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ABSTRACT

Reinforcement learning (RL) algorithms have the potential not only for synthesiz-
ing complex control behaviors, but also for transfer across tasks. Typical model-
free RL algorithms are usually good at solving individual problems with high di-
mensional state-spaces or long horizons, but can struggle to transfer across tasks
with different reward functions. Model-based RL algorithms, on the other hand,
naturally enable transfer across different reward functions, but struggle to scale to
settings with long horizons and/or high dimensional observations. In this work,
we propose a new way to transfer behaviors across tasks with different reward
functions, displaying the benefits of model-free RL algorithms with the transfer-
ability of model-based RL. In particular, we show how a careful combination of
model-free RL using randomly sampled features as reward is able to implicitly
model long-horizon environment dynamics. Model-predictive control using these
implicit models enables quick adaptation to problems with new reward functions,
while scaling to problems with high dimensional observations and long horizons.
Our method can be trained on offline datasets without reward labels, and quickly
deployed on new tasks, making it more widely applicable than typical methods
for both model-free and model-based RL. We validate that our proposed algo-
rithm enables transfer across tasks in a variety of robotics and analytic domains.

1 INTRODUCTION

Reinforcement learning (RL) algorithms have been shown to successfully synthesize complex be-
havior in single-task sequential decision-making problems [1, 2, 3], but more importantly have the
potential for broad generalization across problems. However, many RL algorithms are deployed as
specialists — they solve single tasks and are not prepared for reusing their interactions. In this work,
we specifically focus on the problem of transferring information across problems where the environ-
ment dynamics are shared, but the reward function is changing. This problem setting is reflective of
a number of scenarios that may be encountered in real-world settings such as robotics. For instance,
in tabletop robotic manipulation, different tasks like pulling an object, pushing an object, picking it
up, and pushing to different locations, all share the same transition dynamics, but involve a changing
reward function. We hence ask the question — can we reuse information across these tasks in a way
that scales to high dimensional, longer horizon problems?

When considering how to tackle this problem, a natural possibility is to consider direct policy search
[4, 5]. Typical policy search algorithms can achieve good performance for solving a single task, but
entangle the dynamics and reward, in the sense that the policy one searches for is optimal for a
particular reward but may be highly suboptimal in new scenarios. Other model-free RL algorithms
like actor-critic methods [6, 7, 8] or Q-learning [9, 1] may exacerbate this issue, with learned
Q-functions entangling dynamics, rewards, and policies. For new scenarios, an ideal algorithm
should be able to disentangle and retain the elements of shared dynamics, while being able to easily
substitute in new rewards.

A natural fit to disentangle dynamics and rewards are model-based RL algorithms [10, 11, 12, 13,
14]. These algorithms usually learn a single-step model of transition dynamics and leverage this
learned model to perform planning [15, 12, 11, 16]. These models are naturally modular and can
be used to re-plan behaviors for new rewards. However, one-step dynamics models are brittle and
suffer from challenges in compounding error [17, 18].
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In this work, we ask — can we build reinforcement learning algorithms that disentangle dynamics,
rewards, and policies for transfer across problems but retain the ability to solve problems with high
dimensional observations and long horizons? In particular, we propose an algorithm that can train
on large offline datasets of transitions in an environment at training time to implicit model transition
dynamics, and then quickly perform decision making on a variety of different new tasks with varying
reward functions that may be encountered at test time.

Specifically, we propose to model the long-term behavior of randomly chosen basis functions (often
called cumulants) of the environment state and action, under open-loop control, using what we term
Q-basis functions. These Q-basis functions can be easily recombined to infer the true Q function
for tasks with arbitrary rewards by simply solving a linear regression problem. Intuitively, this
suggests that rather than predicting the evolution of the entire state step by step, predicting the
accumulated long-term future of many random features of the state contains information equivalent
to a dynamics model, thereby forming an “implicit model” that can transfer. These implicit models
scale better with horizon and environment dimensionality than typical one-step dynamics models,
while retaining the benefits of transferability and modularity.

Our proposed algorithm Random Features for Model-Free Planning (RaMP) allows us to leverage
an unlabelled offline dataset to learn reward-agnostic implicit models that can quickly solve new
tasks involving different reward functions in the same shared environment dynamics. We show the
efficacy of this method on a number of tasks for robotic manipulation and locomotion in simulation,
and highlight how RaMP provides a more general paradigm than typical generalizations of model-
based or model-free reinforcement learning.

1.1 RELATED WORK

Model-based RL is naturally suited for this transfer learning setting, by explicitly learning a model
of the transition dynamics and the reward function [12, 15, 11, 19, 16, 20, 21]. These models
are typically learned via supervised learning on one-step transitions and are then used to extract
control actions via planning [22, 23] or trajectory optimization [24, 25, 26]. The key challenge in
scaling lies in the fact that they sequentially feed model predictions back into the model for sampling
[27, 18, 17]. This can often lead to compounding errors [17, 18, 28], which grows with the horizon
length unfavorably. In contrast, our work does not require autoregressive sampling, but directly
models long term behavior, and is easier to scale to longer horizons and higher dimensions.

On the other hand, model-free RL often avoids the challenge of compounding error by directly mod-
eling either policies or Q-values [4, 29, 5, 30, 1, 7] and more easily scales to higher dimensional state
spaces [1, 31, 5]. However, this entangles rewards, dynamics, and policies, making it challenging to
directly use for transfer. While certain attempts have been made at building model-free methods that
generalize across rewards, such as goal-conditioned value functions [32, 33, 34, 35] or multi-task
policies [36, 37], they only apply to restricted classes of reward functions and particular training
distributions. Our work aims to obtain the best of both worlds (model-based and model-free RL),
learning a disentangled representation of dynamics that is independent of rewards and policies, but
using a model-free algorithm for learning.

Our notion of long-term dynamics is connected to the notion of state-action occupancy measure [38,
39], often used for off-policy evaluation and importance sampling methods in RL. These methods
often try to directly estimate either densities or density ratios [14, 38, 39]. Our work simply learns the
long-term accumulation of random features, without requiring any notion of normalized densities.

Perhaps most closely related work to ours is the framework of successor features, that considers
transfer from a fixed set of source tasks to new target tasks [40, 41, 42, 43]. Like our work, the
successor features framework leverages linearity of rewards to disentangle long-term dynamics from
rewards using model-free RL. However, transfer using successor features is critically dependent on
choosing (or learning) the right featurization and entangles the policy. Our work leverages random
features and open-loop policies to allow for transfer across arbitrary policies and rewards.

2 BACKGROUND AND SETUP

Formalism: We consider the standard Markov decision process (MDP) as characterized by a tuple
M = (S,A, T , R, γ, µ), with state space S, action space A, transition dynamics T : S × A →
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∆(S), reward function R : S × A → ∆([−Rmax, Rmax]), discount factor γ ∈ [0, 1), and initial
state distribution µ ∈ ∆(S). The goal is to learn a policy π : S → ∆(A), such that it maximizes
the expected discounted accumulated rewards, i.e., solves maxπ Eπ

[∑∞
h=1 γ

h−1rh
]

with rh :=
r(sh, ah) ∼ Rsh,ah

= Pr(· | sh, ah). Hereafter, we will refer to an MDP and a task interchangeably.

Estimating Q-functions: Given an MDP M, one can define the state-action Q-value function
under any policy π as Qπ(s, a) := E ah∼π(· | sh)

sh+1∼T (· | sh,ah)

[∑∞
h=1 γ

h−1rh
∣∣ s1 = s, a1 = a

]
which

denotes the expected accumulated reward under policy π, when starting from state-action pair
(s, a). Similarly, one can also define the multi-step (τ -step) Q-function Qπ(s, ã1, ã2, · · · , ãτ ) =

Eaτ+h∼π(· | sτ+h)
sh+1∼T (· | sh,ah)

[∑∞
h=1 γ

h−1rh
∣∣ s1 = s, a1 = ã1, a2 = ã2, · · · , aτ = ãτ

]
.

One can estimate the Qπ by Monte-Carlo sampling of the trajectories under π, i.e., by solving

min
Q̂∈Q

1

N

N∑
j=1

∥∥∥Q̂(s, ãj1, ã
j
2, · · · , ãjτ )−

1

M

M∑
m=1

∞∑
h=1

γh−1rm,j
h

∥∥∥2
2
, (2.1)

where Q is some function class for Q-value estimation, which in practice is some parametric func-
tion class, e.g., neural networks; rm,j

h ∼ Rsm,j
h ,am,j

h
and (sm,j

h , am,j
h ) come from MN trajectories

that are generated by N open-loop action sequences {(ãj1, ã
j
2, · · · , ãjτ )}Nj=1. For each sequence

there are M trajectories starting from it, and following policy π onwards, to estimate the τ -step
Q-function. A large body of work considers finding this Q-function using dynamic programming,
but for the sake of simplicity, this work will only consider Monte-Carlo estimation.

