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Abstract— Cross-embodiment learning seeks to build gen-
eralist robots that operate across diverse morphologies, but
differences in action spaces and kinematics hinder data sharing
and policy transfer. This raises a central question: Is there any
invariance that allows actions to transfer across embodiments?
We conjecture that environment dynamics are embodiment-
invariant, and that world models capturing these dynamics can
provide a unified interface across embodiments. To learn such a
unified world model, the crucial step is to design state and action
representations that abstract away embodiment-specific details
while preserving control relevance. To this end, we represent
different embodiments (e.g., human hands and robot hands) as
sets of 3D particles and define actions as particle displacements,
creating a shared representation for heterogeneous data and
control problems. A graph-based world model is then trained
on exploration data from diverse simulated robot hands and
real human hands, and integrated with model-based planning
for deployment on novel hardware. Experiments on rigid
and deformable manipulation tasks reveal three findings: (i)
scaling to more training embodiments improves generalization
to unseen ones, (ii) co-training on both simulated and real
data outperforms training on either alone, and (iii) the learned
models enable effective control on robots with varied degrees of
freedom. These results establish world models as a promising
interface for cross-embodiment dexterous manipulation.

I. INTRODUCTION

Cross-embodiment learning underpins the vision of gen-
eralist embodied agents that operate across diverse robots
despite manufacturing variation, degeneration, or hardware
upgrades. Prior progress has shown embodiment-level gen-
eralization in locomotion [3] and in manipulation with par-
allel grippers [4, 9], whereas dexterous manipulation has
largely been limited to grasping [17] and in-hand reorienta-
tion [Patel2024GetZero]. Extending such generalization to
broader task domains, such as deformable object manipula-
tion, remains challenging due to complex object dynamics
and the need for fine-grained contact control.

Dexterous hands are particularly compelling for cross-
embodiment learning because of their anthropomorphic de-
sign: their similarity to human hands invites a unified view
of learning from both human and robot data as a cross-
embodiment problem. This raises a central question: what
knowledge underlies purposeful action across embodiments
with distinct kinematics and control spaces, and how can
we encode it so that data from humans and robots become
jointly useful? We posit that world models [1], mental
intuitive physics models learned dynamics models inspired
by intuitive physics [15], provide such an interface. The
crux lies in state and action design: with an embodiment-
agnostic abstraction, heterogeneous datasets can be unified,

and the same predictive model can guide control on novel
embodiments.

To this end, we represent both human and robot hands
as particles, with actions defined as particle displacements.
A graph-based dynamics model [12, 2, 13, 14, 21] predicts
particle motion while exploiting spatial locality and equivari-
ance. We co-train on real human–object interaction data and
simulated robot–object interaction data. For control, robot
joint actions are mapped to particle displacements via for-
ward kinematics, enabling model-predictive planning in the
shared state and action space. This abstraction unifies data
sharing and control problems across embodiments, avoiding
motion retargeting and task-specific expert demonstrations.

We evaluate in simulation and on real hardware. In sim-
ulation, we observe an embodiment-scaling trend: training
on a larger, more diverse set of simulated hands improves
generalization to unseen embodiments. In real-world experi-
ments, models trained on human hand transfer directly to two
distinct robots, a 6-DoF PSYONIC Ability Hand and a 12-
DoF Robot Era XHand, to perform fine-grained deformable
manipulation (e.g., dough reshaping). These preliminary
results suggest particle-based world models are a viable,
generalizable interface for cross-embodiment dexterous ma-
nipulation.

II. METHOD

Our goal is to enable dexterous manipulation skills from
and for diverse robotic hands. We formalize the general
problem as follows. At each time step t, the end effector is in
configuration qt ∈ Rne , where ne is the number of degrees
of freedom of embodiment e, and the object is in state sobj .
The world state includes the state of both the robot and the
object, st = ⟨qt, sobj⟩. The robot takes an action ut, and the
world transits to a new state st+1. The objective is to find
an action sequence of length H , u0:H−1, that minimizes a
cost function J :

u∗
0:H−1 = arg min

u0:H−1∈U
J
(
T (s0, u0:H−1), sg

)
, (1)

where T (s0, u0:H−1) is the state reached after applying the
sequence to the dynamics, and sg is the target state.

