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Abstract

Developing models that excel simultaneously at robust classification and high-
fidelity generative modeling remains a significant challenge. While hybrid ap-
proaches like Joint Energy-Based Models (JEM) offer a path by interpreting classi-
fiers as energy-based models (EBMs), they often rely on SGLD-based training for
the generative component, which suffers from instability and poor sample quality.
To address this, we propose a novel training framework that integrates adversarial
training principles for both discriminative robustness and stable generative learning
within a unified JEM-based architecture. Our approach introduces two key inno-
vations: (1) replacing traditional SGLD-based EBM learning with a more stable
AT-based strategy that optimizes the energy function using a Binary Cross-Entropy
objective discriminating real data from contrastive samples generated via PGD
attacks, and (2) a two-stage training procedure with decoupled data augmentation
strategies for the discriminative and generative components. Extensive experiments
across CIFAR10, CIFAR100, and RestrictedImageNet datasets demonstrate that
our method consistently maintains competitive robust accuracy while substantially
improving generative quality compared to existing hybrid models. In addition,
our model’s improved generative capabilities directly transfer to producing higher
quality counterfactual examples, which contributes to better model explainabil-
ity. Our work presents a promising direction for building robust, stable, and
high-performing joint discriminative and generative models.

1 Introduction

Deep learning models have traditionally been developed with either discriminative or generative
objectives in mind, rarely excelling at both simultaneously. Discriminative models are optimized for
classification or regression tasks but lack the ability to model data distributions, while generative
models can synthesize new data samples but may underperform on downstream classification tasks.
Recent research has explored unifying these approaches through joint discriminative-generative
modeling frameworks that aim to combine the predictive power of discriminative approaches with
the rich data understanding of generative models.

Among these unification efforts, Energy-Based Models (EBMs) have emerged as a promising frame-
work due to their flexibility and theoretical connections to both paradigms. In particular, Joint
Energy-Based Models (JEM) [1] demonstrated that standard classifier architectures could be reinter-
preted to simultaneously function as EBMs, enabling both high-accuracy classification and reasonable
sample generation. However, a critical limitation of JEM and similar approaches is their reliance
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on Markov Chain Monte Carlo (MCMC) methods such as Stochastic Gradient Langevin Dynamics
(SGLD) for training the generative component. SGLD specifically suffers from significant training
instabilities, computational inefficiency, and often produces poor-quality samples [1, 2, 3, 4, 5, 6],
limiting the practical adoption of these hybrid models.

We address these limitations by introducing a novel framework that leverages adversarial training
(AT) principles for both discriminative robustness and stable generative learning within a unified
JEM-based architecture. Our approach employs a dual application of adversarial training: (1) standard
AT for the discriminative component to achieve robustness against adversarial perturbations, and (2)
an AT-based energy function learning strategy for the generative component [7] that replaces unstable
SGLD sampling with more efficient and stable Projected Gradient Descent (PGD) attacks.

Our key technical contributions include:

1. A stable AT-based alternative to traditional SGLD-based JEM learning that optimizes the
energy function through minimizing Binary Cross-Entropy using PGD-generated contrastive
samples, significantly improving training stability and sample quality.

2. A decoupled data augmentation strategy that applies different transformations to samples
used for discriminative and generative components, addressing the inherent conflict be-
tween augmentations that benefit robust classification and those appropriate for generative
modeling.

3. A two-stage training procedure that effectively addresses the incompatibility between batch
normalization and sampling-based EBM learning, enabling stable optimization across both
tasks.

Extensive experiments across datasets of increasing complexity (CIFAR10, CIFAR100, and Re-
strictedImageNet) demonstrate that our approach scales effectively while maintaining competitive
adversarial robustness and substantially improving generative performance compared to existing
hybrid models. Furthermore, our model’s improved generative capabilities directly translate to
producing higher quality counterfactual explanations, enhancing model explainability.

Our work not only addresses the practical limitations of current JEM frameworks but also demon-
strates that adversarial training principles — typically viewed solely through the lens of robustness —
can be effectively leveraged to enhance generative modeling capabilities. This approach represents a
step toward developing more unified models that can perform well at both tasks without requiring
separate architectures or training procedures.

2 Related work

Joint discriminative-generative modeling The pursuit of joint discriminative-generative modeling,
or hybrid modeling, aims to combine the predictive power of discriminative approaches with the rich
data understanding of generative models within a single framework. This line of research is motivated
by the potential to improve classifier robustness, calibration, and out-of-distribution detection, while
also enabling tasks like sample generation (e.g., for counterfactual explanation) and semi-supervised
learning. A significant thrust in this area involves Energy-Based Models (EBMs). Early work
by Xie et al. [8] showed how generative ConvNets could be derived from discriminative ones,
framing them as EBMs. Grathwohl et al. [1] introduced Joint Energy-Based Models (JEM), which
explicitly reinterpret standard classifiers as EBMs over the joint distribution of data and labels p(x, y),
allowing simultaneous classification and generation. While focusing on scalable EBM training,
Du and Mordatch [3] also demonstrated that such implicitly generative EBMs can achieve strong
performance on discriminative tasks like adversarially robust classification and out-of-distribution
detection. Another distinct approach is “introspective learning,” where a single model functions as
both a generator and a discriminator through an iterative self-evaluation process, developed across
works by Lazarow et al. [9], Jin et al. [10], and Lee et al. [11]. Flow-based models have also been
explored for hybrid tasks; for instance, Residual Flows [12] utilized invertible ResNet and showed
competitive performance in joint generative and discriminative settings, offering an alternative to
EBMs by allowing exact likelihood computation. These diverse approaches underscore the continued
effort to create models that synergistically leverage both discriminative and generative learning.

