. Our101

main contributions are:102

• We define seven types of noise and categorize103

them into two groups: beneficial and harmful104

noise. This is the first comprehensive study105

to define and assess RAG noises from both106

linguistic and practical perspectives.107

• We introduce a novel framework for construct-108

ing diverse retrieval documents and create109

NoiserBench, a benchmark that effectively110

simulates real-world noise in RAG models.111

• Evaluated on multiple datasets and LLMs, our 112

results reveal that while some RAG noises (e.g. 113

counterfactual) can open Pandora’s Box and 114

cause errors, beneficial noise (e.g. datatype) 115

has the potential to unlock the power of Al- 116

addin’s Lamp and deliver positive effects. 117

• Our findings redefine retrieval noise and en- 118

courage researchers to explore methods that 119

harness its beneficial properties while address- 120

ing its harmful effects. 121

2 Related Work 122

Retrieval-Augmented Generation By integrating 123

external information, RAG methods enhance 124

reasoning and generation process (Gao et al., 2024; 125

Zhao et al., 2024). Early works primarily focus on 126

improving retrieval model performance to obtain 127

relevant documents for subsequent generation 128

(Qu et al., 2021; Wang et al., 2023; Zheng et al., 129

2024). Recent research has expanded RAG 130

framework to real-world noisy scenarios, aiming 131

to build robust RAG systems by enhancing the 132

generator (Fang et al., 2024; Xiang et al., 2024). 133

For instance, Self-RAG (Asai et al., 2024) employs 134

four specialized tokens and GPT-4-generated 135

instruction-tuning data to fine-tune the Llama2 136

model. RobustRAG (Xiang et al., 2024) proposes 137

an isolate-then-aggregate defense framework 138

to enhance model robustness against retrieval 139

corruption attacks. However, these investiga- 140

tions are constrained by their narrow focus on 141

specific noise types and the inherent assumption 142

that noise is harmful, potentially hindering 143

method generalization. This paper aims to an- 144

alyze RAG noise and reveal its roles systematically. 145

146

Noise Injection in LLMs Noise injection (Grand- 147

valet et al., 1997) in LLMs involves adding noise 148

to inputs during training or inference, such as data 149

augmentation (Ye et al., 2024), adversarial training 150

(Fang et al., 2024), and prompt perturbation (Zhu 151

et al., 2024). Recently, researchers have focused on 152

noise injection in RAG systems (Chen et al., 2024). 153

For example, Cuconasu et al. (2024) classifies three 154

retrieval noises and explores their effects on LLMs. 155

Fang et al. (2024) leverages adversarial training 156

to dynamically adjust LLMs’ training process in 157

response to retrieval noises. However, these noise 158

types are limited and may not reflect complex real- 159

world scenarios. A comprehensive framework that 160

simulates real-world noise is necessary. 161
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Figure 2: (A) Our seven RAG noise types comprehensively capture real-world retrieval challenges. (B) This detailed
illustration intuitively depicts the diverse RAG noise landscape, with noise injection regions marked in red.

3 A Taxonomy of RAG Noise162

As shown in Figure 2, we categorize RAG noise163

into seven linguistic types. They are further di-164

vided into beneficial (semantic, datatype, and il-165

legal sentence) and harmful noise (counterfactual,166

supportive, orthographic, and prior) for practical167

applications. We will explain the reason behind168

this classification in 5 Experiment Setup.169

Semantic Noise (SeN) Retrieval documents170

may contain content with low semantic relevance171

to the query, often being off-topic or deviating from172

the intended meaning. Given that Warren Weaver173

originally defined semantic noise as "the perturba-174

tions or distortions of sentence meaning" (Shannon175

et al., 1961), we classify off-topic, low-semantic-176

relevance documents as semantic noise.177

Datatype Noise (DN) This type of noise refers178

to the mixing of different data types on the web,179

such as the blending of links and text on Wikipedia.180

In this paper, we consider three data types: text,181

URLs, and code.182

Illegal Sentence Noise (ISN) Web content may183

include fragments that do not form grammatically184

correct sentences, such as “history transform cover185

managed that hand black”. We define this type of186

noise as illegal sentence noise.187

Counterfactual Noise (CN) The internet con-188

tains abundant false information, including fake189

news and outdated knowledge (Tumarkin and190

Whitelaw, 2001; Olan et al., 2024), presenting crit- 191

ical challenges to RAG systems. Drawing from 192

linguistics, where “counterfactual" denotes state- 193

ments contrary to fact (Feng and Yi, 2006), we 194

introduce the term “counterfactual noise" to char- 195

acterize factual errors. This concept aligns with 196

prior research (Fang et al., 2024). 197

Supportive Noise (SuN) Supportive evidence, 198

known as positive evidence, is highly semantically 199

relevant to a hypothesis and provides necessary in- 200

formation to support it (Kertész and Rákosi, 2012). 201

We introduce the term “supportive noise” to de- 202

scribe documents that exhibit high semantic rele- 203

vance but lack corresponding answer information. 204

Orthographic Noise (ON) The word “orthog- 205

raphy” originates from the Greek orthós (meaning 206

“correct”) and gráphein (meaning “to write”), and 207

refers to the way words are written in linguistics 208

(Skeat, 1993; Aloufi, 2021). Orthographic noise, 209

on the other hand, can refer to writing errors such 210

as spelling mistakes and word lengthening. 211

Prior Noise (PN) In linguistics, prior knowl- 212

edge refers to what a learner already knows before 213

solving a problem (Chafe, 1971). Our study defines 214

prior noise as questions based on false assumptions 215

or premises. For example, the question “Who was 216

the CEO of Google when they were restructured 217

into Alphabet in 2017?” contains prior noise be- 218

cause the restructuring occurred in 2015, not 2017. 219
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Figure 3: The overall framework for simulating the impact of real-world noise on RAG models. Initially, we
generate and obtain QA instances, utilizing ChatGPT to filter out ambiguous examples (Step 1). Then, we perform
entailment verification using NLI models to maintain evidence quality (Step 2). After that, we use tools like search
engines to create noisy documents (Step 3). Finally, we transform the free-form QA into a multiple-choice QA
format by providing several answer options for convenient automatic evaluation (Step 4). All experiments are
conducted in a zero-shot setting to avoid bias from demonstrations.