What is the shared underlying process across different
embodiments for these control problems? Our key insight is
that the underlying physical interaction process, captured by
T , is universal. However, approximating T is challenging
due to the varying dimensions of the robot configuration
qt ∈ Rne and action ut ∈ Rne , which depend on the
embodiment e, as well as the differences in kinematic and
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Fig. 1: Overall framework. Our key idea is to represent both embodiments and objects as 3D particles, and actions as end-effector
particle displacement fields. These state–action abstractions unify data and control across embodiments. (a) We train world models on
random interaction data from diverse robot hands in simulation and from human demonstrations in the real world. (b) At deployment,
joint action samples are mapped into displacement fields via forward kinematics, rolled out by the world model for prediction, and the
optimal trajectory is executed on the target hardware. We show a single-step planning horizon here for simplicity.

geometric structures that shape the environment dynamics.
Therefore, we aim to unify state and action representations
to learn embodiment-agnostic world models, which hold the
potential to scale with cross-embodiment datasets.

We next discuss the high-level framework of cross-
embodiment model learning and planning (Section II-A),
state estimation (Section II-B), world model architecture
(Section II-C), and model-based control (Section II-D).

A. Cross-Embodiment World Model Learning and Planning

We define a particle state and action space that unifies
cross-embodiment data format and control problems. For
embodiment e, we represent the end-effector at time t by a
set of Ne particles, X(e)

t = {x(e)
i,t ∈ R3 }Ne

i=1, the object by
No particles X

(o)
t = {xi,t ∈ R3 }No

i=1, and thus the world
state is represented as Xt = (X

(e)
t , X

(o)
t ). This is a unified

particle-based representation applicable to nearly arbitrary
end effector (e.g., multi-fingered hands with different DoFs)
and objects (e.g., rigid and deformable objects).

In the particle space, the action can be defined as the end-

effector particle displacement field:

aPt = ∆X
(e)
t = { δi,t ∈ R3 }Ne

i=1,

with X
(e)
t+1 = X

(e)
t + ∆X

(e)
t . This action information can

be computed from passive human-object or robot-object
interaction data. We can thus train a world model f to
approximate the true transition function T via supervised
learning, which predicts the next state given the action:

X̂t+1 = f̂θ
(
Xt, a

P
t

)
,

and

θ∗ = argmin
θ

E
[
L
(
f̂θ(Xt, a

P
t ), Xt+1

) ]
. (2)

The advantage is that we do not require demonstration data.
Random interaction data suffices.

During planning, we obtain particle representations from
joint states via forward kinematics (FK). Let Φe : Rne →
(R3)Ne denote the FK mapping for embodiment e. Given
the current and next joint states, qt and qt+1 = qt + ut, the



corresponding particle sets are

X
(e)
t = Φe(qt), X

(e)
t+1 = Φe(qt+1).

The shared particle action is then the displacement field

aPt = X
(e)
t+1 −X

(e)
t ∈ (R3)Ne .

Planning and learning therefore operate in the
embodiment-agnostic spaces SP = (R3)Ne × (R3)No

and AP = (R3)Ne . This abstraction enables training
on data from diverse embodiments and deployment across
different hardware without assumptions about the underlying
kinematic structure (e.g., degrees of freedom). The only
requirement is a forward kinematics model to map joint
actions into the particle action space, which is a mild
assumption since robot models are typically available at
deployment. We illustrate the overall framework in Figure 1.

B. Perception Module

The perception module performs state estimation for data
collection and deployment. We use a multi-view camera
setup [2, 12, 13, 16]. Cameras are placed at fixed positions
around the scene so that each captures the interaction from
a different viewpoint, ensuring comprehensive coverage.

For real-world human data collection, we reconstruct hand
meshes from the multi-view images using POEM-v2 [20],
and sample particles with farthest point sampling (FPS). For
object perception, we fuse multi-view point clouds, perform
Poisson surface reconstruction to obtain a smooth surface [8],
and apply FPS. In both cases, FPS allows us to obtain
particles that preserve the full geometry of the meshes.

C. World Model Architecture

We consider adopting graph neural networks (GNNs) as
our world model architecture, as the locality and equivariance
are useful inductive biases [7] that allow the learned model
to generalize to objects and hands with different shapes.
We use DPI-Net [10], a GNN that models local particle
interactions through message passing and captures global
effects via multi-step hierarchical propagation.

The particle-based graph network incorporates strong in-
ductive biases. Spatial locality is enforced by restricting
message passing to local neighborhoods. Equivariance is
achieved through relative coordinates and shared update
functions, ensuring invariance to global translations, rota-
tions, and particle permutations. These properties support
generalization across embodiments.

D. Model-Based Planning

Inspired by the insight that human hand motions lie in low-
dimensional manifolds of the full configuration space [6], we
design action spaces for efficient planning, and use the cross-
entropy method for model-predictive control (MPC).

For the Object Pushing task, we constrain pushing to a
fixed x–y plane. Global translations are sampled as random
motion noise in the end-effector frame, while the number of
fingers making contact with the box is randomly selected.