Joint Energy-Based Models (JEM) A significant step towards unifying discriminative and gen-
erative modeling within a single framework was presented by Grathwohl et al. [1] with their Joint
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Energy-based Model (JEM). Their key insight was to reinterpret the logits produced by a standard
discriminative classifier, typically used to model p(y|x), as defining an energy function for the joint
distribution p(x, y). Specifically, the energy Eθ(x, y) was defined as the negative of the logit corre-
sponding to class y, Eθ(x, y) = −fθ(x)[y]. This formulation allows for the recovery of the standard
conditional distribution p(y|x) via softmax normalization over y, while also yielding an unnormal-
ized probability density p(x) by marginalizing out y, effectively using the negative LogSumExp of
the logits as the energy function for p(x). They proposed a hybrid training objective, combining
the standard cross-entropy loss for p(y|x) with an EBM-based objective for p(x) optimized using
Stochastic Gradient Langevin Dynamics (SGLD) [13]. Through extensive experiments, Grathwohl
et al. [1] demonstrated that this joint training approach allowed JEM to achieve strong performance
on both classification and generative tasks, while simultaneously improving classifier calibration,
out-of-distribution detection capabilities, and robustness against adversarial examples compared to
standard discriminative training.

Learning EBMs with adversarial training Yin et al. [7] explored an alternative approach to learning
EBMs by leveraging the mechanism of Adversarial Training (AT). They established a connection
between the objective of binary AT (discriminating real data from adversarially perturbed out-of-
distribution data) and the SGLD-based maximum likelihood training commonly used for EBMs.
Specifically, they showed that the binary classifier learned via AT implicitly defines an energy
function that models the support of the data distribution, assigning high classifier probabilities (low
energy) to in-distribution regions. The PGD attack used in AT to generate adversarial samples
from OOD data was interpreted as a non-convergent sampler producing contrastive data, analogous
to MCMC sampling in EBM training. While the resulting energy function primarily captures the
data manifold rather than the exact density, their model achieves competitive image generation
performance compared to explicit EBMs. Notably, this AT-based EBM learning approach was found
to be significantly more stable than traditional MCMC-based EBM training and demonstrated strong
performance in worst-case out-of-distribution detection, similar to methods like RATIO [14].

In- and out-distribution adversarial robustness Addressing the multifaceted challenge of creating
models that are simultaneously accurate, robust, and reliable on out-of-distribution (OOD) data, Au-
gustin et al. [14] proposed RATIO (Robustness via Adversarial Training on In- and Out-distribution).
Their approach combines standard adversarial training (AT) on the in-distribution data, aimed at
improving robustness against adversarial examples, with a form of AT on OOD data, which enforces
low and uniform confidence predictions within a neighborhood around OOD samples. The combined
objective trains the model to maintain correct, robust classifications for in-distribution data while
actively discouraging high-confidence predictions for OOD inputs, even under adversarial manip-
ulation. Augustin et al. [14] demonstrated that RATIO achieves state-of-the-art L2 robustness on
datasets like CIFAR-10, often with less degradation in clean accuracy compared to standard AT alone.
Furthermore, they showed that RATIO yields reliable OOD detection performance, particularly in
worst-case scenarios where OOD samples are adversarially perturbed to maximize confidence. The
work also highlighted that the L2 robustness fostered by RATIO enables the generation of meaningful
visual counterfactual explanations directly in pixel space, where optimizing confidence towards a
target class results in the emergence of corresponding class-specific visual features.

3 Method

3.1 JEM generative modeling with adversarial training

Our approach builds upon the Joint Energy-Based Model (JEM) framework introduced by Grathwohl
et al. [1], which reinterprets the outputs of a standard discriminative classifier as an energy-based
model (EBM) over the joint distribution of data x and labels y. Given a classifier network that
produces logits fθ(x) ∈ RK for K classes, JEM defines the joint energy function as:

Eθ(x, y) = −fθ(x)[y] (1)

where fθ(x)[y] is the logit corresponding to class y. This energy function can be normalized to obtain
a joint probability density:

pθ(x, y) =
exp(−Eθ(x, y))

Z(θ)
=

exp(fθ(x)[y])

Z(θ)
(2)

3



where Z(θ) is an intractable global normalizing constant. By marginalizing out the label y, a marginal
density over the input data x can be obtained:

pθ(x) =
∑
y

pθ(x, y) =

∑
y exp(fθ(x)[y])

Z(θ)
(3)

Thus, a valid energy function for pθ(x) is given by:

Eθ(x) = − log
∑
y

exp(fθ(x)[y]) (4)

This energy is related to the marginal density by pθ(x) =
exp(−Eθ(x))

Z(θ) .

A JEM is trained by maximizing the joint log-likelihood log pθ(x, y) over labeled training datapoints
(x, y) drawn from an empirical joint distribution pdata(x, y). The joint log-likelihood is typically
factorized as log pθ(y|x) + log pθ(x). The conditional term log pθ(y|x) can be maximized by
minimizing the standard cross-entropy classification loss using the labeled samples from pdata(x, y).
The marginal term log pθ(x) is optimized using the EBM gradient:

∇θEx∼pdata(x)[log pθ(x)] = Ex∼pdata(x)[−∇θEθ(x)]− Ex∼pθ(x)[−∇θEθ(x)] (5)
where pdata(x) is the empirical marginal distribution of the inputs x, obtained by marginalizing
y from the joint empirical distribution pdata(x, y). This gradient has an intuitive interpretation: it
decreases the energy (increases the probability) of real data samples x ∼ pdata(x) while increasing
the energy (decreases the probability) of model-generated samples x ∼ pθ(x). At equilibrium, when
pθ(x) = pdata(x), these two terms balance out and the gradient becomes zero.

The expectation Ex∼pθ(x)[·] over the model distribution is approximated using MCMC methods,
specifically Stochastic Gradient Langevin Dynamics (SGLD) [13]. SGLD generates samples x
starting from some initial distribution p0(x) (e.g., uniform noise) and iteratively applying the update
rule:

xt+1 = xt −
α

2
∇xEθ(xt) + ξt, where ξt ∼ N (0, α) (6)

Here, α is the step size, and the gradient ∇xEθ(xt) is taken with respect to the marginal energy
function defined in Eq. 4.

