
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

Breaking Weight Entanglement: Machine Unlearning with Nonlinearity

Anonymous Authors1

Abstract
Machine Unlearning (MU) seeks to eliminate the
influence of specific training data from a pre-
trained model. One existing approach achieves
unlearning via linear parameter updates by task
arithmetic. However, linear editing parameters
often suffers from the weight entanglement issue.
In this work, we introduce an unlearning frame-
work Mode Connectivity Unlearning (MCU), that
leverages mode connectivity to discover a nonlin-
ear unlearning pathway in parameter space. To
boost both effectiveness and efficiency, we fur-
ther incorporate a parameter masking strategy that
enhances the forgetting process while reducing
computational costs. Additionally, we present an
adaptive mechanism for our unlearning penalty
coefficient, which adaptively balances forgetting
quality and model utility without the need for man-
ual hyperparameter search. Distinct from existing
MU techniques that produce a single unlearning
model, MCU reveals multiple unlearning mod-
els along the pathway. Overall, MCU functions
as a plug-and-play framework that can be inte-
grated into all existing MU methods, consistently
enhancing their unlearning performance.

1. Introduction
Machine Unlearning (MU) is crucial for complying with
privacy regulations and handling user-initiated data deletion.
The most straightforward MU method retrains a model from
scratch after removing the forgetting data, but this incurs
substantial computational cost. To reduce this overhead,
a variety of approximate MU methods (Fan et al., 2023;
Graves et al., 2021; Ilharco et al., 2022; Kurmanji et al.,
2024a; Thudi et al., 2022) have been proposed, aiming to
balance unlearning effectiveness and efficiency.

A prominent direction in MU is task arithmetic, which lin-

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

Dr

Grad

No.

𝜽𝒖∗𝜽𝒐 𝜽𝒑

A
cc

ur
ac

y

t

Effective
Region

Optimal
Model

Filter Reserve

Nonlinear
Pathway

𝜽𝒐 𝜽𝒑

𝜽𝒐

a. Parameter Mask

b. Pathway Searching

𝒍𝒐𝒔𝒔 = 𝒍𝒐𝒔𝒔𝒓 − 	𝜷 · 𝒍𝒐𝒔𝒔𝒇

Grad

Param

𝜽𝒄

Param

Grad

𝑫𝒓

𝒌𝒌𝒓

𝑫𝒓
𝑫𝒇

(𝑫𝒓) (𝑫𝒇)

selected
params

10Mask:

𝑫𝒓

𝑫𝒇
𝑫𝒕

c. Model/Region Searching

𝜽𝒖∗𝜽𝒐 𝜽𝒑

A
cc

ur
ac

y

t

Effective
Region

Optimal
Model

Filter Reserve

Nonlinear
Pathway

𝜽𝒐 𝜽𝒑

𝜽𝒐

a. Parameter Mask

b. Pathway Searching

𝒍𝒐𝒔𝒔 = 𝒍𝒐𝒔𝒔𝒓 − 	𝜷 · 𝒍𝒐𝒔𝒔𝒇

Grad

Param

𝜽𝒄

Param

Grad

𝑫𝒓

𝒌𝒌𝒓

𝑫𝒓
𝑫𝒇

(𝑫𝒓) (𝑫𝒇)

selected
params

10Mask 𝒎:

𝑫𝒓

𝑫𝒇
𝑫𝒕

c. Model/Region Searching

⨀𝒎 ⨀𝒎

⨀𝒎

Figure 1: Overview of our MCU framework. a. Identify a param-
eter mask by first filtering out the top kr proportion of parameters
important to the retaining data, then reserving the top k proportion
of parameters crucial to the forgetting data. b. Explore nonlinear
pathways in the parameter space, where θc serves as the control
point shaping the pathway. c. Locate the optimal unlearning model
and an effective unlearning region along the pathway.

early modifies model parameters by subtracting task vectors
associated with the forgetting data (Ilharco et al., 2022;
Ortiz-Jimenez et al., 2024). However, due to the nonlinear
nature and high-dimensional complexity of neural networks,
such linear updates can interfere with retaining data caused
by weight entanglement issue (Ortiz-Jimenez et al., 2024).
Thus, we try to break free from the constraints of linear up-
dates and instead explore unlearning in a nonlinear manner.
Moreover, most existing MU methods yield only a single
unlearned model, limiting flexibility. A natural question is
whether we can generate multiple unlearning models with-
out repeated training. It enables us to select the solution that
best aligns with our specific priority, such as prioritizing
model utility preservation or forgetting quality.

To address these challenges, we propose a plug-and-play
framework, Mode Connectivity Unlearning (MCU), which
explores MU in a nonlinear manner inspired by mode con-

1



055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

nectivity (Garipov et al., 2018). As illustrated in Figure 1,
MCU begins by constructing a parameter mask to isolate
parameters crucial to forgetting, reducing interference with
retained data (Figure 1a). A nonlinear path is then searched
between the original and pre-unlearning models using our
tailored loss (Figure 1b). Unlike prior work, MCU produces
multiple unlearning models (Figure 1c), offering flexible
trade-offs between forgetting and preserving. Overall, MCU
can be seamlessly integrated with existing MU methods and
consistently improves unlearning performance.

