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ABSTRACT

Group max-min fairness (MMF) is commonly used in fairness-aware recommender
systems (RS) as an optimization objective, as it aims to protect marginalized
item groups and ensures a fair competition platform. However, our theoretical
analysis indicates that integrating MMF constraint violates the assumption of
sample independence during optimization, causing the loss function to deviate from
linear additivity. Such nonlinearity property introduces the Jensen gap between the
model’s convergence point and the optimal point if mini-batch sampling is applied.
Both theoretical and empirical studies show that as the mini-batch size decreases
and the group size increases, the Jensen gap will widen accordingly. Some methods
using heuristic re-weighting or debiasing strategies have the potential to bridge
the Jensen gap. However, they either lack theoretical guarantees or suffer from
heavy computational costs. To overcome these limitations, we first theoretically
demonstrate that the MMF-constrained objective can be essentially reformulated
as a group-weighted optimization objective. Then we present an efficient and
effective algorithm named FairDual, which utilizes a dual optimization technique
to minimize Jensen gap. Our theoretical analysis demonstrates that FairDual can
achieve a sub-linear convergence rate to the globally optimal solution and the
Jensen gap can be well bounded under a mini-batch sampling strategy with random
shuffle. Extensive experiments conducted using six large-scale RS backbone
models on three publicly available datasets demonstrate that FairDual outperforms
all baselines in terms of both accuracy and fairness.

1 INTRODUCTION

Group max-min fairness (MMF) has gained significant attention in industrial recommender systems
(RS), as it seeks to provide support for marginalized item groups, where item groups are usually
divided by item categories or providers (Xu et al., 2023; Patro et al., 2020; Xu et al., 2024). For
example, optimizing MMF can alleviate the low exposure problem of small sellers in the Amazon
RS platform (Patro et al., 2020). As illustrated in European competition law (Jones et al., 2014),
protecting these weak supplier groups is essential for preventing large platforms from engaging in
unfair strategies, thereby ensuring fair competition (Matten et al., 2008).

Formally, the group MMF optimization objective entails calculating the overall utility of each group
and maximizing the utility of the least advantaged group. Typically, group utility computation often
necessitates aggregating the overall recommendation ranking list over a specified period (Xu et al.,
2023; Do et al., 2021; Xu et al., 2024), for example, the group utility could be the exposures of action
movies within a day. Due to the limited ranking slots, adjusting the exposure of items to improve the
utility of one item group will inevitably affect the ranking outcomes of other item groups. Therefore,
the loss function with the MMF constraint for RS violates a crucial assumption: the independence
of samples, resulting in the MMF loss of different item groups not adhering to linear additivity (see
theoretical proof in Section 4).

We theoretically and empirically show that the non-linear additivity property of the MMF-constrained
objective will introduce a Jensen gap (Gao et al., 2017; Ullah et al., 2021) between the model’s
convergence point and the optimal point when if mini-batch sampling is applied for optimization (see
Section 4). Meanwhile, it is proved that as the mini-batch size decreases and the group size increases,
the Jensen gap will become more pronounced in the optimization process, significantly harming
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the model’s performance. However, mini-batch sampling strategies are essential for accelerating
the model training process, especially as data and model sizes in RS continue to grow, such as the
development of large language models (LLMs) based RS (Li et al., 2023; Bao et al., 2023a;b).

Some previous approaches have the potential to bridge the Jensen gap for RS. One type of heuristic
approach can be applied to bridge the Jensen gap, such as sample re-weighting strategies (Chen
et al., 2023b; Wen et al., 2022), which dynamically assigns a higher weight to the weaker group
across different batches. However, the effectiveness of this research line is limited due to the lack of
theoretical guarantees. Another type of work utilizes machine learning techniques that can help to
optimize the non-linear additive loss functions. For example, Abernethy et al. (2022); Cousins (2022)
have proposed sampling strategies to obtain unbiased samples, while some methods utilize debiasing
gradient descent (Demidovich et al., 2023; Agarwal et al., 2018) to introduce a bias correction term in
the gradient. However, these methods cannot be applied to existing large-scale industrial RS, as they
often require a convex optimization process that is impractical for RS that typically serves millions of
users and hundreds of groups.

To overcome the challenges for bridging the Jensen gap, in this paper, we firstly theoretically demon-
strate that the optimization objectives when incorporating group MMF constraint can be essentially
reformulated as a group-weighted accuracy optimization objective on different groups. Then, we in-
troduce a large-scale friendly, and effective algorithm called FairDual to optimize the group-weighted
objective for minimizing the Jensen gap. Specifically, we formulate the fairness-constraint problem
as its dual, where the dual variable (referred to as the shadow price in economics (Drèze and Stern,
1990)) can be interpreted as the sample weight assigned to each sample in the mini-batch optimization
process. Then, FairDual leverages dual-optimization techniques to optimize the weight of different
group losses utilizing dual mirror gradient techniques efficiently.

Our theoretical analysis demonstrates that FairDual can achieve a sub-linear convergence rate to the
globally optimal point under a random shuffling mini-batch training style. Moreover, the Jensen
gap can be well bounded (See Section 5.2.3) even when confronted with small mini-batch sizes
and large group sizes. Extensive experiments using three large-scale RS backbone models on three
publicly available datasets show that FairDual consistently reduces the Jensen gap and outperforms all
baselines with a large margin in terms of both accuracy and fairness while achieving better efficiency.

2 RELATED WORK

Fairness Concept in RS. One common categorization is based on the involvement of different
stakeholders (Abdollahpouri et al., 2020; Abdollahpouri and Burke, 2019), divides fairness into
individual fairness (Marras et al., 2022; Li et al., 2021), which aims to ensure equitable treatment for
individual users, and group fairness, which classifies items into various groups (Xu et al., 2023; 2024;
Patro et al., 2020; Naghiaei et al., 2022; Wu et al., 2021). Various approaches have been proposed to
optimize fairness utilizing different fairness objectives. For instance, Patro et al. (2020) proposed
using the Shapley value, while Do and Usunier (2022) suggested optimizing the Gini Index. On the
other hand, works such as Xu et al. (2023); Do et al. (2021); Xu et al. (2024) advocate for optimizing
MMF, which requires every group should receive a “minimum wage”. Typically, we mainly focus on
the group MMF, which is closer to the industrial scenarios since certain studies propose to ensure
minimum item exposures for attracting providers to join or enhancing the visibility of specific item
categories (Patro et al., 2020; Xu et al., 2024; Zhu et al., 2020).

Optimizing Fairness in RS. When optimizing fairness, previous research often categorizes methods
into three categories based on recommendation phases, including pre-processing (Calmon et al.,
2017; Xiong et al., 2024), post-processing (Xu et al., 2023; Patro et al., 2020; Wu et al., 2021) and
in-processing (Narasimhan et al., 2020; Tang et al., 2023). In this paper, we theoretically demonstrate
that the in-processing method constrained by group MMF can be essentially reformulated as a
re-weighting approach. Prior research employed static or dynamic group weights to achieve fairness.
For static weights, Jiang et al. (2024); Xiong et al. (2024) proposes to set item weight according to
its popularity and the Wasserstein distance of two groups, respectively. For dynamic weighting, some
work (Chen et al., 2023b; Chai and Wang, 2022; Wen et al., 2022) propose to design weights based
on the training state, while Hu et al. (2023) employs a dynamic re-weighting strategy to mitigate
distribution shifts between training and test data. Roh et al. (2020) also proposes to set different batch
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sizes to optimize fairness. However, these methods are either designed for simple cases involving
only two groups, or they lack theoretical guarantees when applied to group MMF settings.

Optimizing Fairness in ML. In machine learning (ML), previous work aims to optimize different
fairness functions to achieve various social welfare objectives. For example, the power-mean welfare
family seeks to balance accuracy and fairness objectives by applying the exponential form (Cousins,
2021; 2023) and max-min fairness (Abernethy et al., 2022; Agarwal et al., 2018) aims to support
the worst-off groups. When optimizing fairness, we commonly try to optimize a nonlinear fairness
function. When adopting optimization methods such as stochastic gradient descent (SGD), an
unavoidable bias will exist (Demidovich et al., 2023; Hu et al., 2020). To bridge this bias, previous
ML methods have employed sampling strategies (Abernethy et al., 2022; Cousins, 2022) to obtain
unbiased samples, while some methods have utilized debiasing SGD (Demidovich et al., 2023;
Agarwal et al., 2018) to mitigate the bias. However, these works cannot be applied to large-scale
industrial RS since they often require a convex optimization process that is impractical for RS tasked
with serving millions of users and hundreds of groups. To efficiently bridge the Jensen gap, our
method improves debiasing SGD by developing a large-scale friendly mirror SGD learning algorithm.