While the JEM framework successfully integrates generative modeling into classifiers, its reliance
on SGLD sampling for optimizing log pθ(x) introduces significant training instabilities [1, 2] and
often results in poor sample quality. Our key innovation addresses these limitations by replacing the
SGLD-based component with an adversarial training (AT) approach inspired by Yin et al. [7].

Specifically, we replace the standard EBM gradient (Eq. 5) with the following approximation [7]:
∇θEx∼pdata(x)[log pθ(x)] ≈ Ex∼pdata(x)[−α(x)∇θEθ(x)]− Ex∼pθ(x)[−β(x)∇θEθ(x)] (7)

where α(x) = 1 − σ(−Eθ(x)) and β(x) = σ(−Eθ(x)) are data-dependent scaling factors, and
σ(·) is the sigmoid function. This formulation maintains the same structure as Eq. 5, but with
adaptive scaling factors that modulate the gradient contributions based on the model’s current energy
assignments. The resulting EBM can only recover the support of pdata(x), but in practice it is stable
to train and has competitive generative modeling performance compared to standard EBMs.

In addition to the above gradient substitution, the sampling required to estimate Ex∼pθ(x)[·] is
performed using the Projected Gradient Descent (PGD) attack [15] instead of SGLD. Specifically,
the contrastive samples x from the model distribution are generated by initializing from an auxiliary
out-of-distribution dataset pood (e.g., the 80 million tiny images dataset [16] for CIFAR10 training)
and performing multiple iterations of gradient ascent on the negative energy function −Eθ(x):

xt+1 = xt + η
∇x(−Eθ(xt))

||∇x(−Eθ(xt))||2
(8)

where Eθ(x) is the marginal energy function defined in Eq. 4, and η is the step size. Using the update
direction suggested by Eq. 7 is equivalent to minimizing the Binary Cross-Entropy (BCE) loss:

LBCE(θ) = −Ex∼pdata(x)[log(σ(−Eθ(x)))]− Ex∼pθ(x)[log(1− σ(−Eθ(x)))] (9)
Minimizing this LBCE implicitly trains the energy function Eθ(x) to assign low energy to data
samples from pdata(x) and high energy to the contrastive samples computed using the PGD attack. We
find this AT-based approach to learning EBMs doesn’t have the training stability issues that plague
SGLD-based methods and produces higher quality samples.
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3.2 Enhancing discriminative performance through adversarial training

While our AT-based approach improves the generative capabilities of the JEM framework, the
original JEM’s discriminative component still exhibits weak adversarial robustness compared to
dedicated adversarially trained classifiers. To address this limitation, we complement our generative
improvements by incorporating adversarial training for the conditional term pθ(y|x).
For each input sample x with label y, we find an adversarial example xadv within an ϵ-ball B(x, ϵ)
around x that maximizes the classification loss:

xadv = argmax
x′∈B(x,ϵ)

LCE(θ;x
′, y) (10)

where LCE(θ;x
′, y) is the standard cross-entropy loss and B(x, ϵ) is an Lp-norm ball. Similar to

our generative component, we approximate this optimization using the PGD attack [15], generating
adversarial examples through iterative gradient steps within the constraint set. The robust classification
loss is then defined as:

LAT-CE(θ) = E(x,y)∼pdata(x,y) [− log pθ(y|xadv)] (11)

This approach allows our model to maintain high classification accuracy even under adversarial
perturbations, complementing the improved generative capabilities of our AT-based JEM framework.

3.3 Dual-AT for joint modeling

Our complete model integrates adversarial training principles for both the generative and discrimina-
tive components, resulting in the combined objective:

L(θ) = LAT-CE(θ) + LBCE(θ) (12)

where LAT-CE(θ) is the robust classification loss from Eq. 11, and LBCE(θ) is the AT-based genera-
tive loss from Eq. 9. This dual-AT approach simultaneously enhances the model’s discriminative
robustness and generative capabilities, addressing the key limitations of the original JEM framework.

Our approach shares conceptual similarities with RATIO [14], which also combines adversarially
robust classification with adversarial perturbations applied to out-of-distribution data:

LRATIO(θ) = LAT-CE(θ) + λEx∼pood(x)

[
max

x′∈B(x,ϵo)
LCE(θ;x

′,1/K)

]
(13)

where 1 is the vector of all ones and K is the number of classes. Despite this structural similarity,
the approaches differ fundamentally in their objectives. RATIO’s secondary term attacks OOD
samples to maximize classifier confidence, then penalizes this confidence via cross-entropy against a
uniform distribution, explicitly targeting robust OOD detection. In contrast, our LBCE(θ) leverages
AT-based energy function learning [7], using PGD to generate contrastive samples from OOD data
and employing BCE loss to shape the energy landscape. While RATIO focuses primarily on reducing
confidence in OOD regions, our approach prioritizes learning a stable and effective energy function
that enables high-quality generative modeling alongside robust classification.

The complete training procedure for our combined objective (Eq. 12) can be found in Algo-
rithm 1. We note that to train the generative component LBCE, we sample from pθ(x) to estimate
Ex∼pθ(x)[−∇θEθ(x)] in Eq. 5. In the context of EBMs, there are broadly two strategies for drawing
samples from pθ(x) (see similar discussion in Grathwohl et al. [1]):

1. Direct sampling from the marginal distribution by using gradient-based MCMC (like SGLD
or PGD) on the marginal energy function Eθ(x) = − log

∑
y exp(fθ(x)[y]). This was the

approach implied in our initial formulation of PGD for EBMs in Eq. 8.
2. Ancestral sampling: first sample a label y ∼ pdata(y), then sample x ∼ pθ(x|y) by perform-

ing gradient-based MCMC on the joint energy function Eθ(x, y) = −fθ(x)[y].
While both approaches can, in principle, produce fair samples to estimate the necessary expectations,
we found ancestral sampling to be practically superior for training stability, as training with direct
sampling from the marginal distribution often leads to divergence. The stability of ancestral sampling
likely due to several factors: (1) ancestral sampling provides a more focused learning signal for
each class distribution, (2) it leverages the classifier’s existing strong class representations, (3) it
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exhibits better mode coverage and mixing properties than direct marginal sampling, and (4) it yields
lower-variance gradient estimates, leading to more stable training.