4 Noise RAG Benchmark Construction220

We discuss the data construction and evaluation221

metrics. The overall framework is illustrated in222

Figure 3.223

4.1 Data Construction224

As shown in Figure 3 (A), our framework com-225

prises four essential steps, including QA Instance226

Generation, Entailment Verification, Noise Intro-227

duction and Testbeds Construction.228

Step 1: QA Instance Generation For prior noise,229

we collect article snippets from mainstream me-230

dia and Wikipedia, covering various time periods231

and domains such as sports, politics, and finance.232

We then design prompts for ChatGPT to generate233

relevant events, questions, and answers for each234

snippet. Note that the generated questions con-235

tain prior noise (factual errors), which we man-236

ually review to ensure that they are reasonably237

answerable by LLMs. For the remaining seven238

types of noise (SeN, DN, ISN, CN, SuN, ON, PN),239

we obtain question-answering (QA) pairs from240

existing datasets, following previous work (Fang241

et al., 2024; Cuconasu et al., 2024; Yoran et al.,242

2024). After obtaining candidate QA pairs, we243

employ ChatGPT to remove ambiguous or difficult-244

to-assess pairs, followed by a manual review. For245

example, questions like “How many companies246

have a market capitalization of over $25 billion247

and pledged to reduce greenhouse gas emissions?”248

should be excluded due to their broad potential an- 249

swers and the dynamic market values of companies. 250

Similar criteria are applied to other instances. 251

Step 2: Entailment Verification As illustrated 252

in Xie et al. (2024); Yoran et al. (2024), effective 253

evidence should strongly support its answer. For 254

example, golden evidence about David Beckham 255

should support that he played for Real Madrid be- 256

fore joining LA Galaxy. Therefore, we employ 257

the natural language inference model, bart-large- 258

mnli-407M (Lewis et al., 2019) to ensure evidence 259

properly entails the answer. We only keep those 260

examples with an entailment probability p ≥ 0.8. 261

Step 3: Noise Introduction We construct diverse 262

retrieval documents for noise testbeds. For coun- 263

terfactual noise, we extract related entities and re- 264

lations from Google search results to create coun- 265

terfactual answers. ChatGPT is then employed 266

to construct corresponding supportive evidence, 267

followed by entailment verification. For Support- 268

ive and semantic noise, we utilize the 2018 En- 269

glish Wikipedia dump (Karpukhin et al., 2020) as 270

source documents, with off-the-shelf Contriever- 271

MS MARCO model (Izacard et al., 2022) for re- 272

trieval and the lightweight text embedding model 273

all-MiniLM-L6-v2 (Wang et al., 2021) for seman- 274

tic relevance filtering. To simulate illegal sentence 275

noise, we construct meaningless sentences by ran- 276

domly combining words from model vocabulary, 277

mimicking real-world garbled text. Datatype noise 278
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is created by prompting ChatGPT to insert URLs279

