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ABSTRACT

Inductive Bias (IB) has sparked a revolutionary transformation by incorporating
the advantages of CNNs and Transformers, including scale invariance and inte-
gration of locality and long-range dependencies, which is called general IB for its
wide applicability. However, its efficacy is currently not enjoyed by stereo match-
ing, one of the geometric vision tasks, because of the ignorance of volume-level
scale invariance and the limitation of high real-time requirement. In contrast, a
specific IB is adopted by constructing volume structure in stereo matching task,
which helps to finally generate a confidence volume to predict disparity map (out-
put), but fewer studies go into the specific volume structure. Based on the above
issues, this paper develops a novel model named UStereo to introduce the gen-
eral IB to stereo matching. Technically, we adopt inter-layer fusion to break down
volume-level scale invariance to a recurrence strategy in initialization for informa-
tion at low resolution and refinement process for the high, which further extends
to capture long-range dependencies after shallow stacks of convolutions and nor-
malization without time-consuming Transformers. Additionally, to reveal the role
that the volume structure constructed by specific IB plays during inference, we
propose the first-time in-depth study of volume at low resolution through varying
degrees of restraint as well as 3 original statistic indicators to reflect the char-
acteristics of representation within volumes. Experiments demonstrate UStereo
has competitive performance with both fast speed and robust generalization, and
ablation studies show the effectiveness of introducing general IB. Moreover, our
analysis of the volumes at low resolution suggests they can be viewed as con-
fidence volumes and a concentrated distribution of the disparity within volumes
leads to enhanced performance, which could extend the role of the specific IB.

1 INTRODUCTION

Generally speaking, different inductive biases (IB) or preference can enhance the capacity of a given
network to model different forms of information and improve its generalization ability (Wolpert
et al., 1995; Baxter, 2000; Raghu et al., 2021; Bommasani et al., 2021; Goyal & Bengio, 2022),
which is seen as a viable way to achieve both efficiency and effectiveness (Zhang et al., 2022; Wan
et al., 2023). The most discussed IB today revolves around CNNs and Transformers i.e. scale
invarience IB from CNNs and long-range dependencies from Transformers that compensate for the
locality in CNNs, which we call general IB in this paper for its universality for almost vision tasks
(Liu et al., 2021; Xu et al., 2021b; Ren et al., 2022). However, so far efficacy of the general IB has
not been enjoyed by certain low-level geometric vision tasks such as stereo matching.

Stereo matching task estimates a dense disparity or depth map from a pair of stereo images under
the epipolar geometry constraint (Scharstein & Szeliski, 2002). It is a classic and important vision
problem that has been studied for almost half a century (Marr & Poggio, 1976), and is wildly used
in robotics (Schmid et al., 2013), SLAM (Gomez-Ojeda et al., 2019), autonomous driving(Menze &
Geiger, 2015), computer assisted surgery (Allan et al., 2021), etc. Notably, efficiency and real-time
performance are crucial requirements in these applications.

For the balance between the effectiveness and efficiency in stereo matching, mainstream works
adopt CNN-based operation and volume structure. Despite the use of CNNs, current model struc-
tures for stereo matching neglect the volume-level scale invariance since they usually use a U-shape
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network at certain volume or adopt Coarse-to-Fine (CTF) strategy to generate disparity by refining
the disparity map during inference (details see §2). For long-range dependencies to compensate for
the locality in CNNs, the task-specific geometry constraint and real-time requirement limit the use
of Transformers to capture long-range dependencies for the computing burden in cross- and self-
attention mechanisms (Li et al., 2021). Therefore, how to capture long-range dependencies easily
and effectively without Transformers becomes an important problem. As for the volume structure,
it is inspired by the task-specific geometric constraint in stereo matching and used to generate a con-
fidence volume at the final output to predict the disparity map, which could be viewed as a specific
IB for stereo matching. Though volume-based methods have become the de-facto method, fewer
studies go deeper into the power of the specific IB i.e. the volume structure (Eq.1).

Analysis of current approaches naturally leads us to the questions: (i) How we can adopt the general
IB (scale-invariance and long-range dependencies) to stereo matching and keep real-time. (ii) What
roles of specific IB can play such as enhancing performance without altering the model architecture,
or determining the underlying characters of representation that a high-performing model can learn.

Our contributions are as below:

• General IB and UStereo: We design a new model called UStereo. Disparity generation during
inference is given up and replaced by direct inter-layer fusion. Therefore, volume-level scale in-
variance is broken down into two stages, initialization and refinement process. A novel proposed
fusion strategy Dense Scale-Aware Fusion (DSF) establishes a dense connection with volumes at
high resolution in recurrence form, and information at low resolution is integrated during refine-
ment process, which extends to a new block Mixed Direct Long-Range Compensation (MDLC)
to capture long-range dependencies by its inherent volume structure after shallow stacks of con-
volutions and normalization without time-consuming Transformers.

• Specific IB and Representation: We conduct an in-depth study of the volume structure at low reso-
lution, deep into the role of specific IB. We propose two deep supervision with strong and relaxing
restrictions respectively to concentrate the distribution of the disparity (representation) within the
volume. Additionally, a novel deep self-supervision is proposed which controls the distribution of
disparity. We also adopt three original statistic indicators related to the concentration degree for
the volume and observe the distribution along the disparity dimension of volume at low resolution.
To our best knowledgement, it is first-time to study the specific IB and representation of volumes.

• Experiments: UStereo achieves competitive results to other volume-based algorithms with fast
speed and shows generalization capabilities across virtual and real datasets, as well as diverse
natural scenes and small abdominal cavity scenes. Additionally, our analysis of the volumes at
low resolution suggests they can be viewed as confidence volumes and a concentrated distribution
of the disparity within volumes leads to enhanced performance, which could extend the role of the
specific IB.