2. Mode Connectivity Unlearning
2.1. Preliminaries and Notations

In the context of MU for image classification, we consider
two unlearning scenarios: random data forgetting and
class-wise forgetting. We use Df ∈ Dtrain to denote the
forgetting data andDr = Dtrain\Df to denote the retaining
data. The test data is denoted as Dt. In the class-wise sce-
nario,Dt = Dtr∪Dtf whereDtr andDtf are test-retaining
data and test-forgetting data respectively. The objective of
our work is to identify a pathway in the parameter space,
where each point along the pathway corresponds to an un-
learning model, denoted by θu.

2.2. Unlearning Pathway Searching

As shown in Figure 1b, one crucial decision is the selec-
tion of two end models on the pathway. Ideally, these two
models should satisfy the following properties for unlearn-
ing: ① One end model should fully preserve model utility;
② The other end model can provide essential unlearning
information and trend. Then we can find an optimal path-
way between two end models, ensuring a balance between
model utility and unlearning effectiveness. Guided by these
insights, two end models in our nonlinear pathway are as
follows:

• Original model θo. The model θo is trained on the
training data Dtrain before unlearning.

• Pre-unlearning model θp. The model θp is obtained
by applying any existing MU method to remove the
influence of forgetting data Df .

The goal of mode connectivity unlearning is to construct
a smooth pathway from θo to θp, ensuring an unlearning
model θu on the pathway can better forget Df while pre-
serving performance on Dr.

Inspired by mode connectivity (Garipov et al., 2018), we
leverage a quadratic Bézier curve to explore a nonlinear
unlearning pathway between model θo and model θp in the
parameter space. The Bézier curve is generally superior
because it offers a smooth and flexible pathway. In our MU

scenario, the quadratic Bézier curve ϕθ(t) between models
θo and θp in parameter space is defined as follows,

ϕθc
(t) = (1−t)2θo+2(1−t)tθc+t2θp, t ∈ [0, 1]. (1)

ϕθc(0) = θo and ϕθc(1) = θp are the original model and
the pre-unlearning model respectively. For values of t be-
tween 0 and 1, it represents a spectrum of potential unlearn-
ing models θu along the pathway. By optimizing this control
model θc, we can shape the trajectory between θo and θp.
It is therefore crucial to design an appropriate loss function
that guides the optimization of θc. This loss must strike
a balance between two goals, ensuring effective forgetting
and preserving the model utility, which leads to our loss
design,

Lmcu = Et∼U(0,1)[L(Dr;ϕθc(t))− β · L(Df ;ϕθc(t))],
(2)

where L(Dr;ϕθc
(t)) is the cross-entropy loss on retaining

data Dr, and β is an unlearning penalty coefficient control-
ling the trade-off between retaining predictive performance
and forgetting quality. U(0, 1) is the uniform distribution
on [0, 1], from which we sample a value t for each training
batch. In each batch, the loss is computed at the specific
point ϕθc

(t) along the pathway, derive gradients with re-
spect to θc, and update only θc accordingly. Note that
the pathway searching process only requires optimizing θc,
while the entire pathway is a simple combination of θo, θc
and θp as defined in Eq. 1.

2.3. Parameter Mask

While the pathway searching process described above is
already efficient, we aim to further improve the searching
efficiency by selectively updating only the most important
parameters. As illustrated in Figure 1a, our parameter mask
strategy consists of two components: filtering based on
Dr and reserving based on Df . The strategy effectively
identifies parameters that are highly influential forDf while
being less critical forDr, ensuring a targeted update process.

Filtering based on Dr. We first utilize the gradient of
the retaining loss with respect to the original model θo on
the retaining dataset Dr. A fraction kr of the parameters
is selected for exclusion, where these parameters exhibit
an importance above a quantile-based threshold γkr

. The
formulated equation is as follows,

mi
r = 0

{∥∇θi
o
L(Dr;θo)∥2
|θi

o|
> γkr

}
, (3)

where mi
r is the binary mask for the i-th parameter in whole

mask m, and ∥·∥2 denotes the L2-norm over each parameter.
L2-norm reflects the Euclidean length of gradient vectors,
making it more sensitive to parameters with larger impacts.
The denominator |θi

o| represents the element number in the

2



110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

i-th parameter of θo, i.e., θi
o, ensuring fair importance calcu-

lation across parameters with different sizes. The element-
wise indicator function 0(· > γkr ) assigns a zero vector to
mi

r if the average importance of this parameter exceeds the
threshold γkr

, and otherwise an all-ones vector.

Reserving based on Df . After removing parameters in-
fluential for Dr, we further refine the mask by reserving
parameters based on the gradient of the forgetting loss,

mi
f = 1

{∥∇θi
o
L(Df ;θo)∥2
|θi

o|
> γk

}
. (4)

Similarly, the threshold γk is determined by selecting the
top-k percentile of normalized gradient L2 norms across
parameters. The element-wise indicator function 1(· > γk)
assigns an all-one vector to the entire i-th parameter θi

o if
its importance exceeds the threshold γk.

The final mask m is represented as,

m = mr & mf , (5)

where & represents the logical operation AND. Thus, the
optimization in the MCU can be formulated as follows,

min
θc⊙m

Lmcu, (6)

where training efficiency is improved by reducing unneces-
sary gradient updates with the mask m.