3 FORMULATION

In RS, let U , I be the set of users and items, and each item i ∈ I is associated with a unique group
g ∈ G, where the set of items associated with g is denoted as Ig. In RS, an item i may belong to a
different group g (e.g., a movie can be categorized under various genres such as action, or drama).
We define the number of groups to which the item i belongs as ni.

Suppose that the RS manages a set of user-item historical interactions D = {(u, i, cu,i)}, where each
tuple (u, i, cu,i) records that a user u ∈ U accessed the system and interacted with an item i ∈ I
with behavior cu,i ∈ {0, 1}. cu,i = 1 means that the user u clicked/purchased the item i, and 0
otherwise. The task of recommendation becomes, based on the user-item interactions in D, learning
an empirical estimation ĉu,i = f(u, i) for real label cu,i. Then RS will suggest K items to the user
according to predicted preference scores ĉu,i, with the ranking list denoted as LK(u) ∈ IK . In
general, the f(·) can be either the traditional matrix factorization model (He et al., 2016) or more
advanced LLMs-based recommender models (Bao et al., 2023a).

Following the practice in recommendation tasks (He et al., 2017; 2016), the cross-entropy loss
−cu,i log(ĉu,i) is regarded as a common and better choice compared to other loss functions. Mean-
while, to fulfill the group MMF requirement (Patro et al., 2020; Xu et al., 2024), the recommendation
model also strives to maintain the expected utility of a specific group g (where the group’s utility
is defined as the negative sum of the entropy loss within the group) exceeds a basic threshold M .
MMF constraint aims to ensure every group can receive the required group-specific “minimum wage”
during the training phases. Formally, we can write the ideal optimization objective as follows:

L = min
ĉu,i

−
∑
u∈U

∑
i∈I

cu,i log(ĉu,i)︸ ︷︷ ︸
recommendation accuracy loss

s.t. max
g∈G

∑
u∈U

∑
i∈LK(u)

− I(i ∈ Ig)
nimg

cu,i log(ĉu,i) ≤ M

︸ ︷︷ ︸
MMF constraint: loss of worst-off group g should at or smaller than M

,
(1)

where I(·) denotes the indicator function, and the number of users |U| could represent the daily or
weekly user traffic. The mg can be regarded as the weight for different group g. Note that, following
the practice in time-aware RS (Kang and McAuley, 2018b; Sun et al., 2019), we utilize the recent H
interactions, which represent the truncated user historical behavior numbers.

4 PROBLEM ANALYSIS

In real-world scenarios, the number of users |U| is often large, and a mini-batch sampling strategy
with a batch size of B is often necessary due to the large computational costs. Each batch only
contains a subset of users. However, we show that the non-linear additivity property of the MMF-
based objective will introduce the Jensen gap between the model’s convergence point and the optimal
point when employing mini-batch sampling strategies.
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(a) (b) (c)

Group 2

optimial points

Jensen Gap
B=2 B=8 B=32 B:mini-batch size

Group 1

Group 3

converge points

optimal points

Figure 1: Loss converges simulation with 1000 users and 1000 items. Sub-figure (a) and (b)
illustrate the distance away from the optimal point (i.e., Jensen gap) w.r.t. mini-batch and group
size, respectively. Figure (a) was conducted with the same group size (G=7) under different batch
sizes, while Figure (b) was conducted with the same batch size (B=32) under different group sizes.
Sub-figure (c) describes the converged trace under different batch sizes.

In this section, we analyze why the Jensen gap exists and how it will influence the model’s convergence
in both theoretical and empirical ways.

4.1 THEORETICAL ANALYSIS

Firstly, we will re-write the optimization objective using the following theorem:

Theorem 1. For a vector x ∈ Rn, xi denotes the element of the vector raised to the power of
i. Similarly, log(x) denotes the element of the vector reduced as log(xi). Let A ∈ R|I|×|G|

is the item-group adjacent matrix, and Aig = 1 indicates item i ∈ Ig, and 0 otherwise. Let
w ∈ R|I| = [−

∑
u∈U cu,i log(ĉu,i)]i∈I and its feasible region is W = {w|

∑
i∈I cu,i ≤ K,∀u ∈

U , cu,i ∈ [0, 1]}. Then there exist t ∈ [0,∞) (value of t relates to the value of M ) and a weight
vector b ∈ R|G| ≥ 0, s.t. Equation (1) can be optimized as:

L = min
w∈W

b⊤(Â⊤w)1+t (2)

where Â is the row-normalized matrix for A: Â = diag(A1)−1A. diag(x) denotes to construct a
diagonal matrix based on vector x.

The detailed proof of Theorem 1 can be seen in Appendix A. When transforming the original
optimization process in Equation (1) into Equation (2), we can easily observe that the loss function
does not adhere to linear additivity. Then the Jensen gap will arise under mini-batch sample strategy
by formulating it using the following theorem:

Theorem 2. Under mini-batch sample strategies, we partition the user set U into |U|/B subsets
and perform optimization on each subset. Let ej ∈ R|G| be the group accumulated utility under
j-th partition, where each element ej,g = −

∑
u∈Uj

∑
i∈Ig

cu,i log(ĉu,i). Let f(x) = xt+1. We can

write the mini-batch optimizing loss objective LB as: LB = min
∑|U|/B

j=1 b⊤f(ej), where Uj is the
j-th partition of the user set U . Then, Jensen gap (Gao et al., 2017; Ullah et al., 2021) is defined as:

J(B) = |LB − L| = |LB −min b⊤f(

|U|/B∑
j=1

ej)| ≠ 0. (3)

When optimizing Equation (2) under the mini-batch sampling style, the mini-batch size B becomes
smaller and group size G becomes larger, the Jensen gap J(B) will become larger. Moreover, when
the mini-batch size becomes smaller, we are more likely to underestimate the original loss, i.e.,
LB ≤ L. The loss underestimation will result in the Jensen gap.

The detailed proof of Theorem 2 can be seen in Appendix C. The intuitive reason behind the Jensen
gap raised by group MMF is that the accuracy-fairness trade-off problem does not adhere to linear
additive attributes. Essentially, the combination of different batches forms a concave function. Mini-
batch size and group size both measure the degree of data partitioning, where smaller batch sizes
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and larger group sizes lead to fewer data partitions. As a result, due to the non-linear and intricate
function form of a neural network (Sun, 2019), these errors in estimating the loss function impede
the model from converging to the optimal point, thus diminishing the performance. Next, we will
give an empirical analysis to prove this.

4.2 EMPIRICAL ANALYSIS

In this section, we illustrate a simulation (Figure 1) conducted under the assumption of knowing
every user-item true preference score to validate the correctness of our theoretical analysis. We use
the simple recommendation model: Matrix Factorization (Singh and Gordon, 2008) since we can
have a closed-form expression on parameter updating. Then we apply a common mini-batch training
strategy to optimize accuracy-fairness objective based on the parameters outlined in Xu et al. (2023);
Patro et al. (2020), with the accuracy-fairness coefficient of 0.5.

As shown in Figure 1 (a) and (b), we uncover that the Jensen gap (distance away from the optimal
point) will deviate with smaller mini-batch sizes and larger group sizes. Figure (c) describes the
converge trace under different batch sizes by mapping the top-K simplex space of three groups
of recommendation ranking to a 2-dimensional space through a topological homeomorphic trans-
formation (Kozlov, 2008). Figure 1 (c) also indicates that different batch sizes result in different
gradient optimization directions, with smaller batch sizes leading to larger shifts in the error of the
optimization direction. These empirical results confirm the correctness of our theoretical analysis.

For other types of fairness, such as the power-mean welfare family (Cousins, 2021) and the Gini
welfare function (Do and Usunier, 2022), also exhibit non-linear properties, leading to analogous
Jensen gap phenomena. We discuss them in the Appendix H and Appendix L.

5 METHOD

In this section, we will introduce our method FairDual.

5.1 OPTIMIZING MAX-MIN FAIRNESS AS GROUP-WEIGHTED OBJECTIVE

In this section, in order to tackle this problem, we show that the MMF-constrained objective can be
regarded as the group-weighted optimization problem using the following theorem:
Theorem 3. By introducing the dual variable µ, the dual form of the Equation (1) is

L′ = min
ĉu,i

−
∑
u∈U

∑
g∈G

sg
∑
i∈Ig

cu,i log(ĉu,i), (4)

where sg = 1−µg and µ = argminµ∈M

(
max

∑
u∈U

∑
g∈G sg

∑
i∈Ig

cu,i log(ĉu,i) + λr∗(µ)
)
,

where r∗(µ) = maxwg≤mg

(
ming∈G mg(Âw)g + Â⊤wµ/λ

)
=
∑

g mgµg/λ + 1, M ={
µ
∣∣∣ ∑g∈S µgmg ≥ −λ, ∀S ∈ Gs

}
, where Gs is the set of all subsets of G (i.e., power set).

