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Abstract

Dimension reduction (DR) algorithms have proven to be
extremely useful for gaining insight into large-scale high-
dimensional datasets, particularly finding clusters in transcrip-
tomic data. The initial phase of these DR methods often in-
volves converting the original high-dimensional data into a
graph. In this graph, each edge represents the similarity or
dissimilarity between pairs of data points. However, this graph
is frequently suboptimal due to unreliable high-dimensional
distances and the limited information extracted from the high-
dimensional data. This problem is exacerbated as the dataset
size increases. If we reduce the size of the dataset by selecting
points for a specific sections of the embeddings, the clusters
observed through DR are more separable since the extracted
subgraphs are more reliable. In this paper, we introduce Lo-
calMAP, a new dimensionality reduction algorithm that dy-
namically and locally adjusts the graph to address this chal-
lenge. By dynamically extracting subgraphs and updating the
graph on-the-fly, LocalMAP is capable of identifying and sep-
arating real clusters within the data that other DR methods
may overlook or combine. We demonstrate the benefits of
LocalMAP through a case study on biological datasets, high-
lighting its utility in helping users more accurately identify
clusters for real-world problems.

Code — https://github.com/williamsyy/LocalMAP

1 Introduction
Dimension reduction (DR) is an important data visualization
strategy for understanding the structure of complicated high-
dimensional datasets. DR is used extensively in image, text,
and biomedical datasets, particularly -omics (Cao et al. 2019;
Becht et al. 2019; Amezquita et al. 2020; Dries et al. 2021;
Atitey, Motsinger-Reif, and Anchang 2024; Böhm, Berens,
and Kobak 2023; Mu, Bhat, and Viswanath 2017; Raunak,
Gupta, and Metze 2019). Beginning in the original high-
dimensional space, DR methods typically first abstract the
data into a graph, with each edge representing either similar-
ity (positive edge) or dissimilarity (negative edge). This graph
is then used to optimize the low-dimensional embedding by
applying attractive forces along the positive edges and repul-
sive forces along the negative edges. Clearly, the quality of
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the graph, which connects the original high-dimensional data
to the low-dimensional embedding, is critical to this process.
However, given the complex nature of high-dimensional data,
it is challenging to construct a graph that accurately repre-
sents all patterns and structures within the data, and graphs
are usually sub-optimal.

In this work, we provide two key insights as to why the
graphs could be flawed. First, we found that high-dimensional
distances become less informative due to the curse of dimen-
sionality, where measurements of similarity and dissimilarity
determined using high-dimensional distances do not necessar-
ily reflect similarities and dissimilarities along the data mani-
fold. This issue is more pronounced in DR methods that select
a small group of nearest neighbors (NNs) to form positive
edges of the graph and apply strong attractive forces along
these edges. When a “false” positive edge is constructed
based on an inaccurate similarity measure between a pair of
points that are actually dissimilar, strong attractive forces will
pull them closer. If there are many such false positive edges,
the DR method will generate overlapping clusters without
clear boundaries, even if the data have distinct clusters. Since
DR methods are unsupervised, the user would not be able to
determine that distinct clusters exist – they would be blurred
together in the DR result. As we show in this work, eliminat-
ing these false positive edges can dramatically improve DR
projections.

Our second insight is that missing edges (lack of negative
“further pair” edges between far points in high-dimensional
space) also contribute to unwanted overlapping of clusters,
since such edges help to define boundaries between clusters.
However, as the scale of the dataset increases, the set of
negative edges become both insufficient and less effective,
as discussed in Section 4.2. Some of the most important
applications of DR (single cell, transcriptomics) generate
large high-dimensional datasets with many clusters, so it is
important that there are enough further pair (FP) edges to
separate them.

Based on the two insights discussed above, we propose
LocalMAP, a new DR algorithm that dynamically and locally
adjusts the graph during dimension reduction to address the
aforementioned issues with graph construction. LocalMAP
detects false positive edges and removes them, using ideas
similar to outlier detection in robust statistics. This allows
clusters to separate. It also adds more further pair edges
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dynamically, allowing crisper cluster boundaries to appear.
Together, these ideas within LocalMAP produce clear, crisp
separated clusters where other methods fail.

Figure 1 shows the results of several high-quality DR ap-
proaches, including t-SNE (van der Maaten and Hinton 2008),
UMAP (McInnes, Healy, and Melville 2018) and PaCMAP
(Wang et al. 2021), on the MNIST dataset where there are
10 separated clusters in the high-dimensional space. Algo-
rithms t-SNE, UMAP and PaCMAP generate DR embeddings
without clear boundaries between clusters, while LocalMAP
generates a high-quality DR embedding with well-defined
boundaries that are visible even without class information
provided to the algorithm.

Figure 1: DR embeddings on MNIST dataset which contains
10 digit classes. Our LocalMAP method is on the right. The
colored embeddings with true labels are shown in Figure 5.

In this work, we provide more evidence for the insights
discussed above, in terms of both theory based on simple
clustering models and empirical evidence. We also provide
LocalMAP and a comprehensive evaluation of it, based on
Huang et al. (2022). We provide case studies showing that
LocalMAP is able to find true clusters – and not false clusters
– more reliably than other DR approaches.

2 Related Work
While DR methods that preserve global structure date back
to 1901 with PCA (Pearson 1901), multidimensional scal-
ing (Torgerson 1952), and non-negative matrix factoriza-
tion (Lee and Seung 1999), methods that preserve local
structure have become indispensable and ubiquitous in nu-
merous applications, particularly in -omics research. Local
methods include Isomap (Tenenbaum, de Silva, and Lang-
ford 2000), Local Linear Embedding (LLE) (Roweis and
Saul 2000), Laplacian Eigenmap (Belkin and Niyogi 2001),
and more recent Neighborhood Embedding (NE) algorithms
like t-SNE (van der Maaten and Hinton 2008), LargeVis
(Tang et al. 2016), UMAP (McInnes, Healy, and Melville
2018), PaCMAP (Wang et al. 2021), TriMAP (Amid and
Warmuth 2019), NCVis (Artemenkov and Panov 2020), h-
NNE (Sarfraz et al. 2022), Neg-t-SNE (Damrich et al. 2023)
and InfoNC-t-SNE (Damrich et al. 2023) and many others
(Van Assel et al. 2022; Zu and Tao 2022). Global methods
typically are not able to preserve separations between clusters
or clearly display the data manifold, whereas local methods
can sometimes do so; thus, they provide a unique perspective
on the data that is difficult to gain in any other way.

Because DR methods are unsupervised, there is no com-
mon objective function like there would be for supervised
learning (e.g., classification error). However, there are prin-

ciples that reliable DR loss functions typically obey (Wang
et al. 2021). We will discuss those in Appendix C, as Lo-
calMAP obeys these principles based on what it inherits from
PaCMAP.

There are works that discuss how DR methods’ behavior
is affected by different components of the DR algorithm. For
example, there are several papers discussing the challenges
of tuning parameters and applying these methods in practice
(Wattenberg, Viégas, and Johnson 2016; Cao and Wang 2017;
Nguyen and Holmes 2019; Belkina et al. 2019; Kobak and
Linderman 2021). Wang et al. (2021); Böhm, Berens, and
Kobak (2020) also discuss how changing different graph
components and loss functions affect DR methods’ behavior.