For the Plasticine Reshaping task, we define a low-
dimensional action parameterization with three motion prim-
itives: (i) FingersPinch, involving rotation about the z-
axis and relative motion between the index finger and thumb;
(ii) PalmPress, characterized by rotation about the z-
axis and translation along the z-axis; (iii) ThumbPinch,
composed of rotation about the z-axis and actuation of
thumb-specific degrees of freedom.

For model-based control, we sample control sequences
{ut}H−1

t=0 from the robot hand’s action space defined by each
primitive. These are mapped to particles in the shared state
space through forward kinematics, rolled out with the learned
world model, and evaluated using the cost function. The
target is specified as a point cloud, and the cost measures
the similarity between the predicted final state and the target
using distances such as CD or EMD.

III. EXPERIMENTS

In this section, we study the following questions:
Q1. Does cross-embodiment training of the world model

improve generalization on unseen embodiments?
Q2. What is the co-training recipe to leverage simulation

and real-world data?
Q3. Does the learned dynamics model enable effective

planning for dexterous manipulation?

A. Experimental Setup

Task setup. We consider two representative dexterous
manipulation tasks: non-prehensile rigid object pushing [2,
5] and deformable object reshaping [2, 12, 13]. In Object
Pushing, the goal is to reorient a box to a target orientation.
In Plasticine Reshaping, the goal is to mold plasticine into
a target shape specified by a point cloud. Both tasks require
precise contact control and reasoning about object dynamics.

Simulation setup. We simulate six dexterous hands
representative of commonly used multi-fingered designs:
Ability Hand (6-DoF), Allegro Hand (16-DoF), XHand (12-
DoF), Leap Hand (16-DoF) [11], Shadow Hand (24-DoF),
and a URDF variant of the Shadow Hand without its forearm
(24-DoF). For the rigid-body task (Object Pushing), we use
SAPIEN [18] for data collection. For deformable object
manipulation, we use the Rewarped simulation platform [19].
We collect 100 trajectories per task, where the robots perform
random actions in the predefined action space.

Real-world setup. Our hardware platform consists of a
7-DoF XArm robot equipped with an Ability Hand and an
XHand. Four Intel RealSense cameras provide multi-view
perception. The system is controlled via a workstation with
an NVIDIA RTX 4090 GPU. For human demonstration data,
we collect 30 minutes of demonstrations for ThumbPinch,
FingersPinch, and PalmPress each.

B. Evaluating Cross-Embodiment World Model Learning

We systematically evaluate how the number of training
embodiments influences generalization to unseen embodi-
ments. For each target hand, we hold it out and train on
x other hands, enumerating all

(
N
x

)
subsets from N = 6
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Fig. 2: Scaling trends in cross-embodiment world model learning. For each target hand, models are trained on subsets of the remaining
hands of varying sizes. All subset combinations at a given size are enumerated (e.g.,

(
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)
for size 2), and the mean performance with 95%

confidence intervals is reported. Dashed lines indicate models directly trained on the target embodiment.

total hands. The mean squared error (MSE) on the unseen
hand serves as the generalization metric. In addition, the case
x = 6 corresponds to training on all hands, including the
target, and provides a reference for the upper bound of cross-
embodiment learning in the current data regime. Results are
shown in Figure 2.

Key observations. We make the following observations:

• Embodiment scaling law [3]: Prediction error decreases
as more embodiments are included, and variance across
subsets shrinks, indicating more stable models with
broader embodiment diversity.

• Zero-shot strength at x=5: With five training embod-
iments (no target data), performance often approaches
or surpasses training directly on the target hand. This
shows that diverse cross-embodiment data can substi-
tute for target-specific data when deploying to a new
hand. This opens up the possibility of building cross-
embodiment generalist world models that can broadly
zero-shot transfer to novel ones via large-scale cross-
embodiment training.

• Benefit of co-training at x=6∗: Even when target data is
available, adding the other embodiments yields further
gains over target-only training. Our proposed state and
action representations unify data from heterogeneous
embodiments and make such co-training possible.

Task-specific differences. Errors are generally lower for
deformable reshaping, as deformations are spatially local-
ized, whereas rigid-body rotations move particles over a
much larger scale. At the same time, the scaling effect is
more pronounced in deformable manipulation. We hypothe-
size this is because deformable tasks involve larger contact
surfaces, making end-effector geometry more influential.
Exposure to diverse embodiments therefore provides richer
coverage of contact geometries and interaction patterns,
which aids generalization.

