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ABSTRACT

Generative models have demonstrated remarkable capabilities in generating pho-
torealistic images under proper conditional guidance. Such advancements raise
concerns about potential negative social impacts, such as the proliferation of fake
news. In response, numerous methods have been developed to differentiate fake
from real. Yet, their accuracy and reliability still need to be improved, especially
when facing state-of-the-art generative models such as large diffusion models.
Infrastructure-wise, the existing testing datasets are sub-optimal in terms of re-
search dimensions and product utility due to their limited data volume and insuf-
ficient domain diversity. In this work, we introduce a comprehensive new dataset,
namely ACID, which consists of 13M samples sourced from over 50 different
generative models versus real-world scenarios. The AI-generated images in this
collection are sampled based on fine-grained text prompts and span multiple res-
olutions. For the real-world samples, we broadly searched public data sources
and carefully filtered text-image pairs based on visual and caption quality. Using
ACID, we present ACIDNet, an effective framework for detecting AI-generated
images. ACIDNet leverages texture features from a Single Simple Patch (SSP)
branch and semantic features from a ResNeXt50 branch, and achieves overall
cross-benchmark accuracy of 86.77%, significantly outperforming previous meth-
ods such as SSP and CNNSpot by over 10%. Both our model and dataset will be
open-released to the public.

1 INTRODUCTION

Over the past few years, image generation has seen significant advancements due to the development
of deep learning models such as VAEs [24], GANs [17], and diffusion-based systems [42]. While
these technologies have greatly facilitated creative endeavors, they also pose serious societal risks,
such as the generation of fake news through deepfake technologies [43]. Recently, the text-to-
image generation models, i.e., diffusion-based models [42], have become widely adopted due to
their impressive performance. However, this capability is also being exploited to create fake images
that are increasingly difficult to distinguish from genuine ones. Consequently, there is an urgent
need to develop effective methods for detecting AI-created images.

Numerical methods have been developed to detect AI-created images. While most detectors have
focused on identifying images produced by GANs [52], PatchCraft [59] introduced a generalized
detector capable of identifying GAN-based and diffusion-based images. This was further supported
by testing on a subset of the dataset proposed in the paper as a benchmark that encompasses a di-
verse range of AI-created images. Additionally, SSP [7] implemented a pipeline that uses a single
simple patch as a fingerprint, achieving improved results on this benchmark. However, these two
methods still exhibit limitations for real-world application. Both are predicated on the same hypoth-
esis: the noise will appear in the simple or background patches of the generated images affected by
the CNN-based up-sampler [14]. This assumption may not always hold, potentially affecting their
effectiveness in diverse scenarios. The underlying assumption of these methods is validated within
their benchmark, which features generated images that are simplistic and of low quality, often con-
taining numerous artifacts, as shown in Figure 1a. However, as generative models have evolved,
recent advancements enable the production of images with more precise and richer content, condi-
tioned through text. This progress underscores the need to develop more challenging datasets that
are better aligned with practical applications and current technologies.
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(a) Images of low significance: low quality and resolution, can be easily distinguished by humans.

(b) Images of higher significance: only one image in this set is not synthetic. Can you identify it?

Figure 1: Given the challenges that AI-created content poses to content trustworthiness, we aim to
focus more on images that are difficult for humans to distinguish. Besides, we are trying to make
images contain content of greater value in practical applications.

To address current limitations, we propose a new dataset named ACID that includes a total of 13M
authentic and AI-generated images, where over 95% of them have a resolution of at least 512×512.
The 4.1M real-world images sourced from ImageNet-21K [12], the COCO dataset [26], and various
free stock image repositories. Additionally, it contains 8.9M AI images either generated by single
generative models such as Kandinsky2.2 [4], Kandinsky 3 [3], Realistic Vision 5.1 [2], Realism
Engine 1.0 [41], Juggernaut XL V9 [45], RealVisXL 4.0 [49], Stable Diffusion XL [37], MidJourney
V5/V6 [29], Dall-E 2/3 [40, 32], Playground 2.5 [36], Stable Cascade [34] and Photo Realistic [35],
or by combinations of fine-tuned checkpoints and additional adapters from Civitai [10].