None of the above approaches adjusts the graph itself dur-
ing DR optimization. The graph is typically considered to
be fixed as ground truth; the graph information is analogous
to the labels for classification tasks that are also considered
ground truth. However, recent work has found improvements
in classification performance by identifying possibly misla-
beled points and omitting them (Chen et al. 2019; Han et al.
2018; Northcutt, Athalye, and Mueller 2024), showing that
there is value in identifying and removing labels that appear
to be wrong during the classification process. There is also
a field of robust statistics that identifies and omits outliers
that would wreck performance, and aims to ensure results are
robust to assumptions on the data distribution (Martin et al.
2018; Li, Socher, and Hoi 2020). Our work is thus unique in
extending these types of idea to DR, and not trusting every
graph element as if it were correct. As discussed, we know the
graph is probably wrong when the Euclidean distance is not
the same as the distance along the data manifold (geodesic
distance).

3 Review of PaCMAP
The proposed LocalMAP algorithm starts from a (faulty)
embedding that is already formed. We first review PaCMAP
since LocalMAP can start after its first two phases. Con-
sider a dataset X = {x1,x2, . . . ,xn} consisting of n points
in a high-dimensional space. PaCMAP seeks to find a low-
dimensional embedding Y = {y1,y2, . . . ,yn}, where each
yi corresponds to xi. PaCMAP first constructs a graph in
high-dimensional space with three kinds of pairs: NN pairs
(near neighbors in the high-dimensional space), MN pairs
(mid-near pairs, close but not as close as neighbors), and FP
pairs (further point pairs, far in the high-dimensional space).
Optimization of the low-dimensional embedding Y is per-
formed using a simple objective:

LossPaCMAP = wNN ·
∑

(i,j): NN

d̃ij

CMed + d̃ij
+

wMN ·
∑

(i,k): MN

d̃ik

CLg + d̃ik
+ wFP ·

∑
(i,l): FP

1

1 + d̃il

(1)

where d̃ij = d2ij + 1 = ∥yi − yj∥2 + 1. CLg and CMed are
nontunable parameters controlling the scale of the embed-
ding, set at ∼10K and ∼10. The weights wNN, wMN, and wFP
are adjusted to balance attraction and repulsion. Neither the



weights nor the parameters should be modified by users; they
perform well across datasets (Wang et al. 2021).

4 Dynamically and Locally Adjusted Graph
4.1 Insight 1: False positive nearest neighbor

edges pull nearby clusters together, losing
clear boundaries between them

Let us consider an experiment to illustrate this. DR meth-
ods apply attractive forces along the NN edges (between
points that are close in the high-dimensional space) and
apply repulsive forces along FP edges (points that are far
in the high-dimensional space). An NN edge between two
points is preserved if these points are placed nearby in the
low-dimensional embedding. Given the limited capacity of
low-dimensional spaces and the complex nearest-neighbor
relationships in high-dimensional datasets, it is clear that not
all NN edges can be preserved during dimensionality reduc-
tion. Further, we do not want to preserve all high-dimensional
NNs, since the Euclidean distance neighbors are not always
the true neighbors along the actual data manifold. Therefore,
the question becomes how to identify which NNs to preserve.

The preservation of specific NN edges depends on intricate
dynamics during the embedding optimization, which utilizes
the graph extracted from the high-dimensional data. For a
pair of NNs (i, j), if they share a greater number of common
neighbors, which provide attraction along NN paths, it is
more likely that these two points will be positioned close to
each other in the low-dimensional space. We hypothesize that
these dynamics sometimes correct erroneous edges generated
by unreliable high-dimensional distances. If true, this hypoth-
esis implies we can adjust the graph dynamically based on
this information and further optimize the embedding using
the revised graph.

Figure 2: Visualization of NN edge connections of PaCMAP
embedding on MNIST dataset.

Figure 2 presents a PaCMAP embedding of the MNIST
dataset on the left and the corresponding NN edges’ visualiza-
tion on the right. The figure highlights a substantial number
of NN edges bridging distinct clusters that are widely sepa-
rated. When two points connected by such an NN edge are
distant in the final embedding, it suggests that the dynamics
of the optimization process have separated them, indicating

that the NN edge might be erroneous. Despite this, the erro-
neous NN edge continues to exert an attractive force, pulling
these two points towards each other. If numerous such NN
edges exist between two clusters, they can lead to clusters
being falsely connected, rather than clearly delineated with
distinct boundaries.

4.2 Insight 2: Insufficient and ineffective negative
further point edges fail to create clear
boundaries between nearby clusters,
particularly in large datasets

Ideally, the repulsive forces along the FP edges should sep-
arate nearby clusters. However, when the dataset becomes
larger, with more clusters and larger samples, it is more likely
that the sampled FP edges in DR algorithms are insufficient.

Theorem 1. Assume all points between two clusters are
approximately equidistant, so that the probability of con-
structing a positive pair between points from these clusters
is constant. The ratio between the number of NN edges to
the number of FP edges of PaCMAP between two clusters
increases with the number of data points in a dataset.

Proof. Consider a dataset with n data points distributed
across m clusters C1, C2, ..., Cm, where each cluster Ci con-
tains ni data points (n1 + n2 + ...+ nm = n). For any two
clusters Ci and Cj , by assumption, we have:

∀xi ∈ Ci, xj ∈ Cj , P (xi, xj are NNs) = pij

where pij is constant.
FP edges for a given point are sampled randomly from

all non-NN points. For each point, nFP FP points are ran-
domly selected, where nFP is a constant defaulting to 20
for PaCMAP. Thus, the expected number of NNs and FPs
between Ci and Cj are

E(# of NNs between Ci, Cj) = ninjpij

E(# of FPs between Ci, Cj) =
2ninjnFP

n
,

(2)

because each point i ∈ Ci selects nj

n · nFP FP pairs, the total
number of points in Ci sampled from Ci to Cj is ni·nj ·nFP

n

FP pairs. Similarly, ni·nj ·nFP
n FP pairs are sampled from all

points in Cj between Ci and Cj . Therefore, 2ninj ·nFP
n total

FP pairs are sampled between these two clusters. Therefore,
the ratio between the number of NN edges and the number
of FP edges is

E(# of NNs between Ci, Cj)

E(# of FPs between Ci, Cj)
=

n · pij
2nFP

.

Considering that pij is unaffected by n and nFP, ni and nj

are constants, the ratio increases with n. This result is true
for all clusters Ci and Cj . Thus, for each pair of clusters,
the ratio of NN edges to FP edges grows linearly in n. This
completes the proof.

This phenomenon is further illustrated in Figure 3. When
DR is applied to the entire MNIST dataset, images of six
different digits are grouped into two large clusters, with each



cluster containing three digit classes. However, when DR
is applied separately to each of these large clusters, they
are successfully separated into distinct clusters, each rep-
resenting a single digit class. It shows that when the sam-
ple size increases, usually more structure is involved in the
dataset, which indicates higher complexity and larger number
of classes.

Figure 3: Left: PaCMAP embedding on the entire MNIST
dataset where six clusters are groups into two large ones
(each with three digit classes). Right: PaCMAP embeddings
on each of the two groups of three digit classes. The right
embeddings work when the left do not because the partial
datasets are smaller and thus do not suffer from the problem
identified in Insight 2.

