
Under review as a conference paper at ICLR 2023

MODEL-FREE REINFORCEMENT LEARNING THAT
TRANSFERS USING RANDOM FEATURES

Anonymous authors
Paper under double-blind review

ABSTRACT

Reinforcement learning (RL) algorithms have the potential not only for synthesiz-
ing complex control behaviors, but also for transfer across tasks. Typical model-
free RL algorithms are usually good at solving individual problems with high di-
mensional state-spaces or long horizons, but can struggle to transfer across tasks
with different reward functions. Model-based RL algorithms, on the other hand,
naturally enable transfer across different reward functions, but struggle to scale to
settings with long horizons and/or high dimensional observations. In this work,
we propose a new way to transfer behaviors across tasks with different reward
functions, displaying the benefits of model-free RL algorithms with the transfer-
ability of model-based RL. In particular, we show how a careful combination of
model-free RL using randomly sampled features as reward is able to implicitly
model long-horizon environment dynamics. Model-predictive control using these
implicit models enables quick adaptation to problems with new reward functions,
while scaling to problems with high dimensional observations and long horizons.
Our method can be trained on offline datasets without reward labels, and quickly
deployed on new tasks, making it more widely applicable than typical methods
for both model-free and model-based RL. We validate that our proposed algo-
rithm enables transfer across tasks in a variety of robotics and analytic domains.

1 INTRODUCTION

Reinforcement learning (RL) algorithms have been shown to successfully synthesize complex be-
havior in single-task sequential decision-making problems [1, 2, 3], but more importantly have the
potential for broad generalization across problems. However, many RL algorithms are deployed as
specialists — they solve single tasks and are not prepared for reusing their interactions. In this work,
we specifically focus on the problem of transferring information across problems where the environ-
ment dynamics are shared, but the reward function is changing. This problem setting is reflective of
a number of scenarios that may be encountered in real-world settings such as robotics. For instance,
in tabletop robotic manipulation, different tasks like pulling an object, pushing an object, picking it
up, and pushing to different locations, all share the same transition dynamics, but involve a changing
reward function. We hence ask the question — can we reuse information across these tasks in a way
that scales to high dimensional, longer horizon problems?

When considering how to tackle this problem, a natural possibility is to consider direct policy search
[4, 5]. Typical policy search algorithms can achieve good performance for solving a single task, but
entangle the dynamics and reward, in the sense that the policy one searches for is optimal for a
particular reward but may be highly suboptimal in new scenarios. Other model-free RL algorithms
like actor-critic methods [6, 7, 8] or Q-learning [9, 1] may exacerbate this issue, with learned
Q-functions entangling dynamics, rewards, and policies. For new scenarios, an ideal algorithm
should be able to disentangle and retain the elements of shared dynamics, while being able to easily
substitute in new rewards.

A natural fit to disentangle dynamics and rewards are model-based RL algorithms [10, 11, 12, 13,
14]. These algorithms usually learn a single-step model of transition dynamics and leverage this
learned model to perform planning [15, 12, 11, 16]. These models are naturally modular and can
be used to re-plan behaviors for new rewards. However, one-step dynamics models are brittle and
suffer from challenges in compounding error [17, 18].

1

Under review as a conference paper at ICLR 2023

In this work, we ask — can we build reinforcement learning algorithms that disentangle dynamics,
rewards, and policies for transfer across problems but retain the ability to solve problems with high
dimensional observations and long horizons? In particular, we propose an algorithm that can train
on large offline datasets of transitions in an environment at training time to implicit model transition
dynamics, and then quickly perform decision making on a variety of different new tasks with varying
reward functions that may be encountered at test time.

Specifically, we propose to model the long-term behavior of randomly chosen basis functions (often
called cumulants) of the environment state and action, under open-loop control, using what we term
Q-basis functions. These Q-basis functions can be easily recombined to infer the true Q function
for tasks with arbitrary rewards by simply solving a linear regression problem. Intuitively, this
suggests that rather than predicting the evolution of the entire state step by step, predicting the
accumulated long-term future of many random features of the state contains information equivalent
to a dynamics model, thereby forming an “implicit model” that can transfer. These implicit models
scale better with horizon and environment dimensionality than typical one-step dynamics models,
while retaining the benefits of transferability and modularity.