We evaluate the efficiency and effectiveness of our param-
eter mask on CIFAR-10 using PreResNet-100 with 10%
random data forgetting. We set k = kr = 10% to generate
the mask in our framework with NegGrad+ (Kurmanji et al.,
2024a) as θp. As shown in the left panel of Figure 2, the
parameter mask significantly accelerates backward prop-
agation, achieving a 75.23% reduction in average epoch
runtime. In the right panel, we compare our parameter mask
(solid line) to a 10% random mask (dashed line). The ran-
dom mask causes noticeable performance degradation on
retaining data Dr and testing data Dt, with accuracy drops
of 3.44% and 2.48% at t = 0.5, respectively. In contrast,
the forget accuracy gap is only 1.32% at the same point.
These results demonstrate that our parameter mask improves
training efficiency while maintaining model utility.

2.4. Adaptive Unlearning Penalty Coefficient

We further propose an adaptive strategy for β, which can
avoid trial-and-error cost of hyperparameter selection and
potentially improve our performance. Based on two MU
objectives, we establish the alignment principles behind
adaptive β: ① Preserve model utility on the retaining
dataset: align retaining accuracy (Accu(Dr)) of the un-
learning model with original model’s training accuracy
(Acco(Dtrain)). ② Unlearn the forgetting data as if it

w/o w/
mask

0

10

20

Ti
m

e 
(s

ec
)

0.0 0.25 0.5 0.75 1.0
t

70
76
82
88
94

100

A
cc

ur
ac

y(
%

)

Figure 2: The efficiency and effectiveness of our parameter mask.
‘w/o’ and ‘w/’ represent the results without 10% mask and with
10% mask. The x-axis of the right panel represents the parameter
t along the Bézier curve, while the y-axis corresponds to accuracy.

were never trained: align the unlearning pathway’s forget-
ting accuracy (Accu(Df )) with original model’s validation
accuracy (Acco(Dv)). Objective ② implies the performance
of θu along the unlearning pathway on Df should match
that of θo on unseen data. The Acco(Dtrain) and Acco(Dv)
are constants and accessible, as they are recorded during the
original training. Thus, the three conditions are listed as:

• Condition ➊. When Accu(Df ) ≤ Acco(Dv), it indi-
cates that the model has forgotten Df . In this case,
β = 0 to prevent further forgetting.

• Condition ➋. If Accu(Df ) > Acco(Dv) and the per-
formance degradation on the Dr is more severe than
that on Df , a mild forgetting can be set to β = 0.1.

• Condition ➌. Otherwise, we apply a stronger forget-
ting adjustment with β = 0.5.

The adaptive adjustment of β is formulated as follows,

β =


0, Accu(Df ) ≤ Acco(Dv), (➊)

0.1, Accϕ(Df ) > Acco(Dv) and (➋)
Accϕ(Df )−Acco(Dv)

Acco(Dv)
<

Accϕ(Dr)−Acco(Dtrain)
Acco(Dtrain)

,

0.5, otherwise. (➌)

Unlike fixed β tuning, adaptive β can update dynamically
at every batch to balance forgetting and retaining.

2.5. Optimal Model and Effective Region

As illustrated in Figure 1c, after searching the pathway, a
key step is to identify the optimal unlearning model and the
effective unlearning region along it. Based on the alignment
principles in Section 2.4, we Acco(Dtrain) and Acco(Dv)
as references to compute alignment gaps. These gaps quan-
tify the deviation of each point along the path from desired
behavior, guiding both model selection and region identifi-
cation. The model selection process along the Bézier curve
is conducted during inference, and thus incurs negligible
computational overhead. For optimal model selection, we
use an efficient heuristic: we first evaluate the models at
t = 0.75 and t = 1, and then apply cubic interpolation
to estimate the t value that minimizes the alignment gap.

3



165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Table 1: Unlearning performance of six different pre-unlearning
models in MCUβ . The results are presented in the format a ±
b, with a as the mean and b as the standard deviation from 5
independent trials. The performance gap relative to RT method
is represented in (•). The Avg. Gap is derived by averaging gaps
across UA, RA, TA and MIA. Smaller gaps reflect closer alignment
with the RT model’s performance. Note RTE is reported in minutes
and UA equals 1− accuracy of Df . The results demonstrate that
applying our MCUβ framework to any unlearning method can
significantly enhance unlearning performance.

Methods UA RA TA MIA Avg. Gap RTE

RT 10.54±0.34(0.00) 99.98±0.01(0.00) 89.59±0.22(0.00) 18.41±0.52(0.00) 0.00 105.70

FT 0.42±0.12(10.12) 99.93±0.01(0.05) 90.99±0.13(1.40) 3.71±0.25(14.70) 6.57 5.31
MCUβ-FT 5.62±0.07(4.92) 99.12±0.02(0.86) 89.59±0.10(0.00) 10.68±0.62(7.73) 3.37 9.76

RL 4.14±0.20(6.40) 99.69±0.02(0.29) 90.16±0.09(0.57) 21.93±0.66(3.52) 2.70 6.21
MCUβ-RL 10.54±0.02(0.00) 98.60±0.11(1.38) 89.21±0.08(0.38) 22.48±0.47(4.07) 1.46 12.24