or code snippets while preserving key answer in-280

formation. Finally, orthographic noise is generated281

using the open-source textnoisr package (Preligens282

Lab, 2023). This pipeline enables a comprehensive283

assessment of model performance across a range284

of noise scenarios.285

Step 4: Testbeds Construction After obtaining286

high-quality QA instances and diverse retrieval doc-287

uments, we build testbeds to evaluate model perfor-288

mance under various noise conditions. Given the289

challenges in automatically assessing LLMs’ re-290

sponses to open-ended QA tasks (Xie et al., 2024),291

we convert free-form QA into a multiple-choice292

format. This constrains the response space and293

facilitates more accurate evaluation. Specifically,294

for each QA pair, LLMs choose from 4 options:295

the correct answer, two counterfactual alternatives,296

and “Uncertain". The order of the golden option297

remains entirely random to avoid LLMs’ sensitivity298

to option order (Wu et al., 2024).299

Finally, eight datasets are obtained for Noiser-300

Bench. Following (Yoran et al., 2024; Wang et al.,301

2024), we randomly select 500 samples from each302

dataset as test cases or use all samples if the size of303

this dataset is smaller than 500.304

4.2 Evaluation Metrics305

This benchmark aims to reveal the role that RAG306

noise plays on LLMs. We use accuracy as the pri-307

mary metric and also report the weighted average308

accuracy across datasets.309

5 Experiment Setup310

5.1 Datasets311

We experiment with multiple QA datasets, which312

are categorized into four types based on the re-313

quired reasoning skills:314

• Single-hop: Questions requiring one-step rea-315

soning. We evaluate using the Natural Ques-316

tions (NQ) (Kwiatkowski et al., 2019) and317

RGB (Chen et al., 2024) datasets.318

• Explicit Multi-hop: Questions where multi-319

ple reasoning steps are explicitly expressed.320

We utilize HotpotQA (Yang et al., 2018),321

2WIKIMQA (Welbl et al., 2018) and Bam-322

boogle dataset (Press et al., 2022).323

• Implicit Multi-hop: Questions where inter-324

mediate steps are not explicitly stated, often325

requiring commonsense knowledge for im- 326

plicit reasoning. We use StrategyQA (Geva 327

et al., 2021) and TempQA (Jia et al., 2018). 328

• Mixed-Hop: Questions requiring single- or 329

multi-hop reasoning. We use our constructed 330

dataset, PriorQA. 331

5.2 Baseline Models 332

We evaluate eight LLMs of different architectures 333

and scales: Llama3-Instruct (8B, 70B) (Meta, AI, 334

2024), Qwen2-7B-Instruct (Yang et al., 2024), Mis- 335

tral (7B, 8x7B) (Jiang et al., 2023, 2024), Vicuna- 336

13B-v1.5 (Chiang et al., 2023), Llama2-13B (Tou- 337

vron et al., 2023), and Baichuan2-13B (Yang et al., 338

2023). This enables a comprehensive assessment 339

of noise across various dimensions. 340

6 Results and Analysis 341

First, we examine the roles of RAG noise (6.1). 342

While prior work has analyzed its harmful effects, 343

we focus on its beneficial aspects (6.2). We evalu- 344

ate these benefits across four dimensions: (1) Gen- 345

eralization across Models, (2) Noise Robustness 346

Across Scenarios, (3) Noise Ratio Impact, and (4) 347

Statistical Validation. Finally, we investigate the 348

underlying mechanisms of these phenomena (6.3). 349

6.1 Roles of RAG Noise 350

Table 1 illustrates the impact of diverse noise 351

types (the first six) on two open-source models: 352

Llama3-8B-Instruct and Qwen2-7B-Instruct. We 353

observe consistent performance trends across mul- 354

tiple datasets and retrieval noises. Based on these 355

trends, we can categorize retrieval noises into two 356

types: harmful noise (counterfactual, supportive, 357

and orthographic) and beneficial noise (semantic, 358

datatype, and illegal sentence). We find that: 359

(1) For harmful noise, counterfactual noise im- 360

pacts model performance most significantly by dis- 361

rupting accurate fact discernment and answer gen- 362

eration. As shown in Figure 1, the false statement 363

“Beckham was a prominent player for Manchester 364

United” leads the model to disregard correct infor- 365

mation and respond erroneously. 366

(2) For beneficial noise, illegal sentence noise 367

exhibits the most notable improvement in model 368

performance. It improves accuracy by an average 369

of 3.32% and 1.65% for two models, respectively, 370

and consistently achieves powerful performance 371

across diverse datasets. 372
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Table 1: Impact of diverse noise types on accuracy (%) for Llama3-8B-Instruct and Qwen2-7b-Instruct across seven
datasets. We assess performance across various retrieval scenarios: “Base” (no retrieval), “Golden Only” (only
golden retrieval context), and “Golden & XXX" (golden context + specific retrieval noises, including Counterfactual,
Supportive, Orthographic, Semantic, Datatype, Illegal Sentence Noise). The green and red values indicate the
performance gap from "Golden Only". We also provide the weighted average accuracy for each noise type. The best
two results are shown in bold and underlined.

Llama3-8B-Instruct

Scenario
Single-hop Multi-hop (Explicit) Multi-hop (Implicit)

Average
NQ RGB HotpotQA 2WikiMQA Bamboogle StrategyQA TempQA

Base 61.34 47.00 53.80 34.40 32.00 58.80 50.54 51.58
Golden Only 93.06 80.00 97.80 79.80 87.20 73.40 91.94 86.57
Golden & CN 58.86 36.33 44.20 21.20 61.60 43.20 67.74 45.58−40.99

Golden & SuN 90.58 80.00 95.60 81.00 93.60 69.40 93.01 85.37−1.20

Golden & ON 93.31 75.00 96.20 78.60 89.60 63.60 90.86 83.99−2.58

Golden & SeN 96.53+0.47 81.33+1.33 98.40+0.60 87.20+7.40 93.60+6.40 68.40 96.24+4.30 88.73+2.16

Golden & DN 93.19+0.13 81.67+1.67 95.00 82.00+2.20 88.00+0.80 73.60+0.20 94.62+2.68 86.91+0.34

Golden & ISN 96.65+0.65 83.00+1.33 98.80+1.00 87.40+7.60 94.40+7.20 72.60 97.85+5.91 89.89+3.32

Qwen2-7B-Instruct

Base 58.24 31.33 50.20 22.60 31.20 42.40 40.86 43.01
Golden Only 97.03 76.33 98.40 78.00 94.40 67.00 94.62 86.46
Golden & CN 41.88 26.00 38.40 12.40 39.20 37.60 45.16 33.96−52.50

Golden & SuN 90.46 74.00 96.40 80.40 92.00 64.00 90.32 83.65−2.81

Golden & ON 95.66 74.00 97.80 80.00 91.20 54.60 94.62 83.82−2.64

Golden & SeN 96.53 77.67+1.34 98.80+0.40 77.00 96.80+2.40 66.80 97.31+2.69 86.60+0.14

Golden & DN 96.03 84.33+9.00 98.20 79.60+1.60 93.60 71.80+4.80 95.70+1.08 88.11+1.65

Golden & ISN 96.65 80.00+3.67 99.00+0.60 83.80+5.80 96.80+2.40 66.80 97.85+1.23 88.11+1.65

Figure 4: Impact of ISN on the average accuracy of eight
representative LLMs on RGB. Red solid lines indicate
means and purple dashed lines show medians.

For prior noise, we evaluate on our PriorQA373

dataset in Appendix Table 7. Questions in Pri-374

orQA contain factual errors, such as “Which coun-375

try hosted 1980 FIFA World Cup?” (1980 FIFA376

World Cup was not held). Accuracy is measured by377

whether LLMs correctly identify and respond with378

“The question is factually incorrect”. LLMs achieve379

79.93% average accuracy in handling prior noise.380

However, when models fail to identify prior errors381

and continue retrieval, accuracy drops to 34.20%.382

his highlights the importance of detecting factual383

errors in queries before generating responses.384

Table 2: Effects of beneficial noise on Self-RAG
(13B). We report enhanced accuracy ratios (%), and
the weighted average values (WA, %) are also provided.

Scenario NQ RGB StrategyQA WA

Golden only +3.12 +1.74 +18.88 +7.77
Golden & DN +1.84 +1.96 +13.50 +5.49
Golden & ON +1.76 +3.63 +10.00 +4.67
Average +2.24 +2.45 +14.13 +5.98

6.2 Additional Results on Beneficial Noise 385

Generalization across Models To demonstrate 386

beneficial noise’s broad applicability, we examine 387

its effects across model architectures (Figure 4) 388

and RAG configurations (Table 2). For brevity, we 389

present illegal sentence noise results in the main 390

text, with full results in the Appendix. 391

Results across various architectures and scales 392

are shown in Figure 4, we evaluate the impact of 393

illegal sentence noise (ISN) on eight LLMs by pre- 394

senting average accuracy across scenarios with no 395

noise, harmful noise (e.g. CN, ON), and beneficial 396

noise (e.g. DN). We apply proportional scaling to 397

CN data to make a clearer illustration within one 398

figure while maintaining consistent conclusions. 399

The results indicate that ISN significantly enhances 400
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Figure 5: Results for the impact of illegal sentence noise on the Llama3-8B-instruct and Qwen2-7B-instruct models
when exposed to five typical noise categories across four datasets, including both single-hop (S) and multi-hop
(explicit: EM, implicit: IM) reasoning tasks. The bar charts show performance differences upon introducing illegal
sentence noise. The line graphs illustrate the average accuracy improvement across noise types per dataset.

Table 3: Results for different illegal sentence noise (ISN) ratios on RGB. L2-13B, L3-8B, Q2-7B, M-7B, V-13B,
B2-13B, L3-70B and M-8x7B represents Llama2-13B, Llama3-8B-Instruct, Qwen2-Instruct, Mistral-7B-Instruct-
v0.2, Vicuna-13B-v1.5, Baichuan2-13B-chat, Llama3-70B-Instruct, Mixtral-8x7B-Instruct.