2 RELATED WORK

The Specific Inductive Bias for stereo matching Constrained by geometric relationship, in which
only pixels in certain disparity search space are computed in need (in Fig.1), most works in stereo
matching have volumes structure by Eq.1, where B(·, ·) can be full correlation (Mayer et al., 2016;
Tonioni et al., 2019; Duggal et al., 2019; Lipson et al., 2021; Song et al., 2020; Xu & Zhang, 2020),
concatenation (Cat) (Kendall et al., 2017; Chang & Chen, 2018; Zhang et al., 2019; Yang et al.,
2020b) or group-wise correlation (Gwc) (Guo et al., 2019; Xu et al., 2021a; Yao et al., 2021; Xu
et al., 2023). The volume structure helps to generate a confidence volume at the final output for a
model in stereo matching to predict a disparity map and it could be a specific IB for stereo matching:1

Vx,y,d,: =Concati(B(f l
x,y,( c

g×i: cg×(i+1)),f
r
x−d,y,( c

g×i: cg×(i+1))))

d ∈[0,min(dmax, x)], 0 ≤ i ≤ (g − 1), i ∈ N and g ∈ N+
(1)

where d, c and g represent, disparity, feature channel number for left/right feature, f l/fr, and group
number for Gwc respectively. The symbol ”:” represents the indexing mechanism similar to that in
computer languages. Concati means concatenating processed features by B.

1We use D, V , VGwc, VCat denote any disparity map, volume and Gwc and Cat volume. For the extra
dimension in 4D volume compared to 3D volume, we call it β dimension (3D could be viewed as β = 1).
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Figure 1: The schematic illustration of the volume construction and our proposed block Mixed
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Model Strategy for Stereo Matching There are two mainstream
model strategies to generate confidence volume, namely U-Shape
Net (in Fig.2 left i.e. Hourglass) (Chang & Chen, 2018; Ban-
gunharcana et al., 2021) and Coarse-to-Fine (CTF) strategy (Fig.2
right) (Tankovich et al., 2021; Yao et al., 2021; Shen et al., 2021;
Wang et al., 2023). For U-shape Net, only volume at certain reso-
lution is inputted and aggregated after downsampling, upsampling
and shortcut like UNet (Ronneberger et al., 2015). While CTF strategy models this as a refinement
process that has the refined disparity map obtained from low resolution to higher resolution gradually
in order, Di = F(V i|Di+1)2. The former has no utilization of information from volumes at other
resolutions, which is employed in later CTF but there is no deeper consideration of the volume-level
scale invariance among volumes despite using scale invariance in feature extractor (feature level).
In this paper, we first adopt the model strategy that gives up the disparity map generation during
inference and utilizes the information across resolution at the same time.

The General Inductive Bias for CNNs Generally recognizing, CNNs (LeCun et al., 1995) extract
local features from the neighbor region, having the intrinsic IB in modeling locality. It is common
to consider locality in conjunction with long-range dependencies, as they complement each other.
Another critical topic in visual tasks is group equivariance(Goyal & Bengio, 2022) or scale invari-
ance, which inspires the intra-layer fusion (Ronneberger et al., 2015; Lin et al., 2017) or inter-layer
fusion(Szegedy et al., 2015; Zhao et al., 2017). Considering the scale invariance, (Wang et al., 2020)
exchanges the information across resolutions in parallel, and (Zhang et al., 2022) fuses the informa-
tion across resolutions only at the last resolution to meet the real-time requirements. We adopt the
wisdom from the two methods and break down the dense information exchange into two processes.

Long-Range Dependencies Attention is a wildly accepted method to capture long-range depen-
dencies and can be divided into two categories: a normalization to reweight the target, rewritten as
N (F(X)) ∗X , (Itti et al., 1998; Mnih et al., 2014; Hu et al., 2018; Woo et al., 2018) or non-local
representation learning, usually known as self-attention, which computes the response at a token
as a weighted sum of all tokens (Dosovitskiy et al.; Raghu et al., 2021; Wang et al., 2018; Chen
et al., 2018). For the later attention mechanism, computational cost, no query-specific discovery and
the deeper analysis of the relationship between convolution and self-attention (Cao et al., 2019; Ma
et al., 2022) simplifies the operation as local-region operation with a global context, N (F(X))+X .
In MDLC, two forms (N (F(X))∗X and N (F(X))+X) are adopted by inherent volume structure
without time-consuming Transformers introduced.

2For ease of representation, we use F(·) and N (·) to denote any function and normalization in this paper,
which has no impact on the realization to the paper in fact.
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Figure 3: Our proposed network is constructed by Feature Extractor, Dense Scale-Aware Fusion and
Mixed Direct Long-Range Compensation. Ablation Study 1,2,3 are the extra models we design for
ablation study to validate effectiveness of general IB we introduce. Propagation Model simplify the
signal propagation in our model and the ablation 3 model, respectively the Propagation Full/Cut.

3 METHOD

3.1 GENERAL INDUCTIVE BIAS AND USTEREO

Giving up disparity generation during inference and adopting the inter-layer fusion, UStereo is con-
structed based on DSF and MDLC, together with consideration to volume-level scale invariance and
to capture long-range dependencies.

3.1.1 DENSE SCALE-AWARE FUSION

To adopt volume-level scale invariance, we propose a simple recurrence fusion strategy DSF (Eq.2).

V̂ i = Fconnect(V
i,D(V̂ (i−1))) = Fconnect(V

i,D(V (i−1),V (i−2), · · · )) (2)

V̂ i
cut = Fconnect(V

i,D(V̂ (i−1)),U(V (i+1))) (3)
where Fconnect denotes any connection function such as concatenation, addition, etc., and U(·) or
D(·) denote any up- or down-sampling function. V̂ and Ṽ denote V processed by Eq.2 or 5.

In this strategy, information at every resolution will be directly connected with information from
higher resolution in initialization and subsequently at the refinement stage it will fuse with informa-
tion from low resolution i.e. in Eq.2, we construct the relationship from bottom to up at V i with all
{V j}i−1

0 and the information will aggregate from top to down at refinement process by inter-layer
fusion. Due to DSF, information across resolution exchanges well, and the learning process will
be enhanced when backpropagation (Wei et al., 2021) (in Fig.3 Propagation Full/Cut, DSF leads to
information fusion and, according to chain rules, there will be a correlation between every volume).
To lighten our model and maintain volume-level scale invariance, we skip the 2−3 resolution, and
fuse information from V at 2−3 resolution to 2−2, that we replace V̂ i with V̂ i

cut by Eq.3.

3.1.2 MIXED DIRECT LONG-RANGE COMPENSATION

Three key points prompt us to propose such a block: (i) intrinsic locality IB in CNNs needs a com-
pensatory component to capture long-range dependencies but traditional Transformers are unfit for
the real-time task; (ii) volume structure has the potential to capture context information and model
long-range dependencies by constructing volume at lowest resolution and normalization; (iii) inter-
layer fusion strategy can simplify the model structure alleviating the time cost in CTF strategy, and
by the fusion, lower volume could become a global embedding after shallow stacks of convolutions.