The detailed proof of Theorem 3 can be seen in Appendix F. From Theorem 3, we observe that the
recommendation task constrained by max-min fairness can be viewed as a re-weighting approach
across different groups on the original loss function solely optimized for accuracy.

Intuitively, sg = 1−µg is the negative shadow price (Drèze and Stern, 1990). The high shadow price
µg indicates that this constraint is the primary factor constraining accuracy optimization. Conversely,
a low or zero shadow price suggests that the fairness constraint currently imposes little restriction on
accuracy. Specifically, a high sg signifies that this constraint is the primary factor limiting fairness
optimization for group g, whereas a low or zero sg implies that the accuracy constraint for group g
currently has little impact on the overall optimization.

5.2 FAIRDUAL

We then will introduce our method FairDual under random shuffling mini-batch training strategies.
The overall workflow of FairDual under every two batches j and j + 1 can be seen in Figure 2.
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Algorithm 1: FairDual
Require: Dataset D = {u, i, cu,i}, item-group adjacent matrix A, dual learning rate η, trade-off

coefficient λ, mi
freeze(·) updating step β, batch size B and sample item number Q and the weight

mg for each group g. Â = diag(A1)−1A.
Ensure: The model parameters of mi(·),mu(·).

1: for n = 1, · · · , N do
2: Set γ1,g = mg,∀g ∈ G
3: for j = 1, · · · , |U|/B do
4: if (n ∗ |N |/B + j)%β = 0 then
5: Copy parameters from mi(·) to mi

freeze(·) and get all item embedding E
6: Initialize dual solution µ = 0, and momentum gradient g = 0 and t = 0.
7: end if
8: Get sub-dataset {u, i, cu,i}Bb=1 and user feature eu and item feature ei
9: Lj = [−cu,i log(ĉu,i)]

B
b=1, sj = 1− Âjµ

10: Apply gradient descent based on loss (sj)⊤Lj

11: w̃b =
∑K

k=1(e
⊤
ub
Eb)[k],∀b

12: g̃j = −(Âj)⊤w̃ + γj , gj = αg̃j + (1− α)g, g = gj

13: γj = γj−1 − (Âj)⊤w̃,µ = argminµ0∈M
[
(gj)⊤µ0 + η∥µ0 − µ∥22

]
14: end for
15: end for

According to analysis in Theorem 3, under each epoch, the overall optimization process will become:

L
′B = min

|U|/B∑
j=1

(sj)⊤lj , (5)

where lj ∈ RB , sj ∈ RB is loss and its weight under j-th batch. Next, we will explain how lj and
sj update on each batch j. Detailed algorithm workflow can be seen in Algorithm 1. Note that,
following the practice in Bao et al. (2023a), we utilize the user’s historical behaviors to represent
each user, thereby treating each sample as a unique user.

5.2.1 ACCURACY LOSS CONSTRUCTING

In the mainstream recommender architectures, the primary objective is to make the predicted score
close to the true user preference. That is, at each batch j, there are B user-item pair [(u, i)]Bb=1 arrives.
Then the loss vector Lj is computed as:

lj = [−cu,i log(ĉu,i)]
B
b=1, (6)

where ĉu,i = −d(eu, ei) ≤ 1, where d(·) is the normalized distance between embedding eu, ei.
The commonly used distance metric is the dot-product, i.e. d(eu, ei) = −e⊤u ei, and the eu and
ei are calculated by a complex model, i.e. eu = mu(u), ei = mi(i), where mu(·) and mi(·) are
two embedding extraction networks. Typically, the user u is represented by the item-clicked history
sequences before clicking the item i: [i1, i2, · · · , in], where n is the fixed item sequence length.

Note that in text-based recommendation models such as BigRec (Bao et al., 2023a) and Rec-
former (Li et al., 2023), each item i is represented as a sequence of words in natural lan-
guage: i = [w1, w2, · · · , wl], where l is the length of the sentence and user behaviors are also
represented in prompt form (Bao et al., 2023a). In such cases, Equation (6) is extended to
log ĉu,i =

∑l
i=1 log(P (wi)), where P (w) refers to the predicted probability of the word w generated

by the LLMs, while other equations remain unchanged.

5.2.2 MIRROR GRADIENT DECENT FOR GROUP WEIGHT

For each batch j, the model needs to decide the weight sj for each sample. The weight sj is computed
utilizing mirror-gradient descent (Balseiro et al., 2021) technique. Specifically,

sj = 1− Âjµj , (7)

6
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Item feature 

extractor 𝑚𝑖(⋅)

User feature 

extractor 𝑚𝑢(⋅)

Target item 

embebeddings 𝒆𝑖

Target item 

embebeddings 𝒆𝑢

Loss 𝒍𝑗 Weight 𝒔𝑗 

Users

Items

Batch 𝑗

Sampled item 

embebeddings 𝑬𝒋

Predicted ranking 
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Batch 𝑗 + 1

Loss 𝒍𝑗+1 Weight 𝒔𝑗+1 
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Stored item 
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𝑖 (⋅)

Copy every 𝛽 batches

Extract all 

item embedding

Sub-gradient 𝒈𝒋+𝟏 𝝁𝑗+1

Figure 2: Overall workflow of FairDual under every two batches j and j + 1.

where Âj ∈ RB×|G| represents the row-normalized item-group adjacency matrix for A in batch j
(see details in Equation (2)), with Aib,g = 1 indicating that the b-th item in batch ib ∈ Ig belongs to
group g, and 0 otherwise. And µj is the dual variable at j-th batch, which updates as:

µj = argmin
µ

[
(gj)⊤µ+ η∥µ− µj−1∥

]
, s.t.

g∑
j=1

µjmj + λ ≥ 0, ∀g = 1, 2, . . . , |G|, (8)

where η is the learning rate, gj is the sub-gradient of the Equation (4) w.r.t. the dual variable
µj ∈ R|G|. The projection step can be efficiently solved using convex optimization solvers (Balseiro
et al., 2021) since D is coordinate-wisely symmetric.

Specifically, to ensure smoothness and make user of historical information, we utilize the momentum
gradient descent to update gj :

gj = αg̃j + (1− α)gj−1, g̃j = ∂(sjLj + λr∗(µj)) = −(Aj)⊤w̃ + γj , (9)

where γj ∈ R|G| is the vector, whose element of index g denotes the remaining required loss
(i.e., reward) for the group g at batch step j, w̃ ∈ RB represents the estimated ranking score that
each user query will receive. However, given the vast size of the item corpus in recommendation
systems, conducting a full ranking on all items is impractical. Therefore, we randomly sample Q
items to approximate the ranking scores across all items. The Q items’ embeddings are denoted as
Ej ∈ RQ×d. Formally, for the b-th element w̃b, we can write: w̃b =

∑K
k=1(E

jeub
)[k], where x[k]

denote the k-th largest element in vector x and K is the ranking size.

Note that Eb is sampled from the pre-stored item embedding E ∈ R|I|×d, which is pre-calculated
using the freezer network mi

freeze(·). This is done to mitigate the significant fluctuations in w̃ caused
by unstable training (Fan et al., 2020). To achieve this, we freeze the item feature extractor mi(·)
as mi

freeze(·) and transfer the parameters from mi(·) to mi
freeze(·) every β batches. For the first batch

process, we initialize g1 as 0, which will not make an effect on the first batch.

5.2.3 BOUND ON JENSEN GAP

We will provide the Jensen gap converge analysis of FairDual in the following theorem.
Theorem 4 (Bound on Jensen Gap). There exists H > 0 such that ∥µj − µ∥22 ≤ H and function
∥ · ∥22 is σ−strongly convex. Then, there exists L > 0, the Jensen gap of FairDual can be bounded as:

J(B) ≤ H

η
+

|U|L|G|2

B(1− α)σ
η +

L|G|2

2(1− α)2ση
. (10)

When setting learning rate η = O(B−1/2), the bound of Jensen gap is comparable with O(B−1/2).

The detailed proof can be seen in Appendix G. From Theorem 4, it is apparent that the Jensen gap
will widen as the batch size B decreases and the group size |G|, as well as the max-min fairness
degree λ, increase. However, FairDual demonstrates a sub-linear convergence rate concerning the
batch size B, and it maintains strong performance even with small batch sizes and large group sizes
across various fairness degrees.
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Table 1: Performance comparisons between ours and the baselines on three datasets under best-
performing BigRec backbones. The ∗ means the improvements are statistically significant (t-tests and
p-value < 0.05). The bold number indicates that the accuracy value exceeds that of all the baselines.