In practice, the infinite-horizon estimator in (2.1) can be hard to obtain. We hence use a finite-
horizon approximation of Qπ (of length H), denoted by QH

π , in learning. Note that if one
chooses H = τ , then the τ -step Q-function defined above becomes QH

π (s, ã1, ã2, · · · , ãH) :=

Esh+1∼T (· | sh,ah)

[∑H
h=1 γ

h−1rh

∣∣∣∣ s1 = s, a1 = ã1, · · · , aH = ãH

]
. Note that in this case, the Q-

function is irrelevant of the policy π, denoted by QH , and is just the expected accumulated reward
under the open-loop action sequence (ã1, ã2, · · · , ãH). This Q-function can be used to score how
“good” a sequence of actions will be, which in turn can be used for planning.

2.1 PROBLEM SETUP

We consider a transfer and offline RL scenario, where we assume access to an offline dataset consist-
ing of several episodesD = {(smh , amh , smh+1)}h∈[H],m∈[M ]. This dataset assumes that all transitions
are collected under the same transition dynamics T , but otherwise does not require labels for re-
wards, and may come from multiple different behavior policies as well. Here H is the length of the
trajectories, which is large enough, e.g., of order O(1/(1 − γ)) to approximate the infinite-horizon
setting; M is the total number of trajectories.

The goal is to make the best use of the dataset D, and generalize the learned experience to im-
prove the performance on a new taskM, with the same transition dynamics T but arbitrary reward
functions R. Note that unlike some related work [40, 44], we make no assumption on the reward
functions of the MDPs that generate D, i.e., these MDPs do not have to share any structure of the
reward functions, e.g., being linear in some common features. In fact, the samples of the rewards
that correspond to the trajectories in D are not even necessary. The goal of the learning problem is
to pre-train on the offline dataset such that we can enable very quick (even zero-shot) adaptation to
the new reward functions encountered at test time.

3 RAMP: LEARNING IMPLICIT MODELS FOR CROSS-REWARD TRANSFER
WITH MODEL-FREE TECHNIQUES

In this section, we introduce our algorithm, Randomized features for Model-free Planning (RaMP),
to solve the problem described in §2 – learning a model of long-term dynamics that enables transfer
to tasks labeled with arbitrary new rewards, while mitigating challenges with compounding error.
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Figure 1: RaMP: Depiction of our proposed method for transferring behavior across tasks by leveraging model-
free learning of random features. At training time, Q-basis functions are trained on accumulated random fea-
tures. At test time, adaptation is performed by solving linear regression and recombining basis functions,
followed by online planning with MPC.
We start by arguing where model-based and model-free algorithms fall short. Model-based RL
approaches estimate the transition dynamics T using the data inD, and plan in the estimated model.
The key advantage of this approach is that it is reward-agnostic, and has the potential to easily
generalize to multiple tasks. Unfortunately, since the model outputs are fed back into the model for
multi-step planning, it is subject to compounding error of one-step dynamics models [17].

In contrast, one can resort to model-free RL approaches, e.g., Q-learning or policy optimization
methods [6, 9, 1, 5, 4], to directly optimize the value of interest. These methods are less subject
to the challenges of compounding error than most model-based ones. Empirically, learning neural
networks to predict the Q-function (a scalar for each (s, a)), can be much easier than to predict the
next state (which can be a high-dimensional vector, e.g., image). However, these methods cannot
be used directly to transfer across different tasks with different rewards, as they are designed to be
reward-dependent. This raises the natural question: Is there a model-free approach that can mitigate
the challenges of compounding error and can transfer across tasks painlessly?

The key insight we advocate is that if instead of modeling long-term accumulation of some specific
reward as a Q-function, we directly model long-term accumulation of many random features of
state-actions under arbitrary open-loop action sequences. This can effectively disentangle transition
dynamics, reward, and policies being evaluated, and potentially allow for transfer across tasks. Each
long-term accumulation of random features is referred to as an element of a “random” Q-basis, and
can be learned with simple modifications to typical model-free RL algorithms.

At training time, the offline dataset D can be used to learn a set of “random” Q-basis functions for
different random features. This effectively forms an “implicit model”, as it carries information about
how the dynamics propagates, without being tied to any particular reward function or policy. At
test time, given a new reward function, we can recombine Q-basis functions linearly to effectively
approximate the true reward-specific Q-function. This inferred Q-function can then be used for
planning for the new task.

3.1 OFFLINE TRAINING: LEARNING RANDOM Q-FUNCTIONS FROM UNLABELLED DATA

Given a dataset of transitions without reward labels, the goal of this phase is to model the long-term
accumulation of random features under random state-action sequences. With no prior knowledge
about the downstream test-time rewards, the random features being modeled must be expressive
and universal in their coverage, so that any possible test-time rewards can be reconstructed from
these random features by linear regression. As suggested in [45, 46, 47], random features can be
powerful in representing nonlinear functions, i.e., any test-time reward function in our case, as their
linear combinations. In particular, suppose we have K neural networks ϕ(·, ·; θk) : S × A → R
with weights θk ∈ Rd and k ∈ [K], where θk are randomly i.i.d. sampled from some distribution p.
SamplingK such weights θk with k ∈ [K] yields a vector of scalar functions [ϕ(·, ·; θk)]k∈[K] ∈ RK

for any (s, a), which can be used as random features whose accumulation through dynamics can be
used to model Q-basis functions.

To model the long-term accumulation of each of these random features, we note that they can be
treated as reward functions in model-free RL, and the machinery of Q-functions can be reused to
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learn their long-term accumulation. As discussed in [48], model-free RL algorithms can be used to
model the evolution of arbitrary functions (called “cumulants”) of the state. Therefore, we can learn
a set of K Q-basis functions, with each of them corresponding to a particular random feature.

We note that this definition of a Q-basis function is tied to a particular policy π that generates the
trajectory. To transfer, one needs to predict the accumulated random features under new sequences
of actions, as the optimal policy for the new task is likely to not be within the span of policies seen in
training. To allow the modeling of cumulants that is independent of particular policies, we propose
to learn open-loop Q-basis functions for each of the random features (as discussed in Section §2),
which is policy-agnostic, and can be used to search for optimal actions in new tasks.

To actually learn these Q-basis functions (one for each random feature), we opt to
use Monte-Carlo methods for simplicity. We generate a new dataset Dϕ from D,
with Dϕ = {((sm1 , am1:H),

∑
h∈[H] γ

h−1ϕ(smh , a
m
h ; θk))}m∈[M ],k∈[K]. Here we use∑

h∈[H] γ
h−1ϕ(smh , a

m
h ; θk) as the accumulated cumulants for open-loop action sequences

{a1, · · · , aH} taken from state s1. We then use K function approximators representing each of
the K Q-basis functions, e.g., neural networks ψ(·, ·; νk) : S × AH → R for k ∈ [K], to fit the
accumulated cumulants. Specifically, we minimize the following loss

min
{νk}k∈[K]

1

M

∑
m∈[M ],k∈[K]

(
ψ(sm1 , a

m
1:H ; νk)−

∑
h∈[H]

γh−1ϕ(smh , a
m
h ; θk)

)2

. (3.1)

These Q-basis functions can be recombined to approximate the Q-functions for true rewards at test
time. The two key design decisions here are – (1) predicting the evolution of random features,
rather than one-step modeling of state, and (2) predicting the accumulated random features under
open-loop action sequences, rather than a closed-loop policy.

3.2 ONLINE PLANNING: INFERRING Q-FUNCTIONS WITH LINEAR REGRESSION AND
PLANNING WITH MODEL-PREDICTIVE CONTROL

The goal of our learned Q-basis functions is to enable transfer to new tasks with arbitrary rewards.
Any reward function can be approximately expressed as a linear combination of a sufficiently ex-
pressive and expansive set of random features. Given this linear approximation, we can recover an
approximation to the Q-function for the true test-time reward by recombining the random Q-basis
functions linearly. Therefore, we can obtain the test-time Q-function by solving a simple linear
regression problem. This inferred Q-function can then be used to obtain an optimal sequence of
actions through planning.

3.2.1 REWARD FUNCTION FITTING WITH RANDOMIZED FEATURES

We first learn how to express the reward function for the new task as a linear combination of the ran-
dom features. This can be done by solving a linear regression problem to find the coefficient vector
w = [w1, · · · , wK ]⊤ that approximates the new task’s reward function as a linear combination of
the random features. Specifically, we minimize the following loss

w∗ = argmin
w

1

MH

∑
h∈[H],m∈[M ]

(
r(smh , a

m
h )−

∑
k∈[K]

wkϕ(s
m
h , a

m
h ; θk)

)2

+ λ∥w∥22, (3.2)

where λ ≥ 0 is the regularization coefficient, and r(smh , a
m
h ) ∼ Rsmh ,am

h
. Due to the use of random

features, Eq. (3.2) is a ridge regression problem, and can be solved efficiently. In case the reward
labels are being obtained on the fly during online data collection, we can leverage an online least
squares algorithm [49] to continually improve our estimate of w without re-computing regression
result from scratch as the number of samples grows.