5 LocalMAP
The insights above suggest a new approach to DR that keeps
information local, so as to mitigate the problem of Insight 2,
and to decrease the impact of false positive edges, avoiding
the pitfall of Insight 1. The way LocalMAP handles this is to
replicate a small-scale DR within its large-scale computation.
Specifically, we increase both NN attractive forces and FP
repulsive forces locally compared to standard DR approaches,
adjusting weights dynamically as we learn more about which
data points are false positives.

This approach has few downsides, if any. Because it sees
more local information, and because it reduces the impact of
false positive edges, LocalMAP is able to better capture local
structure. It is slightly more computationally expensive than
some of the regular DR approaches and faster than others,
even for large datasets, as we show in Section 8.4.

5.1 LocalMAP Algorithm
As discussed, LocalMAP handles Insight 1 and 2 by increas-
ing local computation. LocalMAP is shown in Algorithm 1
with a detailed version in Appendix A. Major differences
from previous DR approaches are:

LocalMAP Computation 1. Adjusting the weights for
NN edges dynamically and locally according to the low-

dimensional distance during optimization. This is done ac-
cording to a set of principles listed below.

LocalMAP Computation 2. Resampling FP edges to be
local. This allows LocalMAP to separate nearby clusters. In
practice, local FP edges are randomly selected non-neighbor
pairs with distance no larger than the average low-dimension
distance among all nearest clusters pairs; we call this the
proximal cluster distance commons d̄adj.

Both LocalMAP Computation 1 and LocalMAP Computa-
tion 2 apply to the final stage of optimization. LocalMAP uses
earlier stages from another DR approach to handle global
structure placement, which is sufficient as set up for Lo-
calMAP’s computations.

5.2 LocalMAP’s principles for NN edge weighting
in LocalMap Computation 1

LocalMAP creates several central aspects for DR. Specifi-
cally, these principles are:
1. Increased weights for NNs that are close in low-

dimensional space. (These are estimated to be true positive
pairs.)

2. Decreased weights for NNs that are far in low-
dimensional space. (These are estimated to be false posi-
tive pairs.)

3. Avoid extremely large forces, ensuring stable conver-
gence.

4. The weighting function needs to be simple, easy to com-
bine with the NN loss terms, and fast to compute.

Figure 4: Curve of CoefficientNN.

A natural choice to achieve Principles 1 and 2 and 4 is to
use a weighting function that is inversely proportional to the
low-dimensional distance. However, this could lead to very
large values for small low-dimensional distances, making the
convergence unstable, violating Principle 3.

Moreover, to define “close” in Principles 1 and 2, the em-
bedding scale should be considered. We consider the average
distance between adjacent clusters in PaCMAP embedding,
d̄adj, which is approximately 10 based on observations. The

midpoint between the two clusters ( d̄adj

2 ) could serve as a
threshold to determine whether to increase or reduce the at-
tractive force. The coefficient should be greater than 1 when



Algorithm 1: Implementation of LocalMAP

Require: X - data matrix, d̄adj from Section 5, parameter CMed∼10.
Ensure:

• Initialized low-dimensional embedding Y.
• Construct neighbor pairs, mid-near pairs and further pairs according to high-dimensional distance.
• Optimize Y using the first two training phases of PaCMAP.
• Optimize Y using loss:

Loss(Y) :=
∑

(i,j): NN

d̄adj ·
√
d̃ij

2(CMed + d̃ij)
+

∑
(i,l): FP

1

1 + d̃il
,

where d̃ij = ∥yi − yj∥2 + 1.
The FP pairs are resampled every 10 iterations to stay local so that all FPs satisfies ∥yi − yl∥ ≤ d̄adj,∀(i, l) ∈ FP pairs.
return Y

the attraction force needs to be increased and less than 1
when it needs to be reduced.

To achieve all four principles, we choose a weighting func-
tion as follows:

CoefficientNN(dij) =

d̄adj

2√
d2ij + 1

=
d̄adj

2
√
d̃ij

.

Based on the above equation, when d̄adj

2 >
√
d̃ij ≈ dij , the

attractive force along the (i, j) pair increases, and this force

would decrease when d̄adj

2 <
√
d̃ij ≈ dij .

Figure 4 shows how CoefficientNN changes with the low
dimensional distance between pairs of NN. Implementing
this by adapting PaCMAP’s loss and setting CMed to 10 to
fix the scale of the embedding, its NN loss term becomes:

LossNN = wNN ·
∑

(i,j): NN

d̃ij

CMed + d̃ij
·

d̄adj

2
√
d̃ij

= wNN ·
∑

(i,j): NN

d̄adj ·
√
d̃ij

2(CMed + d̃ij)
.

(3)

As stated in Section 2, DR methods are unsupervised and
no common objective function exists; we proved in Theorem
2 that LocalMAP also satisfies the six principles mentioned
in Wang et al. (2021).
Theorem 2. LocalMAP’s loss function obeys the six prin-
ciples of Wang et al. (2021) for any choices of d̄adj, exclud-
ing NNs that have low dimensional distances larger than a
threshold with value

√
CMed − 1 (i.e., possible false posi-

tives), where we set CMed∼10 across datasets to determine
the scale of the embedding.

The proof is given in Appendix C.

6 Case Study
Figure 5 shows the results for several DR methods on three
datasets. Two of the datasets are handwritten digit datasets
(LeCun, Cortes, and Burges 2010; Hull 1994), which means

that there are distinct clusters in high dimensions, but also
these datasets are special in that Euclidean distance (which
is used for defining the graph for DR) is not the same as the
geodesic distance along the data manifold, meaning there
will be plenty of false positive edges, similar to those shown
in Figure 2. The last dataset is a biological dataset (Kang
et al. 2018) that contains multiple cell types that are labeled.

We observe that LocalMAP does a far better job in sep-
arating clusters on all three datasets. A quantitative result
is given by the Silhouette score shown in the figures. The
definition of Silhouette score is in Appendix E. LocalMAP’s
scores are superior, confirming what we see visually in these
DR plots. There are 5 additional datasets analyzed in Sec-
tion 8 and and visualized in Appendix H, all with similarly
impressive visual results.

Figure 5: Case study on MNIST (LeCun, Cortes, and Burges
2010), USPS (Hull 1994) and Kang (Kang et al. 2018). The
Silhouette scores are shown in parentheses.

7 Ablation Study
To understand how each part of the modification contributes
to the DR results — an adjustment of NN edge weights and



local FP edge resampling — we conducted an ablation study,
as shown in Figure 6. The left plot in the figure displays the
embedding generated by LocalMAP with adjusted NN edge
weights but without local FP resampling. In this embedding,
the clusters have higher density, yet the separation between
nearby clusters remains inadequate. The right plot illustrates
the embedding generated by LocalMAP with local FP resam-
pling but without adjusted NN edge weights. Although the
clusters are more dispersed, the separation between nearby
clusters is still insufficient. Therefore, these results indicate
that both NN edge weight adjustment and local FP edge re-
sampling are necessary to achieve clear separation between
clusters. These observations are clear with MNIST, which is
why it is useful to work with this dataset; the same observa-
tions persist with other datasets.