Scenario
Small Large Average

L2-13B L3-8B Q2-7B M-7B V-13B B2-13B L3-70B M-8x7B

0 29.33 80.00 76.33 80.33 80.33 78.00 76.00 77.33 72.21
+ ISN 72.33 83.00 80.00 81.00 82.33 79.67 79.67 79.67 79.71+7.50

0.2 18.67 77.33 75.33 76.00 79.33 73.33 76.67 73.67 68.79
+ ISN 73.67 82.67 80.33 76.67 80.00 72.33 80.33 73.67 77.46+8.67

0.4 12.33 73.67 71.33 69.00 72.67 68.00 76.33 65.67 63.63
+ ISN 70.67 77.00 73.00 71.00 73.33 68.33 80.00 66.67 72.50+8.87

model performance in all scenarios, with the most401

substantial improvement under harmful noise.402

Noise effects on specialized RAG models are403

illustrated in Table 2. Introducing illegal sentence404

noise to the specialized RAG model Self-RAG405

(Asai et al., 2024) consistently enhances model per-406

formance across various datasets (NQ, RGB, and407

StrategyQA) and scenarios (without noise, with408

harmful or beneficial noise). This further validates409

the positive effects of beneficial noise.410

Noise Robustness Across Scenarios We analyze411

the effect of illegal sentence noise (ISN) in 5 sce-412

narios: no noise (i.e., Golden only), harmful noise413

(i.e., Golden & Counterfactual, Counterfactual only414

and Golden & Orthographic), and beneficial noise415

(i.e., Golden & Datatype). Figure 5 shows accu-416

racy gains with ISN introduction. Results indicate417

consistent improvements across datasets, especially418

when combined with harmful noise like counter- 419

factual, leading to an average accuracy increase of 420

over 10%. This highlights the potential significance 421

of beneficial noise in RAG applications. 422

Noise Ratio Impact To demonstrate the positive 423

effects at different harmful noise ratios, we present 424

results for orthographic noise disturbances with ra- 425

tios ranging from 0 to 0.4. As shown in Table 3, we 426

see that the introduction of illegal sentence noise 427

(beneficial noise) consistently enhances model per- 428

formance, thereby further illustrating the generaliz- 429

ability of beneficial noise. 430

Statistical Validation To statistically evaluate 431

the differences between scenarios with and with- 432

out beneficial noise, we apply the nonparamet- 433

ric Wilcoxon signed-rank test (Kotz and John- 434

son, 1992). This method effectively measures 435

the magnitudes of differences and detects statis- 436
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Table 4: Statistical significance of differences between
scenarios with and without beneficial noises.

Noise Llama3-8B-Instruct Qwen2-7B-Instruct

ISN 4.10e-5 4.88e-3
DN 1.71e-4 9.59e-4

tical significance between two conditions. We437

test the null hypothesis of no significant differ-438

ence (H0 : difference = 0) against the alter-439

native hypothesis of a significant difference (H1 :440

difference ̸= 0). Following (Seth et al., 2023;441

Wu et al., 2023), we use a significance level of442

0.05. As shown in Table 4, all p-values are below443

0.05, leading us to reject the null hypothesis (H0).444

These results provide strong statistical evidence445

that beneficial noise improves model performance.446

6.3 Analysis of Noise Phenomena447

We propose three hypotheses regarding how bene-448

ficial noise may enhance performance, which we449

confirm through case study and statistical analysis.450

• H1: Clearer reasoning process451

• H2: More standardized response formats452

• H3: Increased confidence with gold context453

Illustrative Case Study Table 13 in the appendix454

presents the reasoning process of Llama3-8B-455

instruct on the multi-hop dataset Bamboogle. With-456

out beneficial noise, the model ignores correct in-457

formation and exhibits logical flaws under coun-458

terfactual noise influence. This is exemplified by459

its erroneous statement: “The other options are460

incorrect, as they provide different birth dates for461

the author.” However, upon introducing beneficial462

noise, the model exhibits heightened attention to463

the golden context and successfully distinguishes464

between correct and incorrect information (H1).465

We hypothesize that beneficial noise enhances the466

LLMs’ ability to integrate its parameterized knowl-467

edge with retrieved information, thus improving468

its capacity to discern truth from falsehood. Fur-469

thermore, by comparing model outputs under two470

conditions, we observe that beneficial noise con-471

tributes to more standardized answer formats (H2).472

Statistical Characterization To verify three hy-473

potheses statistically, we use a two-step pro-474

cess. We first gather model outputs from multi-475

ple datasets before and after introducing beneficial476

Figure 6: Impact of beneficial noise on LLM output
uncertainty (anti-confidence). ISN and DN represent
Illegal Sentence Noise and Datatype Noise, with ⋆ indi-
cating mean uncertainty rate (µ).

noise. Then, we randomly sample 100 examples 477

per dataset to manually assess which condition pro- 478

duces more standardized output formats and clearer 479

reasoning processes. Outputs are deemed similar if 480

no significant difference exists between conditions 481

with and without beneficial noise. Results across 482

seven datasets show that, on average, 37 samples 483

with beneficial noise exhibit clearer reasoning com- 484

pared to 31 without (H1), while 26 samples with 485

beneficial noise demonstrate better output formats 486

versus 23 without (H2). 487

Second, as shown in Figure 6, we analyze the im- 488

pact of beneficial noise on LLM output uncertainty 489

across four powerful LLMs. Results indicate that 490

when combined with beneficial noise (ISN or DN), 491

LLMs generally exhibit lower uncertainty and in- 492

creased confidence in their outputs. This suggests 493

that LLMs pay more attention to provided golden 494

context and respond with greater confidence (H3). 495

7 Conclusion 496

We define and categorize seven types of RAG noise 497

into beneficial and harmful groups, exploring re- 498

trieval noise from linguistic and practical perspec- 499

tives. To conduct this evaluation, we propose a sys- 500

tematic framework for generating various retrieval 501

documents and establish a novel noise benchmark, 502

NoiserBench. Our experiments reveal that benefi- 503

cial noise can significantly enhance model perfor- 504

mance through clearer reasoning paths, standard- 505

ized answers, and increased confidence—acting 506

much like Aladdin’s Lamp. These findings may 507

offer insights for leveraging beneficial noise mech- 508

anisms in future research. 509
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Limitations510