Given these weights, it is easy to estimate an approximate open-loop Q-function for the true re-
ward on the new task by linearly combining the Q-basis functions learned in the offline train-
ing phase {ψ(·, ·; ν∗k)}k∈[K] according to the same coefficient vector w∗. This follows from
the additive nature of reward and linearity of expectation. In particular, if the reward function
r(s, a) =

∑
k∈[K] w

∗
kϕ(s, a; θk) holds approximately, which will be the case for large enough

K and rich enough ϕ, then the approximate Q-function for the true test-time reward under

5



Under review as a conference paper at ICLR 2023

the sequence {a1, · · · , aH} satisfies QH(s1, a1:H) := Esh+1∼T (sh,ah)

[∑
h∈[H] γ

h−1Rsh,ah

]
≈∑

k∈[K] w
∗
kψ(s1, a1:H ; ν∗k), where {w∗

k}k∈[K] is the solution to the regression problem (Eqn (3.2))
and {ν∗k}k∈[K] is the solution to the Q-basis fitting problem (Eqn (3.1)).

3.2.2 PLANNING WITH MODEL-PREDICTIVE CONTROL

To obtain the optimal sequence of actions we can use the inferred approximate Q-function for the
true reward QH(s1, a1:H) for online planning at each time t in the new task: at state st, we conduct
standard model-predictive control with random shooting, i.e., randomly generating N sequences of
actions {an1 , · · · , anH}n∈[N ], and find the action sequence with the maximum Q-value such that

n∗t ∈ argmax
n∈[N ]

∑
k∈[K]

w∗
kψ(st, a

n
t:t+H−1; ν

∗
k). (3.3)

We then execute an
∗
t

t from the sequence n∗t , observe the new state st+1, and replan. Our algorithm
is summarized in Algorithm 1. We refer readers to Appendix D for a detailed connection of our
proposed method to existing work and Appendix A for detailed pseudocode.

3.3 THEORETICAL JUSTIFICATIONS

We now provide some theoretical justifications for the methodology we adopt. To avoid unnecessary
nomenclature of measures and norms in infinite dimensions, we in this section consider the case that
S andA are discrete (but can be enormously large). Due to space limitation, we present an abridged
version of the results below, and defer the detailed versions and proofs in §C. We first state the
following result on the expressiveness of random cumulants.

Theorem 3.1 (Q-function approximation; Informal). Under standard coverage and sampling as-
sumptions of offline dataset D, and standard assumptions on the boundedness and continuity of
random features ϕ(s, a; θ), it follows that with horizon length H = Θ̃( log(Rmax/ϵ)

1−γ ) and M =

Θ̃( 1
(1−γ)3ϵ4 ) episodes in dataset D, and with K = Ω̃((1− γ)−2ϵ−2) random features, we have that

for any given reward function R, and any policy π

∥Q̂H
π (w∗)−Qπ∥∞ ≤ O(ϵ) +O

(√
inf
f∈H
E(f)

)
with high probability, where for each (s, a), Q̂H

π (s, a;w∗) is defined as Q̂H
π (s, a;w∗) :=

E
[∑H

h=1 γ
h−1

∑
k∈[K] w

∗
kϕ(sh, ah; θk)

∣∣∣ s1 = s, a1 = a

]
, and can be estimated from the offline

dataset D; inff∈H E(f) is the infimum expected risk over the function classH induced by ϕ.

Theorem 3.1 is an informal statement of the results in §C.2, which specifies the number of random
features, the horizon length per episode, and the number of episodes, in order to approximate Qπ

accurately by using the data in D, under any given reward function R and policy π. Note that the
number of random features is not excessive and is polynomial in problem parameters. We also note
that the results can be improved under stronger assumptions of the sampling distributions p and
kernel function classes [47, 50].

Next, we justify the use of open-loop Q-functions in planning in a deterministic transition environ-
ment, which contains all the environments our empirical results we will evaluate later. Recall that
for any given reward R, let Qπ denote the Q-function under policy π. Note that with a slight abuse
of notation, Qπ can also be the multi-step Q-function (see definition in §2), and the meaning should
be clear from the input, i.e., whether it is Qπ(s, a) or Qπ(s, a1, · · · , aH).

Theorem 3.2. Let Π be some subclass of Markov stationary policies, i.e., for any π ∈ Π, π : S →
∆(A). Suppose the transition dynamics T is deterministic. For any given reward R, denote the H-
step policy obtained from H-step open-loop policy improvement over Π as π′

H : S → AH , defined
as π′

H(s) ∈ argmax(a1,··· ,aH)∈AH maxπ∈Π Qπ(s, a1, · · · , aH), for all s ∈ S. Let Vπ′
H

denote the
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Figure 2: We evaluate our method on manipulation, locomotion, high dimensional action space environments.
The green arrow in each environment indicates the online objective for policy transfer while the red arrows are
offline objectives used to label rewards for the privileged dataset.

value function under the open-loop policy π′
H (see formal definition in §C.1). Then, we have that

for all s ∈ S

Vπ′
H
(s) ≥ max

a1:H

max
π∈Π

Qπ(s, a1, · · · , aH) ≥ max
a

max
π∈Π

Qπ(s, a).

The proof of Theorem 3.2 can be found in §C.2. The result can be viewed as a generalization of the
generalized policy iteration result in [40] to multi-step open-loop policies. Taking Π to be the set
of policies that generate the data, the result shows that the value function of the greedy open-loop
policy improves over all the possible H-step open-loop policies, with the policy after step H to be
any policy in Π. Moreover, the value function by π′

H also improves overall one-step policies if the
policy after the first step onwards follows any policy in Π. This is due to the fact that Π (coming
from data) might be a much more restricted policy class than any open-loop sequence a1:H .

4 EXPERIMENTAL EVALUATION

In this section, we aim to answer the following research questions: (1) Does RaMP allow for effective
transfer of behaviors across tasks with varying rewards but shared dynamics?, (2) Does RaMP scale
to domains with high dimensional observation spaces and longer horizons?, (3) Does RaMP scale
to domains with high dimensional action space? (4) Which design decisions in RaMP enable better
transfer and scaling?

4.1 EXPERIMENT SETUP

Across several domains, we evaluate the ability of RaMP to leverage the knowledge of shared dy-
namics from an offline dataset to quickly solve new tasks with arbitrary rewards.

Offline Dataset Construction: For each domain, we have an offline dataset collected by a behavior
policy as described in Appendix B.2. Typically this behavior policy is a mixture of noisy policies
accomplishing different objectives in each domain. Although RaMP and other model-based methods
do not require knowledge of any reward from the offline dataset and simply require transitions, other
baseline comparisons will require privileged information. Baseline comparison methods like model-
free RL and successor features require the provision of a set of training objectives, as well as rewards
labeled for these objectives on state-actions from the offline dataset. We call such objectives ‘offline
objectives’ and a dataset annotated with these offline objectives and rewards a privileged dataset.

Test-time adaptation: At test-time, we select a novel reward function for online adaptation, referred
to as ‘online objective’ below. The online objective may correspond to rewards conditioned on
different goals or even arbitrary rewards, depending on the domain. Importantly, the online objective
need not be drawn from the same distribution as the privileged offline objectives above.

Given this problem setup, we compare RaMP with a variety of baselines. (1) MBPO [13] is a model-
based reinforcement learning method that learns a standard one-step dynamics model and uses actor-
critic methods to plan in the models. We pre-train the dynamics model for MBPO on the offline
dataset before running the full algorithm on the testing environment. (2) Successor feature (SF) [40]
is a framework for transfer learning in RL as described in Sec. 1.1. SF typically assumes access
to a set of policies towards different goals along with a learned featurization, so we provide it with
the privileged dataset to learn a set of policies corresponding to the offline objectives using offline
reinforcement learning [51]. We also learn successor features with the privileged dataset [40]. (3)
CQL [51]: As an oracle comparison, we compare with a goal-conditioned variant of an offline RL
algorithm (CQL). CQL is a model-free offline RL algorithm that learns policies from offline data.
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Figure 3: Reward transfer results on Metaworld, Hopper and D’Claw environments. RaMP adapts to novel
rewards more rapidly than MBPO, Successor Features, and CQL baselines. More experiments are in appendix.

While model-free offline RL naturally struggles to adapt to arbitrarily changing rewards, we instead
afford CQL additional privileges by providing it with information about the goal at both training
and testing time. CQL is then trained on the distribution of training goals on the offline dataset, and
finetuned on the new goal provided at test time. In this sense, the CQL comparison is assuming
access to more information than RaMP. Each method is benchmarked on each domain with 9 seeds.

4.2 TRANSFER TO NOVEL REWARDS

We first evaluate the ability of RaMP to learn from an offline dataset and quickly adapt to novel
test rewards in 4 robotic manipulation environments from meta-world [52]. We consider skills like
reaching a target across the wall, opening a door, turning on a faucet, and pressing a button while
avoiding obstacles, which are challenging for typical model-based RL algorithms (Fig. 2).

Each domain features 50 different possible goal configurations, each associated with a different
reward but the same dynamics. The privileged offline objectives consist of 25 goal configurations
as described in Sec.4.1. The test-time reward functions are drawn from the remaining 25 “out-of-
distribution” reward functions. We refer the reader to Appendix B.1 for details of this setup.

As shown in Fig 3, our method adapts to test reward most quickly across all four domains. MBPO
slowly catches up with our performance with more samples, since it still needs to learn the Q function
from scratch even with the dynamics branch trained. In multiple environments, successor features
barely transfer to the online objective as it entangles policies that aren’t close to those needed for
the online objective. Goal-conditioned CQL performs poorly in all tasks as it faces a hard time
generalizing to out-of-distribution goals. In comparison, RaMP is able to deal with arbitrary sets of
test time rewards, since it does not depend on the reward distribution at training time.