Figure 6: Ablation study of LocalMAP on MNIST dataset.
Left: LocalMAP with adjusted NN edge weights but without
local FP resampling. Right: LocalMAP with local FP resam-
pling but without adjusted NN edge weights.

8 Experiments
8.1 Experimental Setup
Datasets. Inspired by other DR studies (Tang et al. 2016;
McInnes, Healy, and Melville 2018; Amid and Warmuth
2019; Huang et al. 2022), the following datasets are used to
evaluate and compare DR methods: MNIST (LeCun, Cortes,
and Burges 2010), FMNIST (Xiao, Rasul, and Vollgraf 2017),
USPS (Hull 1994), COIL20 (Nene, Nayar, and Murase 1996),
20NG (Lang 1995), Seurat (Stuart et al. 2019), Kang (Kang
et al. 2018), Human Cortex (Zhu et al. 2023) and CBMC
(Stoeckius et al. 2017).

Algorithms. We evaluate LocalMAP in comparison with
several other DR techniques: t-SNE (van der Maaten and
Hinton 2008), UMAP (McInnes, Healy, and Melville 2018),
PaCMAP (Wang et al. 2021), TriMap (Amid and Warmuth
2019), PHATE (Moon et al. 2017), NCVis (Artemenkov and
Panov 2020), h-NNE (Sarfraz et al. 2022), Neg-t-SNE (Dam-
rich et al. 2023), and InfoNC-t-SNE (Damrich et al. 2023).
For the t-SNE algorithm, we utilize the openTSNE imple-
mentation (Poličar, Stražar, and Zupan 2023).

Computational Environment. All experiments were run
on a 12 Core Intel(R) Xeon(R) CPU E5640 @ 2.67GHz with

a GPU RTX2080Ti, with memory limit 32G. All experiments
were run 10 times for error bar computation.

Biological Dataset Preprocessing. For the single-cell
datasets, all variables were normalized and log-transformed
by the SCANPY package (Wolf, Angerer, and Theis 2018).
The top 1000 variance genes within each dataset were se-
lected before applying LocalMAP. For the datasets that have
different batches, the ComBat algorithm (Johnson, Li, and
Rabinovic 2007) was used to remove batch effects. The de-
tailed dataset description are shown within Appendix D.

8.2 Experimental Results: Silhouette Score
Evaluation of DR approaches is challenging because DR
methods are unsupervised. There are numerous evaluation
methods that characterize different aspects of performance;
an overview is given by Huang et al. (2022), though several
DR papers propose their own evaluation metrics (e.g., Amid
and Warmuth 2019). In this work, we use the silhouette score
(Rousseeuw 1987) as our evaluation metric because it cap-
tures how clearly the clusters are separated, which no other
metric captures. The definition of the sihouette score is in
Appendix E.

All the methods are evaluated based on their default hy-
perparameters. The result in Table 1 shows that LocalMAP
separates clusters better than other approaches. This table sim-
ply quantifies the high quality clusters we see visually in the
LocalMAP plots throughout this paper. We have also shown
the performance of UMAP, LargeVis, t-SNE, and PHATE
with tuned hyperparameters, and additional results are in Ta-
ble 6 in Appendix J. LocalMAP shows a better separation
among clusters.

8.3 Experimental Results: Posthoc Classification
DR methods are unsupervised. Here, we consider an evalu-
ation of whether class information, which is not presented
to the DR algorithm, is preserved during the process of DR.
This is a type of local structure evaluation, but unlike the
silhouette score, it does not consider the margins between
classes and has several other problems as an evaluation met-
ric, discussed in Appendix F. Essentially, clusters that visually
appear merged or are broken up into subclusters (i.e., poor
DR plots) can still yield high posthoc classification scores.
Table 3 and 7 in Appendix J show the results, which is that Lo-
calMAP achieves similar posthoc classification performance
to 11 state-of-the-art DR methods. (But, as discussed, this
evaulation measure is problematic.)

8.4 Experimental Results: Runtime
Table 2 shows runtimes for several algorithms. LocalMAP is
slightly more computationally intensive than other methods
because it resamples the graph dynamically, but it is still effi-
cient. Efficiency is typically not as important as DR quality,
as evaluated in Section 8.2.

8.5 Experimental Results: Robustness and
Sensitivity

DR results cannot be trusted if they change under random
initialization. Hence, an important characteristic of DR al-



Table 1: Silhouette scores for different Algorithms. Bold is best, underline is second best or statistically insignificant from the
best. Each row is an algorithm, each column is a dataset.

MNIST FMNIST USPS COIL20 20NG Kang Seurat Human
Cortex

CBMC

PCA 0.02±0.00 -0.03±0.00 0.10±0.00 0.01±0.00 -0.19±0.00 0.12±0.00 -0.06±0.00 -0.08±0.00 -0.11±0.00
t-SNE 0.35±0.00 0.12±0.00 0.42±0.00 0.41±0.00 -0.11±0.00 0.40±0.01 0.22±0.01 0.11±0.01 0.15±0.01
UMAP 0.52±0.01 0.19±0.00 0.53±0.00 0.58±0.01 -0.15±0.01 0.51±0.00 0.30±0.00 0.12±0.02 0.22±0.00

PaCMAP 0.54±0.01 0.19±0.00 0.56±0.00 0.51±0.02 -0.11±0.01 0.53±0.00 0.31±0.00 0.13±0.01 0.22±0.00
LargeVis 0.49±0.05 0.11±0.03 0.41±0.12 0.38±0.01 -0.13±0.01 0.44±0.01 0.25±0.01 0.10±0.02 0.17±0.00
TriMAP 0.41±0.00 0.17±0.00 0.48±0.00 0.47±0.00 -0.13±0.00 0.55±0.00 0.32±0.00 0.07±0.00 0.21±0.00
PHATE 0.26±0.02 0.11±0.01 0.27±0.01 0.33±0.00 -0.21±0.01 0.48±0.02 0.27±0.01 -0.09±0.01 0.06±0.01
HNNE 0.21±0.03 0.06±0.04 0.23±0.00 0.03±0.00 -0.34±0.03 0.39±0.06 -0.00±0.03 -0.09±0.06 0.12±0.05

Neg-t-SNE 0.48±0.00 0.19±0.00 0.48±0.00 0.44±0.01 -0.11±0.00 0.53±0.00 0.32±0.00 0.12±0.00 0.24±0.00
NCVis 0.38±0.02 0.19±0.00 0.44±0.00 0.53±0.00 -0.15±0.00 0.51±0.00 0.27±0.00 0.10±0.00 0.20±0.00

InfoNC-t-SNE 0.33±0.00 0.13±0.00 0.37±0.00 0.43±0.01 -0.11±0.00 0.46±0.00 0.26±0.00 0.10±0.00 0.21±0.00
LocalMAP 0.58±0.00 0.19±0.00 0.60±0.00 0.56±0.01 -0.10±0.00 0.60±0.00 0.32±0.00 0.14±0.00 0.22±0.00

Table 2: Running Time for Different Algorithms. Each row is an algorithm, each column is a dataset.