GA 0.06±0.00(10.48) 99.97±0.00(0.01) 90.89±0.01(1.30) 0.98±0.11(17.43) 7.31 0.38
MCUβ-GA 3.84±0.01(6.70) 98.80±0.05(1.18) 88.86±0.33(0.73) 13.22±0.37(5.19) 3.45 5.03
NegGrad+ 7.03±0.32(3.51) 98.63±0.19(1.35) 89.26±0.23(0.33) 11.71±0.38(6.70) 2.97 2.96

MCUβ-NegGrad+ 10.29±0.24(0.25) 98.69±0.04(1.29) 89.11±0.13(0.48) 16.45±0.89(1.96) 1.00 6.82
Salun 6.67±0.26(3.87) 97.87±0.14(2.11) 90.54±0.19(0.95) 35.45±0.57(17.04) 5.99 6.38

MCUβ-Salun 10.49±0.07(0.05) 97.55±0.10(2.43) 89.21±0.23(0.38) 30.30±1.17(11.89) 3.68 11.35
NegTV 2.36±1.12(8.18) 99.08±0.60(0.90) 88.53±0.88(1.06) 4.14±0.29(14.27) 6.10 0.70

MCUβ-NegTV 8.11±0.60(2.43) 98.01±0.32(1.97) 87.74±0.33(1.85) 11.48±0.18(6.93) 3.30 5.67

This is motivated by our empirical observation that optimal
models consistently lie in the interval t ∈ [0.75, 1], allow-
ing us to avoid exhaustive evaluation over the entire path.
For effective region identification, we uniformly sample 20
points along t ∈ [0, 1] and fit a cubic interpolation curve
to the gap values. Any point on this curve with a smaller
alignment gap than the pre-unlearning model (i.e., at t = 1)
is considered part of the effective unlearning region.

3. Experiments
3.1. Experiment Setups

We focus on the image classification task for both random
data forgetting and class-wise forgetting. Three datasets and
architectures are evaluated: CIFAR-10 on PreResNet-110,
ImageNet-100 on ViT, and Tiny-ImageNet on VGG-16-
BN. We compare our method against seven MU methods:
Retrain (RT), Finetune (FT) (Warnecke et al., 2021), Ran-
dom Label (RL) (Graves et al., 2021), Gradient Ascent
(GA) (Thudi et al., 2022), NegGrad+ (Kurmanji et al.,
2024a), SalUn (Fan et al., 2023), NegTV (Garipov et al.,
2018). We denote our framework with fixed β as MCU1

and with adaptive β as MCUβ. Unless otherwise stated, the
pre-unlearning model in our framework is NegGrad+. We
evaluate all methods across UA (Unlearning Accuracy, 1−
accuracy of forgetting data Df ), RA (Retaining Accuracy),
TA (Test Accuracy), MIA (Membership Inference Attack),
and RTE (Running Time Efficiency).

3.2. Experiment Results

We show the experiments on CIFAR-10 with PreResNet-110
under 10% random data forgetting. See additional results in
Tables 2-4 with other datasets, architectures and forgetting

1The best results achieved through hyperparameter β search.

0.0 0.25 0.5 0.75 1.0
t

020406080100

A
cc

ur
ac

y(
%

)

0.03

Df Dtf Dr Dt Effective Region

0.0 0.25 0.5 0.75 1.0
t

80
84
88
92
96

100

A
cc

ur
ac

y(
%

)

0.67

(a) 10% Random Data

0.0 0.25 0.5 0.75 1.0
t

0
20
40
60
80

100

A
cc

ur
ac

y(
%

)

0.03

(b) Class-wise

Figure 3: Effective unlearning region on MCUβ . The marker
★ highlights the position with the minimum average gap from
RT, with the accompanying numerical value indicating the exact
average accuracy gap of Df , Dr and Dt (and Dtf for class-wise
forgetting). The dotted line represents the RT method’s accuracy,
serving as a reference. The shaded gray area denotes the effective
unlearning region, where models achieve better unlearning perfor-
mance than the pre-unlearning model.

scenarios in Appedndix D.

Overall Performance. In this experiment, we use six MU
methods as pre-unlearning models in our MCUβ framework.
Table 1 compares the performance of these methods before
and after incorporating the MCUβ . The results demonstrate
that MCUβ significantly enhances the performance of all
MU methods. On average, the Avg. Gap is reduced by
49.71%, with particularly notable improvements in the UA
metric, i.e., forgetting quality. We also present the MCU and
MCUβ results in Tables 2-4 in Appendix D, which shows
the effectiveness of our adaptive β.

Effective Unlearning Region. Figure 3 shows visualiza-
tion results of MCUβ on CIFAR-10 under both 10% ran-
dom data forgetting and class-wise scenarios. It validates
that MCUβ not only identifies a single effective unlearn-
ing model but also discovers a substantial region along the
Bézier pathway where multiple models in this pathway ex-
hibit effective unlearning. Within this effective unlearning
region, models achieve superior unlearning performance
compared to the pre-unlearning model. MCUβ provides
greater flexibility since different effective unlearning mod-
els can be selected based on task-specific requirements. For
example, in Figure 3a, models to the right of marker ★
preserve better predictive performance, while those to the
left demonstrate stronger forgetting efficacy.