Models/Metrics K = 5 K = 10 K = 20

NDCG (%) MRR (%) MMF (%) NDCG (%) MRR (%) MMF (%) NDCG (%) MRR (%) MMF (%)

MIND

UNI 1.02 0.79 1.63 1.50 0.98 2.33 2.16 1.16 2.94
DRO 0.90 0.67 1.81 1.37 0.87 2.51 1.94 1.02 3.21
Prop 1.11 0.88 1.97 1.62 1.09 2.53 2.14 1.23 3.05
S-DRO 0.91 0.70 1.87 1.42 0.91 2.41 1.93 1.04 3.02
IFairLRS 0.87 0.66 2.21 1.27 0.83 2.91 1.78 0.97 2.86
Maxmin sample 0.98 0.75 2.25 1.49 0.96 1.71 2.19 1.15 3.13

Ours 1.15∗ 0.88 2.82∗ 1.69∗ 1.11 2.99∗ 2.28∗ 1.27∗ 3.39∗
improv.(%) 3.60 0.00 25.33 4.32 1.83 2.75 4.10 3.25 5.61

Book

UNI 2.99 2.79 8.44 3.19 2.87 8.32 3.44 2.94 8.15
DRO 2.94 2.72 8.39 3.15 2.81 8.29 3.37 2.87 8.10
Prop 2.64 2.45 8.68 2.83 2.53 8.30 3.05 2.59 8.01
S-DRO 2.61 2.44 8.37 2.80 2.52 8.21 3.06 2.59 8.07
IFairLRS 2.30 2.16 8.46 2.51 2.25 8.20 2.76 2.32 8.17
Maxmin sample 2.49 2.31 6.80 2.72 2.43 6.80 2.97 2.74 7.50

Ours 3.11∗ 2.88 8.90∗ 3.31∗ 2.96 9.00∗ 3.60∗ 3.04 8.89∗
improv.(%) 4.01 3.23 2.53 3.76 3.14 8.17 4.65 3.40 8.81

Electronic

UNI 4.61 4.30 0.26 4.93 4.43 0.25 5.30 4.53 0.21
DRO 4.65 4.34 0.24 4.96 4.46 0.24 5.33 4.57 0.21
Prop 4.63 4.33 0.26 4.96 4.47 0.25 5.33 4.57 0.21
S-DRO 4.60 4.29 0.25 4.92 4.42 0.24 5.29 4.52 0.20
IFairLRS 2.21 2.06 0.19 2.46 2.16 0.17 2.69 2.22 0.12
Maxmin sample 4.60 4.31 0.27 4.92 4.44 0.25 5.31 4.55 0.21

Ours 5.08∗ 4.78 0.31∗ 5.43∗ 4.92 0.30∗ 5.84∗ 5.03 0.26∗
improv.(%) 9.24 10.1 14.8 9.47 10.0 19.9 0.95 10.0 23.8

6 EXPERIMENT

We conduct experiments to demonstrate the effectiveness of the proposed FairDual.

6.1 EXPERIMENTAL SETTINGS

Datasets. The experiments are conducted on the commonly used two widely used and publicly
available recommendation datasets, including MIND (Wu et al., 2020)1, Amazon-Book and Amazon-
Electronic (He and McAuley, 2016)2. Their detailed statistical information is in Appendix I.

Evaluation. We arrange all interactions in the dataset chronologically by their timestamps and
employ the first 80% interactions as training data. The remaining 20% of interactions are divided
equally, with each 10% segment used for validation and testing, respectively, during evaluation.

Regarding the metric, following the practice in Dai et al. (2023), we utilize Normalized Discounted
Cumulative Gain (NDCG) and mean Reciprocal Rank (MRR) to measure the accuracy: NDCG@K =
1
|U|
∑|U|

u=1

∑
i∈LK (u)(2

cu,i−1)/(log2(j+1))

(2ranki−1)/(log2(ranki+1))
, MRR@K = 1

|U|
∑|U|

u=1
1

ranki
, where ranki is the rank of

the first correct answer. Meanwhile, we employ MMF@K to gauge the degree of fairness, which
quantifies the aggregated ranking score of the 20% worst-off groups (Do et al., 2021; Xu et al., 2023).

Backbones and Baselines. For the backbone, we first select three large-scale recommender models:
NRMS (Wu et al., 2019), RecFormer (Li et al., 2023) and BigRec (Bao et al., 2023a). Note that
BigRec only utilizes 1024 samples to train due to large computational cost. Meanwhile, we also
choose three non-LLMs recommender models: BPR (Rendle et al., 2012), GRU4Rec (Hidasi et al.,
2015) and SASRec (Kang and McAuley, 2018a).

For the baselines, we choose several fair-aware re-weight baselines that aim to improve group MMF:
UNI (without considering fairness), DRO (Hashimoto et al., 2018), S-DRO (Wen et al., 2022),
Prop (Hu et al., 2023), IFairLRS (Jiang et al., 2024) and Maxmin Sample (Abernethy et al., 2022).
Meanwhile, we also compare three group fair-aware recommender models: FOCF (Yao and Huang,
2017), Reg (Kamishima and Akaho, 2017), and FairNeg (Chen et al., 2023a). Note that FairNeg
only can be applied to pair-wise RS models.

The detailed descriptions of the backbones and baselines are in Appendix I.

Implemtation Details. We provide our detailed running environment, all hyper-parameter settings,
utilized LLMs settings, and used the toolkit in Appendix I.

1https://microsoftnews.msn.com
2http://jmcauley.ucsd.edu/data/amazon/
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Table 2: Performance comparisons between ours under other backbones on MIND dataset. The ∗
means the improvements are statistically significant (t-tests and p-value < 0.05). The bold number
indicates that the accuracy value exceeds that of all the baselines.

Models/Metrics top-5 top-10 top-20

NDCG (%) MRR (%) MMF (%) NDCG (%) MRR (%) MMF (%) NDCG (%) MRR (%) MMF (%)

NRMS

DRO 0.44 0.32 0.12 0.66 0.42 3.60 1.06 0.50 9.94
Prop 0.44 0.32 0.12 0.66 0.42 3.49 1.06 0.52 9.94
S-DRO 0.52 0.34 0.10 0.76 0.40 2.05 1.20 0.52 8.74
IFairLRS 0.40 0.28 0.69 0.62 0.36 4.20 0.96 0.44 10.58
Maxmin sample 0.38 0.31 0.20 0.45 0.34 4.00 0.67 0.422 9.99

Ours 0.60∗ 0.40∗ 1.07∗ 0.84∗ 0.46∗ 4.93∗ 1.28∗ 0.60∗ 11.35∗

RecFormer

DRO 0.57 0.45 1.08 0.89 0.59 1.08 1.41 0.73 1.52
Prop 0.57 0.45 1.08 0.89 0.58 1.08 1.41 0.72 1.52
S-DRO 0.57 0.45 1.20 0.91 0.60 1.15 1.46 0.73 1.62
IFairLRS 0.46 0.37 1.68 0.76 0.49 1.70 1.29 0.63 2.12
Maxmin sample 0.51 0.41 0.94 0.85 0.55 1.50 1.37 0.69 2.48

Ours 0.59∗ 0.45 1.88∗ 0.99∗ 0.60 1.94∗ 1.55∗ 0.75 2.58∗

BPR

DRO 0.73 0.62 12.9 0.87 0.72 11.8 1.12 0.79 12.9
Prop 0.42 0.32 0.05 0.57 0.38 0.06 0.95 0.48 10.0
S-DRO 0.67 0.61 3.88 0.84 0.68 6.87 1.04 0.73 12.03
IFairLRS 0.68 0.57 0.13 0.77 0.61 0.23 1.07 0.69 1.38
Maxmin sample 0.66 0.58 6.54 0.81 0.64 8.8 1.05 0.71 10.87
FOCF 0.40 0.32 0.05 0.57 0.38 0.07 0.95 0.48 10.0
Reg 0.67 0.61 3.27 0.83 0.67 5.89 1.06 0.73 11.25
FairNeg 0.72 0.63 6.07 0.91 0.71 8.8 1.21 0.79 12.64

Ours 0.76∗ 0.64∗ 11.84∗ 0.94∗ 0.72 13.87∗ 1.27∗ 0.81 14.6∗

GRU4Rec

DRO 0.56 0.56 0.86 0.76 0.64 5.56 1.13 0.71 10.7
Prop 0.42 0.35 7.94 0.63 0.44 10.19 0.90 0.51 13.10
S-DRO 0.45 0.36 11.42 0.67 0.44 12.05 0.97 0.53 13.15
IFairLRS 0.45 0.38 7.12 0.68 0.47 9.21 1.02 0.56 11.70
Maxmin sample 0.43 0.33 10.9 0.62 0.41 14.27 0.91 0.48 13.06
FOCF 0.56 0.41 5.62 0.79 0.63 7.11 1.10 0.70 10.29
Reg 0.45 0.37 6.93 0.67 0.46 8.60 1.02 0.55 10.92