To develop a dataset that better aligns with practical applications, we propose a series of methods
for both AI-created and real-world images, incorporating a broader range of models. For AI-created
images, first, we employ meticulous prompt engineering to achieve realistic effects, examples of
which are illustrated in Figure 1b. Second, we generate images at the recommended resolutions
for each diffusion model to optimize performance. Finally, we collected images from Civitai [10]
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that are posted by community users, of relatively higher quality, and closer to the real-life usage of
generative models.

For a more complex real-world image dataset, we expand our collection beyond traditional pho-
tographs to include non-photorealistic images and those with minimal editing. This approach en-
hances the diversity and applicability of our benchmarking framework. Due to these efforts, among
the state-of-the-art pretrained classifiers [52, 20, 28, 50, 31, 53, 7], the highest accuracy rate on
our benchmark is only 65.65%, highlighting the necessity for a more robust baseline to improve
recognition of AI-created images. Using human evaluations, we also compare our ACID and other
benchmarks [59, 31]. These assessments demonstrated that ACID possesses a significantly greater
capacity to confuse human observers.

Alongside an dataset, we introduce an effective and robust method named ACIDNet , which con-
sists of two branches: a semantic branch and a texture branch. The semantic branch employs the
ResNeXt50 model [55] to extract semantic features from the entirety of the input image. Inspired
by the methodologies of SSP [7] and PatchCraft [59], the texture branch selects a patch exhibiting
the lowest degree of pixel fluctuation as input. The texture and semantic features are then concate-
nated and processed through a fully connected layer for binary classification. Notably, ACIDNet
achieves an accuracy rate of 98.01% on our benchmark of 100K images, representing a significant
improvement of approximately 21.1% over the SSP method. We further validate the robustness of
ACIDNet using the benchmark introduced in PatchCraft [59] and UnivFD [31]. On these bench-
marks, ACIDNet consistently achieves an average accuracy of 81.1%, which is comparable to other
state-of-the-art baselines.

To summarize, our contributions are as follows:

• We introduce a comprehensive new dataset called ACID consisting of 22M images, fea-
turing high-quality outputs from over 50 distinct generative models alongside filtered real-
world images. Over 95% of the images have a minimum resolution of 512× 512 pixels.

• We have developed a series of methodologies to construct a dataset that includes prompt
engineering for AI-created images, along with the collection of non-realistic and simply
edited photos to represent real-world scenarios. According to human evaluation, the dataset
with such methods poses a significant challenge in differentiating AI-created images from
real-world images due to their enhanced quality and complexity.

• An effective and robustness baseline called ACIDNet is proposed in this work, which is
composed of a semantic branch utilizing ResNeXt50 and a texture branch derived from SSP
methodologies. We also have an ablation study to show the effectiveness of our ACIDNet.

• We have conducted extensive testing of various AI detectors on our dataset to demonstrate
its challenging nature. Notably, our ACIDNet model achieves an impressive accuracy of
98.01% on this benchmark, marking a significant advancement in the recognition of AI-
created images. We plan to release both the model weights and the dataset to the commu-
nity, thereby contributing to advancements in AI safety.

2 RELATED WORKS

Image generation research has made significant progress in recent years. Many achieved to syn-
thesize realistic-looking images using the well-known GAN pipeline [5, 9, 22, 21, 33] as well as
the newly raised diffusion pipeline [37, 39, 40, 57, 48, 42, 56]. The inference of GAN models [5,
9, 22, 21, 33] requires a generator doing one feedforward pass conditioned on randomly sampled
latent vectors. While the diffusion models [37, 39, 40, 57, 48, 42, 56] iteratively denoise normally
sampled 2D noises (i.e. backward diffusion process) and synthesize real-looking images at the end
of the loop. In recent years, the open community of CV has proposed a lot of high-performing
diffusion models [4, 3, 2, 41, 45, 49, 36, 35] that gathered significant attention both in industry
and research. As the goal of this work is to propose a reliable dataset for GenAI image detection,
we therefore sampled synthetic images using the models listed above to achieve better quality and
broader domains.