While our systematic analysis of RAG noises in511

real-world scenarios offers valuable insights, sev-512

eral limitations warrant consideration. First, our513

analysis of noise phenomena remains relatively pre-514

liminary. Future work will examine the underly-515

ing mechanisms by investigating parameter vari-516

ations, particularly attention values, across each517

model layer. Additionally, the benchmark dataset518

constructed for this study comprises only a few519

thousand examples, which may be insufficient for520

comprehensive RAG methodology research. We521

plan to expand both the dataset diversity and scale522

to better serve the research community.523
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Appendix765

Within this supplementary material, we elaborate766

on the following aspects:767

• Appendix A: Models768

• Appendix B: Implementation Details769

• Appendix C: Results770

A Models 771

We provide brief introductions to LLMs used in 772

our experiments. For more details, please refer to 773

the official websites or the corresponding Hugging 774

Face Transformers repository. 775

• Llama2 & Llama3: The Llama series model, 776

developed by Meta AI’s FAIR team, is a 777

widely-used autoregressive language model. 778

These models, particularly Llama3, achieve 779

competitive performance compared to some 780

state-of-the-art closed-source LLMs. We use 781

the 13B model for Llama2, and the 8B and 782

70B models for Llama3. 783

• Vicuna-v1.5: The Vicuna model, derived 784

from fine-tuning the LLaMA-2 base model 785

by LMSYS, was developed using around 786

70K user-shared conversations obtained from 787

ShareGPT.com through public APIs. We use 788

the popular vicuna-13B here. 789

• Qwen2: Proposed by Alibaba Cloud, Qwen 790

series are strong language models, which have 791

been stably pretrained for up to 3 trillion to- 792

kens of multilingual data with a wide coverage 793

of domains, languages (with a focus on Chi- 794

nese and English), etc. Qwen2-7B-Instruct is 795

utilized. 796

• Mistral: The Mistral series includes the 797

Mistral-7B and Mixtral-8x7B models. The 798

Mistral-7B is an autoregressive language 799

model with 7 billion parameters, trained on a 800

diverse corpus to ensure high performance 801

in various tasks. The Mixtral-8x7B is a 802

high-quality sparse mixture of expert mod- 803

els (SMoE) with open weights. This tech- 804

nique increases the number of parameters of a 805

model while controlling cost and latency, as 806

the model only uses a fraction of the total set 807

of parameters per token. 808

• Baichuan2: Baichuan2 is the new generation 809

of open-source language models launched by 810

Baichuan Intelligence. It is trained on a high- 811

quality corpus with 2.6 trillion tokens and has 812

achieved the best performance in authoritative 813

Chinese and English benchmarks of the same 814

size. We use the 13B chat model. 815
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Figure 7: Example LLMs’ input for counterfactual evi-
dence generation. This prompt is composed of instruc-
tion, examples, and candidate counterfactual QA.

Table 5: Main libraries and the corresponding versions.

Package Version

vllm 0.2.6
torch 2.1.2+cuda12.4
transformers 4.36.2

B Implementation Details816

B.1 Compute Infrastructure817

We execute the experiments using the following818

compute specifications.819

• NVIDIA A100 80 GB GPU × 2820

• 256 GB RAM821

We use Python 3.10.0 and speed up inference us-822

ing vllm1, a fast and easy-to-use library. In Table 5,823

we list the main libraries along with their versions.824

B.2 Dataset Construction825

To construct our benchmark NoiserBench, we need826

to first gather candidate QA instances from mul-827

tiple sources. In this paper, our source data is828

obtained from seven publicly available datasets,829

including single-hop NQ and RGB, explicit multi-830

hop HotpotQA, 2WikiMQA, Bamboogle, and im-831

plicit multi-hop StrategyQA and TempQA. Table832

6 shows the full list of candidate instances, and in833

total, we use 26,855 instances.834

Subsequently, we introduce various noisy doc-835

uments using external tools. For counterfactual836

1https://github.com/vllm-project/vllm

Figure 8: Example LLMs’ input for supportive evidence
generation. This prompt is composed of instruction,
examples, and candidate QA.

Figure 9: Example LLMs’ input for datatype noise con-
struction. This prompt is composed of instruction, ex-
amples, candidate QA and corresponding evidence.

noise, we obtain relevant entities related to the 837

golden answer from Google search2 to construct 838

counterfactual answers. For orthographic noise, we 839

utilize the open-source textnoisr package3, which 840

enables the convenient introduction of noise to text 841

datasets and precise control of the quality of re- 842

sults. Four types of “action” are implemented: in- 843

sert, delete, substitute, and swap. For other types 844

of noise, we utilize the 2018 English Wikipedia 845

dump for document construction. We present the 846

prompts in Figure 7-9. 847

2We query Google search via SerpAPI: https://serpapi.
com

3https://github.com/preligens-lab/textnoisr
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Table 6: Statistics of source QA instances from a couple of knowledge-intensive datasets. ‘E’ and ‘I’ represent
explicit and implicit, respectively.

Dataset Category Source #Source pairs #Samples Example

NQ Single-hop Train set 2,889 500 Who won the 7 man elimination chamber
match?

RGB Single-hop Test set 300 300 How many vehicles did Tesla deliver in 2021?
HotpotQA Multi-hop (E) Dev set 7,405 500 What election will take place on the same day

as the United States Senate election in Texas?
2WikiMQA Multi-hop (E) Dev set 12,576 500 Where was the place of death of Isabella of

Bourbon’s father?
Bamboogle Multi-hop (E) All 125 125 Who was the first African American mayor of

the most populous city in the United States?
StrategyQA Multi-hop (I) Train set 2,290 500 Can Arnold Schwarzenegger deadlift an adult

Black rhinoceros?
TempQA Multi-hop (I) All 1,270 186 Who was the commander-in-chief of the colo-

nial army during the revolutionary war?
PriorQA Mix-hop All 500 500 What were the primary strategies employed

by the British army duringthe American Civil
War?