Ours 0.59∗ 0.47∗ 12.13∗ 0.85∗ 0.68∗ 12.77∗ 1.16∗ 0.76∗ 14.09∗

SASRec

DRO 0.54 0.40 8.07 0.72 0.47 11.34 1.11 0.57 12.26
Prop 0.54 0.45 11.69 0.80 0.55 12.10 1.16 0.57 13.01
S-DRO 0.49 0.40 10.66 0.74 0.49 11.64 1.09 0.59 14.02
IFairLRS 0.58 0.57 12.63 0.60 0.58 12.35 0.62 0.58 13.73
Maxmin sample 0.56 0.47 9.05 0.74 0.54 12.45 1.09 0.64 14.06
FOCF 0.47 0.46 10.52 0.50 0.47 12.73 0.53 0.48 14.46
Reg 0.47 0.38 9.42 0.70 0.47 9.52 1.03 0.55 10.91

Ours 0.64∗ 0.63∗ 11.98 0.78∗ 0.64∗ 13.08∗ 1.31∗ 0.67∗ 14.51∗

6.2 EXPERIMENTAL RESULTS ON FULL DATASETS

Firstly, we conduct experiments to show the performance of FairDual and other baselines across all
large-scale recommendation backbones. Table 1 presents the experimental outcomes for our FairDual
model and the baseline methods across all datasets, respectively. Table 2 presents the experimental
outcomes for our FairDual model and the baseline methods across other different backbones on the
MIND dataset. To make fair comparisons, all the baselines were tuned to their hyperparameters to
obtain the best trade-off accuracy and fairness performance under our settings.

From the experiments, it is evident that FairDual consistently outperforms the baseline methods
across all datasets and various base models, spanning different top-K ranking sizes. This is reflected
in accuracy metrics such as NDCG and MRR, as well as the fairness metric MMF. The results
conclusively demonstrate that FairDual effectively ensures the model reaches a better convergence
point in terms of both accuracy and fairness by leveraging dual gradient descent.

Also note that another widely used loss function is the BPR loss Rendle et al. (2012), which aims
to increase the distance between positive and negative samples. Interestingly, from the table, we
can observe that our methods can also be applied to this loss, as BPR loss is a convex function with
respect to positive items, and our dual formulation remains valid.

6.3 EXPERIMENTAL ANALYSIS

In this section, we first replicate the simulation settings outlined in Section 4.2 to investigate how the
Jensen gap changes. Then we conduct analysis on MIND dataset under BigRec base models.

Jensen gap. Firstly, we investigate the variations in the Jensen gap concerning batch size B and
group size |G| across both baseline methods and our proposed FairDual model. As shown in Figure 3
(a), we can see that FairDual has a lower Jensen gap than other online models across different batch
sizes and group sizes. Furthermore, it’s evident that the Jensen gap exhibited by FairDual remains
consistently stable across various batch sizes, with only a marginal increase observed as the group
size expands. This indicates that FairDual can consistently maintain a low Jensen gap level.
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Classification 

Line

(c) Case study for head group News and tail group Sports

Sports

News

Sports

News

(b) Influence on trade-off co-efficient

(a) Jensen gap comparision

Figure 3: Sub-figure (a) conducts a simulation to show Jensen gap J(B) changes w.r.t. batch size B
and group size |G| for all baselines and FairDual. Sub-figure(b,c) conducts on MIND dataset under
BigRec. Sub-figure (b) describes the NDCG and MMF changes w.r.t. accuracy-fairness trade-off
co-efficient λ. Sub-figure (c) conducts the case study on the advantage group News and worst-off
group Sports. We show their weight sg , group score wg , and t-SNE embeddings of UNI and FairDual.

Influence on co-efficient λ. Then, we will investigate the impacts of trade-off co-efficient λ. Figure 3
(b) illustrates that the fairness degree (MMF) increases proportionally with the rise in λ, aligning with
our expectations. However, we also observe that the accuracy increases as λ changes from 0 to 5 and
then decreases. This phenomenon occurs due to the presence of popularity bias in recommendation
datasets (Jiang et al., 2024). A relatively higher fairness degree helps mitigate this bias, leading to
increased accuracy. However, when λ becomes too large, it inevitably enlarges the Jensen gap, which
hurts the model’s performance. We also conduct an experiment to analyze the effect of the popularity
bias in Appendix M.

Case study. Finally, we conduct a case study on the head group News, which consistently exhibited
superior exposure compared to other groups, in contrast to the tail group Sports, which typically had
lower exposure levels. Firstly, from the two figures at the top of Figure 3 (c), we observe that as the
training progresses, the tail group Sports gradually gains more weight (sg), while the head group
News consistently receives relatively low weight. Consequently, this leads to the group scores w of
the two groups being close to each other.

At the same time, we visualize the item embeddings using T-SNE (Van der Maaten and Hinton, 2008)
for both the baseline UNI and our model FairDual, as shown in the bottom two sub-figures of Figure 3
(c). From the figure, we compute the embedding KL divergence of two different groups between UNI
(0.113) and our method FairDual (0.083). This shows that UNI establishes a clear classification line
to distinguish between different groups. However, FairDual tends to bring the embeddings of the tail
group closer to those of the head group, ultimately increasing the fairness.

Other Experimental Analysis. For analysis of other parameters dual learning rate η, updating gap
β, user history length H , the sample size Q, and the impact of the hidden layer numbers, please see
the Appendix J. For the computational and storage costs analysis can be seen in Appendix K. We also
test the performance of other fairness metric in Appendix L.

7 CONCLUSION

In this paper, we theoretically demonstrate that adapting mini-batch training with the objective
constrained by group MMF inevitably leads to the Jensen gap, thereby impairing the performance of
the RS model. We theoretically and empirically analyze the origins of the Jensen gap by demonstrating
that the integration of the MMF constraint disrupts the assumption of sample independence during
optimization, leading to a deviation of the loss function from linear additivity. Then, To efficiently
bridge the Jensen gap, we develop a large-scale friendly algorithm named FairDual, which employs
dual-optimization techniques to minimize the Jensen gap at a sub-linear rate. Extensive experiments
conducted on three large-scale recommendation system backbone models using two publicly available
datasets show that FairDual consistently outperforms all baseline methods.
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APPENDIX

A PROOF OF THEOREM 1

Proof. Let A ∈ R|I|×|G| is the item-group adjacent matrix, and Aig = 1 indicates item i ∈ Ig , and
0 otherwise. Let w ∈ R|I| = [−

∑
u∈U cu,i log(ĉu,i)]i∈I .

Firstly, if an item belongs to multiple groups, it often has a greater impact on other items in the model.
Therefore, we will conduct row normalization on the adjacency matrix A with size I ×G to mitigate
this influence: we conduct Â is the row-normalized matrix for A: Â = diag(A1)−1A. diag(x)
denotes to construct a diagonal matrix based on vector x.

Then, in RS, since the ranking list LK(u) is selected according to the highest preference score cu,i,
therefore we can re-write Equation (1) as:

min 1⊤(Â⊤w)

s.t. sg =
∑
u∈U

∑
i∈LK(u)

− I(i ∈ Ig)
ni

cu,i log(ĉu,i) ≤ mgM, ∀g ∈ G

∑
i∈I

cu,i ≤ K,∀u ∈ U .

(11)

Then we can still write the Equation as

min 1⊤(Â⊤w)

s.t. max
g∈G

(Â⊤w)g ≤ mgM.
(12)

Due to Lagrange dual method (Boţ et al., 2008), we can still convert the problem as:

minmax
λ

−1⊤(Â⊤w) + λ(max
g∈G

(Â⊤w)g
mg

−M). (13)

Therefore, we can always find a λ ≥ 0 (λ value relates to the value of M ), such that we can directly
optimize

min1⊤Â⊤w + λmax
g∈G

(Â⊤w)g
mg

. (14)

Let γ ∈ R|G| be the vector [1/m1, 1/m2, · · · , 1/m|G|], then the equation can be written as:

min1⊤Â⊤w + λmax
g∈G

γg(Â
⊤w)g. (15)

Furthermore, the minimum function max(·) can be viewed as the infinite norm function:

maxx = lim
t→∞

(1⊤xt)1/t.

Then we consider the following function:

g(x;k; s) = (k⊤x1+s)
1

1+s ,

where 0 ≤ x ≤ M1. Therefore, Equation (15) can be regarded as a linear trade-off between two
points with the λ ≥ 0 as the trade-off coefficient:

min
w∈W

g(Â⊤w;1; 0) + λg(Â⊤w;γ;∞).