Generally speaking, VCat focuses on semantic information and VGwc captures similarity. (Xu et al.,
2022a) use a coarse map as filter weight generated in VGwc to restrain the VCat. To simplify these
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processes and inspired by multi-head in Transformers, we generate the multi-weight by the VGwc

and use both kinds of information to generate a robust volume.

Besides the attention mechanism, another accepted approach to capture long-range dependencies
and generate global context is by deep stacks of convolution(Wang et al., 2018). Due to the inherent
volumes at low resolution e.g. V ∈ RC×D/32×H/32×W/32, global context can be easily obtained
through shallow stacks of convolutions. Additionally inter-layer fusion strategy naturally encourages
us to choose the global context as a compensatory component to capture long-range dependencies.

W i = Softmaxd(Aggregation(V̂ i
Gwc + U(Ṽ (i+1)))) (4)

Combine two above we propose a new compensation weight generation method (in Eq.4), con-
structed by two forms of compensatory components to capture long-range dependencies, i.e.
N (F(X)) ∗ X and N (F(X)) + X . Then we propose a new block MDLC by dot product be-
tween the weight and the semantic information:

Ṽ i = W i ⊙ V i
Cat (5)

3.1.3 MORE DETAILS ABOUT THE MODEL

Disparity Regression and Output The confidence volume produced gives us matching confi-
dence values of each disparity level for every pixel, which can be transformed into a probability
distribution by taking a Softmax across the disparity dimension. To generate disparity map D,
we both adopt the original disparity regression and top-K regression (R(·)) (Bangunharcana et al.,
2021). We choose the up-sampling function U(·) for the final output same as (Yang et al., 2020a).

Dx,y = R(Vx,y,:, k) =

k∑
i=0

di × Softmax(Vx,y,di
) , where {Vx,y,di

}k0 = Top(Vx,y,:, k) (6)

The function Top(·, k) selects the top k values from the first input. Usually, V at final resolution is
3D without β dimension.

More Details We use MobileNet-V3 (Howard et al., 2019) as the encoder in Feature Extractor
(in Fig.3), and the decoder is the simple block composed of single fractionally-strided convolution
and Leaky ReLU (Xu et al., 2015). For simplification, Fconnect(·), U(·) and D(·) are concatenation,
linear interpolation and average pooling function respectively. We only use the simple Hourglass
function for aggregation and design two extra simpler ones (see appendix A.2). For Feature Com-
press and Volume Compress in Fig.1, we use two layers of convolutions and a single respectively.

3.2 SPECIFIC INDUCTIVE BIAS AND DEEP SUPERVISION

In CTF strategy, there is disparity generated for fusion and supervision to the disparity will certainly
improve the performance. To simplify the model structure, we adopt inter-layer fusion. Therefore,
there is no disparity map generation during the inference of UStereo. Though volumes are con-
structed by Eq.1 related to specific IB and the model would finally create a confidence volume to
predict the disparity map, representation in volume at lower resolution (volume during inference
process) is vague, especially without disparity map generation. This raises our contemplation on
specific IB, beyond the construction of the volume structure, whether specific IB or this structure
has deeper underlying effects. To be specific, it remains a challenge to determine whether the vol-
ume at a lower resolution has the same impact as the confidence volume as well. Additionally, for
the model with the same structure but different weight parameters and achieving better performance,
the representation within volume is still an unresolved issue.

Inspired by the deep supervision (Lee et al., 2015), we design an in-depth study of specific IB
and representation in volume at lower resolution. This study incorporates extra supervision to the
volume at lower resolution, while maintaining the supervision at low resolution. By doing so, we
aim to analyze the effects of this extra supervision on the overall performance. Therefore, the loss
function in our work is constructed by a basic loss LBase and extra loss L′. V at resolution = 2−2

and finial output are supervised in LBase, and L′ is one of L1, L2, L3. z is the extra weight
parameters in bypass deep supervision branch. Smoothl1 is smooth L1 in (Xu & Zhang, 2020).

L = LBase + L′ (7)
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LBase(V ,Dgt, z) = λSmoothl1(U(R(V , k)),Dgt) +
∑

V i at res.=2−2

λiL2(V
i,Dgt, z) (8)

We suppose every 3D sub-volume along the β dimension has the same impact. Therefore, We split
the 4D volume into N4/3 3D volumes along the β dimension and propose Eq.9 to to actively cluster
the distribution within volumes. The set {V j} denotes the volumes to be supervised in our training
process (details are in Fig.4 and the number of elements in the set is related to different code name).

L1({V j},Dgt) =
∑
j

λjSmoothl1(U(R(
1

N4/3

N4/3∑
n=0

(V j
n,:,:,:, kj))),D

gt) (9)

A trainable deep supervision bypass branch is adopted as well, where sets of convolutions C(·, z)
with trainable parameters z are introduced but the structure of the model would not change at all.
The learning process would make internal relationships vague unlike Eq.9. However, experiments
show UStereo could obtain large improvement with deep supervision Eq.10 and it could become
a strong tool to enhance the performance. To further explore the representation of the volume in
enhancing model, we adopt 3 original statistic indicators to research characteristics of the disparity
(representation).

L2({V j},Dgt, z′) =
∑
j

λjSmoothl1(U(R(C(V j , z′), kj)),D
gt) (10)

δ15 =
ν0 −

∑
last50% νi

N50%

ν0 −
∑

last10% νi

N10%

sumk =

k∑
0

νi E = argmin
k

(

k∑
0

νi −
1

2
) ≥ 0 ν ∈ Sort↓d(V ) (11)

where ν is a sorted vector from the disparity dimension of softmax-processed V in descending
order, by Sort↓d, ν ∈ Rd. lastX% taking the last X percent of the vector, and NX% corresponds to
X% length of ν. δ15 is an indicator consider both the peak value and low values, and if it is large,
it implies a relatively larger peak value and a smaller tail distribution. sumk and E serve a similar
purpose.The former quantifies the amount required to reach 50%, while the latter provides a direct
summary of the top k elements in the distribution. We set the k to 5 in this paper.