B.3 Implementation Details848

We utilize a CN for retrieval, where relevant Chi-849

nese documents are retrieved in response to the850

input query to enhance the prompt, rather than rely-851

ing on a fixed set of N Chinese examples. This CN852

corpus is constructed using data from Wikidata and853

Google Search, intentionally designed to include854

misleading or outdated information in order to sim-855

ulate real-world scenarios where context might be856

inaccurate or evolving.857

During the experiment, we found that the opti-858

mal Top-k value for the contriver was 5, and the859

similarity threshold for all-MiniLM-L6-v2 was set860

to 0.3.861

C Results862

In this section, we provide supplementary results to863

further illustrate the role of RAG noise, especially864

beneficial noise. Our analysis primarily focuses on865

datatype noise, orthographic noise, and prior noise,866

as illegal sentence noise has been extensively dis-867

cussed in the main text, and other forms of noise868

have been explored in previous studies. These addi-869

tional results aim to provide a more comprehensive870

understanding of various noise types and their ef-871

fects on the model’s performance.872

C.1 Results on Prior Noise873

Table 7 presents results for RAG models affected874

by prior noise using our dataset, PriorQA. Ques-875

tions in this dataset contain factual errors, such876

as “Which country hosted the 1980 FIFA World877

Cup?” (Actually, 1980 FIFA World Cup was not878

Table 7: The effects of prior noise on LLMs, which is
measured by accuracy (%). ‘Base’ indicates the scenario
with no retrieval. ‘Misleading’ refers to counterfactual
content associated with prior noise. ‘Background’ de-
notes multiple retrieval results obtained after decompos-
ing the query into its constituent entities.

Models Base Misleading Background

Llama3-8B 93.40 47.80 90.00
Qwen2-7B 94.20 28.20 98.20
Mistral-7B 96.60 28.60 99.20
Llama2-13B 21.00 5.60 61.60
Vicuna-13B 91.00 25.80 99.20
Baichuan2-13B 90.00 45.20 96.40
Llama3-70B 99.00 78.40 99.80
Mixtral-8x7B 91.20 39.00 99.60

Average 79.93 34.20 88.47

held). Accuracy is assessed by whether models 879

correctly identify and respond with “The question 880

is factually incorrect”. We observe that all mod- 881

els except Llama2-13B perform well with direct 882

prompts and benefit from retrieving background in- 883

formation due to extensive pre-training knowledge. 884

However, models like Llama2-13B, which persist 885

in searching based on incorrect priors, may retrieve 886

false information and exhibit diminished perfor- 887

mance. This underscores the need to detect prior 888

errors in user queries before answering in future 889

RAG system designs. 890

C.2 Results Across Eight Models 891

As shown in Figure 10, we first present the aver- 892

age performance over seven datasets for datatype 893
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Table 8: Impact of various noise types on accuracy (%) for eight representative LLMs on the RGB dataset. We
assess performance across various retrieval scenarios: “Base” (no retrieval), “Golden Only” (only golden retrieval
context), and “Golden & XXX” (golden context + specific retrieval noises, including Counterfactual, Supportive,
Orthographic, Semantic, Datatype, Illegal Sentence Noise).

Scenario Small Large Average
L2-13B L3-8B Q2-7B M-7B V-13B B2-13B L3-70B M-8x7B

Base 17.00 47.00 31.33 27.00 35.33 27.67 60.00 43.00 36.04
Golden Only 29.33 80.00 76.33 80.33 80.33 78.00 76.00 77.33 72.20
Golden & CN 14.00 36.33 26.00 19.33 19.33 15.00 42.33 31.00 25.42
Golden & SuN 26.00 80.00 74.00 72.33 61.67 65.33 73.67 76.67 66.21
Golden & ON 14.33 75.00 74.00 72.67 77.67 69.00 77.00 72.67 66.54
Golden & SeN 18.00 81.33 77.67 56.67 52.00 59.00 76.33 77.33 62.30
Golden & DN 40.00 81.67 84.33 85.33 85.67 81.67 85.00 81.00 78.08
Golden & ISN 72.33 83.00 80.00 81.00 82.33 79.67 79.67 79.00 79.63

Figure 10: Impact of datatype noise (DN) on the av-
erage accuracy of eight representative LLMs on RGB.
‘Golden’, ‘SuN’, ‘CN’, and ‘ISN’ represent golden con-
text only, golden context with supportive, counterfactual,
and illegal sentence noise, respectively. The mean is
marked by a red solid line and the median by a purple
dashed line.

noise to demonstrate that beneficial noise improves894

performance across various LLMs with different895

model architectures and scales. We apply pro-896

portional scaling to counterfactual data to make897

a clearer illustration within one figure while main-898

taining consistent conclusions. The results indicate899

that datatype noise significantly enhances model900

performance in all scenarios, with the most sub-901

stantial improvement under harmful noise.902

Additionally, we provide detailed results for903

eight models on the RGB dataset, which is based904

on recent news corpora and thus better reflects the905

impact of noise. As shown in Table 8, all models906

exhibit improved performance with the addition of907

beneficial noises such as illegal sentence noise and908

datatype noise. The effect of semantic noise varies909

among models, with performance gains observed910

Figure 11: The experimental results of noise robustness
measured by accuracy (%), under different orthographic
noise ratios. Performance is benchmarked across state-
of-the-art open-source models, such as Llama3-8B-
instruct, for noise ratios ranging from 0 to 0.8. The
maximum and minimum accuracy for all models at each
noise ratio is annotated, with a shaded region represent-
ing ±0.5% threshold to illustrate the overall trend in
model performance better as the noise ratio increases.

in some cases. In contrast, counterfactual, support- 911

ive, and orthographic noises consistently degrade 912

model performance, highlighting their harmful na- 913

ture. Therefore, we can confidently classify illegal 914

sentence noise and datatype noise as beneficial, and 915

counterfactual, supportive, and orthographic noises 916

as harmful. The classification of semantic noise 917

as beneficial or harmful depends on the models, as 918

it can be beneficial in some cases and harmful in 919

others. In this paper, we provisionally categorize 920

it as beneficial due to its generally positive impact 921

(4 models) and its alignment with conclusions pro- 922

posed in prior research. 923
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Figure 12: Results for the impact of datatype noise on the Llama3-8B-instruct and Qwen2-7B-instruct models when
exposed to five typical noise categories across four datasets, including both single-hop (S) and multi-hop (explicit:
EM, implicit: IM) reasoning tasks. The bar charts show performance differences upon introducing datatype noise.
The line graphs illustrate the average accuracy improvement across noise types per dataset.

Table 9: Additional results for different illegal sentence noise (ISN) ratios on RGB. L2-13B, L3-8B, Q2-7B, M-7B,
V-13B, B2-13B, L3-70B and M-8x7B represents Llama2-13B, Llama3-8B-Instruct, Qwen2-Instruct, Mistral-7B-
Instruct-v0.2, Vicuna-13B-v1.5, Baichuan2-13B-chat, Llama3-70B-Instruct, Mixtral-8x7B-Instruct.