Since g(x; t) is continuous w.r.t. t and the feasible region of x is convex and continuous (because
w ∈ W is the linear transformation over a simplex space (Lindenstrauss et al., 1978)), there exists a
constant number t ≥ 0 and b ∈ R|G|, s.t. Equation (1) can be optimized as:

L = min b⊤(Â⊤w)1+t.
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This is because t is a constant number and k for optimizing g(x;k; s) is linear w.r.t. to x(1+s) (Since
the x is the variable and s is constant).

Note that the specific value of t is an implicit function and cannot be solved explicitly in closed form.
This is because according to the fact that the function g is continuous with respect to s over its entire
domain and based on the intermediate value theorem for continuous functions, there must exist a t
such that the linear combination of the linear functions at the two endpoints equals.

Nonetheless, we emphasize that the subsequent methods and proof strategies are independent of the
explicit solution for t. As long as there exists a t ̸= 0, the Jansen gap exists, and as λ increases, t will
also increase.

B LEMMA 1

Lemma 1. When t ≥ 0, let

f(x) = xt+1

where x > 0. And

e(i) =

i∑
l=1

f(yl)

s.t.
i∑

l=1

yl ≤ c, yl ≥ 0

(16)

where c is a constant number. Then we have when j ≥ i: we have minyj
e(j) ≤ minyi

e(i).

Proof. According to the Lagrange dual method, we have

min e(i) = minmax
λ≥0

i∑
l=1

f(yl) + λ(

i∑
l=1

yl)− λc,

then according to the condition of the first derivative equaling zero, we have

∂e(i)

∂yl
= yti + λ = 0,

∂e(i)

∂λ
=

i∑
l=1

yl − c = 0.

Taking these two condition together, we have:

yk = ym =
c

i
, ∀k,m = [1, 2, · · · , i].

Therefore, we have

min
yj

e(j)−min
yi

e(i) = min
yj

∑
j

f(yj)−min
yi

∑
i

f(yi)

= (
c

j
)1+t − (

c

i
)1+t

Then we can see function 1
x1+t is a decreasing function function, therefore, minyj

e(j) ≤ minyi
e(i).
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C PROOF OF THEOREM 2

Proof. Under mini-batch sample strategies, we partition the user set U into |U|/B subsets and
perform optimization on each subset. For each batch, the optimization becomes

LB = min

|U|/B∑
j=1

b⊤(Â⊤wj)
1+t

s.t. wj,i = −
∑
u∈Uj

cu,i log(ĉu,i),∀i ∈ I, j ∈ [1, 2, · · · , |U|/B],

(17)

where Ub is the b−th partition of the user set U .

Since the function f(x) = x1+t is not a linear function, we have

|U|/B∑
j=1

b⊤(A⊤wj)
1+t ̸= b⊤(A⊤w)1+t.

and we can get the Jensen gap
J(B) = |LB − L| ≠ 0.

Then we will observe how e(B) changes w.r.t. the mini-batch size B.

Let e = Â⊤w, where each element eg represents the utility (sum of user-item scores) of group g.
According to the recommendation constraint, we have eg ≤ L, meaning that the utility of group g is
at least as high as when all items belonging to group g are recommended to the users.

Therefore, taking f(eg) = e1+t
g into Lemma 1, without loss of generality, when batch size B2 ≤ B1,

we have: |U|/B2 ≥ |U|/B1, we can easily have:

min

|U|/B2∑
j=1

(A⊤wj)
1+t
g ≤ min

|U|/B1∑
j=1

(A⊤wj)
1+t
g ≤ min e1+t

g .

Therefore, we have

min

|U|/B2∑
j=1

b⊤(A⊤wj)
1+t ≤ min

|U|/B1∑
j=1

b⊤(A⊤wj)
1+t ≤ min b⊤e1+t.

In other words, the mini-batch size becomes smaller, and we are more likely to underestimate the
original loss function that trades off MMF and recommendation accuracy. The recommendation loss
underestimation will result in the Jensen gap when optimizing the loss function constraint with MMF.

D LEMMA 2

Lemma 2. Considering the following function, for λ > 0, L > 0 and for the d-th dimension variable
µ ∈ Rd, when µ ∈ M:

r(µ) = max
x≤m

(minx/m+ µ⊤x/λ), (18)

where

M =

µ

∣∣∣∣∣∣
∑
i∈[d]

µimi ≥ −λ,∀[d] ∈ S

 ,

where S is power set of [1, 2, · · · , d], i.e., the set of all subsets of [1, 2, · · · , d].
When µ ∈ M, the optimization function r(·) has a closed form: r(µ) = m⊤µ/λ + 1, and
m = argmaxx≤m(minx/m+ µ⊤x/λ).

When µ /∈ M, the function r(·) will diverge to ∞.
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Proof. Let the variable z = x/m− 1. Then we have:
r(µ) = max

x≤m

[
minx/m+ µ⊤x/λ

]
= µ⊤m/λ+ 1 +max

z≤0

[
min
i

zi + (1/λ)µ⊤(z ⊙m)
]
,

where ⊙ is the Hadamard product.

Let
v = m⊙ µ/λ,

then we define
s(v) = max

z≤0

(
min
i

zi + z⊤v
)
.

From the definition of the region M, we can re-wright M as

M = {v|
∑
i∈[d]

vi ≥ −1,∀[d] ∈ S}.

Suppose that there exists a subset S ∈ [1, 2, · · · , d] such that
∑

i∈S vi < −1. For any ϵ/|S| > 1, we
can get a feasible solution:

vi =

{
−ϵ/|S|, i ∈ S
0, otherwise.

Then, because such solution is feasible and mini zi = −ϵ, and |S| ≥ 1, we obtain that

s(v) ≥ min
i

zi − (ϵ/|S|)(
∑
i∈S

vi) = −ϵ(
∑
i∈S

vi + 1/|S|)

≥ ϵ(
∑
i∈S

vi + 1).

Let ϵ → ∞, we have s(v) → ∞.

Then we show that s(µ) = 0 for v ∈ M. Note that z = 0 is feasible. Therefore, we have
min
i

vi ≥ s(0) = 0.

Then we have z ≤ 0 and without loss of generality, that the vector z is sorted in increasing order, i.e.,
z1 ≤ z2, · · · ,≤ zd. The objective value is

s(v) = z1 + v⊤z

=

d∑
j=1

(zj − zj+1)

(
1 +

j∑
i=1

vj

)
≤ 0.

Thus we can have s(µ) = 0 for v ∈ M. Finally, we can have argmaxx≤m(ming xg/mg +

µ⊤x/λ) = m.

E LEMMA 3

Lemma 3. The feasible space M of dual variable µ is convex.

Proof. Suppose µ ∈ M, from Lemma 2, we have
r(µ) = max

x≤γ
(minx/γ + µ⊤x/λ) < ∞,

therefore, for any b ∈ R|G|
+ and c > 0, we have

r(µ+ cb) = max
x≤γ

(minx/γ + (µ+ cb)⊤x/λ)

= r(µ) + Lcb⊤1 < ∞.

Therefore, µ+ cb ∈ M.
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F PROOF OF THEOREM 3

Proof. Let e = Aw, where each element eg measures the ranking score accumulated among group
g. Let L be the maximum ranking score for each group, i.e., e ≤ L1.

According to the proof in Theorem 1, we can see the Equation (1) can be written as:

min
∑
u∈U

∑
i∈I

cu,i log(ĉu,i) + λ(max
g∈G

eg/mg)

s.t. eg = − I(i ∈ Ig)
ni

cu,i log(ĉu,i),∀g ∈ G.

Then the equation can be re-written as:

max
ĉu,i

∑
u∈U

∑
i∈I

cu,i log(ĉu,i) + λ(min
g∈G

eg/mg)

s.t. eg =
∑
u∈U

∑
i∈I

I(i ∈ Ig)cu,i log(ĉu,i),∀g ∈ G.
(19)

Then e can utilize the Lagrangian condition (Balseiro et al., 2021) to decompose the relation between
e and model prediction ĉu,i in Equation (19):

max
ĉu,i

min
µ

∑
u∈U

∑
i∈I

cu,i log(ĉu,i) + λ(min
g∈G

eg/mg)−
∑
g∈G

µg

(
eg −

∑
u∈U

∑
i∈I

I(i ∈ Ig)cu,i log(ĉu,i)

)

≤ min
µ

max
ĉu,i

∑
u∈U

∑
i∈I

cu,i log(ĉu,i) + λ(min
g∈G

eg/mg) +
∑
g∈G

µg

(
eg −

∑
u∈U

∑
i∈I

I(i ∈ Ig)cu,i log(ĉu,i)

)

= min
µ

max
ĉu,i

∑
u∈U

∑
i∈I

(1−
∑
g∈G

µgI(i ∈ Ig))cu,i log(ĉu,i)

+ λmin
g

eg/mg + µ⊤e

= min
µ

max
ĉu,i

∑
u∈U

∑
g∈G

(1− µg)
∑
i∈Ig

cu,i log(ĉu,i)

+ λmin
g

eg/mg + µ⊤e.