4. Conclusion
In this work, we propose a novel framework MCU, lever-
aging mode connectivity to search nonlinear pathway in
parameter space for unlearning. Unlike traditional methods
that identify only a single unlearning model, MCU uncovers
a spectrum of unlearning models along the pathway and is
free from empirical hyperparameter tuning. As a plug-and-
play framework, MCU seamlessly integrates with existing
MU methods and improves their unlearning efficacy.

4



220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

References
Cha, S., Cho, S., Hwang, D., Lee, H., Moon, T., and

Lee, M. Learning to unlearn: Instance-wise unlearn-
ing for pre-trained classifiers. In Proceedings of the
AAAI conference on artificial intelligence, volume 38,
pp. 11186–11194, 2024.

Chen, M., Zhang, Z., Wang, T., Backes, M., Humbert,
M., and Zhang, Y. When machine unlearning jeopar-
dizes privacy. In Proceedings of the 2021 ACM SIGSAC
conference on computer and communications security,
pp. 896–911, 2021.

Chundawat, V. S., Tarun, A. K., Mandal, M., and Kankan-
halli, M. Can bad teaching induce forgetting? un-
learning in deep networks using an incompetent teacher.
In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 37, pp. 7210–7217, 2023a.

Chundawat, V. S., Tarun, A. K., Mandal, M., and Kankan-
halli, M. Zero-shot machine unlearning. IEEE
Transactions on Information Forensics and Security, 18:
2345–2354, 2023b.

Draxler, F., Veschgini, K., Salmhofer, M., and Hamprecht,
F. Essentially no barriers in neural network energy land-
scape. In International conference on machine learning,
pp. 1309–1318. PMLR, 2018.

Fan, C., Liu, J., Zhang, Y., Wong, E., Wei, D., and Liu,
S. Salun: Empowering machine unlearning via gradient-
based weight saliency in both image classification and
generation. arXiv preprint arXiv:2310.12508, 2023.

Foster, J., Schoepf, S., and Brintrup, A. Fast machine un-
learning without retraining through selective synaptic
dampening. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 38, pp. 12043–12051,
2024.

Garipov, T., Izmailov, P., Podoprikhin, D., Vetrov, D. P.,
and Wilson, A. G. Loss surfaces, mode connectivity, and
fast ensembling of dnns. Advances in neural information
processing systems, 31, 2018.

Goel, S., Prabhu, A., Sanyal, A., Lim, S.-N., Torr, P., and Ku-
maraguru, P. Towards adversarial evaluations for inexact
machine unlearning. arXiv preprint arXiv:2201.06640,
2022.

Golatkar, A., Achille, A., and Soatto, S. Eternal sunshine of
the spotless net: Selective forgetting in deep networks. In
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 9304–9312, 2020.

Graves, L., Nagisetty, V., and Ganesh, V. Amnesiac ma-
chine learning. In Proceedings of the AAAI Conference

on Artificial Intelligence, volume 35, pp. 11516–11524,
2021.

Guo, C., Goldstein, T., Hannun, A., and Van Der Maaten,
L. Certified data removal from machine learning models.
arXiv preprint arXiv:1911.03030, 2019.

Huang, Y. and Canonne, C. L. Tight bounds for ma-
chine unlearning via differential privacy. arXiv preprint
arXiv:2309.00886, 2023.

Huang, Z., Cheng, X., Zheng, J., Wang, H., He, Z., Li,
T., and Huang, X. Unified gradient-based machine un-
learning with remain geometry enhancement. Advances
in Neural Information Processing Systems, 37:26377–
26414, 2025.

Ilharco, G., Ribeiro, M. T., Wortsman, M., Gururan-
gan, S., Schmidt, L., Hajishirzi, H., and Farhadi, A.
Editing models with task arithmetic. arXiv preprint
arXiv:2212.04089, 2022.

Iurada, L., Ciccone, M., Tommasi, T., et al. Ef-
ficient model editing with task-localized sparse
fine-tuning. In LEARNING REPRESENTATIONS.
INTERNATIONAL CONFERENCE. 13TH
2025.(ICLR 2025). ICLR, 2025.

Kurmanji, M., Triantafillou, E., and Triantafillou, P. Ma-
chine unlearning in learned databases: An experimental
analysis. Proc. ACM Manag. Data, 2(1), March 2024a.
doi: 10.1145/3639304. URL https://doi.org/10.
1145/3639304.

Kurmanji, M., Triantafillou, P., Hayes, J., and Triantafillou,
E. Towards unbounded machine unlearning. Advances
in neural information processing systems, 36, 2024b.

Liu, Y., Sun, C., Wu, Y., and Zhou, A. Unlearning with
fisher masking. arXiv preprint arXiv:2310.05331, 2023.

Micaelli, P. and Storkey, A. J. Zero-shot knowledge trans-
fer via adversarial belief matching. Advances in Neural
Information Processing Systems, 32, 2019.

Ortiz-Jimenez, G., Favero, A., and Frossard, P. Task
arithmetic in the tangent space: Improved editing of
pre-trained models. Advances in Neural Information
Processing Systems, 36, 2024.

Ren, J., Chen, P.-Y., and Wang, R. Revisiting mode con-
nectivity in neural networks with bezier surface. In
The Thirteenth International Conference on Learning
Representations.