In terms of test-time sample quality, we find ancestral sampling (conditional generation) yields
substantially better FID than directly sampling from marginal distribution (unconditional generation)
on CIFAR10 (9.07 vs. 20.57), moderately better FID on CIFAR100 (10.70 vs. 13.56), while both
methods perform similarly on RestrictedImageNet with FID scores of approximately 64 (see Table 9).

Based on these findings, we adopt ancestral sampling in our implementation (Algorithm 1) for
generating contrastive samples. Specifically, we first sample a label y′ ∼ pdata(y), then generate
a contrastive sample xT by performing T iterations of projected gradient ascent on the negative
joint energy function −Eθ(x, y

′), starting from an initial sample x0 ∼ pood. This class-conditional
contrastive sample xT is then used in the LBCE objective (Eq. 9), whose gradient (Eq. 7) provide an
approximation to Eq. 5.

Algorithm 1 Dual-AT training: Given network logits fθ, in-distribution dataset pdata, auxiliary
out-of-distribution dataset pood, classification AT bound ϵ, PGD iterations T , PGD step size η

1: while not converged do
2: Sample (x, y) ∼ pdata(x, y), apply aggressive augmentation to x
3: Sample x̂ ∼ pdata(x), x0 ∼ pood(x), apply mild augmentation to x̂ and x0

4: Solve xadv = argmaxx′∈B(x,ϵ) LCE(θ;x
′, y) via PGD attack

5: LAT-CE(θ) = − log pθ(y|xadv) ▷ Robust classification loss
6: Initialize xt ← x0 for t = 0, sample y′ ∼ pdata(y)
7: for t ∈ {1, . . . , T} do ▷ Generate contrastive sample for EBM
8: g = ∇x(−Eθ(xt−1, y

′)) ▷ Gradient of negative energy
9: xt ← xt−1 + η · g/||g||2 ▷ Normalized gradient ascent step

10: end for
11: LBCE(θ) = − log(σ(−Eθ(x̂)))− log(1− σ(−Eθ(xT ))) ▷ Generative modeling loss
12: L(θ) = LAT-CE(θ) + LBCE(θ)
13: Compute parameter gradients∇θL(θ) and update θ
14: end while

3.4 Data augmentation decoupling

A key innovation of our approach is applying separate augmentation strategies to the discriminative
and generative components. While existing joint models such as JEM typically use a single type of
data augmentation for their joint objective, we identified a fundamental conflict between optimal
augmentation strategies. Achieving robust classification often necessitates strong augmentations
(e.g., AutoAugment [17] with Cutout [18] for CIFAR10 training), which significantly transform
the input data to improve generalization against perturbations [19, 20]. However, these aggressive
transformations can distort the underlying data distribution in ways detrimental to learning a generative
model. For instance, applying the AutoAugment policy to the generative component in our CIFAR-10
experiments resulted in generated samples exhibiting artificial color shifts and much worse FIDs,
indicating that the augmentation has distorted the true data distribution characteristics.

Our proposed training objective (Eq. 12), structured as a sum of a distinct adversarially robust
classification loss (LAT-CE) and an AT-based EBM loss (LBCE), inherently enables the decoupling of
augmentation strategies. This separation allows us to apply strong, robustness-enhancing augmenta-
tions (like AutoAugment + Cutout) specifically to the input samples for the LAT-CE term, and employ
much milder augmentations (e.g., only random cropping) for the samples for the generative LBCE
term, thereby preserving the data fidelity needed for learning a high-quality generative model. Our
CIFAR10 experiment in Figure 2 quantitatively supports this benefit, showing improved FID scores
when using milder augmentations for the generative component compared to aggressive ones.

3.5 Two-stage training

Another fundamental challenge in training joint models is the use of batch normalization (BN) [21].
While BN is highly beneficial for stabilizing standard deep network training [21], it is often found to
interfere with the learning dynamics of EBMs and their sampling procedures [1, 7, 4, 22].
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This incompatibility stems from a fundamental mismatch between BN’s operating principles and
EBM sampling dynamics. As noted by Zhao et al. [4], EBM training involves sampling steps where
the distribution pθ(xt) continuously evolves throughout the sampling chain. The fixed statistics
tracked by batch normalization (running means and variances) become progressively misaligned with
these evolving distributions at different sampling steps, creating instability in the training process.

Consistent with these findings, we observed that enabling BN during joint training severely destabi-
lized the optimization of the generative modeling term LBCE, leading to oscillating losses and failure
to converge. Consequently, stable optimization of the generative component necessitates disabling
BN. However, simply disabling BN from the start would negatively impact the initial training of the
robust classifier backbone. To reconcile these conflicting requirements, we implement a two-stage
training strategy:

1. Discriminative pre-training (with BN): In this initial stage, we train the network with
BN enabled, optimizing only the robust classification objective LAT-CE (Eq. 11). This stage
focuses on leveraging the benefits of BN to achieve strong robust classification performance.

2. Joint training (without BN): After the robust pre-training converges, we disable BN
throughout the network by setting the BN modules in eval mode. We then continue training
by optimizing the complete objective function L(θ) = LAT-CE(θ) + LBCE(θ) (Eq. 12).

While alternative approaches such as spectral normalization and virtual batch normalization have been
considered for stabilizing EBM training [4, 23, 22], our experimental results demonstrate that this
two-stage approach effectively addresses the BN incompatibility without requiring such alternatives.
Disabling BN in Stage 2 enables stable generative loss convergence and dramatically improves
generative modeling, with minimal impact on the robust accuracy established in Stage 1.

4 Experiments

4.1 Training setup

We evaluate our approach on CIFAR10 [24], CIFAR100 [24], and RestrictedImageNet [25] (9 classes,
224× 224 resolution).

For discriminative pre-training (Stage 1), we follow the methodology of RATIO [14]. Importantly, we
enable batch normalization during this stage. For Stage 2 joint training, we utilize the best-performing
model from Stage 1 and continue training with batch normalization disabled by setting the BN
modules in the model to evaluation mode (while still using the BN statistics computed during Stage
1). Complete training details can be found in Appendix A.1.1.