MNIST FMNIST USPS COIL20 20NG Kang Seurat Human
Cortex

CBMC

PCA 00:01.77 00:01.64 00:00.13 00:02.77 00:00.11 00:00.07 00:00.07 00:00.22 00:00.20
t-SNE 03:02.38 02:36.97 00:35.92 00:10.36 01:10.69 00:40.33 01:05.32 01:05.68 01:49.60
UMAP 00:28.05 00:33.94 00:08.80 00:08.76 00:08.87 00:08.38 00:13.51 00:27.18 00:29.33

PaCMAP 00:52.39 00:34.54 00:04.26 00:03.28 00:08.29 00:05.59 00:13.16 00:18.72 00:39.59
LargeVis 14:51.71 14:02.86 06:45.63 07:09.97 06:44.39 07:12.39 08:15.04 08:31.17 11:18.19
TriMAP 00:53.64 00:48.16 00:06.59 00:01.29 00:13.05 00:13.26 00:19.31 00:26.75 01:03.43
PHATE 04:15.00 01:45.05 00:11.40 00:05.15 00:19.44 00:20.12 00:42.26 01:25.71 06:26.80
HNNE 00:10.05 00:06.41 00:00.60 00:02.35 00:02.19 00:01.33 00:04.21 00:03.02 00:04.27

Neg-t-SNE 01:02.65 01:10.92 00:12.62 00:03.86 00:23.06 00:18.32 00:28.25 00:42.77 00:56.06
NCVis 02:36.92 01:39.70 00:12.92 00:14.16 00:26.69 00:31.72 00:42.20 01:03.09 02:16.05

InfoNC-t-SNE 01:06.19 01:01.58 00:14.30 00:05.63 00:25.31 00:18.85 00:36.02 00:46.74 01:04.94
LocalMAP 01:47.35 00:47.51 00:06.23 00:06.77 00:13.28 00:07.63 00:20.17 00:29.02 01:12.35

gorithms is that they produce consistent results with differ-
ent initial conditions. Figure 17 in Appendix I shows the
result of LocalMAP over several runs, showing that it is
capable of consistently producing correct clustering results,
whereas other methods do not. In fact, there are no runs of
any other methods that distinctly separate the 10 clusters that
LocalMAP finds every time.

9 Discussion
While in the past, DR methods aimed to maintain the lo-
cal and global structure inherent in high-dimensional data,
these methods trusted its underlying graph structure, usually
derived from an untrustworthy distance metric. LocalMAP
does not do this, instead it dynamically (during run time)
discovers what parts of the graph are untrustworthy, and what
parts of the graph are not sampled well enough to be able
to tell clusters apart. This is why its results are visually and
quantitatively better than other DR methods – it essentially

cleans up the data while it is running.
One direction for future work would be to combine the

insights of LocalMAP with new parametric approaches to
DR that have just begun to yield successful results (Huang,
Wang, and Rudin 2024).

Our work could have substantial societal impact, for in-
stance, if it is able to find clusters of patients that have dif-
ferent immune system properties (Semenova et al. 2024; Fal-
cinelli et al. 2023). Our experiments indicate that LocalMAP
has a higher chance of accomplishing this than past DR ap-
proaches.
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A Detailed LocalMAP Algorithm

Algorithm 1: Implementation of LocalMAP

Require: X - data matrix, d̄adj from Section 5, parameter CMed∼10.
Ensure:

• Y - low-dimensional data matrix. Initialize Y with PCA or random initialization.
• Construct neighbor pairs, mid-near pairs and further pairs according to high-dimensional distance.
• Optimize the low-dimensional embedding Y using the first two training phases of PaCMAP.
• For the last training phase, optimize the low-dimensional embedding Y using the loss:

Loss(Y) :=
∑

(i,j): NN

d̄adj ·
√
d̃ij

2(CMed + d̃ij)
+

∑
(i,l): FP

1

1 + d̃il
,

where d̃ij = ∥yi − yj∥2 + 1. We use the Adam optimizer, and the FP pairs are resampled every 10 iterations to stay local
throughout the computation, so that all FPs have low-dimensional distance within d̄adj if possible, i.e., ∥yi − yl∥ ≤ d̄adj for all
(i, l) FP pairs. (We impose a limit of 20 maximum sampling attempts for the FPs due to computational considerations.)
return Y



B Detailed proof of Theorem 1
Proof. Considering a dataset with n data points distributed across m clusters C1, C2, ..., Cm, where each cluster Ci contains ni

data points (n1 + n2 + ...+ nm = n). For any two clusters Ci and Cj , by assumption, we have:

∀xi ∈ Ci, xj ∈ Cj , P (xi, xj are NNs) = pij

where pij is constant.
FP edges for a given point are sampled randomly from all non-NN points. For each point, nFP FP points are randomly

selected, where nFP is a constant defaulting to 20 for PaCMAP. Thus, the expected number of NNs and FPs between Ci and Cj

are
E(# of NNs between Ci, Cj) =

∑
xi∈Ci,xj∈Cj

P (xi, xj are NNs) =
∑

xi∈Ci,xj∈Cj

pij = ninjpij

E(# of FPs between Ci, Cj) =
∑

xi∈Ci

nj

n
· nFP +

∑
xj∈Cj

ni

n
· nFP =

2ninjnFP

n
,

because each point i ∈ Ci selects nj

n · nFP FP pairs, the total number of points in Ci sampled from Ci to Cj is ni·nj ·nFP
n FP

pairs. Similarly, ni·nj ·nFP
n FP pairs are sampled from all points in Cj between Ci and Cj . Therefore, 2ninj ·nFP

n total FP pairs are
sampled between these two clusters. Therefore, the ratio between the number of NN edges and the number of FP edges is

E(# of NNs between Ci, Cj)

E(# of FPs between Ci, Cj)
=

ninjpij
2ninjnFP /n

=
n · pij
2nFP

.

Considering that pij is unaffected by n and nFP, ni and nj are constants, the ratio increases with n. This result is true for all
clusters Ci and Cj . Thus, for each pair of clusters, the ratio of NN edges to FP edges grows linearly in n. This completes the
proof.



C Proof of Theorem 2: six principles for DR loss functions
Here we check the conditions identified by (Wang et al. 2021) for high-quality DR loss functions. Consider a triplet (i, j, k) where
i and j are high-dimensional neighbors that should be attracted to each other, and i and k are further points in the high-dimension
that should be repulsed from each other. How forces along pairs (i, j) and (i, k) should be affected by the distance between these
pairs of points dij and dik are defined by the six principles.

LocalMAP’s loss in the early stages follows these principles automatically. For its last stage, the loss function follows the
principles for NNs that are close in low-dimensional space (which indicates they are true positive pairs) with distance smaller than√
CMed − 1 = 3. For NNs beyond that, we do not want them to obey the principles because they are probably false positives.
According to Proposition 1 of (Wang et al. 2021), for loss functions of the form:

Loss =
∑
ij

Lossattractive(dij) +
∑
ik

Lossrepulsive(dik),

where its derivatives are:

f(dij) :=
∂Lossattractive(dij)

∂dij
, g(dik) := −

∂Lossrepulsive(dik)

∂dik
,

each of the six principles is obeyed under the following conditions of the loss function’s derivatives:

1. The functions f(dij) and g(dik) are non-negative and unimodal.
2. limdij→0 f(dij) = limdij→∞ f(dij) = 0, limdik→0 g(dik) = limdik→∞ g(dik) = 0.