Eq.9 and 11 use Dgt in deep supervision based on the assumption from confidence volume, so
probability distribution is clustered at the place of the matter in confidence volumes. To reveal
the characteristics of the distribution along the disparity dimension within volumes, we propose
an original deep self-supervision in Eq.12. The distribution of the disparity in the volume will be
controlled by constant vector α but has nothing to do with the distribution of confidence.

L3({V j},α) =
∑
j

λj∥Maxβ(Softmaxd(V
j))−α∥l1 , where α ∈ Rβ

(12)
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Method SceneFlow KITTI2012 KITTI2015 Time Params Dim

EPE 3 EPE EPE D1 D1 D1 (ms) M 3/4
-noc all non -bg -fg -all D

DeepPrunerFast 0.97 - - - 2.32 3.91 2.59 40 7.46 4
AANet 0.87 1.91 0.5 0.6 1.99 5.39 2.55 62 3.93 3
DecNet 0.84 - - - 2.07 3.87 2.37 60 13.2 4
BGNet 1.17 1.77 0.6 0.6 2.07 4.74 2.51 54 2.97 4

BGNet+ - 1.62 0.5 0.6 1.81 4.09 2.91 68 5.31 4
CoEx 0.69 1.55 0.5 0.5 1.79 3.82 2.13 33 2.7 4

FastACV 0.64 1.68 0.5 0.6 1.82 3.93 2.17 50 3.1 4
Ours 0.59 1.56 0.5 0.5 1.76 3.88 2.11 34 2.1 4

Table 1: Quantitative evaluation on the test sets of SceneFlow, KITTI 2012 and KITTI 2015 test
sets. The runtime is tested on A6000. Volume-based method references: (Duggal et al., 2019; Xu &
Zhang, 2020; Xu et al., 2021a; Yao et al., 2021; Bangunharcana et al., 2021; Xu et al., 2022b).

To ensure a fair comparison in §4.2 and following the recent trend of designing multi-stage training
strategies, we adopt the training strategy in Fig.4. This strategy allows us to conduct related ex-
periments under the same initial conditions, while also providing a beneficial initialization for the
self-supervised approach during the training process.

4 EXPERIMENT

Our experiments are divided into three parts: first, compare with the state of the art (SOTA) volume-
based method on four popular stereo datasets: SceneFlow Mayer et al. (2016), KITTI 2012 (Geiger
et al., 2012), KITTI 2015 (Menze & Geiger, 2015) and SCARED (Allan et al., 2021), including
virtual/real datasets and vast natural scenes/small abdominal cavity scene datasets; second, we de-
sign ablation studies to structure and IB introduced to our model; finally, following §3.2 we conduct
study to the specific IB and the representation to volume.

Method SCARED MAE (mm)
J. C. Rosenthal 3.75
Trevor Zeffiro 3.54

Dimitris Psychogyios 1 2.33
Dimitris Psychogyios 2 2.62

Sebastian Schmid 2.66
MSDESIS 2.85

CFNet 2.67
RAFT-Stereo 2.65

Ours 2.53

Table 2: The mean absolute depth error in mm for
the average test dataset. References: (Allan et al.,
2021; Psychogyios et al., 2022).

The end-point error (EPE) and 1/2/3-pixel er-
ror (1/2/3pE) are reported on the dataset, where
EPE is the mean disparity error in pixels and
1/2/3-pixel error is the average percentage of
the pixel whose EPE is bigger than 1/2/3 pixel.
The Mean Absolute depth Error (MAE) is re-
ported on the SCARED dataset. The official
metrics (e.g. D1-all) in the online leader board
are reported as well.

For benchmarking, in spite of the simple struc-
ture, our model also achieves competitive per-
formance in real-time stereo matching (Table
1), for example our model achieves signifi-
cantly SOTA result in SceneFlow. Our model
also has advantages on reference time and previous volume-based methods all have more param-
eters than ours. Comparison in Table 2 shows that our method exhibits robust generalization and
achieves a good result on cavity scene datasets as well.

4.1 ABLATION FOR INTRODUCED GENERAL INDUCTIVE BIAS

Besides the basic ablation study, we also design extra models to discuss the IB. Details are below:

• Exp1: IB study for long-range dependencies, replacing Softmax with Sigmoid function in Eq.4.
• Exp2: IB study for scale invariance, removing entangled relationship with up-sampling in Eq.3.
• Exp3: IB study for scale invariance, removing dense fusion.
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(a) (b) (c)

(e) (f)(d) different in 

Figure 5: a-c show the distribution of statistic indicators we adopt, respectively δ15, E and sumk in
Eq.11. d shows the EPE result on Sceneflow when using different α in Eq.12 at 32L. e-f show how
the mean of Maxβ(Softmaxd(V )) changes when training.

• Exp4: Ablation study to model structure, removing the entangled relationship between two vol-
umes at the lowest resolution, to discuss the effect of information fusion. (Exp2 is related to Fig.3
Ablation 1, Exp3 is related to Fig.3 Ablation 2 and Exp4 is related to Fig.3 Ablation 3)

• Exp5: Ablation study to model structure, replacing two layers convolutions in Feature Compress
to single, to discuss better representation learning for volume is good for model.

Experiment EpE 1pE 2pE
Original 0.593 6.82 3.72

Exp1 0.618↓ 6.92↓ 3.81↓
Exp2 0.609↓ 6.82 3.73↓
Exp3 0.611↓ 6.96↓ 3.77↓
Exp4 0.614↓ 7.05↓ 3.83↓
Exp5 0.598↓ 6.76↑ 3.70↑
Table 3: Ablation Studies.

To explore the role of the long-range dependencies, we de-
sign the Exp1 replacing Softmax normalization with Sigmoid
function. The result shows that without the long-range depen-
dencies, the performance of the model gets worse. Exp4 can
be viewed as an experiment to weaken the global context as
well, the result of which also implies a well-processed global
context has a great improvement to the performance. To dis-
cuss the IB in terms of the scale invariance, we design two
extra models in Exp2 and Exp3. After removing the entangled
relationship, both models get a worse performance. A simpler
structure in Feature Compress makes the model a weaker capacity for representation learning in
volumes. Experimental results in Exp5 demonstrate a decline in the regression ability of the model,
albeit with a decrease in the percentage of error points. This observation motivates us to further
investigate the nuances of representational learning for the volume at lower resolution in future
research endeavors, with the aim of enhancing the regression ability and overall robustness.