During Stage 2 joint training, we employ separate data augmentation strategies for the two components
of our objective function: for the robust discriminative training term LAT-CE, we utilize aggressive
augmentations (identical to those used by RATIO), while for the generative modeling term LBCE,
we apply only basic transformations to avoid distorting the underlying data distribution. Detailed
augmentation specifications can be found in Appendix A.1.1.

For CIFAR experiments, we use a WideResNet-34-10 architecture following the official implemen-
tation of RATIO. We use the 80 million tiny images dataset [16] as the out-of-distribution dataset
(pood) for CIFAR experiments, and for RestrictedImageNet, we employ a ResNet50 architecture with
samples from the remaining ImageNet classes serving as pood. For CIFAR10 comparisons, we use
RATIO’s official WideResNet-34-10 checkpoint, while for CIFAR100 and RestrictedImageNet, we
retrain RATIO models with their official code.

4.2 Evaluation metrics

We measure both classification robustness and generative modeling quality. For classification, we
report clean accuracy and robust accuracy (L2, ϵ = 0.5) computed using AutoAttack [26], following
the evaluation protocol of RATIO [14]. For generative modeling quality, we evaluate sample diversity
and visual fidelity using Fréchet Inception Distance (FID) [27] and Inception Score (IS) [28]. We
focus on conditional generation and the details can be found in Appendix A.2.

We use expected calibration error (ECE) [29] and AUROC as the metrics for calibration and out-of-
distribution detection. To measure the quality of counterfactuals, we generate sets of counterfactual
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examples by applying targeted attacks to training samples across a range of perturbation limits. For
each target class, we compute the class-wise FID score between the set of counterfactuals targeted at
that class and the set of real samples from the same class. Note that counterfactuals are generated by
applying PGD attacks to in-distribution training samples, whereas generative modeling samples are
created by applying PGD attacks to OOD inputs.

4.3 Results

4.3.1 Classification and generative modeling

Table 1 summarizes the performance of our proposed model compared to existing hybrid and
generative models across classification accuracy, adversarial robustness, and generative quality
metrics (IS and FID). Our approach substantially improves upon the original JEM baseline in both
robust classification accuracy (75.66% vs. 40.5%) and generative modeling performance (FID 9.07
vs. 38.4). Compared with RATIO, our method achieves a significantly better FID score (9.07 vs.
21.96) while incurring only a minor decrease in standard accuracy (91.86% vs. 92.23%) and robust
accuracy (75.66% vs. 76.25%). On CIFAR-10 conditional generation, our model’s FID surpasses
several dedicated generative models such as SNGAN and BigGAN. Our model also achieves an
Inception Score of 9.96, exceeding that of RATIO, JEM, and StyleGAN2.

As shown in Table 2, our model achieves an FID score of 10.70, substantially outperforming RATIO’s
21.18 on CIFAR100. While there is a more noticeable trade-off in clean accuracy (65.55% vs.
RATIO’s 71.58%), our approach maintains comparable robust accuracy (45.97% vs. 47.74%). On
RestrictedImageNet, our approach demonstrates improvements across all metrics over RATIO: our
model achieves higher standard accuracy (74.52% vs. 70.37%) and robust accuracy (50.59% vs.
48.96%), while also exhibiting superior generative quality with an FID of 64.12. These results
demonstrate that our method successfully combines near state-of-the-art adversarial robustness with
competitive generative capabilities.

Figure 5 (Appendix) shows generated samples of our approach and RATIO. Our generated samples
exhibit high visual fidelity, while some samples from the RATIO baseline show potential artifacts
(e.g., saturated or unnatural colors, see examples at Row 4, Col 7; Row 4, Col 10; Row 5, Col 10;
Row 7, Col 7 in Figure 5c) possibly linked to the aggressive AutoAugment policy used for model
training. This visual difference highlights the benefit of our decoupled augmentation strategy, which
uses milder augmentations for the generative component.

Table 1: CIFAR10 classification and generative modeling results

Hybrid Models
Method Acc% ↑ Robust Acc% ↑ IS ↑ FID ↓
Residual Flow [12] 70.3 – 3.6 46.4
Glow [30] 67.6 – 3.92 48.9
IGEBM [3] 49.1 – 8.3 37.9
JEM [1] 92.9 40.5 8.76 38.4
RATIO [14] 92.23 76.25 9.61 21.96
Dual-AT (ours) 91.86± 0.03 75.66± 0.01 9.96± 0.02 9.07± 0.03

Generative Models
Method IS ↑ FID ↓
Conditional

SNGAN [23] 8.59 25.5
BigGAN [31] 9.22 14.73
StyleGAN2 [32] 9.53 6.96
StyleGAN2 ADA [33] 10.24 3.49

Unconditional

NCSNv2 [34] 8.4 10.87
CF-EBM [4] – 16.71
EBM-Diffusion [35] 8.3 9.58
DDPM [36] 9.46 3.17

Table 2: Classification and generative modeling results on CIFAR100 and RestrictedImageNet

CIFAR100
Method Acc% ↑ Robust Acc% ↑ FID ↓
JEM 72.2 – –
RATIO 71.58 47.74 21.18
Dual-AT (ours) 65.55± 0.62 45.97± 0.49 10.70± 0.22
LeCAM + BigGAN – – 11.20

RestrictedImageNet
Method Acc% ↑ Robust Acc% ↑ FID ↓
RATIO 70.37 48.96 78.16
Standard AT 73.26 47.56 79.89
Dual-AT (ours) 74.52± 0.34 50.59± 0.73 64.12± 1.10

8



0.0 2.5 5.0 7.5 10.0
Perturbation Budget 

20

40

60

80

100

Av
er

ag
e 

Cl
as

s-
wi

se
 F

ID

Standard Classifier
RATIO
Dual-AT (ours)

0.0 2.5 5.0 7.5 10.0
Perturbation Budget 

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e 

Cl
as

s-
wi

se
 C

on
f.