Our proposed algorithm Random Features for Model-Free Planning (RaMP) allows us to leverage
an unlabelled offline dataset to learn reward-agnostic implicit models that can quickly solve new
tasks involving different reward functions in the same shared environment dynamics. We show the
efficacy of this method on a number of tasks for robotic manipulation and locomotion in simulation,
and highlight how RaMP provides a more general paradigm than typical generalizations of model-
based or model-free reinforcement learning.

1.1 RELATED WORK

Model-based RL is naturally suited for this transfer learning setting, by explicitly learning a model
of the transition dynamics and the reward function [12, 15, 11, 19, 16, 20, 21]. These models
are typically learned via supervised learning on one-step transitions and are then used to extract
control actions via planning [22, 23] or trajectory optimization [24, 25, 26]. The key challenge in
scaling lies in the fact that they sequentially feed model predictions back into the model for sampling
[27, 18, 17]. This can often lead to compounding errors [17, 18, 28], which grows with the horizon
length unfavorably. In contrast, our work does not require autoregressive sampling, but directly
models long term behavior, and is easier to scale to longer horizons and higher dimensions.

On the other hand, model-free RL often avoids the challenge of compounding error by directly mod-
eling either policies or Q-values [4, 29, 5, 30, 1, 7] and more easily scales to higher dimensional state
spaces [1, 31, 5]. However, this entangles rewards, dynamics, and policies, making it challenging to
directly use for transfer. While certain attempts have been made at building model-free methods that
generalize across rewards, such as goal-conditioned value functions [32, 33, 34, 35] or multi-task
policies [36, 37], they only apply to restricted classes of reward functions and particular training
distributions. Our work aims to obtain the best of both worlds (model-based and model-free RL),
learning a disentangled representation of dynamics that is independent of rewards and policies, but
using a model-free algorithm for learning.

Our notion of long-term dynamics is connected to the notion of state-action occupancy measure [38,
39], often used for off-policy evaluation and importance sampling methods in RL. These methods
often try to directly estimate either densities or density ratios [14, 38, 39]. Our work simply learns the
long-term accumulation of random features, without requiring any notion of normalized densities.

Perhaps most closely related work to ours is the framework of successor features, that considers
transfer from a fixed set of source tasks to new target tasks [40, 41, 42, 43]. Like our work, the
successor features framework leverages linearity of rewards to disentangle long-term dynamics from
rewards using model-free RL. However, transfer using successor features is critically dependent on
choosing (or learning) the right featurization and entangles the policy. Our work leverages random
features and open-loop policies to allow for transfer across arbitrary policies and rewards.

2 BACKGROUND AND SETUP

Formalism: We consider the standard Markov decision process (MDP) as characterized by a tuple
M = (S;A; T ; R;
; �), with state space S, action space A, transition dynamics T : S � A !

2

Under review as a conference paper at ICLR 2023

�(S), reward function R : S � A ! �([�Rmax; Rmax]), discount factor
 2 [0; 1), and initial
state distribution � 2 �(S). The goal is to learn a policy � : S ! �(A), such that it maximizes
the expected discounted accumulated rewards, i.e., solves max� E�

�P1
h=1

h�1rh
�

with rh :=
r(sh; ah) � Rsh;ah = Pr(� j sh; ah). Hereafter, we will refer to an MDP and a task interchangeably.

Estimating Q-functions: Given an MDP M, one can define the state-action Q-value function
under any policy � as Q�(s; a) := E ah��(� j sh)

sh+1�T (� j sh;ah)

hP1
h=1

h�1rh
�� s1 = s; a1 = a

i
which

denotes the expected accumulated reward under policy �, when starting from state-action pair
(s; a). Similarly, one can also define the multi-step (� -step) Q-function Q�(s;ea1;ea2; � � � ;ea�) =

Ea�+h��(� j s�+h)
sh+1�T (� j sh;ah)

hP1
h=1

h�1rh
�� s1 = s; a1 = ea1; a2 = ea2; � � � ; a� = ea�i.