4.2 SPECIFIC INDUCTIVE BIASES AND REPRESENTATION FOR VOLUME

Under a strong assumption, we propose L1 (Eq.9). With the supervision from Dgt, the disparity
distribution in volume at lower resolution will cluster to the correct location. We add the extra
deep supervision L1 to 32L and 8L respectively (see Fig.4). Experiments in Table 4 show that in
spite of a strong assumption, the extra supervision could improve the performance of the model.
This implies that the volume structure associated with specific IB functions as a confidence volume
during inference.

To alleviate the problems with the above assumptions, we introduce trainable parameters in L2

(Eq.10). Experiments in Table 4 show extra supervision under different situations all have an im-
provement, which implies the power of the specific IB that volume structure serves as confidence
volume during inference. Furthermore, experimental results demonstrate the importance of deep su-
pervision at the lowest resolution, indicating the significance of a clustered distribution at the early
stages, which further supports our hypothesis.

8
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Additionally, we perform statistics on the volumes obtained at 2−3 resolution by model using extra
deep supervision at 32L and 32F which have no direct relationship to 2−3 resolution. To be more
specific, the statistical object is the disparity distribution of every single ‘pixel’ at 2−3 resolution
volume, which is obtained through inference on the test dataset of the model. The sample size is
around 109. The three statistic indicators in Fig.5 all show that deep supervision facilitates concen-
tration of the distribution, which implies a confidence volume and that concentrated distribution of
the disparity would improve the performance. For δ15 and sumk, distributions with extra supervi-
sion distribute at higher values. And for E , distributions with extra supervision show that 50% can
be reached with less summation.

Strategy L k EpE 1pE 2pE 3pE
None / all 0.593 6.82 3.72 2.72
None / 3 0.578 6.47 3.60 2.65
32L 1 all 0.590 ↑ 6.81↑ 3.71↑ 2.69↑
8L 1 all 0.591↑ 6.85↓ 3.73↓ 2.71↑
32L 2 all 0.581↑ 6.75↑ 3.66↑ 2.66↑
32F 2 all 0.582↑ 6.77↑ 3.69↑ 2.68↑
8L 2 all 0.591↑ 6.81↑ 3.71↑ 2.70↑
8F 2 all 0.588↑ 6.75↑ 3.69↑ 2.69↑

32L8L 2 all 0.585↑ 6.77↑ 3.69↑ 2.68 ↑
32F8F 2 all 0.591↑ 6.82 3.72 2.72

32L 2 3 0.573↑ 6.38↑ 3.54↑ 2.59↑
8L 2 3 0.573↑ 6.40↑ 3.55↑ 2.61↑

Table 4: Specific Inductive Biases Studies for
Volume by Deep-Supervision. Strategy relates
to different supervision places and L is differ-
ent from the loss function we use. ‘all’ means
keeping k full in {dj}k0 in Eq.6.

In Fig.5 d-f, we introduce Eq.12 to the supervision
at 32L. Without Dgt, the restricted volume will
blindly learn a distribution trend under the control
of α. Fig.5 e and f show that under the restric-
tion with Eq.12, larger α pushes a larger extreme
value, and a small α makes a flattened distribution.
Although the network is not limited to producing
extreme values within the correct target, the results
in Fig.5 d show that the relatively clustered distri-
bution is better for the network to learn the pattern.
This implies concentrated and appropriate distribu-
tion of the disparity helps the model learn the pat-
tern. However, when adopting a strong constraint
i.e. using extremely large α in Eq.12, the perfor-
mance of the model will decline significantly.

Experiments for Eq.9 as well as Eq.10 with statistic
indicators related to representation within volumes
demonstrate that a more concentrated distribution
along the disparity within volumes enhances the
model. Additionally, Experiments for Eq.12 imply
the model could learn better with a concentrated and appropriate distribution within volumes. There-
fore, the specific volume structure plays the role of confidence volume as well, and concentrated and
appropriate distribution of the disparity within volume helps improve the learning capacity of the
model. These could be the extensive role of the specific IB.

5 CONCLUSION AND LIMITATION

In this paper, we go deep into the general and specific IB of stereo matching. We introduce the
general IB (scale invariance from CNNs and long-range dependencies, property from Transformers
compensatory for intrinsic locality IB) into real-time stereo matching and hence develop a new
model named UStereo based on DSF and MDLC. Additionally, we conduct an in-depth study of
the specific IB and related representation. The volume structure is constructed related to specific IB
and helps the model to finally get a confidence volume to predict the disparity map. Experimental
results demonstrate that volumes during inference could be viewed as a confidence volume as well,
and concentrated distribution of the disparity within volume helps the model learn the pattern better.

For the convenience of research, our model is a simple consideration to those IB. In addition, we
have no further discussion to the model structure and there are several redundant structures. In future
work, we will think about the design of the model and design a more effective and efficient model.
Moreover, we will further generalize our ideas to other computer vision tasks.
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Javier Gonzalez-Jimenez. Pl-slam: A stereo slam system through the combination of points and
line segments. IEEE Transactions on Robotics, 35(3):734–746, 2019.

Anirudh Goyal and Yoshua Bengio. Inductive biases for deep learning of higher-level cognition.
Royal Society A, 478(2266):20210068, 2022.

Xiaoyang Guo, Kai Yang, Wukui Yang, Xiaogang Wang, and Hongsheng Li. Group-wise corre-
lation stereo network. In IEEE/CVF International Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 3273–3282, 2019.

Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen, Mingxing Tan, Wei-
jun Wang, Yukun Zhu, Ruoming Pang, Vijay Vasudevan, et al. Searching for mobilenetv3. In
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1314–1324,
2019.

Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation networks. In Proceedings of the IEEE/CVF
International Conference on Computer Vision and Pattern Recognition (CVPR), pp. 7132–7141,
2018.

Laurent Itti, Christof Koch, and Ernst Niebur. A model of saliency-based visual attention for rapid
scene analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(11):1254–
1259, 1998.

Alex Kendall, Hayk Martirosyan, Saumitro Dasgupta, Peter Henry, Ryan Kennedy, Abraham
Bachrach, and Adam Bry. End-to-end learning of geometry and context for deep stereo regression.
In IEEE International Conference on Computer Vision (ICCV), pp. 66–75, 2017.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

10



Under review as a conference paper at ICLR 2024

Yann LeCun, Yoshua Bengio, et al. Convolutional networks for images, speech, and time series.
The Handbook of Brain Theory and Neural Networks, 3361(10):1995, 1995.