For LocalMAP, the loss function for earlier stages is adopted from PaCMAP and thus obeys the principles. For LocalMAP’s
last phase, the loss function is:

Lossattractive(dij) =
d̄adj ·

√
d̃ij

2(CMed + d̃ij)
, d̃ij = d2ij + 1

and thus

f(dij) =
∂Lossattractive(dij)

∂dij
=

d̄adj · dij(CMed − d2ij − 1)

2(d2ij + 1)
1
2 (CMed + d2ij + 1)

≥ 0 when 0 ≤ dij ≤
√

CMed − 1.

To show f(dij) is unimodal:

∂f(dij)

∂dij
=

d̄adj(d
2
ij + 1)−

1
2 (CMed + d2ij + 1)(2d6ij + 3d4ij − 6CMedd

4
ij − 6CMedd

2
ij + C2

Med − 1)

2(d2ij + 1)(CMed + d2ij + 1)4
.

Since d̄adj(d
2
ij + 1)−

1
2 (CMed + d2ij + 1) and (d2ij + 1)(CMed + d2ij + 1)4 are always positive given d̄adj is positive, the sign of

∂f(dij)
∂dij

depends on ∆ = 2d6ij + 3d4ij − 6CMedd
4
ij − 6CMedd

2
ij + C2

Med − 1.
Considering ∆ is a six-degree polynomial of dij , ∆ = 0 has 6 roots in the complex field. Let t = d2ij , then

∆ = 2t3 + 3t2 − 6CMedt
2 − 6CMedt+ C2

Med − 1 = 0.

It is clear that limt→−∞ ∆ = −∞, limt→∞ ∆ = ∞. When t = 0, ∆ = CMed − 1 > 0, when t = CMed − 1, ∆ < 0. Then t
has a root in each of (−∞, 0), (0, CMed − 1) and (CMed − 1,∞), where each root of t corresponds to two roots of dij .

For the one negative root of t, it corresponds to two complex root of dij . For the two roots of t in (0, CMed − 1) and
(CMed − 1,∞), each corresponds to one positive root of dij and one negative root of dij . Therefore, dij has only one root of ∆
in (0,

√
CMed − 1), and ∂f(dij)

∂dij
is first positive and then negative in (0,

√
CMed − 1), which indicates that dij first increases

and then decreases in (0,
√
CMed − 1) and thus is unimodal in (0,

√
CMed − 1).

LocalMAP’s loss for FP pairs has an analogous proof, so we are done.



D Data Description
Detailed descriptions of the data set are shown as follows:

Dataset # of samples # of dimensions
MNIST 70,000 784

FMNIST 70,000 784
USPS 9,298 256

COIL20 1,440 16384
20NG 18,846 100
Kang 13,999 1000
Seurat 30,672 1000

Human Cortex 43,349 1000
CBMC 67,686 1000

E Silhouette Score
The Silhouette score was originally used to evaluate the quality of clusters in clustering analysis where the ground truth labels are
not present. In this paper, we use the Silhouette score to evaluate cluster quality from an unsupervised algorithm using ground
truth labels from supervised data by substituting the clusters generated from clustering algorithms to ground truth class labels. In
this case, it measures the embedding’s within-class cohesion (measured by a point’s average distance to other points in the same
class) against between-class separation (measured by a point’s minimum average distance to points of different classes). It is
calculated as follows:

1. For each data point i in a dataset: Calculate average distance ai between i and all other data points within the same class Ci:
ai =

∑
j∈Ci,j ̸=i d(i, j)/(|Ci| − 1) where d(i, j) is the distance between data points i and j.

Then calculate the minimum average distance bi of i to all data points in a different class Cj : bi =
mink ̸=i

∑
k∈Ck

d(i, k)/|Ck|.
2. Calculate the silhouette score Si for data point i: Si =

bi−ai

max(ai,bi)
.

3. The overall silhouette score S for the entire dataset is the average of the silhouette scores for all data points: S =
∑

i Si

N where
N is the number of data points in the dataset.



F Posthoc Classification
Tables 3 show posthoc classification results using SVM. Here, SVM is optimized globally. Posthoc classification aims to
determine whether class labels are maintained during DR projection even though labels are not used during the process of DR.
LocalMAP’s performance is comparable with other local DR methods with respect to these scores.

There are several problems with using posthoc classification as a performance metric. One problem is that its results are not
consistent between classification methods, as we can see from these tables. It also does not handle global structure at all (Huang
et al. 2022), meaning that one true cluster could be broken into many subclusters by DR (which would be a poor DR result) and
the posthoc classification score could be unchanged. Posthoc classification does not measure margins between clusters. Thus,
two true clusters that appear stuck together visually (as a fault of DR) may receive the same posthoc classification score as if they
were well separated.

Table 3: SVM Score for Different Algorithms, Bold is best, underline is not significantly different from best (with only 1%
difference). Each row is an algorithm, each column is a dataset.

MNIST FMNIST USPS COIL20 20NG Kang Seurat Human
Cortex CBMC

PCA 0.47±0.00 0.55±0.00 0.56±0.00 0.66±0.00 0.15±0.00 0.73±0.00 0.46±0.00 0.57±0.00 0.44±0.00
t-SNE 0.97±0.00 0.74±0.00 0.96±0.00 0.85±0.01 0.45±0.01 0.95±0.00 0.84±0.00 0.82±0.00 0.82±0.00
UMAP 0.97±0.00 0.74±0.01 0.95±0.00 0.82±0.01 0.44±0.01 0.95±0.00 0.83±0.00 0.81±0.00 0.82±0.00

PaCMAP 0.97±0.00 0.74±0.00 0.95±0.00 0.83±0.01 0.46±0.01 0.95±0.00 0.85±0.00 0.81±0.00 0.83±0.00
LargeVis 0.96±0.00 0.74±0.01 0.92±0.06 0.80±0.02 0.47±0.00 0.95±0.00 0.84±0.00 0.82±0.00 0.82±0.00
TriMAP 0.96±0.00 0.73±0.00 0.95±0.00 0.77±0.01 0.42±0.01 0.95±0.00 0.84±0.00 0.79±0.00 0.82±0.00
PHATE 0.86±0.02 0.66±0.01 0.86±0.01 0.84±0.00 0.33±0.01 0.92±0.00 0.77±0.00 0.70±0.01 0.72±0.01
HNNE 0.84±0.03 0.68±0.01 0.82±0.00 0.63±0.00 0.24±0.05 0.90±0.01 0.74±0.01 0.68±0.03 0.73±0.04

Neg-t-SNE 0.96±0.00 0.74±0.00 0.93±0.00 0.81±0.01 0.43±0.01 0.95±0.00 0.84±0.00 0.81±0.00 0.82±0.00
NCVis 0.94±0.01 0.73±0.00 0.92±0.00 0.79±0.00 0.36±0.01 0.94±0.00 0.83±0.00 0.82±0.00 0.82±0.00

InfoNC-t-SNE 0.96±0.00 0.74±0.00 0.93±0.00 0.82±0.01 0.42±0.00 0.95±0.00 0.85±0.00 0.81±0.00 0.83±0.00
LocalMAP 0.97±0.00 0.75±0.00 0.96±0.00 0.83±0.01 0.46±0.01 0.96±0.00 0.84±0.00 0.81±0.00 0.82±0.00



G The relationship between run time and the number of samples
Figure 7 shows the relationship between the number of samples and the run time.