One can estimate the Q� by Monte-Carlo sampling of the trajectories under �, i.e., by solving

min
Q̂2Q

1

N

NX
j=1

 bQ(s;eaj1;eaj2; � � � ;eaj�)� 1

M

MX
m=1

1X
h=1

h�1rm;jh

2

2
; (2.1)

where Q is some function class for Q-value estimation, which in practice is some parametric func-
tion class, e.g., neural networks; rm;jh � Rsm;jh ;am;jh

and (sm;jh ; am;jh) come from MN trajectories

that are generated by N open-loop action sequences f(eaj1;eaj2; � � � ;eaj�)gNj=1. For each sequence
there are M trajectories starting from it, and following policy � onwards, to estimate the � -step
Q-function. A large body of work considers finding this Q-function using dynamic programming,
but for the sake of simplicity, this work will only consider Monte-Carlo estimation.

In practice, the infinite-horizon estimator in (2.1) can be hard to obtain. We hence use a finite-
horizon approximation of Q� (of length H), denoted by QH� , in learning. Note that if one
chooses H = � , then the � -step Q-function defined above becomes QH� (s;ea1;ea2; � � � ;eaH) :=

Esh+1�T (� j sh;ah)

"PH
h=1

h�1rh

���� s1 = s; a1 = ea1; � � � ; aH = eaH#. Note that in this case, the Q-

function is irrelevant of the policy �, denoted by QH , and is just the expected accumulated reward
under the open-loop action sequence (ea1;ea2; � � � ;eaH). This Q-function can be used to score how
“good” a sequence of actions will be, which in turn can be used for planning.

2.1 PROBLEM SETUP

We consider a transfer and offline RL scenario, where we assume access to an offline dataset consist-
ing of several episodesD = f(smh ; amh ; smh+1)gh2[H];m2[M]. This dataset assumes that all transitions
are collected under the same transition dynamics T , but otherwise does not require labels for re-
wards, and may come from multiple different behavior policies as well. Here H is the length of the
trajectories, which is large enough, e.g., of order O(1=(1 �
)) to approximate the infinite-horizon
setting; M is the total number of trajectories.

The goal is to make the best use of the dataset D, and generalize the learned experience to im-
prove the performance on a new taskM, with the same transition dynamics T but arbitrary reward
functions R. Note that unlike some related work [40, 44], we make no assumption on the reward
functions of the MDPs that generate D, i.e., these MDPs do not have to share any structure of the
reward functions, e.g., being linear in some common features. In fact, the samples of the rewards
that correspond to the trajectories in D are not even necessary. The goal of the learning problem is
to pre-train on the offline dataset such that we can enable very quick (even zero-shot) adaptation to
the new reward functions encountered at test time.

3 RAMP: LEARNING IMPLICIT MODELS FOR CROSS-REWARD TRANSFER
WITH MODEL-FREE TECHNIQUES

In this section, we introduce our algorithm, Randomized features for Model-free Planning (RaMP),
to solve the problem described in §2 – learning a model of long-term dynamics that enables transfer
to tasks labeled with arbitrary new rewards, while mitigating challenges with compounding error.

3

Under review as a conference paper at ICLR 2023

Figure 1:RaMP: Depiction of our proposed method for transferring behavior across tasks by leveraging model-
free learning of random features. At training time, Q-basis functions are trained on accumulated random fea-
tures. At test time, adaptation is performed by solving linear regression and recombining basis functions,
followed by online planning with MPC.
We start by arguing where model-based and model-free algorithms fall short. Model-based RL
approaches estimate the transition dynamicsT using the data inD, and plan in the estimated model.
The key advantage of this approach is that it isreward-agnostic, and has the potential to easily
generalize to multiple tasks. Unfortunately, since the model outputs are fed back into the model for
multi-step planning, it is subject to compounding error of one-step dynamics models [17].