4.3 SCALING TO TASKS WITH LONGER HORIZONS

We further evaluate the ability of our method to scale to tasks with longer horizons. We consider
locomotion domains such as the Hopper environment from OpenAI Gym [53]. We chose the of-
fline objectives to be running forward at different velocities. The online objectives for adaptation
correspond to novel skills such as standing, sprinting, jumping, or running backward. Among them,
standing and sprinting are goal-conditioned objectives that correspond to running forward at zero
and maximum speed, while jumping and running backward have drastically different objectives that
are difficult to express as parametric “goals”. Therefore, goal-conditioned methods like CQL are
not applicable on jumping and running backward. As shown in Fig. 3, our method maintains the
highest performance when adapting to drastically different online objectives, as it is designed to
make no assumption about reward in the offline dataset, while avoiding compounding errors by di-
rectly modeling accumulated random features. MBPO fails to match the performance of RaMP since
higher dimensional observation and longer horizon increase the compounding error of model-based
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methods. We note that SF is performing reasonably well, likely because the method also reduces
the compounding error compared to MBPO. Furthermore, its featurization is trained with privileged
data and thus still captures useful information for the online objectives. In Appendix B.4, we fur-
ther test our method on environments with even higher dimensional observations, such as image
observations. We refer the reader to Appendix B.1 for further details.

4.4 SCALING TO HIGH DIMENSIONAL STATE-ACTION SPACES

To understand whether RaMP can scale to higher dimensional state-action spaces, we consider a
dexterous manipulation domain (referred to as the D’Claw domain in Fig 2). This domain has a 9
DoF action space controlling each of the joints of the hand as well as a 16-dimensional state space
including object position. The offline dataset is collected moving the object to different orientations,
and the test-time rewards are tasked with moving the object to new orientations (as described in
Appendix B.1). Fig 3 shows that both Q-estimation and planning with model-predictive control
remain effective when action space is large.

4.5 ABLATION OF DESIGN CHOICES

To understand what design decisions in RaMP enable better transfer and scaling, we conduct ablation
studies on various domains, including an analytical 2D point goal-reaching environment and its
variants (described in Appendix B.1), as well as the classic InvertedDoublePendulum domain and
meta-world reaching. We report an extensive set of ablations in Appendix B.5.

Hopper Pendulum

Ours 25.7 ± 5.4 65.1 ± 0.4
MBRL 50.2 ± 9.7 395.4 ± 5.8

Table 1: Policy evaluation error. Feedforward dy-
namics model suffers from compounding error that
is particularly noticeable in domains with high ac-
tion dimensions or chaotic dynamics. Our method
achieves low approximation error in both domains.

Point Reach

Random 34.0 ± 1.0 820.8 ± 142.0
Gaussian -3.6 ± 7.4 188.6 ± 49.2
Polynomial 24.5 ± 5.8 162.9 ± 36.4

Table 2: Return for different features. Random fea-
tures are able to approximate the true reward well
across domains. Polynomial features work in simple
environments but do not scale to complex rewards.
Gaussian features are unable to express the reward.

Reduction of compounding error with open-loop Q functions We hypothesize that our method
does not suffer from compounding errors in the same way that feedforward dynamics models do. In
Table 1, we compare the approximation error of truncated Q values computed with (1) open-loop
Q functions obtained as a linear combination of random cumulants (Ours), and (2) rollouts of a
feedforward dynamics model (MBRL). We train the methods on offline data and evaluate on data
from a novel task at test time. Note that this setting is analogous to performing policy evaluation on
the behavioral policy induced by an offline dataset. We perform the comparison on one environment
with high action dimension (Hopper) and one with chaotic dynamics (Pendulum). As shown in
Table 1, our method outperforms feedforward dynamics models.

Effect of different types of featurization We experiment with three choices of projections: random
features parametrized by a deep neural network, random features parametrized by a gaussian matrix,
and polynomial features of state and action up to the second order. We evaluate these choices on
Point and Metaworld Reach in Table 2. We see that NN-parametrized random features approximate
the true reward well as a linear combination of random features for all three tasks. Polynomial
features perform well on environments with simple rewards that are linear in polynomial basis, but
struggle as the reward becomes more complex, while Gaussian features are rarely expressive enough.

5 DISCUSSION

In this work, we introduce RaMP, a method for leveraging diverse prior offline data to learn models
of long horizon dynamics behavior, while being able to naturally transfer across tasks with different
reward functions. To do so, we combine the best elements of model-based and model-free reinforce-
ment learning. By learning the long-term evolution of random features under open loop policies, we
are able to disentangle dynamics, rewards, and policies. We show how this technique allows us
to learn behavior that naturally transfers across tasks, even under misspecification of reward func-
tions. Across a number of simulated robotics and control domains, RaMP achieves superior transfer
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ability than baseline comparisons. In future work, we hope to explore how to combine RaMP with
more powerful planning methods like [54] and dynamic program techniques for learning Q-basis
functions [6].
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Supplementary Materials for
“Model-free Reinforcement Learning that Transfers using Random Features”

A ALGORITHM PSEUDOCODE

Algorithm 1 Model-free Transfer with Randomized Cumulants and Model-predictive Control

1: Input: Offline dataset D given by (2.1), distribution p over Rd, number of random features K

2: Offline Training Phase:
3: Randomly sample {θk}k∈[K] with θk ∼ p, and construct dataset

Dϕ =

{(
(sm1 , a

m
1:H),

∑
h∈[H]

γh−1ϕ(smh , a
m
h ; θk)

)}
m∈[M ],k∈[K]

.

4: Fit random Q-basis functions ψ(·, ·, νk) : S × AH → R for k ∈ [K] by minimizing the loss
over the dataset Dϕ,{

ν∗k
}
k∈[K]

∈ argmin
{νk}k∈[K]

1

M

∑
m∈[M ],k∈[K]

(
ψ(sm1 , a

m
1:H ; νk)−

∑
h∈[H]

γh−1ϕ(smh , a
m
h ; θk)

)2

.

5: Online Planning Phase:
6: Fit the testing task’s reward function r(·, ·) with linear regression on random features:

w∗ ∈ argmin
w

1

MH

∑
h∈[H],m∈[M ]

(
r(smh , a

m
h )−

∑
k∈[K]

wkϕ(s
m
h , a

m
h ; θk)

)2

+ λ∥w∥22

where r(smh , a
m
h ) ∼ Rsmh ,am

h
.

7: Sample s1 ∼ µ0

8: for time index t = 1, · · · do
9: Randomly generate N sequences of actions {an1 , · · · , anH}n∈[N ]

10: Find the best sequence such that

n∗t ∈ argmax
n∈[N ]

∑
k∈[K]

w∗
kψ(st, a

n
t:t+H−1; ν

∗
k).

Execute an
∗
t

t from the sequence n∗t , observe the new state st+1 ∼ T (st, a
n∗
t

t )
11: end for

B ADDITIONAL EXPERIMENTS AND SETUP DETAILS

In this section, we provide more details of the experiments, including more detailed setup and sup-
plementary results.

B.1 DESCRIPTION OF ENVIRONMENTS

We describe the details of all used environments such as observation space, action space, reward,
offline / online objectives, and dataset collection.

Meta-World All our meta-world [52] domains share the standard meta-world observation which
includes gripper location, and object locations of all possible objects involved in the Metaworld
benchmark. Although the observation space has 39 dimensions, each domain only uses one or two
objects so only 7 dimensions are changing any each domain we chose. For pixel observation variants
of each domain, we concatenate two 84 × 84 × 3 RGB images from two views, with a resulting

14



Under review as a conference paper at ICLR 2023

observation dimension of 42336. Each domain has a 4 dimensional action space, corresponding to
the delta movement of end-effector in the workspace along with the delta movement of the gripper
finger. Metaworld provides a set of 50 goal configurations for each domain. We collect offline
dataset following the procedure described in Sec. B.2. The online objective is chosen to be a novel
configuration that isn’t any of the 50 offline goal configurations. To create the privileged dataset,
we choose 25 of the goal configurations as offline objectives. These chosen configurations are the
furthest 25 goals from the online objective in the Euclidean distance. We evenly annotate the offline
dataset with rewards for each of these goals to form a privileged dataset such that the online objective
is out of the distribution of the offline objectives. For different configurations of the same domain,
since object locations are in observation and the goal configuration isn’t in it, the dynamics is the
same. We now describe the objectives of all used meta-world domains, including those used in the
appendix.

1. Reach across Wall The objective is to reach a target across a wall. The location of the
target is randomized for each goal configuration.

2. Open Door The objective is to open the door to a certain angle by putting the end-effector
between the door handle and the door surface. For each configuration, the location of the
door is randomized.

3. Turn on Faucet The objective is to turn on a faucet by rotating it along an axis. For each
goal configuration, the location of the faucet is randomized.

4. Press Button The objective is to press a button horizontally. The location of the button is
randomized for each goal configuration.