Shi, Y. and Wang, R. Redefining machine unlearning: A
conformal prediction-motivated approach. arXiv preprint
arXiv:2501.19403, 2025.

5

https://doi.org/10.1145/3639304
https://doi.org/10.1145/3639304


275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

Tarun, A. K., Chundawat, V. S., Mandal, M., and Kankan-
halli, M. Fast yet effective machine unlearning. IEEE
Transactions on Neural Networks and Learning Systems,
2023.

Thudi, A., Deza, G., Chandrasekaran, V., and Papernot,
N. Unrolling sgd: Understanding factors influenc-
ing machine unlearning. In 2022 IEEE 7th European
Symposium on Security and Privacy (EuroS&P), pp.
303–319. IEEE, 2022.

Warnecke, A., Pirch, L., Wressnegger, C., and Rieck, K.
Machine unlearning of features and labels. arXiv preprint
arXiv:2108.11577, 2021.

Wei, S., Zhang, M., Zha, H., and Wu, B. Shared adversarial
unlearning: Backdoor mitigation by unlearning shared
adversarial examples. Advances in Neural Information
Processing Systems, 36:25876–25909, 2023.

6



330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

Appendix

A. Related Work
A.1. Machine Unlearning

Complete retraining for MU involves retraining from scratch after removing forgetting data, but its high cost has led to the
development of efficient approximate unlearning techniques. Some works (Fan et al., 2023; Graves et al., 2021; Kurmanji
et al., 2024a; Shi & Wang, 2025; Tarun et al., 2023; Thudi et al., 2022) focus on designing loss functions to achieve
forgetting. Knowledge distillation-based methods (Chundawat et al., 2023a;b; Goel et al., 2022; Kurmanji et al., 2024b;
Micaelli & Storkey, 2019) have emerged as promising approaches, where a student model is trained to mimic the behavior
of the original model on the retaining dataset while excluding the knowledge of forgetting data. Several works (Foster
et al., 2024; Golatkar et al., 2020; Liu et al., 2023) leverage the Fisher Information Matrix to identify and modify the most
influential parameters associated with the forgetting data, enabling more targeted and efficient unlearning. Additionally,
adversarial attacks (Cha et al., 2024; Chen et al., 2021; Wei et al., 2023) and differential privacy (Guo et al., 2019; Huang &
Canonne, 2023) have also been explored as promising techniques for MU.

One pivotal advance came from task arithmetic (Ilharco et al., 2022), which enabled efficient data removal by applying
negation operations. Building on this, a neural tangent kernel-based linear negation method was introduced to improve task
arithmetic by constraining model updates to the tangent space (Ortiz-Jimenez et al., 2024). However, the entanglement issue
still exists as they cannot guarantee that the task vector’s influence localizes solely on forgetting data (see Appendix B for
details). Overall, this oversimplified assumption of linear parameter updating fails to account for the complex and nonlinear
characteristics of neural networks’ loss landscapes and suffers from a weight entanglement issue.

In machine unlearning, existing parameter mask approaches, such as SalUn (Fan et al., 2023), primarily focus on identifying
parameters that have a significant impact on the forgetting data. However, these parameters may also be crucial for the
predictive performance on retaining data, which leads to unintended degradation in model utility. Subsequently, works (Foster
et al., 2024; Huang et al., 2025) proposed weight saliency maps that jointly consider forgetting and retaining data based
on the Fisher Information Matrix, which are computationally expensive. Moreover, all these parameter masking strategies
operate at the element level within individual parameters. In the element level parameter mask, gradient computations are
still required for all parameters during training, which limits practical efficiency gains.

A.2. Mode Connectivity

Mode connectivity refers to the existence of low-loss pathways between different local minima in a neural network’s loss
landscape. It has been observed that neural networks trained on the same dataset but initialized differently can be connected
by a smooth, low-loss curve in parameter space (Garipov et al., 2018). This phenomenon has been further explored,
demonstrating that such connectivity generalizes across architectures and datasets, forming high-dimensional manifolds
of functionally equivalent models (Draxler et al., 2018). Recent work has extended the mode connectivity concept from
Bézier curve to surface, enabling the connection of multiple networks (Ren et al.). Given its ability to identify meaningful
pathways in parameter space, mode connectivity provides an efficient and effective approach for unlearning.

B. Weight Entanglement in Linear MU Method
In this section, we analyze the weight entanglement issue that arises in linear MU methods, i.e., task arithmetic (Ilharco
et al., 2022; Iurada et al., 2025; Ortiz-Jimenez et al., 2024). Let f : X ×Θ→ Y be a neural network that takes input x ∈ X
and is parameterized by θ ∈ Θ. We assume X ⊆ Rd, Θ ⊆ Rm, and Y ⊆ Rc. Given the original model parameters θo ∈ Rm,
a fine-tuned model with parameters θf

ft is trained on the forgetting dataset Df .