Chen Yu Lee, Saining Xie, Patrick W Gallagher, Zhengyou Zhang, and Zhuowen Tu. Deeply-
supervised nets. Journal of Machine Learning Research, 38:562–570, 2015.

Zhaoshuo Li, Xingtong Liu, Nathan Drenkow, Andy Ding, Francis X Creighton, Russell H Taylor,
and Mathias Unberath. Revisiting stereo depth estimation from a sequence-to-sequence perspec-
tive with transformers. In IEEE/CVF International Conference on Computer Vision (ICCV), pp.
6197–6206, 2021.

Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He, Bharath Hariharan, and Serge Belongie.
Feature pyramid networks for object detection. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 2117–2125, 2017.

Lahav Lipson, Zachary Teed, and Jia Deng. Raft-stereo: Multilevel recurrent field transforms for
stereo matching. In International Conference on 3D Vision (3DV), pp. 218–227. IEEE, 2021.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
Swin transformer: Hierarchical vision transformer using shifted windows. In IEEE/CVF Interna-
tional Conference on Computer Vision (ICCV), pp. 10012–10022, 2021.

Xu Ma, Huan Wang, Can Qin, Kunpeng Li, Xingchen Zhao, Jie Fu, and Yun Fu. A close look at
spatial modeling: from attention to convolution. arXiv preprint arXiv:2212.12552, 2022.

David Marr and Tomaso Poggio. Cooperative computation of stereo disparity: A cooperative algo-
rithm is derived for extracting disparity information from stereo image pairs. Science, 194(4262):
283–287, 1976.

Nikolaus Mayer, Eddy Ilg, Philip Hausser, Philipp Fischer, Daniel Cremers, Alexey Dosovitskiy,
and Thomas Brox. A large dataset to train convolutional networks for disparity, optical flow, and
scene flow estimation. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 4040–4048, 2016.

Moritz Menze and Andreas Geiger. Object scene flow for autonomous vehicles. In IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pp. 3061–3070, 2015.

Volodymyr Mnih, Nicolas Heess, Alex Graves, et al. Recurrent models of visual attention. In
Advances in Neural Information Processing Systems (NeurIPS), 2014.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style,
high-performance deep learning library. In Advances in Neural Information Processing Sys-
tems(NeurIPS), 2019.

Dimitrios Psychogyios, Evangelos Mazomenos, Francisco Vasconcelos, and Danail Stoyanov. Ms-
desis: Multitask stereo disparity estimation and surgical instrument segmentation. IEEE Transac-
tions on Medical Imaging, 41(11):3218–3230, 2022.

Maithra Raghu, Thomas Unterthiner, Simon Kornblith, Chiyuan Zhang, and Alexey Dosovitskiy. Do
vision transformers see like convolutional neural networks? In Advances in Neural Information
Processing Systems(NeurIPS), pp. 12116–12128, 2021.

Sucheng Ren, Zhengqi Gao, Tianyu Hua, Zihui Xue, Yonglong Tian, Shengfeng He, and Hang Zhao.
Co-advise: Cross inductive bias distillation. In IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 16773–16782, 2022.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedi-
cal image segmentation. In Medical Image Computing and Computer-Assisted Intervention (MIC-
CAI), pp. 234–241. Springer, 2015.

Daniel Scharstein and Richard Szeliski. A taxonomy and evaluation of dense two-frame stereo
correspondence algorithms. International Journal of Computer Vision, 47:7–42, 2002.

11



Under review as a conference paper at ICLR 2024

Korbinian Schmid, Teodor Tomic, Felix Ruess, Heiko Hirschmüller, and Michael Suppa. Stereo
vision based indoor/outdoor navigation for flying robots. In IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pp. 3955–3962, 2013.

Zhelun Shen, Yuchao Dai, and Zhibo Rao. Cfnet: Cascade and fused cost volume for robust stereo
matching. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 13906–
13915, 2021.

Xiao Song, Xu Zhao, Liangji Fang, Hanwen Hu, and Yizhou Yu. Edgestereo: An effective multi-
task learning network for stereo matching and edge detection. International Journal of Computer
Vision, 128:910–930, 2020.

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Du-
mitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions. In
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1–9, 2015.

Vladimir Tankovich, Christian Hane, Yinda Zhang, Adarsh Kowdle, Sean Fanello, and Sofien
Bouaziz. Hitnet: Hierarchical iterative tile refinement network for real-time stereo matching. In
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 14362–14372,
2021.

Alessio Tonioni, Fabio Tosi, Matteo Poggi, Stefano Mattoccia, and Luigi Di Stefano. Real-time self-
adaptive deep stereo. In the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 195–204, 2019.

Qiang Wan, Zilong Huang, Jiachen Lu, Gang Yu, and Li Zhang. Seaformer: Squeeze-enhanced
axial transformer for mobile semantic segmentation. arXiv preprint arXiv:2301.13156, 2023.

Jialiang Wang, Daniel Scharstein, Akash Bapat, Kevin Blackburn-Matzen, Matthew Yu, Jonathan
Lehman, Suhib Alsisan, Yanghan Wang, Sam Tsai, Jan-Michael Frahm, et al. A practical stereo
depth system for smart glasses. In IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition (CVPR), pp. 21498–21507, 2023.

Jingdong Wang, Ke Sun, Tianheng Cheng, Borui Jiang, Chaorui Deng, Yang Zhao, Dong Liu,
Yadong Mu, Mingkui Tan, Xinggang Wang, et al. Deep high-resolution representation learn-
ing for visual recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43
(10):3349–3364, 2020.

Xiaolong Wang, Ross Girshick, Abhinav Gupta, and Kaiming He. Non-local neural networks. In
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 7794–7803,
2018.

Jun Wei, Qin Wang, Zhen Li, Sheng Wang, S Kevin Zhou, and Shuguang Cui. Shallow feature
matters for weakly supervised object localization. In IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 5993–6001, 2021.

David H Wolpert, William G Macready, et al. No free lunch theorems for search. Technical report,
Citeseer, 1995.

Sanghyun Woo, Jongchan Park, Joon-Young Lee, and In So Kweon. Cbam: Convolutional block
attention module. In European Conference on Computer Vision (ECCV), pp. 3–19, 2018.