(20)

From the Equation (20), we can observe that the recommendation task constrained by max-min
fairness can be viewed as a re-weighting approach across different groups on the original loss function
solely optimized for accuracy:

L = min−
∑
u∈U

∑
g∈G

sg
∑
i∈Ig

cu,i log(ĉu,i),

where the fairness weight µ is determined by

µ = argmin
µ∈M

max
∑
u∈U

∑
g∈G

sg
∑
i∈Ig

cu,i log(ĉu,i) + λr∗(µ)

 ,

r∗(µ) = max
w≤m

(
min
g

(Aw)gmg +A⊤wµ/λ

)
= m⊤µ/λ+ 1.

To make sure the functions do not diverge, we need to ensure r∗(µ) < ∞. Taking the r∗(µ) into
Lemma 2, we show µ ∈ M, where

M =

µ

∣∣∣∣∣∣
∑
g∈S

µgmg ≥ −λ, ∀S ∈ Gs

 ,

where Gs is power set of G, i.e., the set of all subsets of G.
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G PROOF OF THEOREM 4

Proof. We first bound the performance on the primal space.

Let N = |U|
B be the total batch number. Considering the j−th batch, we have the accuracy loss

function without fairness at j−th batch as:

Lj(ACC) = (sj +Ajµj)⊤lj = 1⊤lj ,

and the max-min fairness loss function will become:

Lj(Fair) = r∗(µ)− (µj)⊤e/λ,

therefore, the overall loss across LB on the primal space utilizing batch training will become:

NEj [Lj ] = NEj [Lj(ACC) + λLj(Fair)]

= NEj [(s
j +Ajµj)⊤lj + λr∗(µ)− (µj)⊤e]

= L
′B −NEj [(µ

j)⊤(e− (Aj)⊤lj)].

The term
w(µj) = (µj)⊤(e− (Aj)⊤lj)

is considered as the complementary slackness in dual theory (Churchman et al., 1957), which captures
error from the dual transformation. And L′B is the same in Equation (5). Therefore, the original loss
can be viewed as the dual form augmented with a complementary slackness form.

Then we utilize the online gradient descent to bound the complementary slackness.

Let µ =
∑N

j=1 µ
j , then the loss without dividing the full dataset into batches can be represented as:

L = L′ − w(µ).

After observing the dual form of L′, we can see the L′ is linear w.r.t. dual variable µ, therefore, we
have

L′ = L
′B ,

and the Jensen gap

J(B) = |
N∑
j=1

w(µj)− w(µ)|.

Given ∥g̃j∥2 ≤ G, for all j, we have:

∥gj∥2 = ∥(1− α)

j∑
s=1

αj−s(g̃s)∥2 ≤ G.

Next, we will bound the value of G. Firstly, according to the dual gradient descent, we have:

g̃j = ∂(sjLj + λr∗(µj)) = −(Aj)⊤w̃ + γj .

where γj is the remain maximum loss column at j−th updating batch.

Therefore, we have the each element of w̃b has the bound of

w̃b ≤ K,

since each user can obtain a maximum ranking score of 1 for each preferred item in the ranking
list with a size of K. Typically, the group size is smaller than batch size (|G| < B) and there exists
c = maxg mg (typically, mg is proportional to the group size |G|. Then we get

∥g̃j∥22 ≤ |G|(c+K)2 ≤ L|G|2,

where L > 0.
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According to the Theorem 2 in Balseiro et al. (2021), we have

J(B) = |
N∑
j=1

w(µj)− wt(µ)| ≤
H

η
+

G2

(1− α)σ
η
|U|
B

+
G2

2(1− α)2ση

=
H

η
+

|U|L|G|2

B(1− α)σ
η +

L|G|2

2(1− α)2ση

where function ∥ · ∥22 is σ−strongly convex. When setting learning rate η = O(B−1/2), the Jensen
Bound is comparable with O(B−1/2).

H GENERALIZABILITY TO OTHER FORMS OF FAIRNESS

In fact, our method can be easily generalized to the user group level by replacing the adjacency matrix
with a user-side equivalent while keeping the rest unchanged. For the two-sided form, it simply
requires introducing two coefficients, λ1 and λ2, and applying two independent dual gradient descent
updates as described in our algorithm.

In Theorem 1, we demonstrate that our optimization objective is equivalent to the power-family
fairness framework, which encompasses mainstream fairness definitions such as Entropy Fairness,
α-Fairness, and Theil Index Lan and Chiang (2011). Consequently, our method is highly adaptable
and can be generalized to various fairness objectives within this framework.

I DETAILS OF EXPERIMENTAL SETTINGS

Here we will provide the details of experimental settings.

Detailed Implementation Details.

• Environment: our experiments were implemented using Python 3.9 and PyTorch
2.0.1+cu117 (Paszke et al., 2017). All experiments were conducted on a server with an
NVIDIA A5000 running Ubuntu 18.04. We implement FairDual with the cvxpy (Diamond
and Boyd, 2016) for optimization.

• Hyper-parameter settings: the learning rate η ∈ [1e−2, 1e−4] (results shown in Figure 5),
and trade-off factor λ ∈ [0, 10] (results shown in Figure 3). We set the mg as the group
size mg = |Ig|. We also tune sample number Q ∈ [50, 400] (results shown in the Table 4),
historical length H ∈ [3, 7] (results shown in Table 3), freeze parameter updating gap
β ∈ [128, 3840] (results shown in Figure 4).

• LLMs settings: To mitigate the impact of randomness, we set the temperature coefficient to
0.2 for the LLM and ran each model three times, taking the average of the results. Other
LLMs settings are: the penalty for frequency is 0.0, and the penalty for presence is 0.0, the
maximum generated token number to 1024.

• Used toolkit: For the Non-LLMs-RS backbones, we mainly reference the RecBole toolkit3.
For the LLMs tuning, we reference the BigRec pipelines 4. And we have also included our
code in the supplementary materials to ensure reproducibility.

Datasets. The experiments are conducted on the commonly used two widely used and publicly
available recommendation datasets, including:

• MIND (Wu et al., 2020)5: it is constructed from user news click behavior logs on the
Microsoft News platform. we utilize the major topic category of the news to group the items.
The dataset contains 94,057 users, 18,801 items, 124,154 interactions, and 17 groups.

3https://github.com/RUCAIBox/RecBole
4https://github.com/SAI990323/BIGRec
5https://microsoftnews.msn.com
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• Amazon-Book 6: The Amazon dataset from the book domain (He and McAuley, 2016) with
item grouping based on the "categories" field. As part of the preprocessing (Xu et al., 2024),
groups containing fewer than 50 items are amalgamated into a single group, referred to as
the “infrequent group”. The dataset contains 15,362,619 users, 1,175,085 items, 1,051,862
interactions, and 25 groups.

• Amazon-Electronic 7: The Amazon dataset from the electronic products (He and McAuley,
2016) with item grouping based on the "categories" field. As part of the preprocessing (Xu
et al., 2024), groups containing fewer than 50 items are amalgamated into a single group,
referred to as the “infrequent group”. The dataset contains 728,719 users, 160,052 items,
6,739,590 interactions, and 19 groups.

Backbones. For the backbone, we first select three large-scale recommender models:

• NRMS (Wu et al., 2019) with 110M parameters utilizes BERT (Devlin et al., 2018) as the
feature extractor.

• RecFormer (Li et al., 2023) with 150M parameters utilizes LongFormer (Beltagy et al.,
2020) to learn text-based representation from items

• BigRec (Bao et al., 2023a) utilizes Lora techniques (Hu et al., 2021) to fine-tune Llama
2 (Touvron et al., 2023) (with 7B parameters). Note that BigRec only utilizes 1024 samples
to train due to large computational cost.

Meanwhile, we also cover three traditional recommender models:

• BPR Rendle et al. (2012) utilized a pair-wise loss function to train a matrix factorization
model for recommendation.

• GRU4Rec Hidasi et al. (2015) utilized gated recurrent unit network to learn the historical
behaviors of users.

• SASRec Kang and McAuley (2018a) utilized attention network to learn the historical
behaviors of users.

Baselines.

For the baselines, we choose several fair-aware re-weight baselines that aim to improve group MMF:

• UNI: each sample has the same weight during training.
• DRO (Hashimoto et al., 2018): every step, the model only optimizes the worst-off groups to

enhance grou MMF.
• S-DRO (Wen et al., 2022): improves DRO with the distributional shift to optimize group

MMF.
• Prop (Hu et al., 2023) assigns higher group weight to the samples closer to the decision

boundary in each group.
• IFairLRS (Jiang et al., 2024) employs the reciprocal of the sum popularity of items within

the group as the weight assigned to that group.
• Maxmin Sample (Abernethy et al., 2022) applies optimizing techniques to dynamically

sample groups.