Embodiment-specific trends. Certain hands (e.g.,
Shadow Hand, Leap Hand) show sharp improvements

when scaling from 4 to 5 training embodiments, whereas
smaller hands (e.g., Ability Hand) achieve competitive
performance earlier. We hypothesize that this effect is linked
to graph density in the particle–graph representation used
by our GNN-based world model. Smaller hands have fewer
degrees of freedom but a more compact geometry, which
results in denser particle connections under the radius-graph
construction. This denser connectivity provides richer
local message passing and allows the GNN to propagate
interaction information more effectively, even when trained
on fewer embodiments. By contrast, larger hands span a
larger spatial extent, yielding sparser graphs where local
neighborhoods capture fewer interactions. In such cases,
broader embodiment diversity is needed to expose the model
to sufficient variations in contact patterns and fill in the
missing structural information.

C. Co-Training Recipe

Having established positive embodiment scaling in sim-
ulation, we next study how to leverage simulation data for
real-world learning. Simulation offers uniform sensing and
abundant interactions, but models trained purely in simula-
tion can overfit to simulator-specific artifacts such as contact
or material mismatches. Conversely, real-world human data
avoids the reality gap but introduces an embodiment gap
relative to robot hands. We hypothesize that co-training on
both domains may combine their complementary strengths,
when the signals from each are balanced appropriately.

We train models with different mixtures of simulation and
real-world data, and evaluate them on held-out human data
(Figure 4). Simulation-only training yields the highest pre-
diction error, highlighting the sim-to-real gap. Human-only
training provides a stronger baseline, and mixing simulation
with human data further reduces error when the ratio is well
balanced. Notably, a 1:1 ratio performs best across tasks,
suggesting that simulation data can act as a useful regularizer
for human data rather than a substitute. We emphasize,
however, that these evaluations are on human data only, since
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Fig. 3: Qualitative results of cross-embodiment deployment. (a) Ability Hand (6-DoF) and (b) XHand (12-DoF) utilize the same
particle-space dynamics model learned from human demonstration. For each trial, the hand successfully reshapes the deformable clay
toward the target shape using a combination of FingersPinch, PalmPress, and ThumbPinch skills.

(a) Object Pushing
0

1

2

3

4

5

C
D

+E
M

D
 E

rr
or

×10 2

(b) Plasticine Reshaping
0.0

0.2

0.4

0.6

0.8

1.0

1.2

C
D

+E
M

D
 E

rr
or

×10 2

0 0.2 0.5 0.8 1.0

Fig. 4: Evaluating training recipes for bridging simulation
and real. We compare co-training with different mixtures of
simulation and real-world data. Legend values indicate the amount
of simulation data relative to a fixed quantity of real human data.
The y-axis shows prediction error on held-out human interactions,
with error bars denoting 95% confidence intervals.

the target embodiment data is not available; the values only
serve as approximations of the target domain. We will further
verify the benefits of co-training through system deployment.

D. Evaluating Model-Based Control

For real-world deployment, we focus on Plasticine Re-
shaping, which is more challenging due to complex contact
dynamics. We compare two models: one trained on human
data only and the best-performing co-training model. Each
model is evaluated across four target shapes (“X”, “R”, “T”,
“A”), with five trials per shape, for a total of 20 runs.

Hand Method CD ×10−3 ↓ EMD ×10−3 ↓

Ability Co-train 6.95 ± 0.10 4.92 ± 0.13
Only Human 7.15 ± 0.12 5.23 ± 0.17

XHand Co-train 6.85 ± 0.13 4.78 ± 0.15
Only Human 7.22 ± 0.19 5.18 ± 0.22

TABLE I: Performance comparison of co-training (human + 6
simulated robot hands) vs. training on only human data, evaluated
on Ability Hand and XHand. Reported values are mean ± 95%
confidence interval. Lower is better.

Quantitative results are reported in Table I. Both models
leverage the unified state and action space to operate seam-
lessly across embodiments. The human-only model achieves
zero-shot transfer to novel robot hands, but its performance
is lower than that of the co-training model. Qualitative
results of the co-training model are shown in Figure 3. Both
the (a) Ability Hand and (b) XHand successfully reshape
clay into target letters by composing the three learned
skills, ThumbPinch, FingersPinch, and PalmPress,
to carve, spread, and compress. Despite their kinematic
differences, the same particle-based dynamics model enables
model-predictive planning on both hands without fine-tuning,
demonstrating effective cross-embodiment deployment.

IV. CONCLUSION

This work shows that a unified state and action repre-
sentation, combined with world model learning and model-
predictive control, can enable dexterous skills to transfer
across diverse physical embodiments. While preliminary, our
results highlight world models as a promising abstraction
for unifying heterogeneous data and control, and we hope
this direction will inspire further exploration toward gen-
eralist cross-embodiment policies across broader tasks and
morphologies.
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