Scenario
Small Large Average

L2-13B L3-8B Q2-7B M-7B V-13B B2-13B L3-70B M-8x7B

0 29.33 80.00 76.33 80.33 80.33 78.00 76.00 77.33 72.21
+ ISN 72.33 83.00 80.00 81.00 82.33 79.67 79.67 79.67 79.71+7.50

0.2 18.67 77.33 75.33 76.00 79.33 73.33 76.67 73.67 68.79
+ ISN 73.67 82.67 80.33 76.67 80.00 72.33 80.33 73.67 77.46+8.67

0.4 12.33 73.67 71.33 69.00 72.67 68.00 76.33 65.67 63.63
+ ISN 70.67 77.00 73.00 71.00 73.33 68.33 80.00 66.67 72.50+8.87

0.6 8.67 72.33 66.00 65.33 67.00 63.67 82.00 64.33 61.17
+ ISN 69.33 72.00 66.67 64.67 70.00 66.33 79.33 63.67 69.00+7.33

0.8 8.00 70.33 62.67 61.33 68.67 63.67 78.00 62.33 59.38
+ ISN 68.33 70.67 64.67 63.33 69.00 66.33 78.33 63.67 68.04+8.66

C.3 Results Across the Number of Quires924

We leverage keywords extracted from queries (rang-925

ing from 1 to 4 keywords per query) for content926

retrieval. Experimental results on the 2WikiMQA927

dataset demonstrate that the core findings regarding928

the impact of beneficial and harmful noise remain929

consistent across queries of varying complexity.930

C.4 Performance Under Other Noise931

Disturbances932

To illustrate the impact of beneficial noise under933

other noise disturbances, we analyze the effect of934

datatype noise (DN) in five scenarios: no noise935

(i.e., Golden only), harmful noise (i.e., Golden &936

Table 10: Accuracy in different scenarios and with dif-
ferent numbers of queries.

Scenario
Number of queries

1 2 3 4

G only 79.80 84.20 84.60 84.60
G&CN 21.20 23.60 23.60 23.80
G&ISN 87.40 89.40 89.20 89.40

counterfactual noise, Golden & supportive noise), 937

and beneficial noise (i.e., Golden & illegal sentence 938

noise, Golden & Semantic noise). Figure 12 shows 939

the model’s accuracy gains after introducing DN 940
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Table 11: Additional control experiments by varying the
repetition of answer-containing text chunks.

512 748 1024 2048 Avg

Golden only 79.80 83.00 83.20 83.40 82.35
Golden & CN 21.20 23.60 23.80 23.80 23.10
Golden & SuN 81.00 82.00 82.60 82.40 82.00
Golden & ON 78.60 79.80 80.00 80.00 79.60
Golden & SeN 87.20 89.20 89.00 89.20 88.65+6.30

Golden & DN 82.00 85.60 85.80 86.20 84.90+2.55

Golden & ISN 87.40 89.80 90.00 89.80 89.25+6.90

in these scenarios. We find that DN generally en-941

hances performance across all datasets, particularly942

when combined with harmful noise like counter-943

factual noise, with average accuracy improvements944

exceeding 10 percentage points. This consistent en-945

hancement underscores beneficial noise’s potential946

significance for future RAG research.947

C.5 Noise Robustness of RAG Models under948

Different Noise Ratios949

We provide the results of four representative LLMs950

under different orthographic noise ratios. Specifi-951

cally, for insert, delete, and substitute actions, the952

noise ratio ranges from 0.0 to 0.9, while for swap-953

ping, it ranges from 0.0 to a maximum of 0.5. As954

shown in Figure 11, the maximum and minimum955

accuracy for all models at each noise ratio is an-956

notated, with a shaded region representing ±0.5%957

threshold to better illustrate the overall trend in958

model performance as the noise ratio increases. We959

observe that increasing noise rates pose a challenge960

for RAG in LLMs, particularly when the ratio ex-961

ceeds 0.3. Therefore, we use a default ratio of 0.3962

in our main results to objectively assess the impact963

of harmful noise.964

C.6 The effects of Beneficial Noise under965

Different Noise Ratios966

To demonstrate the positive effects at different967

harmful noise ratios, we present comprehensive re-968

sults for illegal sentence noise disturbances with ra-969

tios ranging from 0 to 0.8. As shown in Table 9, we970

see that the introduction of illegal sentence noise971

(beneficial noise) consistently enhances model per-972

formance, thereby illustrating the generalization of973

beneficial noise.974

C.7 Additional Control Experiments975

We conducted additional control experiments by976

varying the repetition of answer-containing text977

chunks. Results on the 2WikiMQA dataset using978

Table 12: Evaluation results (accuracy (%) for math-
ematical reasoning using GPT-3.5-turbo as the base
model. The four conditions are zero-shot without noise,
two-shot without noise, and perturbations to numeric
and operator elements in 2-shot examples. △ denotes
the accuracy improvement (%) with noise compared to
no noise.

Scenario GSM8K GSMHard Average (△)

0-shot 50.40 40.20 45.30
2-shot-no-noise 55.40 47.80 51.60
2-shot-num 65.40 50.60 58.00 (+6.40)
2-shot-operator 62.20 53.20 57.70 (+6.10)

Llama3-8B are presented. While these factors did 979

have some impact on performance, our core find- 980

ing—that RAG noise can be categorized into bene- 981

ficial and harmful types—remained consistent. 982

C.8 The Impact of RAG Noise on Other Tasks 983

like Mathematical Reasoning 984

Given that previous discussions focused on QA 985

tasks, it remains unclear whether the beneficial 986

noise affects other tasks. To address this, we 987

conduct experiments on mathematical reasoning, 988

which requires higher cognitive and reasoning abil- 989

ities. Following prior research, we apply the PAL 990

methodology to evaluate mathematical reasoning 991

results. This approach involves using LLMs to 992

parse natural language problems, generate interme- 993

diary programmatic solutions, and execute these 994

solutions via a Python interpreter. 995

As shown in Table 12, introducing numeric or 996

operator perturbations to retrieved examples sig- 997

nificantly improves model performance (by 6.40% 998

and 6.10%, respectively). We hypothesize that this 999

mechanism resembles adversarial training (Wang 1000

et al., 2019). Specifically, these perturbations likely 1001

help the model implicitly learn to identify and ad- 1002

dress potential errors or ambiguities, thereby en- 1003

hancing its robustness. As a result, LLMs are better 1004

equipped to reason accurately amidst unclear or 1005

noisy test examples due to this implicit training. 1006

C.9 Case Study 1007

Table 13-16 presents the reasoning process of 1008

Llama3-8B-instruct. Without beneficial noise, the 1009

model ignores correct information and exhibits 1010

logical flaws under counterfactual noise influence. 1011

However, upon introducing beneficial noise, the 1012

model exhibits heightened attention to the golden 1013

context and successfully distinguishes between cor- 1014

rect and incorrect information 1015
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Table 13: Example #1 of LLM outputs on the single-hop dataset without and with beneficial noise (BN). The
blue and green colors denote the correct and incorrect responses, respectively. ‘GT’ denotes ground truth. Upon
introducing BN, LLMs exhibit clearer reasoning processes, more standardized response formats, and increased
focus on golden context.