Bin Xu, Yuhua Xu, Xiaoli Yang, Wei Jia, and Yulan Guo. Bilateral grid learning for stereo matching
networks. In IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.
12497–12506, 2021a.

Bing Xu, Naiyan Wang, Tianqi Chen, and Mu Li. Empirical evaluation of rectified activations in
convolutional network. arXiv preprint arXiv:1505.00853, 2015.

Gangwei Xu, Junda Cheng, Peng Guo, and Xin Yang. Acvnet: Attention concatenation volume for
accurate and efficient stereo matching. In IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2022a.

12



Under review as a conference paper at ICLR 2024

Gangwei Xu, Yun Wang, Junda Cheng, Jinhui Tang, and Xin Yang. Accurate and efficient stereo
matching via attention concatenation volume. arXiv preprint arXiv:2209.12699, 2022b.

Gangwei Xu, Xianqi Wang, Xiaohuan Ding, and Xin Yang. Iterative geometry encoding volume for
stereo matching. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 21919–21928, 2023.

Haofei Xu and Juyong Zhang. Aanet: Adaptive aggregation network for efficient stereo matching.
In IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1959–1968,
2020.

Yufei Xu, Qiming Zhang, Jing Zhang, and Dacheng Tao. Vitae: Vision transformer advanced by
exploring intrinsic inductive bias. pp. 28522–28535, 2021b.

Fengting Yang, Qian Sun, Hailin Jin, and Zihan Zhou. Superpixel segmentation with fully convolu-
tional networks. In IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 13964–13973, 2020a.

Menglong Yang, Fangrui Wu, and Wei Li. Waveletstereo: Learning wavelet coefficients of disparity
map in stereo matching. In IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 12885–12894, 2020b.

Chengtang Yao, Yunde Jia, Huijun Di, Pengxiang Li, and Yuwei Wu. A decomposition model for
stereo matching. In IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 6091–6100, 2021.

Feihu Zhang, Victor Prisacariu, Ruigang Yang, and Philip HS Torr. Ga-net: Guided aggregation
net for end-to-end stereo matching. In IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 185–194, 2019.

Wenqiang Zhang, Zilong Huang, Guozhong Luo, Tao Chen, Xinggang Wang, Wenyu Liu, Gang Yu,
and Chunhua Shen. Topformer: Token pyramid transformer for mobile semantic segmentation. In
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 12083–12093,
2022.

Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang Wang, and Jiaya Jia. Pyramid scene parsing
network. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2881–
2890, 2017.

A APPENDIX

A.1 IMPLEMENTATION DETAILS

We implement our approach in PyTorch(Paszke et al., 2019) and use Adam(Kingma & Ba, 2014)(β1

= 0.9, β2 = 0.999) as optimizer. We train our model on 1 NVIDIA A6000 GPU under our training
strategy for 84 epochs. For SceneFlow, we use all training set (35454 stereo pairs) for training
and evaluate on the standard test set (4370 stereo pairs). The learning rate starts at 0.001 and is
decreased at 20th, 32th, 40th, 48th, 56th, 62th, 70th, 74th epoch at 1st stage and at 2th, 10th,
20th, 30th, 40th, 50th, 60th, 70th, 80th at the other stages. For fair comparison, we keep our all
training processes four times. We set the coefficients {λ}30 = {0.8, 1.0, 1.0, 1.0} at first stage, and
{λ}30 = {0.8, 0.1, 1.0, 1.0} at other stage. We set the extra loss coefficients in L′ of Eq. 9 and 12
0.1, Eq.10 0.5.

For the KITTI dataset, we finetune the pre-trained SceneFlow model on the mixed KITTI2012/2015
training sets for 1000 epochs. The initial learning rate is 0.001 and decreased by half at 400th, 600th,
800th and 900th epoch. Then other epochs are trained on the separate KITTI 2012/2015 training set
for benchmarking, with an initial learning rate of 0.0001.

The SCARED dataset comprises 7 training and 2 test videos featuring diverse porcine cadavers,
captured using a da Vinci Xi surgical system, and ground truth are provided in form of pointclouds
in the original left frame of reference. We pre-process the data the same as (Psychogyios et al.,
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2022). During fine-tuning, we choose only to use the keyframes of datasets 1, 2, 3, 6, 7 and not the
interpolated sequences. Training sets for 600 epochs and initial learning rate is 0.001 and decreased
by half at 300th 400th, and 600th. We use the evaluation tool kit in (Psychogyios et al., 2022) as
well.

A.2 HOURGLASS STRUCTURE

3D Convolution
Leaky ReLU

kernel=3 stride=1

3D Convolution 
Leaky ReLU

 kernel=3 stride=1
dilation=2

3D Convolution
kernel=1 stride=1

Leaky ReLU

3D ConvTranspose
kernel=3 stride=2

Hourglass HourglassSimple HourglassSimple2

3D Convolution 
Leaky ReLU

 kernel=3 stride=2

Figure 6: The architecture of the original Hourglass and two simple ones adopted in our study model.

In the inference order of our model, the Hourglass architectures used in aggregation are Hourglass-
Simple, HourglassSimple, HourglassSimple2, HourglassSimple2, and the left are all Hourglass.

A.3 SUPERVISION SET IN L3

For supervision at 32L, we use 0, 0.16, 0.4, 0.5, 1 for α. The three numbers 0, 0.5, and 1 are sampled
at equal intervals. The value 0.16 is generated from 1/dmax, where dmax is the length of ν and
1/dmax represents the lower number in the distribution. As the model achieves best performance
with α equal to a relatively larger number 0.5, we also use 0.4 for α.

A.4 EXTRA EXPERIMENT FOR L3

(c)(a) different in  (b)

Figure 7: a shows the EPE result on Sceneflow when using different α in Eq.12 at 8L. b and c show
how the mean of Maxβ(Softmaxd(V

j)) changes when training.

dmax at resolution 2−3 is 4 times larger than 2−5, so 1/dmax at resolution 2−3 much smaller and
even close to 0. In Fig.5 f, sumk is centrally distributed at 0.2, when k is set to 5. Therefore, for
supervision at 32L we use 0, 0.05, 0.2, 0.5, 1 for α. 0.05 is generated by 1/dmax as well. And we
use 0.2 as the relatively larger α. Supervision at 8L shares a similar conclusion as 32L and there 0.5
and 1 are large for the dmax, which is like ‘α=1’ when supervised at 32L.