Figure 7: The relationship between the number of samples and the run time (log-scaled in seconds).



H Additional Visualization for Datasets
We show how different DR methods perform on different datasets in Figures 8 to 16.

Figure 8: Different DR embeddings for MNIST (LeCun, Cortes, and Burges 2010)
.



Figure 9: Different DR embeddings for FMNIST (Xiao, Rasul, and Vollgraf 2017)



Figure 10: Different DR embeddings for USPS (Hull 1994)



Figure 11: Different DR embeddings for COIL20 (Nene, Nayar, and Murase 1996)



Figure 12: Different DR embeddings for 20NG (Lang 1995). Newsgroups tend to be intertwined.



Figure 13: Different DR embeddings for Kang (Kang et al. 2018)



Figure 14: Different DR embeddings for Seurat (Stuart et al. 2019)



Figure 15: Different DR embeddings for Human Cortex (Zhu et al. 2023)



Figure 16: Different DR embeddings for CBMC (Stoeckius et al. 2017)



I Sensitivity Check for Initialization
In this section, we will assess how stable different dimension reduction methods are when points are uniformly randomly
initialized in the low-dimensional space. Figures 17 show the results. LocalMAP is able to reliably separate the 10 clusters for
every run. No other method is able to do this for any run – each has multiple clusters combined that should be separated. t-SNE
sometimes has severe flaws in its DR plot for MNIST in that the blue cluster is sometimes broken up; UMAP does this once for
one of the red clusters. TriMAP has severe problems with local structure preservation. We have also marked those seriously
problematic areas in Figure 17 with red dashed boxes.

Figure 17: DR embeddings under different initializations for MNIST (LeCun, Cortes, and Burges 2010); the red dashed boxes
represent the broken clusters in the embeddings.



J Comparison with other dimension reduction methods with tuned hyperparameters
In the main paper, we have shown that LocalMAP can separate clusters better than other approaches. In this section, we compare
LocalMAP with its default parameters to t-SNE, UMAP, PHATE and LargeVis with their best parameters. For tuning, we applied
grid hyperparameter search, and selected the best hyperparameters among all possible combinations. For t-SNE, we tuned
perplexity ([5, 10, 15, 20, 25, 30, 35, 40, 45, 50]) and learning rate ([10, 50, 100, 200, 500, 1000]) based on the suggested range
from Gove et al. (2022). For UMAP, we tuned the number of nearest neighbors ([2, 5, 10, 20, 50, 100, 200]) and the min distance
([0.0, 0.1, 0.25, 0.5, 0.8, 0.99]) based on the official UMAP documentation (McInnes, Healy, and Melville 2018). For PHATE
we used the number of nearest neighbors ([2, 5, 10, 15, 20]) and the decay value ([10, 15, 20, 40, 80, 160]) suggested by the
orignal paper(Moon et al. 2019). For LargeVis, we used the range suggested by the original paper (Tang et al. 2016) and adjusted
the perplexity ([10, 50, 100, 200, 500]), the number of times for neighbor propagation (prop) ([1,2,3]), and the weights assigned
to negative edges (γ)([1,3,5,7,9]). The number of neighbors is chosen as three times the perplexity based on the corresponding
github document. The weights assigned to negative edges in table 4 show the best parameters we found for each dataset, and
table 6 shows the updated comparisons. Based on the table 6, we can easily observe that LocalMAP can still separate better than
the other approaches within most of the datasets. For the COIL20 datasets, we can observe that tuned LargeVis, UMAP, and
t-SNE perform slightly better than LocalMAP. However, if we look at the visualizations of these embeddings generated with the
tuned hyperparameters in Figure 18, we can easily see that these methods don’t provide additional separations for the clusters.
Instead, they improve the silhouette score by reducing the intra-cluster distances. Moreover, if we tend to fine-tune the dimension
reduction methods to achieve a better performance, it might take more time than using the default hyperparameters, which again
proves that LocalMAP are less sensitive to the hyperparameters to achieve a good separation of the clusters.

Table 4: The best hyperparameters for different dimension reduction methods on different datasets with the highest silhouette
score.

t-SNE
(perplexity,

learning rate)

UMAP
(n_neighbors,

min_dist)

PHATE
(k,decay)

LargeVis
(perplexity,

prop,γ)
MNIST (50,1000) (10,0) (2,15) (10,2,3)

FMNIST (50,50) (100,0) (5,80) (50,1,3)
USPS (40,500) (10,10) (20,160) (10,2,7)

COIL20 (10,500) (10,0) (5,160) (10,1,9)
20NG (40,50) (100,0.1) (15,160) (10,2,1)
Kang (40,500) (10,0) (5,20) (10,1,1)
Seurat (50,200) (20,0) (5,160) (10,1,3)

Human Cortex (45,1000) (5,0) (2,160) (100,2,9)
CBMC (45,500) (200,0) (2,80) (100,1,1)

Table 5 has shown the best hyperparameters for each dimension reduction methods with the highest SVM accuracy within
different datasets and table 7 has shown their corresponding SVM accuracy. Based on the performance of the dimension reduction,
we can see that LocalMAP is still comparable with other optimzed DR methods with respect to these scores.



Table 5: The best hyperparameters for different dimension reduction methods on different datasets with the highest SVM accuracy

t-SNE
(perplexity,

learning rate)

UMAP
(n_neighbors,

min_dist)

PHATE
(k,decay)

LargeVis
(perplexity,

prop,γ)
MNIST (20,200) (20,0.1) (5,160) (10,3,1)

FMNIST (15,1000) (10,0.1) (20,80) (10,3,5)
USPS (20,200) (10,0) (20,80) (10,2,7)

COIL20 (5,10) (5,0.1) (2,40) (10,2,9)
20NG (20,1000) (20,0) (20,40) (50,3,3)
Kang (50,10) (20,0.1) (10,160) (100,2,9)
Seurat (50,10) (50,0.5) (10,80) (50,2,5)

Human Cortex (50,10) (20,0) (2,80) (50,2,9)
CBMC (35,50) (20,0.5) (2,40) (100,1,9)

Table 6: Silhouette scores for different Algorithms. If the method is not labeled as “Optimized”, then it is using the default
hyperparameters. Bold is best, underline is not significantly different from best. Each row is an algorithm, each column is a
dataset. Red labels are the ones that have shown significant improvement comparing to LocalMAP

MNIST FMNIST USPS COIL20 20NG Kang Seurat Human
Cortex

CBMC

PCA 0.02±0.00 -0.03±0.00 0.10±0.00 0.01±0.00 -0.19±0.00 0.12±0.00 -0.06±0.00 -0.08±0.00 -0.11±0.00
t-SNE 0.35±0.00 0.12±0.00 0.42±0.00 0.41±0.00 -0.11±0.00 0.40±0.01 0.22±0.01 0.11±0.01 0.15±0.01
UMAP 0.52±0.01 0.19±0.01 0.53±0.00 0.58±0.01 -0.15±0.01 0.51±0.00 0.30±0.00 0.12±0.02 0.22±0.00