Hopper Hopper is an environment with a higher dimensional observation of 11 dimensions and
an action space dimension of 3. Hopper is a locomotion environment that requires long-horizon
reasoning since a wrong action will make it fall down and touch the ground only after some steps.
The objective of the original Hopper enviroment in OpenAI gym is to train it to run forward. To
analyze the performance of CQL and SF on Hopper, we modify the objective to a goal-conditioned
variant such that the agent is trained to follow a certain velocity specified by its goal. Similar
modifications are common in meta reinforcement learning such as in [55]. We sample a set of 50
goal velocities between 0 and 1.0 as offline objectives to collect data in the same way as we did
in Metaworld environment. For online transfer, we choose four domains with four different online
objectives. All the variant domains of Hopper share the same dynamics.

1. Hopper Stand The objective is to stand still and upright. This online objective is on the
boundary of the offline objectives’ range.

2. Hopper Sprint The objective is to run forward at a speed of 1.5, which is out of the
distribution of offline objectives ranging from 0 to 1.0. The reward function remains the
same as that for offline objectives. Only the goal changes.

3. Hopper Backward The objective is to run backward at a target speed of 0.5, which is in
the opposite direction of the offline objective. Falling down to the ground is penalized.

4. Hopper Jump The objective is to jump to a height of 1.5, without moving forward or
backward. Such height is typically not achievable when running forward, so this objective
is drastically different from offline objectives.

D’Claw D’Claw environment is a dexterous manipulation environment with 24 dimensions of
observation space and 9 dimensions of action space. The 9 dimensions correspond to the 9 joints
of a robot hand with 3 fingers and 3 joints on each finger. The objective of the environment is to
control the hand to rotate a rotating tripod to a certain angle. Angular distance to the target angle
is used as the offline objective. To increase the degree of freedom and make the environment more
challenging, we allow the tripod to not only rotate but also translate freely on the 2d plane. The
initial rotation and position of thetripod are randomized upon every episode. We collect the offline
dataset in the same way as in meta-world, training on 50 offline objectives and using ϵ-greedy to
collect rollouts. At test time we choose a new offline objective angle and annotate the rewards of the
privileged dataset in the same way we did for goal conditioned Metaworld environments.
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Analytical 2D Point Point is a 2D point goal-reaching environment with linear dynamics. The
reward is defined as the distance to goal minus an action penalty. The offline objectives are negative
distances to the randomly selected goals on the 2d plane. The online objectives are novel goals on
the plane. Since we are not evaluating CQL and SF on this environment, we don’t generate the
privileged dataset for 2D point.

Point Perturbed Point Perturbed shares the same linear dynamics as Point, but features unsafe
regions with negative rewards or local maxima with small positive rewards. These perturbations
represent out-of-distribution test objectives that cannot be well approximated by a low-dimensional
feature vector. Note that the added perturbations make point perturbed no longer an instance of
analytical 2D point environment with a different goal. Instead, it features online objectives that are
completely in a different class from 2D point.

B.2 DESCRIPTION OF ALGORITHM TRAINING DETAILS

For each domain, we first train 50 policies with SAC [7]. Each policy is trained towards some
offline objective of the domain described in Sec. B.1 for 50000 steps. We then use an ϵ-greedy
version of each trained policy to collect 32000 data points for each domain per offline objective.
We choose ϵ = 0.5. Such a procedure ensures the dataset has reasonable coverage of the entire
state-action space. We note training these policies are fully optional, since RaMP only trajectories
without rewards. Datasets collected via intrinsic rewards like curiosity would totally suffice. We
choose the random feature dimension to be 2048. Each dimension in the random feature is extracted
by feeding state-action tuple to a randomly initialized MLP with 2 hidden layers of size of 32.
There are therefore 2048 independent, small random MLPs to extract ϕ. All state-action tuples are
projected to reward basis ϕ with it.

During offline training phase, we ensemble 8 instances of MLP with 2 hidden layers of size 4096
and train ψ network following Sec. 3.1. We train ψ network with a learning rate of 3× 10−4 on the
offline dataset for 4 epochs, with a γ decay of 0.99 and batch size 128. We choose the horizon H
to be 10 for meta-world and D’Claw environments and 32 for Hopper environments. During online
adaptation phase, we first do random exploration for 2457 steps to collect enough data points for
linear regression. When doing linear regression, we always concatenate a bias dimension to ψ. For
each MPC rollout, we randomly sample 1024 action sequences. We penalize the predicted reward
with 0.16 of the variance of predictions from all 8 ensembles. Since online least square makes
recomputing ω regression fast, we perform update of weight vector every single step after initial
random exploration is finished.

B.3 ADDITIONAL RESULTS ON HOPPER STAND
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Figure 4: Results on Hopper Stand

Due to page limit, we omitted the plot for Hopper Stand in
Fig.3. Here we provide additional results of RaMP and base-
lines for it in Fig. 4. The result is consistent with our anal-
ysis in the main paper. RaMP outperforms the baselines just
in other Hopper variants. One major difference here is that
CQL is performing well for HopperStand. This is likely be-
cause the online objective of Hopper Stand is at the boundary
of offline objectives as described in Sec. B.1. Given that of-
fline objectives are running at target velocities, the CQL likely
learns to not fall down even if the online objective is out of
distribution. By not falling down alone, CQL is capable of
maintaining a good reward as seen in this case.

B.4 SCALING
TO HIGH-DIMENSIONAL PIXEL OBSERVATION

In Sec.4.3, we evaluate RaMP’s ability to scale to environ-
ments with high dimensional observations. In this section, we go a step further by significantly
increasing the dimension of the observation space to 42336 as described in Sec. B.1. We use a CNN
encoder following the architecture in [56] followed by 2 layer MLP as the random feature network.
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Figure 5: Results on Metaworld with high-dimensional pixel observation. RaMP achieves compara-
ble performance to Dreamer on Pixel Reach and Pixel Faucet Open but struggles to perform well on
Pixel Door Open. The performance of RaMP on Pixel Faucet Open and Pixel Reach is very similar
to its performance in state observation environments.

Table 3: Return as a function of random feature dimension. Low dimensional random features
are unable to approximate the true reward with linear regression, leading to degraded convergence
performance.

Point Point Perturbed Metaworld Reach

128 30.46 ± 1.62 29.61 ± 2.55 765.38 ± 129.98
256 31.53 ± 1.45 31.09 ± 0.04 806.12 ± 104.77
512 33.02 ± 1.10 33.13 ± 2.09 824.56 ± 121.52
1024 33.36 ± 1.10 32.02 ± 2.38 855.14 ± 85.23
2048 34.01 ± 1.04 31.83 ± 1.31 830.84 ± 142.02
4096 33.31 ± 1.15 32.05 ± 1.11 802.45 ± 94.47

Both CNN and MLP layers are randomly initialized. Action is projected and concatenated to the
first layer of MLP so the random feature would still be conditioned on both action and observation.
We compare our method against the Dreamer [19], the state of art model-based learning method
optimized for pixel observations. Similar to MBPO, we pre-train dreamer’s dynamics branch with
offline data before the online phase. As shown in Fig. 5, our method is able to achieve a similar
level of performance as Dreamer in two meta-world environments, Pixel Reach and Pixel Faucet
Open. RaMP does not see a significant return drop from the variant of the environment with state
observation. Given the efficacy of Dreamer, the result still shows RaMP’s performance can scale up
to pixel observation. However, Dreamer is able to outperform RaMP significantly in an environment
like Pixel Door Open. This is likely because random features capture the change in input space
rather than reward space. Pixel observations can give random features a lot of noise while important
semantic features may not correspond to a big change in pixel space. We note that instead of using
random convolution layers, we can use pre-trained encoders to achieve better semantic feature ex-
traction and significantly improve the quality of random features. This is beyond the scope of our
work and we leave this for future works.

B.5 ADDITIONAL ABLATIONS

Our method builds on the assumption that a linear combination of high dimensional random features
can approximate arbitrary reward functions. In the following ablation experiments, we validate this
assumption both quantitatively and qualitatively.

Effect of random feature dimension We evaluate our method on Point, Point Perturbed, and Meta-
world Reach using {128, 256, 512, 1024, 2048, 4096} random features. Results are summarized in
Table 3. We find that performance degrades with smaller random feature dimensions because the
features are unable to linearly approximate the true reward. On the other hand, Fig. 6 shows that
high dimensional random features experience slower adaptation.
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Figure 6: Learning curves for different random feature dimensions. Low-dimensional random fea-
tures suffer from poor convergence performance, whereas high-dimensional random features expe-
rience slow adaptation.
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Figure 7: In-distribution results for Successor Features and CQL results. Note that RaMP and MBPO
are unaffected since they do not depend on the distribution of the offline objectives.

Scaling with state dimension In Table 4 we evaluate our method on point reaching environments
with 2, 3, and 4 state dimensions. All three environments feature distance-to-goal minus action
penalty as the reward. We compute the return error stemming from linear regression as well as the Q
error stemming from both linear regression and function approximation. We see an increase in both
return error and Q error with higher state dimensions, but the overall approximation errors remain
reasonably low.
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Figure 8: Visualization of true Q value and
approximated Q value. Our method is able
to approximate the Q value in the face of out-
of-distribution and highly nonlinear rewards.