A.5 EXTRA EXPERIMENT FOR L2

We supplement the experiments with such case that k is set to half of the length of ν in Eq.6. In spite
of a strong assumption, the extra supervision could improve the proportion of error pixels though
experiment.

A.6 TWO EXTRA STATISTIC INDICATORS AND MORE ANALYSIS TO REPRESENTATION

We also analyze the case for 8L. Obviously, when extra supervision is applied directly to 8L, the
disparity distribution at 8L will be further clustered (see Fig.8). Fig.5 shows the distribution at 2−3
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Strategy L k EpE 1pE 2pE 3pE

None / 1/2 0.590 6.80 3.71 2.71

32L 1 1/2 0.590 6.78↑ 3.69↑ 2.69↑
8L 1 1/2 0.591 ↓ 6.80 3.69↑ 2.69↑

32L 2 1/2 0.585↑ 6.72 ↑ 3.63↑ 2.64 ↑
32F 2 1/2 0.588 ↑ 6.76 ↑ 3.66↑ 2.65 ↑
8L 2 1/2 0.592 ↓ 6.75 ↑ 3.69↑ 2.69↑
8F 2 1/2 0.588 ↑ 6.75↑ 3.68↑ 2.68 ↑

32L8L 2 1/2 0.588 ↑ 6.73↑ 3.65↑ 2.66 ↑
32F8F 2 1/2 0.586 ↑ 6.78 ↑ 3.69 ↑ 2.69↑

Table 5: Supplementary experiments for Table 4. 1/2 means keeping half in {dj}k0 in Eq.6.

(a) (b) (c)

Figure 8: a-c show the distribution of statistic indicators for experiments in Table 4, respectively
δ15, E and sumk in Eq.11.

when extra supervision is applied to 32L. Therefore, the characters of representation in Fig.5 are
learned. Although in direct deep supervision to 8L and extremely clustered distribution, improve-
ment is less than only to 32L and this is a common situation (Table 4 and Table 5).

For further analysis of the representation (distribution of disparity within volume), We introduce two
novel parameters to examine the dynamics of the distribution. Specifically, we compute the absolute
difference between the value points that encompass 50% of the distribution. We account for the
presence of adjacent data points, and we ensure that the difference we ascertain are non-repetitive.
Moreover, analysis is limited to the largest three absolute difference. This approach mitigates the
influence of minor discrepancies at consecutive points on the overall results (in Fig.9). The detail
procedure is in Procedure 1, and then we get two original statistic indicators δ50%top and δ50%mean.

In Fig.10, the distribution of these two parameters has an obvious tendency towards 0. On the con-
trary, the distribution of adding deep supervision to the 32L/F clusters to the second peak. This
phenomenon implies that despite direct supervision on 8L and greatly enhanced concentration, the
distribution is relatively less differentiated. Singular deep supervision to 8L shares a similar ten-
dency in Fig.11. This characteristic may also explain the poor performance of the model in Fig.5
d and Fig.7 when a relatively large supervision vector α is applied to the model, and therefore we
conduct the experiments in §A.7.

A.7 STRONGER SUPERVISION TO 8L

In order to verify the influence of the above distribution characteristics on the learning ability of the
model, we further conducted the following experiments. We use a larger hyperparameter for loss
coefficients at 8L from 0.5 to 0.8 in Eq.10, and hyperparameters for loss coefficients at 8L are 0.5
and 0.8 respectively. Experiments in Table 6 demonstrate that using a stronger supervision to 8L,

15



Under review as a conference paper at ICLR 2024

backward
difference

forward
difference

minor discrepancies at
consecutive points

0 len(   )  - 1

Figure 9: Visualization of the problems when using δ50%top and δ50%mean.

Figure 10: The pictures are respectively δ50%top and δ50%mean. For the two peaks of the distribution,
32L8L is clearly clustered at the first crest. The second peak is also significantly down. And 32L/F
clusters at the larger number.

the overall performance will be significantly worse, which is likely an influence by characteristics
of the distribution in Fig.10.

Figure 11: The pictures are respectively about distribution of δ15, sumk and δ50%mean for experi-
ments in Table 4. 8L denotes when deep supervision is added to resolution 2−3. Compared with
32L8L, δ15, sumk seem to have a tendency to shift to the left for 8L, and 8L has a similar pattern as
32L8L.

16



Under review as a conference paper at ICLR 2024

Procedure 1 Two extra statistic indicators δ50%top and δ50%mean

Input: for any ν in Softmaxd(V ) (along disparity dimension)
Output: Two extra statistic indicators δ50%top and δ50%mean

// Stage 1. Generate ν50%

1: ν↑ = Sort(ν) // in increasing order
2: for i = 1 to len(ν) do
3: ν50% = ν↑[−i :];
4: if sum(ν50%) ≥ 50% then
5: break;
6: end if
7: end for
8: Find the original index in ν for ν50%, then we get indν50%

;
9: indν50%↑ = Sort(indν50%

) // in increasing order
10: Initialize δ list = [];
11: Set θadjoin = 1;

// Stage 2. Get Target Parameters
12: for j = 1 to len(ν) do
13: if indν50%↑ [j] > 0 then
14: abs(ν[indν50%↑ [j − 1]]− ν[indν50%↑ [j]]) append to δ;
15: end if
16: if indν50%↑ [j] < len(ν)− 1 and indν50%↑ [j + 1]− indν50%↑ [j] > θadjoin then
17: abs(ν[indν50%↑ [j + 1]]− ν[indν50%↑ [j]]) append to δ;
18: end if
19: end for
20: δ↑ = Sort(δ) // in increasing order;
21: if len(δ↑ ≥ 3) then
22: δ↑ = δ↑[−3 :];
23: end if
24: δ50%top = δ↑[−1] ;
25: δ50%mean = average of δ↑ ;

Strategy L k EpE 1pE 2pE 3pE

8L 2 all 0.596 ↓ 6.81 3.72 2.71

8F 2 all 0.589↓ 6.77 3.71 2.70

328L 2 all 0.592 ↓ 6.77 3.70 2.69

32F8F 2 all 0.591 ↓ 6.78 3.69 2.68

8L 2 1/2 0.594 ↓ 6.75 3.69 2.69

8F 2 1/2 0.590 ↓ 6.76 3.67 2.67

Table 6: Using larger hyperparameter for the loss coefficient at 8L changing from 0.5 to 0.8 in Eq.10.
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