AI-generated image detection aims to determine whether an image is real or has been produced by
generative models. Traditionally, this task is approached as a binary classification problem, where
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simple CNN models often perform adequately if the training and testing images originate from the
same generative model [52, 20, 53]. However, models such as UnivFD [31] that leverage large
pretrained vision-language models for feature extraction tend to experience significant performance
degradation when tested with images from previously unseen models [59]. To enhance the detection
of images from new, unseen generative models, Fredect [15] introduced a method that detects gen-
erated images based on frequency anomalies. Additionally, LNP [27] employs a denoising model to
extract noise patterns from images, while PatchCraft [59] focuses on the differential noise charac-
teristics between foreground and background for better generalization. Building upon these ideas,
SSP [7] simplifies the approach by using noise from a single, simple patch of the image. In this
work, we propose a novel ACIDNet as our baseline based on SSP and CNN-based structures, which
can obtain both texture features and semantic features.

3 ACID DATASET

3.1 MOTIVATION

Unlike traditional image classification tasks, the challenge of identifying AI-created images is dy-
namically evolving with advancements among generative models. According to our evaluation in
Table 4, even a classifier with excellent generalization capabilities may struggle to recognize images
produced by the latest diffusion models if only trained by early GANs. Therefore, an effective AI-
created image detection dataset is supposed to contain a sufficiently diverse collection of authentic
and AI-created images, along with the capacity to extend to future models easily.

In the datasets used in previous research like [31, 59, 61], the images are mainly in realistic (photo-
graphic) style, and each contains only one object from a specific category. This was primarily due to
the limitations of the early generative models, predominantly those based on GANs. However, with
the development of generative models, the demand for distinguishing AI-created images extends
beyond the domains covered by these datasets. Consider the following scenarios:

• An individual collects public works of an artist and generates content closely resembling
the artist’s style, subsequently claiming it to be the artist’s original work for profit.

• A forgery created with generative models fabricates content unattainable in reality, such as
a tree concurrently bearing apples and watermelons. (Instances of AI-created images used
to simulate forgery in academic publications are already documented.)

• A user captures a photo and enhances it by applying a filter or adding some text to improve
its presentation before uploading.

A model developed based on a dataset as described above may struggle to identify the first two
examples as AI-created images due to the discrepancies in their distributions, but mistakenly classify
the last example as an AI-created image for its non-photographic elements. The potential challenges
highlighted above necessitate the creation of a more comprehensive dataset with images meeting the
following requirements: (1) contain various styles aside from photographic ones; (2) include rich
content like scenes with no or multiple objects; (3) with higher and more diverse resolutions; (4)
might have undergone primary, non-creative edits.

3.2 CONSTRUCTION

Real-world images An important but often overlooked fact is that, to construct a robust dataset
for AI-created image detection, collecting a diverse range of real-world images is just as crucial as
gathering AI-created images. The real-world images in ACID are from the following sources:

• 349K images from ImageNet-21K dataset. For each label, only the samples with the highest
resolution are retained.

• 287K images from the COCO dataset.
• 1.76M free stock images with captions of at least 512 × 512 resolution.
• We searched images posted on a large online platform A with over 10 million users, and

selected 1.71M images that (1) were uploaded before 2019 and thus are not AI-created, and
(2) have a history of user interactions, indicating relatively high quality.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Images from ImageNet-21K [12] and COCO [26] dataset aim to increase the content variance. Stock
and online platform user images further diversify the dataset by introducing various styles and edited
images, also making it more representative of what people typically see in real life.

AI-created images The AI-created images in ACID are obtained from over 50 state-of-the-art
generative image models in different ways depending on the nature of the models:

• For early models (mostly GAN-based ones) where the generative capacity is constrained
to a limited variety of individual objects, the content and style of the generated images are
bounded to their domains. We also introduce images from [52, 31, 59, 61] on such models.

• For open-sourced text-to-image models, images are generated using a list of carefully se-
lected text prompts (see Table 1) at their recommended resolutions for best quality, and at
two common aspect ratios to accommodate different use cases.

• For closed or commercial models, we have collected publicly released images [10, 51, 38]
to the best of our ability.

• To further cover various fine-tuned checkpoints and combinations of adapters (Dream-
booth [44], LoRA [19], ControlNet [58], etc.) of diffusion models, we collected 200K
images from Civitai [10], where images are generated with customized fine-tuned check-
points, sometimes combined with one or even more adapters.