Nonlinear approximation capability In Fig. 8, we
visualize the truncated Q value obtained from a lin-
ear combination of the random cumulants and com-
pare it to the ground truth Q value approximated by
Monte-Carlo sampling. We perform the comparison
with Point and Point Perturbed environments. Our
method provides an accurate estimate of the Q value
even in the face of out-of-distribution and highly
nonlinear rewards.

Finally, we compare the performance of RaMP to
baselines on in-distribution online objectives. Our
method is designed to make no assumptions about
test objectives during policy transfer. As shown in
Fig. 3, RaMP outperforms CQL and SF when the
online objectives are out of distribution. A natu-
ral question to ask is how things will change when
the setting satisfies the assumptions of offline-online
objective correlation. For example, in a 2D reach-
ing environment, the training dataset may be anno-
tated with either rewards corresponding to only goals
on the right half or goals covering the entire plane.
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Table 4: Approximation error with different state dimensions. As state dimension increases, approx-
imation error increases but remains in a reasonable range.

Point 2D Point 3D Point 4D

Return Error 0.42 ± 0.20 1.20 ± 0.61 1.32 ± 0.70
Q Error 0.32 ± 0.05 0.51 ± 0.10 0.61 ± 0.12

0.00 0.25 0.50 0.75 1.00 1.25
Environment Steps 1e4

2

4

6

8

Ep
iso

de
 R

et
ur

n

1e2 Reach

0.00 0.25 0.50 0.75 1.00 1.25
Environment Steps 1e4

0.2

0.4

0.6

0.8

1.0
1e3 Reach Wall

0.00 0.25 0.50 0.75 1.00
Environment Steps 1e4

0

2

4

6

8
1e2 D'Claw

Random Shooting MPPI

Figure 9: MPPI results on MetaWorld and D’Claw. MPPI improves the performance of our method
across all four tasks, showing that our method can benefit from powerful planners.

When the online objective is to reach a goal on the left half of the plane, it will be out of distribution
for the first case while being in distribution for the second. When we curate the labeling process of
the privileged dataset to satisfy the in-distribution assumption, CQL and SF receive a significant per-
formance boost. As shown in Fig. 7, the performance of our method and MBPO are unaffected as
neither algorithm depends on offline objectives. CQL, on the other hand, matches the performance
of our method under this new setting. This serves as a foil to the generalization of our method to
out-of-distribution online objectives.

B.6 MPPI EXPERIMENTS

We provide additional results on model-predictive control via model-predictive path integral (MPPI)
[54] in Fig. 9. MPPI is an sampling-based trajectory optimization method which maintains a distri-
bution of action sequence initialized as isotropic standard Gaussian. In each iteration, MPPI draws
n action sequences from the current distribution and computes their values, which we do using the
learned Q-basis networks and online regression weights. MPPI then updates the distribution using
the weighted mean and standard deviation of the sampled trajectories, where the weights are com-
puted as the softmax of the values multiplied by a temperature parameter γ. As shown in Fig. 9,
MPPI improves the performance of our method across two Metaworld environments and the D’Claw
environment, thus indicating that our method can benefit from powerful planning algorithms. In
these experiments, we perform 10 optimization steps and sample n = 1000 trajectories in each step.
We use γ = 10 for Metaworld and γ = 50 for D’claw.

B.7 FINETUNING EXPERIMENTS

While we freeze the Q-basis networks at test time in our main experiments to demonstrate transfer
behavior, we can in fact finetune the Q-basis networks to continuously improve our estimate of the
Q-value. After performing reward regression for a number of steps, we can finetune the Q-basis
networks on online trajectories by fitting the predicted Q-values to the Monte-Carlo Q values and
allowing the gradients to flow through the regression weights. We conduct finetuning experiments
on two Metaworld environments and the D’Claw enironments. As shown in Fig. 10, our method
sees a noticeable performance increase with finetuning starting at 6400 steps.
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Figure 10: Finetuning results on MetaWorld and D’Claw. Our method is able to continuously
improve by finetuning the Q-basis networks during online training.

C DETAILED THEORETICAL RESULTS

In this section, we provide the formal statement of the theoretical insights given in §3.3, and corre-
sponding proofs.

C.1 FORMAL STATEMENT

Theorem C.1. Suppose the offline data in D are generated from some distribution ρ ∈ ∆(S × A),
i.e., (smh , a

m
h ) ∼ ρ(·, ·) and smh+1 ∼ T for all (m,h) ∈ [M ]× [H], and inf

(s,a)∈S×A
ρ(s, a) = ρ > 0.

Suppose θk ∼ p(·) for all k ∈ [K], and sup
(s,a,θ)∈S×A×Rd

|ϕ(s, a; θ)| ≤ κ for some κ > 0 and

ϕ(·, ·; θ) is continuous. For some large enough n := MH , letting λ = n−1/2, we have that if
K = Ω(

√
n log(κ2

√
n/δ)), then with probability at least 1− δ, for any given reward function R

∥Q̂π(w
∗)−Qπ∥∞ ≤

1

1− γ

√√√√√√√
1

ρ

[
inf
f∈H

∑
(s,a)∈S×A

∫ (
r − f(s, a)

)2
dRs,a(r)ρ(s, a)︸ ︷︷ ︸

E(f)

+O
( log(1/δ)√

n

)]

for any policy π, where H := {f =
∫
ϕ(·, ·; θ)w(θ)dp(θ) |

∫
|w(θ)|2dp(θ) < ∞}, w∗ is the

solution to (3.2), and

Q̂π(s, a;w
∗) := E

[ ∞∑
h=1

γh−1
∑

k∈[K]

w∗
kϕ(sh, ah; θk)

∣∣∣ s1 = s, a1 = a

]
. (C.1)

The proof of Theorem C.1 can be found in §C.2. It shows that with large enough amount of ran-
dom features, the Q-function of any reward function R, under any policy π, can be approximated
accurately up to some inherent error related to the richness of the function class that the features can
represent. Note that we here only state the results under some mild and basic assumptions from the
random features literature, and are by no means tight. They can be improved in various ways, for
example, if the sampling distribution of θ, p, can be data-dependent, and some stronger assumptions
on the data and kernel function classes [47, 50].

Corollary C.2. Suppose the assumptions in Theorem C.1 hold, and additionally the kernel induced
function space H is rich enough such that inff∈H E(f) = 0. Then, with horizon length H =

Θ̃( log(Rmax/ϵ)
1−γ ) and M = Θ̃( 1

(1−γ)3ϵ4 ) episodes in dataset D, and with K = Ω̃((1− γ)−2ϵ−2)

random features, we have ∥Q̂H
π (w∗)−Qπ∥∞ ≤ O(ϵ) for any π, where for each (s, a), Q̂H

π (s, a;w∗)
is a H-horizon truncation of (C.1), which can be estimated from the offline dataset D.

The proof of Corollary C.2 can be found in §C.2, which specifies the number of random features,
the horizon length per episode, and the number of episodes, in order to approximate Qπ accurately
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by using the data in D. Note that the number of random features is not excessive and is polynomial
in problem parameters. Combining Theorem C.1 and Corollary C.2 leads to the informal statement
in Theorem 3.1.

Next, we justify the use of open-loop Q-functions in planning in a deterministic transition environ-
ment, which contains all the environments our empirical results we have evaluated. Recall that for
any given reward R, let Qπ denote the Q-function under policy π. Note that with a slight abuse of
notation, Qπ can also be the multi-step Q-function (see definition in §2), and the meaning should be
clear from the input, i.e., whether it is Qπ(s, a) or Qπ(s, a1, · · · , aH).

Theorem C.3. Let Π be some subclass of Markov stationary policies, i.e., for any π ∈ Π, π : S →
∆(A). Suppose the transition dynamics T is deterministic. For any given reward R, denote the H-
step policy obtained from H-step open-loop policy improvement over Π as π′

H : S → AH , defined
as

π′
H(s) ∈ argmax

(a1,··· ,aH)∈AH

max
π∈Π

Qπ(s, a1, · · · , aH),

for all s ∈ S . Finally, define the value-function under π′
H as Vπ′

H
(s) := Qπ′

H
(s, π′

H(s)), where
Qπ′

H
(s, a1:H) is the fixed-point of the Bellman operator TH,π′

H
defined in (C.8). Then, we have that

for all s ∈ S

Vπ′
H
(s) ≥ max

a1:H

max
π∈Π

Qπ(s, a1, · · · , aH) ≥ max
a

max
π∈Π

Qπ(s, a).

C.2 DEFERRED PROOFS

C.2.1 PROOF OF THEOREM C.1

The proof relies on the result of generalization guarantees of learning from random features, with
squared loss. Note that one cannot use the results in [46], which dealt with Lipschitz loss function
of the form c(y′, y) = c(y′y). This does not include the squared loss we used in our experiments.
Instead, we resort to the results in [47], which also yield a better statistical rate. For the sake of
completeness, we re-state the abridged version of one key result therein, Theorem 1 in [47], as
follows.