Standard Classifier
RATIO
Dual-AT (ours)

Figure 1: Counterfactual FIDs and classifier con-
fidences under different perturbations.
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Figure 2: Training curves under different data
augmentations during stage 2 joint training.

4.3.2 Counterfactual generation, calibration, and OOD detection

Figure 1 compares counterfactual quality across different models while accounting for classifier
confidence. We find our approach reaches much lower FIDs when models achieve similar confidence
levels. For instance, when the RATIO baseline reaches approximately 0.89 confidence in the target
class (at ϵ = 8), its corresponding FID is 43.18. Our Dual-AT model achieves a similar confidence
level at ϵ = 4 with a significantly better FID of 25.53. This demonstrates that, for a comparable level
of certainty that the counterfactual represents the target class, our approach generates examples that
are substantially more faithful to the true visual characteristics of that class, indicating higher-quality
and more plausible counterfactuals. We provide visualizations of counterfactuals in Appendix A.3.

While our model inherits JEM’s calibration benefits (see Figure 3), its out-of-distribution (OOD)
detection capability generally underperforms RATIO across various OOD datasets in both clean and
adversarial settings, particularly for noise detection (Appendix A.4). This performance gap likely
stems from our design choice to use milder augmentation strategies that favor high-quality sample
generation over OOD sensitivity. Conversely, RATIO employs aggressive augmentation, which
enhances the diversity of its OOD training data, leading to better generalization against novel test
OOD inputs, particularly synthetic noise.
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Figure 3: CIFAR10 calibration results (without temperature rescaling, see Appendix A.5 for details)

4.3.3 Training analysis
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Figure 4: Training curves (robust test accuracies are evaluated using the PGD attack and FID scores
are measured using 10K generated samples)

Figure 2 illustrates CIFAR10 training curves from Stage 2 joint trianing with various augmentation
strategies applied to LBCE (while consistently using AutoAugment with Cutout for LAT-CE). Interest-
ingly, the choice of augmentation for the generative component influences discriminative performance
as well, as evidenced by the decline in robust test accuracy when using No Augmentation. The
best FID performance is achieved by No Augmentation and Random Crop, which minimally distort
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the underlying data distribution pdata. Overall we find Random Crop provides the optimal balance
between discriminative and generative performances. These findings underscore the importance of
selecting different augmentation strategies for the generative and discriminative components.

Figure 4 illustrates training curves from Stage 2 joint training. The curves demonstrate a substantial
improvement in FID scores while maintaining the robust test accuracy established during Stage 1.
The consistent gains on datasets that vary in scale and complexity further highlight the approach’s
capacity to generalize across diverse image-classification tasks.

5 Conclusion

We addressed the challenge of developing models that excel simultaneously at robust classification
and high-fidelity generative modeling. While Joint Energy-Based Models (JEM) [1] offer a promising
foundation, they suffer from training instability and poor generation quality. Our approach integrates
adversarial training principles for both components: replacing unstable SGLD-based EBM learning
with an AT-based approach, while maintaining standard AT for classification robustness. Experiments
across multiple datasets with increasing complexities demonstrate that our dual-AT framework
significantly outperforms existing hybrid models in generative quality while maintaining competitive
adversarial robustness. These improved generative capabilities also translate to higher-quality
counterfactual explanations, enhancing model explainability. Future research could extend this
approach to larger-scale datasets with high-capacity models, explore methods to improve OOD
detection while maintaining generative quality, and investigate the theoretical connections between
adversarial robustness and effective generative modeling.
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A Technical Appendices and Supplementary Material

A.1 Model training

A.1.1 Training setup

We implement our two-stage training approach as described in Section 3.5. Table 3 summarizes the
key hyperparameters used for both stages across different datasets.

For Stage 1 (discriminative pre-training), we train robust classifiers following RATIO’s [14] method-
ology with batch normalization enabled. We optimize only the robust classification objective LAT-CE
using the adversarial settings detailed in Table 4. CIFAR10/100 models are trained for 300 epochs
with a cosine learning rate schedule, while RestrictedImageNet training uses a step decay schedule
for 75 epochs.

For Stage 2 (joint training), we initialize from the best-performing (in terms of robust test ac-
curacy) model from Stage 1 (the EMA model for CIFAR10/100 and the standard model for
RestrictedImageNet) and continue training with batch normalization disabled by setting all BN
modules to evaluation mode. During this stage, we optimize the complete objective function
L(θ) = LAT-CE(θ) + LBCE(θ) using fixed learning rates as specified in Table 3. The discrimi-
native component continues to use the same adversarial settings as Stage 1, while the generative
component employs the parameters detailed in Table 5.

For the generative adversary used to optimize LBCE, we implement a curriculum learning strategy
following Yin et al. [7] that begins with fewer PGD steps and progressively increases them when the
loss value falls below predefined thresholds.

We select the Stage 2 checkpoint with the best FID score to perform the final evaluation in Section 4.3.

Table 3: Training hyperparameters for both stages
Parameter CIFAR10/100 RestrictedImageNet

Architecture WideResNet-34-10 ResNet50
Optimizer SGD with Nesterov (momentum=0.9) SGD with Nesterov (momentum=0.9)
Weight decay 5× 10−4 5× 10−4

Batch size 128 128
EMA [20] Yes No
Learning rate (Stage 1) 0.1 (cosine schedule, 300 epochs) 0.1 (step decay at epochs 30, 60, 75)
Learning rate (Stage 2) 0.001 (CIFAR10), 0.01 (CIFAR100) 0.001
Batch normalization (Stage 1) Enabled (train mode) Enabled (train mode)
Batch normalization (Stage 2) Disabled (eval mode) Disabled (eval mode)

Table 4: Adversarial training parameters for LAT-CE (identical across Stage 1 and Stage 2)
Parameter CIFAR10/100 RestrictedImageNet

PGD steps 10 10
PGD step size 0.1 0.7
L2 perturbation bound 0.5 3.5

Table 5: Adversarial training parameters for LBCE (Stage 2 only)
Parameter CIFAR10/100 RestrictedImageNet

Max PGD steps 45 18
PGD step size 0.1 0.7
L2 perturbation bound None (unconstrained) None (unconstrained)
OOD data source 80M Tiny Images [16] Non-RestrictedImageNet classes

Data augmentation As described in Section 3.4, we implement separate data augmentation
pipelines for the discriminative and generative components of our objective function. Table 6
summarizes these dataset-specific augmentation strategies. Note that augmentation strategies for
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LAT-CE are identical to those used by RATIO [14] for all datasets. The effects of these augmentations
can be found in Appendix A.1.1.