Figure 2: Publicly released images posted in the community. Compared with the images generated
directly from the models, the uploader’s initial screening ensures quality and better reflects the actual
use of the generated images.

Specifically, The prompts used by open-sourced models are selected from the following sources:

• Add additional clauses to each of the labels in ImageNet-21K to ensure photographic style.

• The captions sampled from the stock images as mentioned in real-world images.

• We collected user inputs of the text-to-image service on platform A within a month, filtered
out overly simplistic descriptions covered by the first category, and identified 368 most
concerned subjects among real users.

• Regarding the most scrutinized issue of portrait forgery, we manually created 63 prompts
to generate portrait photos covering various ages, genders, and ethnicities.

As shown in Table 2, our dataset introduces a diversity in style, resolution, provenance, and post-
processing that far exceeds that of existing datasets. The analysis of user interaction, on the other
hand, makes the distribution of data more consistent with real usage scenarios, making the bench-
marks built on this more practical. Details of the sources, resolutions, and number of images are
listed in Table 8.
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Table 1: Samples of text prompts to generate AI images

Source Prompt
ImageNet labels Swiss cheese, highly detailed, HD, 8K, hyperrealistic, full HD, ultra-

realistic, high quality, HQ, photorealistic, cinematic lighting, 4K, product
photography, ultra detailed, hyper detailed, realistic lighting, sharp focus,
hyperrealism

Stock Images Vector illustration of a flying super hero
User Input Fountain pen vector, sticker, artstation, 2d, flat background
Human Portrait Young asian woman, professional photo, raw photo, photo-realistic, best

quality, masterpiece, extremely detailed, 2k wallpaper, finely detail, huge
filesize, ultra-detailed, highres, extremely detailed, realistic, 8K, ultra-high
definition, highest quality, ultra high resolution, high quality texture

Table 2: Comparison between previous datasets and ACID

Previous ACID
Source Generated by a single model Combinations of models and adapters
Content >90% a single object Flexible number of objects from 0 to over 5
Style Photographic / Realistic Rich Styles
Resolution 50% ≤ 256×256 50% ≥ 768×768
Edits Raw output from models Include mixed images through augmentation

3.3 AUGMENTATION

Beyond regular on-the-fly image augmentations on single images, to better recognize synthetic im-
ages after editing, we also simulated two typical image editing operations within our dataset: image
stitching and alpha composition to better recognize synthetic images after editing.

Image stitching This augmentation is designed to simulate the operation of stitching two or
more images together. Specifically, we divide an initial image into 16 patches (4x4 grid), randomly
fill each patch with either the original image’s corresponding area or a matching area from another
image randomly selected from the dataset. We consider the resulting stitched image as real-world
only if all patches come from real-world images; otherwise, it is considered an AI-created image.

Alpha composition This augmentation aims to simulate the effect of overlaying multiple im-
ages. We paste one image over another with a transparency that linearly changes from 1 to 0 either
vertically or horizontally. The composite image is considered real-world only if both underlying
images are real-world; otherwise, it is categorized as AI-created.

3.4 SUMMARY

As demonstrated in Figure 3 and Table 2, compared to previous datasets, the dataset we propose con-
tains higher-quality images, offers a greater diversity of resolutions and aspect ratios, exhibits more
significant content variation, and consequently more closely approximates real-world use cases. Ad-
ditionally, it is straightforward to extend the dataset with future generative models with the list of
representative text prompts included.

4 ACIDNET

4.1 OVERVIEW

As demonstrated in section 5.1, existing solutions fail to achieve satisfactory performance simul-
taneously on both existing benchmarks and ACID . In concrete terms, methods dedicated to de-
tecting anomalous noise distributions in images like [28, 50, 53, 31, 7] struggle when applied to
non-photographic real-world images and images generated by models with distributions that sub-
stantially deviate from established ones. On the other hand, methods based on high-level features
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Figure 3: Diversity of real-world images in ACID: the first row shows user images with non-photo
elements, the second row illustrates stock images with variant content and styles, and the last row
gives examples of augmented real-world images.

like [52, 20] also struggle to generalize across unknown styles and content. Given the limitations
of existing solutions, we propose a new baseline method ACIDNet that achieves superior overall
performance by simultaneously leveraging both low-level texture and high-level semantic features.