In contrast, one can resort tomodel-free RLapproaches, e.g., Q-learning or policy optimization
methods [6, 9, 1, 5, 4], to directly optimize the value of interest. These methods are less subject
to the challenges of compounding error than most model-based ones. Empirically, learning neural
networks to predict the Q-function (ascalarfor each(s; a)), can be much easier than to predict the
next state (which can be ahigh-dimensionalvector, e.g., image). However, these methods cannot
be used directly to transfer across different tasks with different rewards, as they are designed to be
reward-dependent. This raises the natural question:Is there a model-free approach that can mitigate
the challenges of compounding error and can transfer across tasks painlessly?

The key insight we advocate is that if instead of modeling long-term accumulation of some speci�c
reward as a Q-function, we directly model long-term accumulation of many random features of
state-actions under arbitrary open-loop action sequences. This can effectively disentangle transition
dynamics, reward, and policies being evaluated, and potentially allow for transfer across tasks. Each
long-term accumulation of random features is referred to as an element of a “random” Q-basis, and
can be learned with simple modi�cations to typical model-free RL algorithms.

At training time, the of�ine datasetD can be used to learn a set of “random” Q-basis functions for
different random features. This effectively forms an “implicit model”, as it carries information about
how the dynamics propagates, without being tied to any particular reward function or policy. At
test time, given a new reward function, we can recombine Q-basis functions linearly to effectively
approximate the true reward-speci�c Q-function. This inferred Q-function can then be used for
planning for the new task.

3.1 OFFLINE TRAINING : LEARNING RANDOM Q-FUNCTIONS FROMUNLABELLED DATA

Given a dataset of transitions without reward labels, the goal of this phase is to model the long-term
accumulation of random features under random state-action sequences. With no prior knowledge
about the downstream test-time rewards, the random features being modeled must be expressive
and universal in their coverage, so that any possible test-time rewards can be reconstructed from
these random features by linear regression. As suggested in [45, 46, 47], random features can be
powerful in representing nonlinear functions, i.e., any test-time reward function in our case, as their
linear combinations. In particular, suppose we haveK neural networks� (�; �; � k) : S � A ! R
with weights� k 2 Rd andk 2 [K], where� k arerandomlyi.i.d. sampled from some distributionp.
SamplingK such weights� k with k 2 [K] yields a vector of scalar functions[� (�; �; � k)]k2 [K] 2 RK

for any(s; a), which can be used as random features whose accumulation through dynamics can be
used to model Q-basis functions.

To model the long-term accumulation of each of these random features, we note that they can be
treated as reward functions in model-free RL, and the machinery of Q-functions can be reused to

4

Under review as a conference paper at ICLR 2023

learn their long-term accumulation. As discussed in [48], model-free RL algorithms can be used to
model the evolution of arbitrary functions (called “cumulants”) of the state. Therefore, we can learn
a set ofK Q-basis functions, with each of them corresponding to a particular random feature.

We note that this de�nition of a Q-basis function is tied to a particular policy� that generates the
trajectory. To transfer, one needs to predict the accumulated random features under new sequences
of actions, as the optimal policy for the new task is likely to not be within the span of policies seen in
training. To allow the modeling of cumulants that is independent of particular policies, we propose
to learnopen-loopQ-basis functions for each of the random features (as discussed in Section §2),
which is policy-agnostic, and can be used to search for optimal actions in new tasks.

To actually learn these Q-basis functions (one for each random feature), we opt to
use Monte-Carlo methods for simplicity. We generate a new datasetD� from D,
with D� = f ((sm

1 ; am
1:H);

P
h2 [H]
 h� 1� (sm

h ; am
h ; � k))gm 2 [M];k 2 [K]. Here we use

P
h2 [H]
 h� 1� (sm

h ; am
h ; � k) as the accumulated cumulants for open-loop action sequences

f a1; � � � ; aH g taken from states1. We then useK function approximators representing each of
the K Q-basis functions, e.g., neural networks (�; �; � k) : S � A H ! R for k 2 [K], to �t the
accumulated cumulants. Speci�cally, we minimize the following loss

min
f � k gk 2 [K]

1
M

X

m 2 [M];k 2 [K]

�
 (sm

1 ; am
1:H ; � k) �

X

h2 [H]

 h� 1� (sm
h ; am

h ; � k)
� 2

: (3.1)

These Q-basis functions can be recombined to approximate the Q-functions for true rewards at test
time. The two key design decisions here are – (1) predicting the evolution of random features,
rather than one-step modeling of state, and (2) predicting the accumulated random features under
open-loop action sequences, rather than a closed-loop policy.