Lemma C.4. Suppose that K is a kernel with an integral representation K(x, x′) =∫
Ω
ψ(x,w)ψ(x′, w)dp(w), where (Ω, p) is a probability space and ψ : X × Ω → R, where X

is a separable space. Suppose ψ is continuous and |ψ(x,w)| ≤ κ with κ ∈ [1,+∞) almost surely,
and |y| ≤ b almost surely. Define the expected risk:

E(f) :=
∫

(f(x)− y)2dρ(x, y),

where ρ is the distribution where the data samples (xi, yi)
n
i=1. Define the solution to kernel ridge

regression with M random features as

f̂λ,M (x) = ϕM (x)⊤ŵλ,M , with ŵλ,M := (Ŝ⊤
M ŜM + λI)−1Ŝ⊤

M ŷ, (C.2)

where ϕM (x) :=
(
ψ(x,w1), ψ(x,w2), · · · , ψ(x,wM )

)
/
√
M , wi are drawn i.i.d. from p(·), ŷ :=

(y1, · · · , yn)/n1/2, Ŝ⊤
M :=

(
ϕM (x1), · · · , ϕM (xn)

)
/n1/2. Then, suppose n ≥ n0, λ = 1/n1/2,

and the number of features M ≥ c0
√
n log(108κ2

√
n/δ), we have that with probability at least

1− δ,

E(f̂λ,M )−min
f∈H
E(f) ≤ c1 log

2(18/δ)√
n

,

where n0, c0, c1 are absolute constants, H is the reproducing kernel Hilbert space corresponding to
the kernel K.

We then apply Lemma C.4, with (x, y) in the lemma being replaced by
(
(s, a), r(s, a)

)
,

ρ(x, y), p, x, w,M, λ in the lemma being replaced by ρ(s, a) · Rs,a, p, (s, a), θ,K, λ in our case.
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Note that Lemma C.4 requires the spaceX to be separable, and our finite space S×A satisfies; it re-
quires |y| bounded, and our reward is absolutely bounded byRmax, and thus also satisfies. We hence
obtain that with probability at least 1− δ, if the number of random features K ≥ Ω(

√
n log(

√
n)),

with n := HM , then

E(s,a)∼ρ(·,·),r∼Rs,a(·)

(
r −

∑
k∈[K]

w∗
kϕ(s, a; θk)

)2

≤ inf
f∈H

E(f) +O
( log(1/δ)√

n

)
(C.3)

where we note that w∗ = (w∗
1 , · · · , w∗

K) is the solution to (3.2), and the E(f) here is defined in
Theorem C.1.

For any policy π for the MDP, let Qπ denote the Q-function under policy π and the actual reward
function distribution R, and Q̂π(w

∗) denote the Q-function under the estimated reward using ran-
dom features:

Q̂π(s, a;w
∗) := E

[ ∞∑
h=1

γh−1r̂(sh, ah;w
∗)

∣∣∣ s1 = s, a1 = a

]
,

where r̂(s, a;w∗) :=
∑

k∈[K]

w∗
kϕ(s, a; θk). (C.4)

By Bellman equation, we have that for each (s, a)∣∣∣Qπ(s, a)− Q̂π(s, a;w
∗)
∣∣∣ = ∣∣∣∣∣

∫
rdRs,a(r) + γ

∑
s′,a′

Qπ(s, a)T (s′ | s, a)π(a′ | s′)

− r̂(s, a;w∗)− γ
∑
s′,a′

Q̂π(s, a;w
∗)T (s′ | s, a)π(a′ | s′)

∣∣∣∣∣
≤

∣∣∣∣ ∫ rdRs,a(r)− r̂(s, a;w∗)

∣∣∣∣+ γ ·
∥∥∥Qπ − Q̂π(w

∗)
∥∥∥
∞
.

Taking sup over s, a and organizing the terms, we have∥∥∥Qπ − Q̂π(w
∗)
∥∥∥
∞
≤ 1

1− γ
· sup

s,a

∣∣∣ ∫ rdRs,a(r)− r̂(s, a;w∗)
∣∣∣

≤ 1

1− γ
·
√∑

s,a

(∫
rdRs,a(r)− r̂(s, a;w∗)

)2

(C.5)

≤ 1

1− γ
·
√

1

ρ

∑
s,a

(∫
rdRs,a(r)− r̂(s, a;w∗)

)2

ρ(s, a) (C.6)

=
1

(1− γ)√ρ
·

√
E(s,a)∼ρ(s,a)

(∫
rdRs,a(r)− r̂(s, a;w∗)

)2

(C.7)

where (C.5) uses that ∥ · ∥∞ ≤ ∥ · ∥2 for finite-dimensional vectors, (C.6) uses the definition of ρ.
Further, by Jensen’s inequality, for each (s, a)(∫

rdRs,a(r)− r̂(s, a;w∗)
)2

=
(
Er∼Rs,a(·)

[
r − r̂(s, a;w∗)

])2

≤ Er∼Rs,a(·)
[
r − r̂(s, a;w∗)

]2
,

which, combined with (C.7) and (C.3), gives that∥∥∥Qπ − Q̂π(w
∗)
∥∥∥
∞
≤ 1

(1− γ)√ρ
·

√
E(s,a)∼ρ(s,a),r∼Rs,a(·)

(∫
rdRs,a(r)− r̂(s, a;w∗)

)2

≤ 1

(1− γ)√ρ
·

√
inf
f∈H

E(f) +O
( log(1/δ)√

n

)
,

which completes the proof.
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C.2.2 PROOF OF COROLLARY C.2

First, note that with H = Θ( log(Rmax/(ϵ(1−γ)))
1−γ ) ensures that ∥Q̂H

π (w∗) − Q̂π(w
∗)∥∞ ≤ O(ϵ),

which can be obtained by the boundedness of r(s, a) by Rmax, and the fact that

γH
Rmax

1− γ
= (1− (1− γ))

1
1−γ ·H(1−γ)Rmax

1− γ
≤

(
1

e

)log(Rmax/(ϵ(1−γ)))
Rmax

1− γ
= ϵ.

Furthermore, since Theorem C.1 requires n = HM = Θ̃( 1
(1−γ)4ϵ4 ), to make sure ∥Q̂π(w

∗) −
Qπ∥∞ ≤ ϵ. Combining these facts yields the desired result.

C.2.3 PROOF OF THEOREM 3.2

Define

Qmax
H (s, a1, · · · , aH) := max

π∈Π
Qπ(s, a1, · · · , aH), and Qmax(s, a) := max

π∈Π
Qπ(s, a).

We also define the Bellman operator under the open-loop policy π′
H as follows: for any Q ∈

R|S|×|AH |

TH,π′
H
(Q)(s, a1, · · · , aH) = E

[ ∑
h∈[H]

γh−1r(sh, ah) + γHQ(sH+1, π
′
H(sH+1))

∣∣∣ s1 = s, a1:H

]
.

(C.8)

Note that TH,π′
H

is a contracting operator, and we denote the fixed point of the operator as QH,π′
H
∈

R|S|×|AH |, which is the Q-value function under open-loop policy π′
H . By definition, we also know

that the state-value function under π′
H , VH,π′

H
= QH,π′

H
(s, π′

H(s)), i.e., by applying the open-loop
policy π′

H to the actions a1:H in QH,π′
H
(s, a1:H).

Note that

TH,π′
H
(Qmax

H )(s, a1, · · · , aH) = E
[ ∑
h∈[H]

γh−1r(sh, ah) + γHQmax
H (sH+1, π

′
H(sH+1))

∣∣∣ s1 = s, a1:H

]

= E
[ ∑
h∈[H]

γh−1r(sh, ah) + γH max
aH+1:2H

Qmax
H (sH+1, aH+1:2H)

∣∣∣ s1 = s, a1:H

]
(C.9)

≥ E
[ ∑
h∈[H]

γh−1r(sh, ah) + γH max
aH+1:2H

Qπ(sH+1, aH+1:2H)
∣∣∣ s1 = s, a1:H

]
(C.10)

≥ E
[ ∑
h∈[H]

γh−1r(sh, ah) + γHQπ(sH+1, π(sH+1) · · · , π(s2H))
∣∣∣ s1 = s, a1:H

]
, (C.11)

= Qπ(s, a1, · · · , aH), (C.12)

for any π ∈ Π, where (C.9) uses the definition of π′
H , (C.10) is due to the definition of Qmax

H , and
(C.11) is by the maxaH+1:2H

, and (C.12) is by definition. Since (C.12) holds for any π ∈ Π, by the
monotonicity of TH,π′

H
, we have

QH,π′
H
(s, a1:H) = lim

k→∞
(TH,π′

H
)k(Qmax

H )(s, a1:H) ≥ Qmax
H (s, a1:H) ≥ max

π∈Π
Qπ(s, a1:H).

(C.13)

Notice that for all s, by applying π′
H(s) on both sides of (C.13),

VH,π′
H
(s) = QH,π′

H
(s, π′

H(s)) ≥ max
π∈Π

Qπ(s, π
′
H(s)) = max

a1:H

max
π∈Π

Qπ(s, a1:H). (C.14)

Further, due to the multi-step maximization, we have

max
a1:H

max
π∈Π

Qπ(s, a1, · · · , aH) ≥ max
a

max
π∈Π

Qπ(s, a),

which, combined with (C.14), completes the proof.
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D RELATIONSHIP TO EXISTING WORK

We briefly connect our proposed algorithm to prior work.