Table 6: Data augmentation strategies for discriminative and generative components
Dataset Component Augmentation Strategy

CIFAR10/100 LAT-CE AutoAugment + Cutout + Random horizon-
tal flip

LBCE Random crop + Random horizontal flip

RestrictedImageNet LAT-CE Random crop + Random horizontal flip +
Color jitter + Lighting transform

LBCE Random crop + Random horizontal flip

No Augmentation Random Crop AutoAugment with Cutout

Samples produced by different augmentations on CIFAR10 (note that Autoaugment includes signifi-
cant color transformations)

A.1.2 RATIO model reproduction

For CIFAR10 comparisons, we use RATIO’s [14] official WideResNet-34-10 checkpoint. The
ResNet50 model used in their original evaluation was not publicly available. For CIFAR100 and
RestrictedImageNet, we reproduced RATIO models using their official code repository and the
training configuration described in their paper.

For RestrictedImageNet specifically, the authors reported using a mixture of clean and adversarial
samples during training to improve clean accuracy. Despite using their official code, we were unable
to reproduce the reported clean accuracy with mixed training. Therefore, we employed standard
adversarial training for reproducing their RestrictedImageNet models. Our reproduced models achieve
comparable robust accuracy to those reported in the original paper, but with reduced clean accuracy.

Table 7 provides a detailed comparison between our reproduced RATIO models and the performance
metrics reported in the original publication.

Table 7: Comparison between our reproduced RATIO models and originally reported results
Dataset Model Architecture Clean Acc (%) Robust Acc (%)

CIFAR10 Official checkpoint WideResNet-34-10 92.23 76.25
Reported in [14] ResNet50 91.08 73.27

CIFAR100 Reproduced WideResNet-34-10 71.58 47.74
Reported in [14] ResNet50 69.17 45.55

RestrictedImageNet Reproduced (adversarial training) ResNet50 70.37 48.96
Reproduced (mixed training) ResNet50 74.29 44.15
Reported in [14] (mixed training) ResNet50 93.94 49.22
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A.2 Sample quality evaluation

We evaluate generative performance using Fréchet Inception Distance (FID) and Inception Score (IS).
Following Karras et al. [33], FID is computed between 50K class-balanced generated samples and
the full training set, while IS is computed on the same set of 50K generated samples.

We consider both conditional and unconditional generation approaches. For conditional generation,
we generate an equal number of samples for each class. The optimal number of PGD steps for each
model and dataset combination (shown in Table 8) was determined through grid search. To generate
samples for a given class y, we first sample an OOD data point x from the corresponding OOD data
source, and then perform T steps of PGD attack according to:

xt+1 = xt + η
∇x(−Eθ(xt, y))

||∇x(−Eθ(xt, y))||2
(14)

where T is the number of PGD steps from Table 8 and η is the corresponding step size.

For unconditional generation, we directly sample from the marginal distribution using PGD according
to Eq. 8:

xt+1 = xt + η
∇x(−Eθ(xt))

||∇x(−Eθ(xt))||2

The FID results for both conditional and unconditional generation across all datasets are presented in
Table 9. As shown in the table, conditional generation consistently outperforms unconditional genera-
tion on CIFAR10 and CIFAR100, while both methods yield similar results on RestrictedImageNet.
Additional samples from unconditional generation can be found in Appendix A.6.

Table 8: Sample generation parameters for FID and IS evaluation
Model Dataset PGD Steps Step Size OOD Data Source

Dual-AT (Ours)
CIFAR10 33 0.2 80M Tiny Images [16]
CIFAR100 32 0.2 80M Tiny Images [16]
RestrictedImageNet 13 8.0 Non-RestrictedImageNet classes

RATIO
CIFAR10 31 0.2 80M Tiny Images [16]
CIFAR100 12 0.2 80M Tiny Images [16]
RestrictedImageNet 13 8.0 Non-RestrictedImageNet classes

Table 9: FIDs of conditional and unconditional generation of our approach
CIFAR10 CIFAR100 RestrictedImageNet

Conditional generation 9.07± 0.03 10.70± 0.22 64.12± 1.10
Unconditional generation 20.57± 0.04 13.56± 0.17 63.82± 2.83
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A.3 Counterfactual generation
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CIFAR10 counterfactual examples. Perturbations limits are 0.5, 1.0, 1.5, 2.0, 2.5, 3.0.
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CIFAR100 counterfactual examples. Perturbations limits are 0.5, 1.0, 1.5, 2.0, 2.5, 3.0.
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RestrictedImageNet counterfactual examples. Perturbations limits are 5, 7, 9, 11, 13, 15.
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A.4 Out-of-distribution detection

We evaluate both standard out-of-distribution (OOD) detection performance and worst-case OOD
detection under adversarial perturbations. For standard OOD detection, we measure the AUROC
scores between in-distribution test samples and unmodified OOD samples. For worst-case detection,
we evaluate against adversarially perturbed OOD samples specifically optimized to maximize the
OOD detection function output.

We investigate two OOD detection functions: (1) an energy-based function sθ(x) = −Eθ(x), which
is proportional to log pθ(x) up to an additive constant, and (2) a maximum confidence function
sθ(x) = maxy pθ(y|x) that uses the confidence in the most likely class (also used by RATIO [14]).

To find adversarial OOD inputs for the energy-based detection function, we employ a PGD attack to
maximize the negative energy:

xadv = argmax
x′∈B(x,ϵo)

−Eθ(x
′) (15)

where x is a clean OOD input and B(x, ϵo) represents an L2-ball of radius ϵo centered at x.