3.2 ONLINE PLANNING : INFERRINGQ-FUNCTIONS WITH L INEAR REGRESSION AND
PLANNING WITH MODEL-PREDICTIVE CONTROL

The goal of our learned Q-basis functions is to enable transfer to new tasks with arbitrary rewards.
Any reward function can be approximately expressed as a linear combination of a suf�ciently ex-
pressive and expansive set of random features. Given this linear approximation, we can recover an
approximation to the Q-function for the true test-time reward by recombining the random Q-basis
functions linearly. Therefore, we can obtain the test-time Q-function by solving asimplelinear
regression problem. This inferred Q-function can then be used to obtain an optimal sequence of
actions through planning.

3.2.1 REWARD FUNCTION FITTING WITH RANDOMIZED FEATURES

We �rst learn how to express the reward function for the new task as a linear combination of the ran-
dom features. This can be done by solving a linear regression problem to �nd the coef�cient vector
w = [w1; � � � ; wK]> that approximates the new task's reward function as a linear combination of
the random features. Speci�cally, we minimize the following loss

w� = argmin
w

1
MH

X

h2 [H];m 2 [M]

�
r (sm

h ; am
h) �

X

k2 [K]

wk � (sm
h ; am

h ; � k)
� 2

+ � kwk2
2; (3.2)

where� � 0 is the regularization coef�cient, andr (sm
h ; am

h) � Rsm
h ;a m

h
. Due to the use of random

features, Eq. (3.2) is aridge regressionproblem, and can be solved ef�ciently. In case the reward
labels are being obtained on the �y during online data collection, we can leverage an online least
squares algorithm [49] to continually improve our estimate ofw without re-computing regression
result from scratch as the number of samples grows.

Given these weights, it is easy to estimate an approximate open-loop Q-function for the true re-
ward on the new task by linearly combining the Q-basis functions learned in the of�ine train-
ing phasef (�; �; � �

k)gk2 [K] according to thesamecoef�cient vector w� . This follows from
the additive nature of reward and linearity of expectation. In particular, if the reward function
r (s; a) =

P
k2 [K] w�

k � (s; a; � k) holds approximately, which will be the case for large enough
K and rich enough� , then the approximate Q-function for the true test-time reward under

5

Under review as a conference paper at ICLR 2023

the sequencef a1; � � � ; aH g satis�es QH (s1; a1:H) := Esh +1 �T (s h ;a h)

�
P

h2 [H]
 h� 1Rsh ;a h

�
�

P
k2 [K] w�

k (s1; a1:H ; � �
k), wheref w�

k gk2 [K] is the solution to the regression problem (Eqn (3.2))
andf � �

k gk2 [K] is the solution to the Q-basis �tting problem (Eqn (3.1)).

3.2.2 PLANNING WITH MODEL-PREDICTIVE CONTROL

To obtain the optimal sequence of actions we can use the inferred approximate Q-function for the
true rewardQH (s1; a1:H) for online planning at each timet in the new task: at statest , we conduct
standard model-predictive control with random shooting, i.e., randomly generatingN sequences of
actionsf an

1 ; � � � ; an
H gn 2 [N], and �nd the action sequence with the maximum Q-value such that

n�
t 2 argmax

n 2 [N]

X

k2 [K]

w�
k (st ; an

t :t + H � 1; � �
k): (3.3)

We then executean �
t

t from the sequencen�
t , observe the new statest +1 , and replan. Our algorithm

is summarized in Algorithm 1. We refer readers to Appendix D for a detailed connection of our
proposed method to existing work and Appendix A for detailed pseudocode.