Inspired by [20], ACIDNet consists of two branches, the semantic branch and the texture branch.
The semantic branch uses a ResNeXt50 [55] model to extract global semantic features from the
original input. Meanwhile, inspired by [7, 59], the texture branch takes the patch with the lowest
pixel fluctuation degree, uses a set of high-pass filters proposed in [16] to extract its noise patterns,
and obtain texture features with another ResNeXt50 model. Eventually, the texture and semantic
features are concatenated and passed through a fully connected layer to make final prediction.
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Authentic 
or 

Synthetic

Simplest Patch

Augmented Input

ResNeXt50HPF

Sem
antic

Texture

ResNeXt50

Figure 4: The overall architecture of our method, which consists of three parts: (1) find the simplest
patch and extract texture features using high-pass filters (HPF) and ResNeXt; (2) augment the input
image and extract semantic features using ResNeXt; (3) concatenate texture and semantic features
and make prediction. The augmented input indicates an example of the ”add shape” augmentation.
Table 3: Augmentation techniques used in ACIDNet. Techniques marked with (*) are applied ex-
clusively in the semantic branch, while the remaining are applied to both branches.

Method Description
JPEG Compress Images are compressed using JPEG algorithm to a random quality level.
Random Crop Images are scaled such that the shorter side measures 256 pixels, fol-

lowed by a random crop to get images of 224x224 pixels.
Add shape* Add a rectangle of random size, color, and transparency to a random

location of the image.
Flip Images are subject to horizontal or vertical flipping, or both.
Sharpness Adjust* Randomly adjust the sharpness of the image.
Rotate* Images are rotated for a random degree between a certain range.
Color Jitter Randomly change the brightness, contrast, and saturation of the image.
Gaussian Blur Blur the image with a random Gaussian blur kernel.
Grayscale* Convert the RGB image to grayscale.
Add Noise* Add a random Gaussian noise to the image.

4.2 SEMANTIC BRANCH

To enhance the capacity to identify images that might have undergone various modifications before
publication and during their dissemination, we have implemented several single-image augmen-
tation techniques as listed in Table 3 together with the two cross-image techniques discussed in
section 3.3 to simulate common image edits. All the methods except random crop (which is always
applied) are applied randomly with a probability of 0.2 and can be stacked.

4.3 TEXTURE BRANCH

As proposed in SSP [7], the noise patterns at the simplest patches differ more significantly between
real-world and AI-created images since they are more likely to be neglected by generative models.
In ACIDNet, 128 patches of 32×32 pixels are randomly sampled from the original input image, and
the patch with the lowest pixel fluctuation degree proposed by Zhong et al. [59] in Equation 1 is
considered the simplest patch. xi,j denotes the pixel value of patch x at location (i, j). This metric
reflects the complexity of the patches by accumulating the difference between adjacent pixels.

Ldiv =

M∑
i=1

M−1∑
j=1

|xi,j − xi,j+1|+
M−1∑
i=1

M∑
j=1

|xi,j − xi+1,j |+

M−1∑
i=1

M−1∑
j=1

|xi,j − xi+1,j+1|+
M−1∑
i=1

M−1∑
j=1

|xi+1,j − xi,j+1| (1)
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Similar to the original input, the simplest patch will be augmented. Different from SSP, the noise
fingerprint of the augmented patch is obtained by all 30 high pass filters proposed in [16] rather than
3. The features are passed through a ResNeXt50 model for the texture feature while SSP utilizes
ResNet as its backbone.

5 EXPERIMENTS

5.1 PERFORMANCE ON ACID

To validate the significance of proposing ACID beyond existing datasets, we tested the performance
of 7 state-of-the-art pre-trained classifiers on ACID . As shown in the first 7 rows of Table 4, the
successes of these classifiers on existing datasets cannot be directly replicated on ACID.

Further experiments indicate that, due to the substantial differences in distributions between the
generative models in ACID and some early models from existing datasets, all methods, including
ACIDNet , fail to achieve adequate cross-benchmark generalization when trained solely on images
from a single source. To determine the capability limits of various solutions, we opt to validate the
effectiveness of models on the entire dataset rather than data from a single generative model.