For the maximum confidence detection function, following RATIO [14], we compute adversarial
OOD inputs by maximizing the cross-entropy loss against a uniform distribution:

xadv = argmax
x′∈B(x,ϵo)

LCE(θ;x
′,1/K) (16)

where 1/K represents a uniform distribution over all K classes. Maximizing this loss encourages the
model to produce a non-uniform (confident) prediction, thereby maximizing the detection function
maxy pθ(y|x′).

All results are computed using all the in-distribution test samples and 1024 out-distribution samples.
For adversarial OOD samples, we use ϵo = 1.0 for CIFAR10/100 datasets and ϵo = 7.0 for
RestrictedImageNet.

Table 10, 11, and 12 present the detection results for CIFAR10, CIFAR100, and RestrictedImageNet,
respectively. The results reveal complementary strengths between the two detection functions: the
energy-based approach (−Eθ(x)) excels at uniform noise detection with near-perfect AUROC scores,
while the maximum confidence variant (maxy pθ(y|x)) performs better on natural image OOD
datasets.

Since RATIO also employs maxy pθ(y|x) for detection, we focus our comparison with RATIO on our
maximum confidence variant results. Our model generally underperforms RATIO across most OOD
datasets on CIFAR10, while on CIFAR100, RATIO consistently achieves higher clean AUROC scores
but our approach demonstrates superior adversarial robustness. On RestrictedImageNet, our model
outperforms RATIO for most datasets except ImageNetOD and uniform noise. This performance
gap with RATIO on CIFAR10 and CIFAR100 likely stems from our design choice to use milder
augmentation strategies that favor high-quality sample generation over OOD sensitivity, while on
RestrictedImageNet the default model (ResNet50) is a relatively small model that benefits less from
aggressive augmentation.

Table 10: OOD detection performance (AUROC) with CIFAR10 as ID dataset (JEM results are from
Augustin et al. [14], ImageNetOD refers to ImageNet test samples excluding those in RestrictedIma-
geNet)

OOD Dataset RATIO Ours (maxy pθ(y|x)) Ours (−Eθ(x)) JEM

Clean Adversarial Clean Adversarial Clean Adversarial Clean Adversarial

CIFAR100 0.9157 0.7516 0.8709 0.6480 0.8484 0.6647 0.876 0.192
SVHN 0.9843 0.9130 0.9609 0.8334 0.8011 0.6046 0.893 0.073
ImageNetOD 0.9210 0.7915 0.8639 0.6582 0.8739 0.7146 – –
Uniform noise 0.9999 0.9999 0.8922 0.8257 0.9995 0.9983 0.118 0.025
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Table 11: OOD detection performance (AUROC) with CIFAR100 as ID dataset

OOD Dataset RATIO Ours (maxy pθ(y|x)) Ours (−Eθ(x))

Clean Adversarial Clean Adversarial Clean Adversarial

CIFAR10 0.7320 0.3795 0.7027 0.5145 0.6689 0.4715
SVHN 0.8439 0.4356 0.8271 0.5823 0.7245 0.5392
ImageNetOD 0.7668 0.4325 0.7136 0.5211 0.7728 0.6019
Uniform noise 0.7769 0.5881 0.4024 0.2283 0.9995 0.9945

Table 12: OOD detection performance (AUROC) with RestrictedImageNet as ID dataset

OOD Dataset RATIO Ours (maxy pθ(y|x)) Ours (−Eθ(x))

Clean Adversarial Clean Adversarial Clean Adversarial

CIFAR10 0.7344 0.4471 0.7989 0.4654 0.8051 0.5006
CIFAR100 0.7591 0.4908 0.8205 0.5270 0.8496 0.5871
SVHN 0.9232 0.7782 0.9415 0.7603 0.9548 0.8232
ImageNetOD 0.8348 0.5738 0.7163 0.4126 0.8593 0.6612
Uniform noise 0.8461 0.7851 0.4146 0.3080 0.9948 0.9854

A.5 Calibration
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(a) Dual-AT (Ours)
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(b) Standard AT
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(c) RATIO

Calibration diagrams on CIFAR100 (without temperature scaling)
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(a) Dual-AT (Ours)
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(b) Standard AT
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(c) RATIO

Calibration diagrams on RestrictedImageNet (without temperature scaling)
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A.6 Additional results

(a) Seed images used for producing
the generated samples

(b) Uncurated class-conditional
samples of our model

(c) Uncurated class-conditional sam-
ples of RATIO

Figure 5: CIFAR10 class-conditional generation results

(a) Seed images (b) Ours (32 steps) (c) RATIO’s (32 steps) (d) RATIO’s (12 steps)

Figure 6: CIFAR100 class-conditional samples of the first 10 classes (apple, aquarium_fish,
baby, bear, beaver, bed, bee, beetle, bicycle, bottle)

(a) Seed images used for producing
the generated samples

(b) Uncurated class-conditional
samples of our model

(c) Uncurated class-conditional sam-
ples of RATIO

Figure 7: RestrictedImageNet class-conditional generation results (classes are dog, cat, frog,
turtle, bird, monkey, fish, crab, insect, images are in 224× 224 resolution)
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(a) CIFAR10 (b) CIFAR100 (c) RestrictedImageNet

Figure 8: Unconditional generation results of our model

A.7 Computational requirements

Our training was conducted across different GPU configurations. For RATIO model reproduction
and Stage 1 discriminative pre-training, we used a single NVIDIA H100 GPU with 80GB memory.
For Stage 2 joint training, we utilized a computational node equipped with 4 AMD Instinct MI210
GPUs (each with 64GB memory).

The total training time varies by dataset complexity. For Stage 2 joint training:

• CIFAR10: Approximately 7 hours to reach optimal FID
• CIFAR100: Approximately 10 hours to reach optimal FID
• RestrictedImageNet: Approximately 21 hours to reach optimal FID

These times are in addition to the Stage 1 pre-training, which follows RATIO’s training schedule
(300 epochs for CIFAR datasets and 75 epochs for RestrictedImageNet).
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