The unlearning task vector is defined as the difference between the fine-tuned and original model parameters, i.e., τf =

θf
ft − θo where θf

ft is fine-tuned on forgetting data Df based on θo. By task arithmetic, it is easy to manipulate the output
behavior of the model by adding or subtracting task vectors. Thus, in our unlearning scenario, the unlearning model can be
defined with the negation task vector as:

f(x;θu) = f(x;θo − ατf ) = f
(
x;θo − α(θf

ft − θo)
)
, (7)

where α is a coefficient that controls forgetting level. This formulation implicitly requires that subtracting the task vector

7



385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

τf does not affect the model’s predictions on inputs outside the forgetting data Df . In other words, τf should not encode
any information about data outside Df , i.e., retaining data Dr. Therefore, the condition for this equation to hold can be
formalized as:

f (x;θo − ατf ) =

{
f(x;θo), x ∈ Dr

f(x;θo − ατf ), x ∈ Df .
(8)

This condition requires that the task vector τf in Eq. 7 only influences the model on the forgetting dataset, leaving the
performance on retaining data Dr unaffected. However, task vectors obtained via simple fine-tuning on Df do not guarantee
this condition, which faces a weight entanglement issue.

To address this, the model must exhibit a form of weight disentanglement. Ideally, the model should behave as a composition
of spatially localized components, each responsible for a specific data domain. For our unlearning case, this means the
function should decompose as:

f(x;θo − ατf )

= f(x;θo)1(x ∈ Dr) + f(x;θo − ατf )1(x ∈ Df )

= go(x) + gf (x;−ατf ), (9)

The term go(x) := f(x;θo) · 1(x ∈ Dr) denotes spatially localized components for retaining data domain, and go(x) = 0
for x ∈ Df . The term gf (x;−ατf ) := f(x;θo − ατf ) · 1(x ∈ Df ) captures the influence of the unlearning task vector,
localized within the forgetting data domain, and gf (x;ατf ) = 0 for x ∈ Dr. This decomposition encapsulates the principle
that only data within Df should be influenced by τf .

To make this decomposition tractable, linearizing the network around θo via a first-order Taylor expansion is attempted to
realize it by :

f(x;θo − ατf )

≈ flin(x;θo − ατf ) = f(x;θo)− ατ⊤
f ∇θf(x;θo). (10)

This linearized model expresses the output as a combination of the original prediction and a perturbation determined by the
gradient of f at θo.

While this form resembles the disentangled decomposition in Eq. 9, this resemblance is superficial. The disentanglement
condition requires that the influence of τf vanishes for all inputs not in Df . However, the term τ⊤

f ∇θf(x;θo) is generally
non-zero for arbitrary x ∈ Dr, since neither τf nor the gradient are guaranteed to be localized. That is, the linearized update
will affect predictions on Dr, unless ∇θf(x;θo) itself vanishes for x ∈ Dr, or unless τf lies in the nullspace of these
gradients.

Therefore, we conclude that both the standard task vector approach (Ilharco et al., 2022) and the linearized task vector
method (Ortiz-Jimenez et al., 2024) fail to ensure weight disentanglement for ideal unlearning.

C. Implementation Details
CIFAR-10 on PreResNet-100. We train the original model and RT model for 200 epochs using the SGD optimizer with a
cosine-scheduled learning rate initialized at 0.01. For the FT, RL, and SalUn methods, they are performed for 10 epochs
with a learning rate of 0.01. The GA and NegGrad+ methods are trained for 5 epochs with a learning rate of 0.01. In the
case of NegTV, the model undergoes a finetune model on Df for 10 epochs, and the scaling coefficient α is set to 0.9 for
random data forgetting and 0.2 for class-wise forgetting. For both MCUβ and MCU, random data forgetting is performed
for 10 epochs, whereas class-wise forgetting is conducted for 5 epochs, both with a learning rate of 0.01.

ImageNet-100 on ViT. We utilize a pretrained ViT and fine-tune 30 epochs with a learning rate of 0.001 to get the original
model. The RT method follows the same setting as the original model. For FT, RL, and SalUn, training is performed for 5
epochs, while GA and NegGrad+ are trained for 2 epochs. Similarly, the finetuning model for the NegTV method is trained
5 epochs with a learning rate of 0.001 and a coefficient α of 0.9. For MCUs, they are trained for 2 epochs.

Tiny-ImageNet on VGG-16-BN. We train both the original model and the RT model for 100 epochs with a learning rate
of 0.1. The FT, RL, and SalUn methods undergo training for 10 epochs with a learning rate of 0.01, while the GA and

8



440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

Table 2: Overall performance of MU methods for 10% random data forgetting in three datasets. The results are presented in the
format a± b, with a as the mean and b as the standard deviation from 5 independent trials. The performance gap relative to RT method is
represented in (•). The Avg. Gap is derived by averaging gaps across accuracy metrics, UA, RA, TA and MIA. Smaller gaps reflect closer
alignment with the RT model’s performance. Note RTE is reported in minutes and UA equals 1− accuracy of Df .