Specifically, after dividing ACID into training and testing sets, we incorporate data generated by
ProGAN [21] from the Patchcraft dataset into the ACID training set, and train ACIDNet , SSP [7]
and CNNSpot [52] on the combined training data. The reason for selecting these two models is
that they presented the best performance in models based on either low-level and high-level features
respectively. ACIDNet requires training on 8 Nvidia RTX A6000 GPUs for 3 hours to converge
while the other two takes less than 2 hours. The performance listed in the last 3 rows of Table 4
shows that, given adequate amount of training data, ACIDNet achieves a better performance than
other models.

Table 4: Performance of different methods on ACID .

Method Accuracy Recall (AI) Precision (AI) F1 Score
CNNSpot 52.54% 2.08% 12.72% 3.58%
Fusing 65.65% 55.53% 60.20% 57.77%
Gram 18.70% 15.34% 12.49% 13.77%
LGrad 25.08% 6.16% 6.89% 6.50%
UnivFD 57.55% 4.91% 48.36% 8.92%
DIRE (ADM) 54.07% 12.65% 37.35% 18.89%
SSP (ADM) 58.32% 1.6% 90.83% 3.22%
ACIDNet 98.01% 97.05% 99.47% 98.25%
SSP (ACID) 76.87% 93.17% 68.36% 78.86%
CNNSpot (ACID) 96.74% 98.67% 93.93% 96.24%

5.2 ABLATION STUDY

To verify the effectiveness of leveraging both high-level semantic features and low-level texture
features, we conducted an ablation study by removing either of the two branches and analyzing the
performance of two representative models leveraging either of the features. As shown in Table 5,
when only low-level texture features are used, the model’s performance significantly declines across
all datasets; when only high-level features are kept, the model still performs fine on the dataset it was
trained, but the generalization capability on other datasets substantially decreases. The composition
of PatchCraft [59] and UnivFD [31] are illustrated in Table 7.

5.3 HUMAN EVALUATION

Early models or randomly generated images often have obvious flaws (as in Figure 1a), making it
difficult for them to cause significant harm even without AI detection techniques. Including AI-
generated images that are harder for humans to recognize means that the models trained on such
datasets will better help humans avoid being deceived by AI images, thus making them more prac-
tically valuable. To test the ability of ACID and previous datasets to deceive humans, we invited
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Table 5: Ablation study

Method ACID PatchCraft UnivFD Average
ACIDNet 98.01% 82.82% 79.47% 86.77%
Texture branch only 80.14% 71.79% 62.78% 71.57%
Semantic branch only 98.34% 65.44% 70.81% 78.19%
SSP (ACID) 76.87% 81.94% 67.76% 75.52%
CNNSpot (ACID) 96.74% 68.09% 65.37% 76.73%

10 individuals to manually distinguish between authentic and AI-generated images. A total of 1500
images (250 AI-generated and 250 real from each dataset) were sampled, randomly shuffled, and
resized to 256×256 to avoid resolution bias. As shown in Table 6, ACID proved more challenging
for humans to identify.

Table 6: Accuracy in identifying authentic/synthetic images across different datasets by humans.

ACID PatchCraft UnivFD
Accuracy 69.83% 75.98% 74.80%

6 LIMITATIONS

In terms of dataset construction, our proposed method necessitates generating thousands of images
for each model to assess its detectability, which poses scalability challenges for proprietary models.
Regarding the baseline model, although our model shows superior performance with ample training
data, its ability to generalize from limited data still requires enhancement.

7 CONCLUSION

We introduce a comprehensive new dataset, ACID, which features 13M samples derived from over
50 different diffusion-based models as well as real-world scenarios. The AI-created images in this
benchmark are crafted using finely tuned text prompts and span multiple resolutions. For real-world
samples, we conducted an extensive search of public data sources, meticulously selecting text-image
pairs based on the quality of both visuals and captions.

Leveraging ACID, we developed ACIDNet, an innovative framework to detect AI-created images.
ACIDNet combines texture analysis using a simplest patch branch and semantic extraction via a
ResNeXt50 branch. With training on more than 10 million 512x512 images from ACID , ACIDNet
has achieved an impressive average accuracy of 86.77% in cross-benchmark testing, surpassing
previous methods such as SSP and CNNSpot by over 10%.