PaCMAP 0.54±0.01 0.19±0.00 0.56±0.00 0.51±0.02 -0.11±0.01 0.53±0.00 0.31±0.00 0.13±0.01 0.22±0.00
LargeVis 0.49±0.05 0.11±0.03 0.41±0.12 0.38±0.01 -0.13±0.01 0.44±0.01 0.25±0.01 0.10±0.02 0.17±0.00
TriMAP 0.41±0.00 0.17±0.00 0.48±0.00 0.47±0.00 -0.13±0.00 0.55±0.00 0.32±0.00 0.07±0.00 0.21±0.00
PHATE 0.26±0.02 0.11±0.01 0.27±0.01 0.33±0.00 -0.21±0.01 0.48±0.02 0.27±0.01 -0.09±0.01 0.06±0.01
HNNE 0.21±0.03 0.06±0.04 0.23±0.00 0.03±0.00 -0.34±0.03 0.39±0.06 -0.00±0.03 -0.09±0.06 0.12±0.05

Neg-t-SNE 0.48±0.00 0.19±0.00 0.48±0.00 0.44±0.01 -0.11±0.00 0.53±0.00 0.32±0.00 0.12±0.00 0.24±0.00
NCVis 0.38±0.02 0.19±0.00 0.44±0.00 0.53±0.00 -0.15±0.00 0.51±0.00 0.27±0.00 0.10±0.00 0.20±0.00

InfoNC-t-SNE 0.33±0.00 0.13±0.00 0.37±0.00 0.43±0.01 -0.11±0.00 0.46±0.00 0.26±0.00 0.10±0.00 0.21±0.00
Optimized LargeVis 0.56±0.01 0.19±0.00 0.55±0.03 0.65±0.03 -0.12±0.01 0.47±0.01 0.27±0.02 0.12±0.00 0.22±0.00
Optimized PHATE 0.34±0.02 0.12±0.00 0.55±0.00 0.33±0.00 -0.18±0.01 0.51±0.01 0.27±0.01 -0.01±0.00 0.10±0.02
Optimized t-SNE 0.39±0.00 0.14±0.00 0.43±0.01 0.51±0.00 -0.11±0.00 0.43±0.02 0.23±0.00 0.13±0.01 0.18±0.01
Optimized UMAP 0.58±0.00 0.19±0.00 0.60±0.00 0.63±0.00 -0.13±0.01 0.54±0.01 0.31±0.00 0.14±0.00 0.22±0.00

LocalMAP 0.58±0.00 0.19±0.00 0.60±0.00 0.56±0.01 -0.10±0.00 0.60±0.00 0.32±0.00 0.14±0.00 0.22±0.00



Figure 18: The visualization comparison among LocalMAP, optimized LargeVis and optimzied UMAP.



Table 7: SVM Score for Different Algorithms. If the method is not labeled as “Optimized”, then it is using the default
hyperparameters. Bold is best, underline is not significantly different from best (with only 1% difference). Each row is an
algorithm, each column is a dataset.

MNIST FMNIST USPS COIL20 20NG Kang Seurat Human
Cortex

CBMC

PCA 0.47±0.00 0.55±0.00 0.56±0.00 0.66±0.00 0.15±0.00 0.73±0.00 0.46±0.00 0.57±0.00 0.44±0.00
t-SNE 0.97±0.00 0.74±0.00 0.96±0.00 0.85±0.01 0.45±0.01 0.95±0.00 0.84±0.00 0.82±0.00 0.82±0.00
UMAP 0.97±0.00 0.74±0.01 0.95±0.00 0.82±0.01 0.44±0.01 0.95±0.00 0.83±0.00 0.81±0.00 0.82±0.00

PaCMAP 0.97±0.00 0.74±0.00 0.95±0.00 0.83±0.01 0.46±0.01 0.95±0.00 0.85±0.00 0.81±0.00 0.83±0.00
LargeVis 0.96±0.00 0.74±0.01 0.92±0.06 0.80±0.02 0.47±0.00 0.95±0.00 0.84±0.00 0.82±0.00 0.82±0.00
TriMAP 0.96±0.00 0.73±0.00 0.95±0.00 0.77±0.01 0.42±0.01 0.95±0.00 0.84±0.00 0.79±0.00 0.82±0.00
PHATE 0.86±0.02 0.66±0.01 0.86±0.01 0.84±0.00 0.33±0.01 0.92±0.00 0.77±0.00 0.70±0.01 0.72±0.01
HNNE 0.84±0.03 0.68±0.01 0.82±0.00 0.63±0.00 0.24±0.05 0.90±0.01 0.74±0.01 0.68±0.03 0.73±0.04

Neg-t-SNE 0.96±0.00 0.74±0.00 0.93±0.00 0.81±0.01 0.43±0.01 0.95±0.00 0.84±0.00 0.81±0.00 0.82±0.00
NCVis 0.94±0.01 0.73±0.00 0.92±0.00 0.79±0.00 0.36±0.01 0.94±0.00 0.83±0.00 0.82±0.00 0.82±0.00

InfoNC-t-SNE 0.96±0.00 0.74±0.00 0.93±0.00 0.82±0.01 0.42±0.00 0.95±0.00 0.85±0.00 0.81±0.00 0.83±0.00
LocalMAP 0.97±0.00 0.75±0.00 0.96±0.00 0.83±0.01 0.46±0.01 0.96±0.00 0.84±0.00 0.81±0.00 0.82±0.00

Optimized LargeVis 0.97±0.00 0.74±0.01 0.96±0.00 0.85±0.01 0.46±0.00 0.95±0.00 0.84±0.00 0.82±0.01 0.82±0.00
Optimized t-SNE 0.97±0.00 0.75±0.00 0.96±0.00 0.92±0.02 0.46±0.00 0.95±0.00 0.84±0.01 0.82±0.00 0.82±0.01
Optimized UMAP 0.97±0.00 0.75±0.00 0.96±0.00 0.89±0.00 0.44±0.01 0.95±0.00 0.84±0.00 0.82±0.00 0.82±0.00
Optimized PHATE 0.89±0.01 0.68±0.02 0.86±0.00 0.93±0.01 0.37±0.00 0.92±0.01 0.77±0.00 0.71±0.01 0.72±0.00

LocalMAP 0.97±0.00 0.75±0.00 0.96±0.00 0.83±0.01 0.46±0.01 0.96±0.00 0.84±0.00 0.81±0.00 0.82±0.00



K Scalability of LocalMAP under Large Datasets
In this section, we have added two large single-cell datasets with more than 1 million cells within each dataset to show the
scalability of our model. The data description of the extended dataset within our model has already been shown in Table 8. The
biological data sets are processed according to the same method mentioned in Section 8, and the detailed embeddings using
PaCMAP and LocalMAP are shown in Figure 19, which proves that LocalMAP shows good separation even in large-scale
settings.

Table 8: Data Description with Large Scale Dataset over 1 million samples

Dataset # of samples # of dimensions
PBMC 1M(Perez et al. 2022) 1,263,676 1,000

AIDA(Kock et al. 2024) 1,058,909 1,000

Figure 19: The performance of PaCMAP and LocalMAP under large scale settings