3.3 THEORETICAL JUSTIFICATIONS

We now provide some theoretical justi�cations for the methodology we adopt. To avoid unnecessary
nomenclature of measures and norms in in�nite dimensions, we in this section consider the case that
S andA are discrete (but can be enormously large). Due to space limitation, we present an abridged
version of the results below, and defer the detailed versions and proofs in §C. We �rst state the
following result on the expressiveness of random cumulants.

Theorem 3.1(Q-function approximation; Informal). Under standard coverage and sampling as-
sumptions of of�ine datasetD, and standard assumptions on the boundedness and continuity of
random features� (s; a; �), it follows that with horizon lengthH = e�(log(R max =�)

1�
) and M =
e�(1

(1 �
)3 � 4) episodes in datasetD, and withK = e
((1 �
) � 2� � 2) random features, we have that
for any given reward functionR, and any policy�

k bQH
� (w�) � Q� k1 � O (�) + O

� r
inf

f 2H
E(f)

�

with high probability, where for each(s; a), bQH
� (s; a; w�) is de�ned as bQH

� (s; a; w�) :=

E
�

P H
h=1
 h� 1 P

k2 [K] w�
k � (sh ; ah ; � k)

�
�
� s1 = s; a1 = a

�
, and can be estimated from the of�ine

datasetD; inf f 2H E(f) is the in�mum expected risk over the function classH induced by� .

Theorem 3.1 is an informal statement of the results in §C.2, which speci�es the number of random
features, the horizon length per episode, and the number of episodes, in order to approximateQ�
accurately by using the data inD, under any given reward functionR and policy� . Note that the
number of random features is not excessive and is polynomial in problem parameters. We also note
that the results can be improved under stronger assumptions of the sampling distributionsp and
kernel function classes [47, 50].

Next, we justify the use of open-loopQ-functions in planning in a deterministic transition environ-
ment, which contains all the environments our empirical results we will evaluate later. Recall that
for any given rewardR, let Q� denote theQ-function under policy� . Note that with a slight abuse
of notation,Q� can also be the multi-stepQ-function (see de�nition in §2), and the meaning should
be clear from the input, i.e., whether it isQ� (s; a) or Q� (s; a1; � � � ; aH).

Theorem 3.2. Let � be some subclass of Markov stationary policies, i.e., for any� 2 � , � : S !
�(A). Suppose the transition dynamicsT is deterministic. For any given rewardR, denote theH -
step policy obtained fromH -step open-loop policy improvement over� as� 0

H : S ! A H , de�ned
as� 0

H (s) 2 argmax(a1 ;��� ;a H)2A H max� 2 � Q� (s; a1; � � � ; aH); for all s 2 S. Let V� 0
H

denote the

6

	Introduction
	Related Work

	Background and Setup
	Problem Setup

	RaMP: Learning Implicit Models for Cross-Reward Transfer with Model-Free Techniques
	Offline Training: Learning Random Q-functions from Unlabelled Data
	Online Planning: Inferring Q-functions with Linear Regression and Planning with Model-Predictive Control
	Reward Function Fitting with Randomized Features
	Planning with Model-predictive Control

	Theoretical Justifications

	Experimental Evaluation
	Experiment Setup
	Transfer to Novel Rewards
	Scaling to Tasks with Longer Horizons
	Scaling to High Dimensional State-Action Spaces
	Ablation of Design Choices

	Discussion
	Algorithm Pseudocode
	Additional Experiments and Setup Details
	Description of Environments
	Description of Algorithm Training Details
	Additional Results on Hopper Stand
	Scaling to high-dimensional Pixel Observation
	Additional Ablations
	MPPI Experiments
	Finetuning Experiments

	Detailed Theoretical Results
	Formal Statement
	Deferred Proofs
	Proof of Theorem C.1
	Proof of Corollary C.2
	Proof of Theorem 3.2

	Relationship to Existing Work
	Infinite-Horizon Q-function Variant
	Method
	Experiment and Analysis

	Complexity Analysis