Retrieved
Context
wo BN

[1] Paul R. Ehrlich, author of "The Population Bomb," was born on June 14, 1931. Ehrlich,
a renowned biologist, published his influential book on population control in 1968, which
sparked . . . [Counterfactual]
[2] The author of The Population Bomb, Paul Ehrlich, was born on May 29, 1932. He is
an American biologist and educator, known for his warnings about the consequences of
overpopulation . . . [Golden Context]

Question When was the author of The Population Bomb born?
‘A’: June 14, 1931 ‘B’: Uncertain ‘C’: May 29, 1932 (Ground Truth) ‘D’: April 22,
1934

Answer
wo BN

A ###\n\n### Explanation:\n The correct answer is ‘A’: June 14, 1931. According to
the information provided, Paul R. Ehrlich, the author of “The Population Bomb” was born
on June 14, 1931. The other options are incorrect, as they provide different birth dates for
the author. é

Answer
w BN

C\n### Explanation: According to information [2], Paul Ehrlich, the author of The
Population Bomb, was born on May 29, 1932. Therefore, the correct answer is ‘C’.
Information [1] provides a different birthdate, but it is not the correct answer. The other
options are not mentioned in the given information. Ë

Table 14: Example #2 of LLM outputs on the single-hop dataset without and with beneficial noise (BN). The
blue and green colors denote the correct and incorrect responses, respectively. ‘GT’ denotes ground truth. Upon
introducing BN, LLMs exhibit clearer reasoning processes, more standardized response formats, and increased
focus on golden context.

Retrieved
Context
wo BN

[1] Northrop Corporation built the fastest air-breathing manned aircraft, the Northrop
Grumman B-2 Spirit. Known for its stealth technology and high-speed capabilities, it
represents a pinnacle in modern aviation technology. [Counterfactual]
[2] The Lockheed Corporation built the fastest air-breathing manned aircraft, the Lockheed
SR-71 Blackbird. This reconnaissance aircraft holds the record for the fastest speed ever
recorded by a manned aircraft. [Golden Context]
. . .

Question Who built the fastest air-breathing manned aircraft?
‘A’: Uncertain ‘B’: Boeing Corporation ‘C’: Lockheed Corporation (GT) ‘D’:
Northrop Corporation

Answer
wo BN

D\n \n### Explanation:\n The information provided states that Northrop Corporation
built the Northrop Grumman B-2 Spirit, which is known for its stealth technology and
high-speed capabilities. However, it does not explicitly state that this aircraft is the fastest
air-breathing manned aircraft. é

Answer
w BN

C\n### Explanation: The information provided states that the Lockheed Corporation
built the Lockheed SR-71 Blackbird, which is the fastest air-breathing manned aircraft.
Therefore, the answer is ’C’. Ë
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Table 15: Example #3 of LLM outputs on the multi-hop dataset without and with beneficial noise (BN). The blue
and green colors denote the correct and incorrect responses, respectively. Upon introducing BN, LLMs exhibit
clearer reasoning processes, more standardized response formats, and increased focus on golden context.

Retrieved
Context
wo BN

[1] Robert Harley, Earl of Oxford and Earl Mortimer, was the paternal grandfather of
Edward Harley, 5th Earl of Oxford and Earl Mortimer. He was a prominent statesman and
served as the Lord High Treasurer of Great Britain. [Counterfactual]
[2] John Harley (29 September 1728 – 7 January 1788) was a British bishop. Harley
was the second son of Edward Harley, 3rd Earl of Oxford and Earl Mortimer. He was
Archdeacon of Shropshire from 1760 to 1769 and then Archdeacon of Hereford from
1769 to 1787. [Golden Context]
. . .

Question Who is the paternal grandfather of Edward Harley, 5Th Earl Of Oxford And Earl Mor-
timer?
‘A’: Edward Harley, 3rd Earl of Oxford and Earl Mortimer (GT) ‘B’: Uncertain ‘C’:
Uncertain ‘D’: Thomas Harley, 4th Earl of Oxford and Earl Mortimer

Answer
wo BN

C \n\n The paternal grandfather of Edward Harley, 5th Earl of Oxford and Earl Mortimer,
is Robert Harley, Earl of Oxford and Earl Mortimer. Therefore, the correct answer is ’C’.
é

Answer
w BN

A\n\n### Explanation: nThe information provided states that John Harley (1728-1788)
was the second son of Edward Harley, 3rd Earl of Oxford and Earl Mortimer. Therefore,
Edward Harley, 3rd Earl of Oxford and Earl Mortimer is the paternal grandfather of
Edward Harley, 5th Earl of Oxford and Earl Mortimer. Ë

Table 16: Example #4 of LLM outputs on the multi-hop dataset without and with beneficial noise (BN). The blue
and green colors denote the correct and incorrect responses, respectively. Upon introducing BN, LLMs exhibit
clearer reasoning processes, more standardized response formats, and increased focus on golden context.

Retrieved
Context
wo BN

[1] With an estimated base length of 230 meters, 200 men end to end would only cover
about 46% of the Great Pyramid of Giza’s base, highlighting the massive scale and size of
the ancient structure. [Counterfactual]
[2] The base of the Great Pyramid of Giza is 756 feet long. The average height of a man
is 5 foot 9. [Golden Context]
. . .

Question Can 200 men end to end cover Great Pyramid of Giza’s base?
‘A’: Uncertain ‘B’: False (GT) ‘C’: True

Answer
wo BN

C é

Answer
w BN

B\n\n### Information:\n The base of the Great Pyramid of Giza is 756 feet long. The
average height of a man is 5 foot 9. (int) The number of men required to cover the base
end to end is 756 / 5.75. Ë
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