Successor features for transfer in RL: While successor features [40, 44] have shown the ability
to transfer across problems in RL, the two key differences in our framework are (1) using random
features rather than requiring learned or pre-provided features and (2) training open-loop Q functions
rather than typical Qπ . These two changes allow transfer to happen across a broader class of reward
functions and not simply be restricted to the policy cover experienced at training time.

Model-based RL: Our work is connected to model based RL in that it disentangles dynamics and
rewards, but is crucially different in that it doesn’t model one-step evolution of state but rather long
term accumulation of random features. This trades off compounding error for generalization error.

Model-free RL: Our work is connected to methods for model-free RL in that it also models a set
of Q-functions, but importantly this doesn’t correspond to a particular reward, but rather to random
features of state. By doing so, we are able to adapt to arbitrary rewards at test-time, rather than being
tied to a particular reward function.

E INFINITE-HORIZON Q-FUNCTION VARIANT

While our setup in Section 2 uses a finite-horizon QH
π to approximate Qπ , our method can also

plan with an infinite-horizon Q function during the online phase. In this section, we describe one
compatible way to learn an infinite-horizon Q-function while still enjoying the benefits of RaMP in
the case with deterministic transition dynamics. We also present empirical results and analysis of
this variant.

E.1 METHOD

We first notice that an infinite-horizon Q-function Qπ can be decomposed into the discounted sum
of an H-step reward and a discounted value function under policy π evaluated at st+H :

Qπ(s
′, a′) = E at∼π(· | st)

st+1∼T (· | st,at)

[
γHVπ(sH+1) +

H∑
t=1

γt−1r(st, at)
∣∣∣ s1 = s′, a1 = a′

]
where Vπ(s′) = Eat∼π(· | st)

[ ∞∑
t=1

γt−1r(st, at)
∣∣∣ s1 = s′

]
.

Given a policy π, value function V θ
π parameterized by θ can be learned via gradient descent and

Monte-Carlo method:

θ ← θ − α∇θ ||V θ
π (st)− (rt + γV θ′

π (st+1))||22 , for sampled (st:t+1, at, rt) ∼ τπ
where τπ is trajectory rollouts collected with current policy π and θ′ is a target network that gets
updated by θ with momentum.

Now consider our multi-step setup. Our multi-step Q-function can also be written as the sum of our
H step approximation and discounted value function at sH+1:

Qπ(s, ã1:H) = EaH+t∼π(· | sH+t)
st+1∼T (· | st,at)

[ ∞∑
t=1

γt−1rt
∣∣ s1 = s, a1 = ã1, · · · , aH = ãH

]
= QH

π (s, ã1:H) + γHVπ(sH+1),

where we note that in the last line, there is no expectation over sH+1 since the transition dynamics
is deterministic, and sH+1 is deterministically decided by (s1, a1:H).

Vanilla RaMP enables efficient estimation ofQπ with novel reward function at the cost of truncating
the second term above with Qπ ≈ QH

π . As we have shown in Section 4, planning with this finite-
horizon Q-approximation would already lead to reasonable planning in most of the experiments.
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We can go a step further and also estimate the second term so we can plan in an infinite-horizon
setting. The main challenge is getting Vπ(sH+1) in our multi-step setup, as we don’t explicitly
predict sH+1. This, however, can be addressed easily by reparameterizing Vπ(sH+1) on an action
sequence that leads to sH+1 just like what we did for Q. We thus define a multi-step value function

Fπ(s, ã1:H) = EsH+1

[
Vπ(sH+1)

∣∣ s1 = s, a1 = ã1, · · · , aH = ãH

]
.

ThenQπ(s, a1:H) = QH
π (s, a1:H)+γH ·Fπ(s, a1:H). Under our deterministic transition dynamics,

sH+1 is fully determined by (s1, ã1:H), so we can remove the expectation in the equation. We then
rewrite the training objective Vπ in terms of Fπ to learn Fπ:

θ ← θ − α∇θ ||V θ
π (st+H)− (rt+H + γV θ′

π (st+H+1))||22
for sampled (st+H:t+H+1, at+H , rt+H) ∼ τπ

becomes

θ ← θ − α∇θ ||F θ
π (st, at:t+H−1)− (rt+H + γF θ′

π (st+1, at+1:t+H))||22
for sampled (st:t+1,at:t+H , rt+H) ∼ τπ

where we parameterize multi-step value function Fπ by F θ
π . So we can learn Fπ with Monte-

Carlo sampling and gradient descent just like what we do to learn Vπ in the single-step case above.
Combined with QH

π , we now have an estimation for the infinite-horizon Q-function Qπ in a multi-
step manner.

For planning, we do on policy learning by alternating between policy rollout and Qπ learning. As a
policy, MPC planner first uses the infinite-horizon Qπ(s, a1:H) = QH

π (s, a1:H) + γH · Fπ(s, a1:H)
to plan and collect rollouts. Then Fπ is trained with these on policy rollouts whileQH

π is also learned
like vanilla RaMP via online least square. By incorporating this infinite-horizon variant, our MPC
planner can now plan with an infinite horizon during the online phase.

E.2 EXPERIMENT AND ANALYSIS

We implemented the infinite-horizon variant described above and carried out experiments to quan-
titatively evaluate its effect on performance in four environments with varying types of tasks. As
shown in Figure 11, we found that the infinite-horizon variant out-performs vanilla RaMP with finite
horizon Q-function in Hopper Jump and achieves comparable performance in D’Claw, both being
the longer horizon environments among the four. However, the infinite-horizon variant actually
performs worse in two Metaworld manipulation environments, ReachWall and FaucetOpen, likely
because these tasks do not require infinite-horizon reasoning. In particular, the multi-step value
function V has to be learned from scratch from samples, which may even hurt the performance at
the beginning of the online phase.
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Figure 11: Results of RaMP variant with infinite horizon Q-function on four different environments.
We notice this variant leads to better performance on longer-horizon tasks but doesn’t increase the
performance of metaworld tasks, likely because the benchmarked tasks don’t require infinite-horizon
reasoning. Since the V -function has to be learned from scratch, it could also hurt the performance
at the beginning in our low data setting.

We also present results of this variant with infinite-horizon Q-function on all 8 environments com-
pared with all baselines. We run all the environments for 25600 steps, at twice the amount of steps
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we did in Section 4. We also changed the discount factor γ to 0.9 to emphasize the effectiveness of
RaMP’s quick adaptation to new reward using QH

π . As shown in Figure 12, RaMP has the ability to
quickly adapt to a new reward function, when the amount of data is extremely low. As the algorithm
sees more data, the advantage of RaMP is not salient as our infinite-horizon value function learning
is using vanilla bootstrapping. However, since the infinite horizon-variant uses bootstrapping, the
method can continuously improve like all RL methods as samples grow. This will be useful for
longer horizon and harder tasks.

We note that although we used the simplest bootstrapping approach to learn multi-step V , we can
use any other value estimation method to make it more efficient. The core of this variant is to
parameterize the value function at the H + 1-step with the initial state and a sequence of actions.

0 1 2
1e4

2

4

6

8

Ep
iso

de
 R

et
ur

n

1e2 Reach Wall

0 1 2
1e4

1.0

1.5

2.0
1e2 Door Open

0 1 2
1e4

3

4

5

1e2 Faucet Open

0 1 2
1e4

0.5

1.0

1.5

2.0

1e2 Button Press

0 1 2
Environment Steps 1e4

6

4

2

0

Ep
iso

de
 R

et
ur

n

1e3 Hopper Sprint

0 1 2
Environment Steps 1e4

2

0

2

4

1e3 Hopper Jump

0 1 2
Environment Steps 1e4

2
1
0
1
2
3

1e3Hopper Backward

0 1 2
Environment Steps 1e4

0.00
0.25
0.50
0.75
1.00

1e3 D'Claw

RaMP (Ours) MBPO SF CQL

Figure 12: We benchmark RaMP with infinite-horizon Q-function on all environments for more
steps. RaMP can quickly adapt to new test rewards in low-data regime and can continuously improve
with the addition of bootstrapping. However, it will need to rely on more-sample efficient value
function learning methods to be more sample efficient in the infinite-horizon setting. This shows
RaMP’s benefits largely lie in the low-data regime

F COMPLEXITY ANALYSIS

The space complexity of RaMP is primarily determined by the number of random features that are
needed. As we describe in Corollary C.2, we require K = Ω̃((1− γ)−2ϵ−2) random features to
achieve ϵ-order error between the estimated and true Q-function. As the required approximation
error decreases, the space needed to store all the features grows sublinearly. Note that this result is
for any given reward function (including the target one) under any policy π, but not tied to a specific
one (under the realizability assumption of the reward function).

On the other hand, the space complexity of the classical successor feature method is relatively fixed
in the above sense: the dimension of the feature is fixed and does not change with the accuracy of
approximating the optimal Q-function for the target task. However, the resulting guarantee is also
more restricted: it is only for the optimal Q-function of the specific target reward, and also depends
on the distance between the previously seen and the target reward functions. Hence, the two space
complexities are not necessarily comparable.
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