We plan to openly release both our model and the benchmark dataset to the public. Our goal is to
contribute to the ongoing advancements in privacy and AI ethics, particularly as we move towards
the era of Artificial General Intelligence (AGI).
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A COMPARISON BETWEEN ACID AND PREVIOUS DATASET

Table 7: Composition of PatchCraft [59], UnivFD [31], GenImage [61], and ACID. Some of the
release dates may be inaccurate due to the updates of the models.

Generative Model Date PatchCraft UnivFD GenImage ACID
StarGAN [9] 2017 ✓ ✓ ✓
CycleGAN [60] 2017 ✓ ✓ ✓
CRN [8] 2017 ✓ ✓
StyleGAN [22] 2018 ✓ ✓ ✓
BigGAN [5] 2018 ✓ ✓ ✓ ✓
ProGAN [21] 2018 ✓ ✓ ✓
STID [6] 2018 ✓
Deepfakes 2019 ✓ ✓
IMLE [25] 2019 ✓ ✓
StyleGAN2 [23] 2019 ✓ ✓ ✓
Whichfaceisreal [54] 2019 ✓ ✓
GauGAN [33] 2019 ✓ ✓ ✓
SAN [11] 2019 ✓
ADM [13] 2021 ✓ ✓ ✓
GLIDE [30] 2021 ✓ ✓ ✓
DALLE2 [40] 2021 ✓ ✓
Stable Diffusion v1.4 [47] 2022 ✓ ✓ ✓
Stable Diffusion v1.5 [46] 2022 ✓ ✓ ✓
VQDM [18] 2022 ✓ ✓ ✓
WUKONG [1] 2022 ✓ ✓ ✓
Midjourney V5 [29] 2023 ✓ ✓ ✓
Midjourney V6 [29] 2023 ✓
DALLE3 [32] 2023 ✓
Kandinsky 2.2 [4] 2023 ✓
Kandinsky 3 [3] 2023 ✓
Realism Engine 1.0 [41] 2023 ✓
Realistic Vision 5.1 [2] 2023 ✓
Stable Diffusion XL [37] 2023 ✓
SDXL-Lightning 2024 ✓
Stable Cascade 2024 ✓
RealVisXL 4.0 [49] 2024 ✓
Civitai [10] 2024 ✓
Juggernaut XL V9 [45] 2024 ✓
Playground 2.5 [36] 2024 ✓
Photo Realistic [35] 2024 ✓
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B DETAILED COMPOSITION OF ACID

Table 8: Composition of ACID

Model / Source Count Resolutions (width × height)
ADM 6000 256× 256
StarGAN 2000 256× 256
Civitai 200793 Various
CRN 6382 512× 256
CycleGAN 1320 256× 256
Dalle2 3575 224× 224
Dalle3 1002250 224× 224
Deepfake 2698 256× 256
GauGAN 5000 256× 256
Glide 6000 256× 256
IMLE 6382 512× 256
Juggernaut XL V9 3406 1024× 1024, 1216× 832, 832× 1216
Kandinsky 2.2 164148 768× 768, 1152× 648, 648× 1152
Kandinsky 3 681210 768× 768, 1152× 648, 648× 1152
Midjourney V5 6000 1024× 1024
Midjourney V6 519962 1024× 1024
Playground 2.5 681210 1024× 1024, 1024× 576, 576× 1024
Photo Realistic 681210 512× 512, 768× 432, 432× 768
ProGAN 18003 256× 256
Realism Engine 1.0 681210 768× 768, 1152× 648, 648× 1152
Realistic Vision 5.1 681210 512× 512, 768× 432, 432× 768
RealVisXL 4.0 681210 1024× 1024, 1024× 576, 576× 1024
Stable Diffusion 1.4 6000 512× 512
Stable Diffusion 1.5 8000 512× 512
Stable Diffusion XL 681210 1024× 1024, 1024× 576, 576× 1024
SDXL-Lightning 681210 1024× 1024, 1024× 576, 576× 1024
Stable Cascade 681210 1024× 1024, 1024× 768, 768× 1024
StarGAN 2000 256× 256
StyleGAN 5833 256× 256
StyleGAN2 2000 256× 256
VQDM 6000 256× 256
ImageNet 348780 Various
COCO 287360 Various
User images 1715096 Various
Stock images 1759947 Various
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