Meanwhile, we also choose three fair-aware non-LLMs recommender models that aim to improve
group fairness:

• FOCF (Yao and Huang, 2017) applies a fair-aware regularization loss of different groups
into non-LLMs RS.

• Reg (Kamishima and Akaho, 2017) penalizes the squared difference between the average
scores of two groups for all positive user-item pairs into non-LLMs RS.

• FairNeg (Chen et al., 2023a) proposed a negative sampling way for pair-wise recommenda-
tion into non-LLMs RS.

6http://jmcauley.ucsd.edu/data/amazon/
7http://jmcauley.ucsd.edu/data/amazon/
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(a) (b) 

Figure 4: Sub-figure (a) and (b) describe the NDCG and MMF changes w.r.t. freeze parameter
updating gap β.

𝜂 𝜂

(a) (b) 

Figure 5: Sub-figure (a) and (b) describe the NDCG and MMF changes w.r.t. dual learning rate η.

(b) (a) 

Figure 6: Sub-figure (a) illustrates the density distribution of embeddings for each hidden layer of
Llama2. Sub-figures (b) and (c) depict the changes in NDCG and MMF metrics when different
hidden layers are utilized to represent user or item embeddings.
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Table 3: We conduct empirical experiments to show the effect of the length of item-clicked sequences.
The experiments are conducted on the MIND dataset under BigRec backbones.

History length H NDCG@5 (%) MMF@5 (%) NDCG@10 (%) MMF@10 (%) NDCG@20 (%) MMF@20 (%)

3 0.79 1.88 1.35 2.79 1.85 3.23
4 0.81 1.63 1.36 2.65 1.99 3.21
5 1.15 2.82 1.69 2.99 2.28 3.39
6 1.04 2.57 1.64 2.66 2.26 3.29
7 1.02 3.27 1.40 3.5 2.16 4.29

Table 4: We conduct empirical experiments to show the effect of the sample size Q. The experiments
are conducted on the MIND dataset under BigRec backbones.

sample size Q 50 100 200 300 400 full (unbiased)
NDCG(%) 1.08 1.08 1.15 1.19 1.19 1.29
MMF(%) 1.2 1.28 2.18 2.10 2.29 2.31

J ANALYSIS FOR HYPER-PARAMETERS

We also conduct analysis for other important hyper-parameters of FairDual on MIND dataset under
BigRec base models.

Inference on Updating Gap β. We first will investigate the impacts of freeze parameter updating
gap β. As shown in Figure 4, we can observe that the accuracy degree (NDCG) increases when
β ∈ [128, 1280] and then drops slightly when β ∈ [1280, 3840]. Similarly, we can observe that the
fairness degree (MMF) increases when β ∈ [128, 640] and then drops with a large margin when
β ∈ [640, 3840]. The results align with our expectations: excessively frequent updates can lead
to instability during training, while infrequent updates may cause the model to miss new ranking
patterns, ultimately affecting performance negatively.

Inference on dual learning rate η. We then investigate the impacts of dual learning rate η. As shown
in Figure 5, we can observe that the accuracy degree (NDCG) increases when η ∈ [1e−5, 5e−5] and
then drops when η ∈ [5e−5, 5e−3]. On the other hand, the fairness performance drops with η goes
larger. The results demonstrate that the learning rate η serves as a trade-off factor: excessively large
values detrimentally affect both accuracy and fairness, whereas excessively small values improve
fairness at the expense of accuracy in recommendation system models.

Performances under Different Hidden Layers. In this experiment, we aim to analyze the FairDual
performance under different hidden layers in Llama2. We test the NDCG and MMF performance
when we utilize different hidden layers to represent user or item embeddings. From Figure 6 (a)
and (b), it is evident that the accuracy (NDCG) and fairness (MMF) trends exhibit distinct patterns:
accuracy performance initially ascends, peaking in the middle layer before gradually declining,
whereas fairness performance initially descends, hitting a nadir before steadily increasing.

This phenomenon can be interpreted as follows: in the initial layers, which are not yet fully trained,
the recommendation system tends to suggest more random items, resulting in lower accuracy but
higher fairness. As the layers deepen, the accuracy increases, but it also tends to recommend more
unipolar items. Eventually, as the layers approach the last layer, our FairDual model emphasizes
fairness more by adjusting the weights for the weaker groups. This will also help us to better
understand the mechanisms of FairDual.

Performances under different lengths H of item-clicked sequences. In Table 3, we conduct the
empirical experiments to show the effect for the length of item-clicked sequences. The experiments
are conducted on MIND dataset under BigRec backbones.

From the experiments, we can observe that the length of history is a trade-off factor for the methods:
initially, increasing the length improves accuracy and fairness, but once it reaches a peak, performance
begins to drop. We analyze the reason as follows: the length of history sequences indeed influences
performance. Sequences that are too short make it difficult to learn user preferences, while sequences
that are too long increase computational costs and risk hitting the prompt limit of LLMs.
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Table 5: The convergence time (performance stabilizing within 50 steps) of our method compared to
other baselines under BigRec backbones on the MIND dataset.

Model DRO Prop S-DRO IFairLRS FairDual(ours) Improvment

Convergence time 10.1h 11.7h 7.9h 7.1h 5h 28.5%

Table 6: Performances of other fairness metric Gini Index.

Models GINI@5 GINI@10 GINI@20

Prop 0.488 0.488 0.472
DRO 0.511 0.476 0.487
SDRO 0.503 0.478 0.453
IFairLRS 0.458 0.454 0.448
FairDual(ours) 0.444 0.450 0.441

Performances under different sample sizes Q. Intuitively, a larger Q provides a more accurate
gradient estimation but also incurs higher computational costs. We have conducted experiments to
evaluate the impact of Q and will present the results. The results were conducted under the same
settings as the analysis section. The experiments were conducted under BigRec on MIND dataset
with ranking size K = 5.

From the results in Table 4, we observe that increasing the sample value Q leads to improvements in
both accuracy and fairness performance. However, in LLM-based recommender systems, a larger Q
significantly increases training time (with each item requiring an additional 1.5 seconds) and storage
space. Different applications should select appropriate Q values based on their specific accuracy,
fairness requirements, and computational constraints.

K COMPUTATIONAL AND STORAGE COSTS

In Table 5, we measured the convergence time (performance stabilizing within 50 steps) of our
method compared to other baselines under BigRec backbones on MIND dataset.

Firstly, we all have parameters of the same magnitude (i.e., group size parameters (hundred level),
which are in the range of hundreds and negligible compared to the backbone (million level)). Our
method only requires additional space for Q item embeddings and extra training time (1.5Qs).
Applications can trade off Q based on available resources (as discussed in a previous response).

Secondly, as observed in Table 5 of the original paper, although there is an additional time overhead
per round, our convergence speed accelerates by 30% compared to the best baseline. This 30%
improvement in convergence speed is highly significant for industrial applications, along with
enhanced performance.

L PERFORMANCES ON OTHER FAIRNESS METRICS

We test the performances of another fairness metric Gini Index (Do and Usunier, 2022) Compared
to the baselines (Table 6) on MIND datasets. Note that a smaller Gini Index means more fairness.
From the results, we can observe that our model can still perform well on other fairness metrics. We
believe our paper can help other researchers explore its applicability to various loss functions, and
other fairness metrics, which is also our contribution to the communities.

M EFFECT OF POPULARITY BIAS

Since the popularity bias will influence the accuracy estimation in real dataset shown in Figure 3, we
conduct the experiments on a relatively light transformer-based SASRec (Kang and McAuley, 2018a)
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Table 7: Popularity bias effect utilizing Inverse Propensity Score (IPS)-based Xu et al. (2022)
reweighting method.

λ 0.1 1 2 5

NDCG(%)

IPS 0.58 0.58 0.58 0.58
FairDual 0.53 0.60 0.57 0.67
FairDual+IPS 0.59 0.56 0.56 0.58

MMF(%)

IPS 12.63 12.63 12.63 12.63
FairDual 4.50 11.98 13.46 13.76
FairDual+IPS 10.90 12.40 12.40 14.36

backbones and MIND datasets. We apply the Inverse Propensity Score (IPS)-based Xu et al. (2022)
to our method to see whether it can improve our methods.

Table 7 shows the results on K = 5 results. From the results, we can observe that when the λ is
small, adding the IPS will increase the accuracy and fairness with a large margin due to the popularity
bias. However, when λ is large, the FairDual+IPS will not perform very well. This is because IPS
will break the convergence condition of FairDual. Therefore, when λ is large, it is preferable not to
involve IPS. We will include the related experiments and discussion in the Appendix of the revised
paper.
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