Methods UA RA TA MIA Avg. Gap RTE

CIFAR-10 with PreResNet-110

RT 10.54±0.34(0.00) 99.98±0.01(0.00) 89.59±0.22(0.00) 18.41±0.52(0.00) 0.00 105.70
FT 0.42±0.12(10.12) 99.93±0.01(0.05) 90.99±0.13(1.40) 3.71±0.25(14.70) 6.57 5.31
RL 4.14±0.20(6.40) 99.69±0.02(0.29) 90.16±0.09(0.57) 21.93±0.66(3.52) 2.70 6.21
GA 0.06±0.00(10.48) 99.97±0.00(0.01) 90.89±0.01(1.30) 0.98±0.11(17.43) 7.31 0.38

NegGrad+ 7.03±0.32(3.51) 98.63±0.19(1.35) 89.26±0.23(0.33) 11.71±0.38(6.70) 2.97 2.96
SalUn 6.67±0.26(3.87) 97.87±0.14(2.11) 90.54±0.19(0.95) 35.45±0.57(17.04) 5.99 6.38
NegTV 2.36±1.12(8.18) 99.08±0.60(0.90) 88.53±0.88(1.06) 4.14±0.29(14.27) 6.10 0.70
MCU 9.52±0.04(1.02) 98.97±0.01(1.01) 89.00±0.03(0.59) 16.33±0.93(2.08) 1.18 6.80

MCUβ 10.29±0.24(0.25) 98.69±0.04(1.29) 89.11±0.13(0.48) 16.45±0.89(1.96) 1.00 6.82

ImageNet-100 with ViT

RT 11.63±0.23(0.00) 91.93±0.01(0.00) 87.83±0.01(0.00) 13.77±0.42(0.00) 0.00 525.72
FT 8.62±0.01(3.01) 92.21±0.07(0.28) 87.74±0.18(0.09) 10.88±0.43(2.89) 1.57 82.23
RL 9.53±0.15(2.10) 92.06±0.02(0.13) 87.82±0.10(0.01) 24.32±0.35(10.55) 3.20 205.73
GA 8.96±0.89(2.67) 91.15±0.58(0.78) 87.53±0.37(0.30) 10.50±0.07(3.27) 1.76 6.71

NegGrad+ 13.15±0.10(1.52) 91.71±0.03(0.22) 87.37±0.07(0.46) 16.21±0.30(2.44) 1.16 63.93
SalUn 9.38±0.13(2.25) 91.94±0.03(0.01) 87.73±0.13(0.10) 24.29±1.00(10.52) 3.22 170.34
NegTV 10.17±0.10(1.46) 91.33±0.09(0.60) 87.24±0.04(0.59) 12.25±0.21(1.52) 1.04 11.02
MCU 11.44±0.04(0.19) 92.02±0.02(0.09) 87.62±0.08(0.21) 16.33±0.18(2.56) 0.76 103.47

MCUβ 11.63±0.08(0.00) 91.92±0.10(0.01) 87.70±0.11(0.13) 16.21±0.31(2.44) 0.65 103.52

Tiny-ImageNet with VGG-16-BN

RT 45.45±0.02(0.00) 99.52±0.02(0.00) 55.59±0.17(0.00) 55.79±0.17(0.00) 0.00 37.46
FT 5.76±0.07(39.69) 99.34±0.02(0.18) 56.25±0.10(0.66) 15.95±0.41(39.84) 20.09 3.80
RL 38.59±0.25(6.86) 99.03±0.02(0.49) 53.87±0.32(1.72) 86.53±0.29(30.74) 9.95 13.33
GA 5.17±0.07(40.28) 96.11±0.04(3.41) 53.66±0.02(1.93) 7.89±0.30(47.90) 23.38 0.32

NegGrad+ 51.06±12.91(5.61) 83.22±5.81(16.30) 46.74±3.00(8.85) 51.97±1.30(3.82) 8.65 6.58
SalUn 36.61±0.23(8.84) 99.03±0.03(0.49) 54.04±0.35(1.55) 85.37±0.41(29.58) 10.12 13.79
NegTV 0.81±0.01(44.64) 99.35±0.02(0.17) 56.85±0.03(1.26) 4.49±0.20(51.30) 24.34 0.58
MCU 42.42±1.23(3.03) 93.32±0.33(6.20) 52.53±0.15(3.06) 44.43±1.41(11.36) 5.91 10.77

MCUβ 49.92±0.72(4.47) 92.88±0.19(6.64) 52.92±0.21(2.67) 46.90±0.07(8.89) 5.67 10.83

NegGrad+ methods are trained for 5 epochs. The NegTV method finetunes the model on forgetting data Df for 10 epochs
with a learning rate of 0.01. We observe that increasing the coefficient α of NegTV causes a substantial degradation in
both RA and TA. To preserve model performance, we set α to 0.1. For MCUs, training is conducted over 5 epochs with a
learning rate of 0.01.

Additional Details. All our experiments are conducted on a single Tesla V100 GPU. In our setup, we split the original
test set into 10% for Dv and 90% for Dt. We only use 50% of the retaining data during our MCU training process. The
hyperparameters k and kr are set to 0.5 and 0.1, respectively. For searching the optimal model on the curve, we obtain
single models at t = 0.75 and 1 first. Then we interpolate to find the optimal model according to the approach in section 2.
For searching an effective region, we obtained 20 single models along the pathway.

D. Additional Experimental Results
Additional Performance. We evaluate the performance of seven MU baselines and our framework MCU and MCUβ .
Tables 2, 3 and 4 present the results under 10% random data forgetting, 20% random data forgetting and class-wise forgetting
scenario, respectively. These findings consistently align with our previous analysis, further substantiating the effectiveness
of our MCU framework.

Under comprehensive metrics, both MCU and MCUβ consistently exhibit the top two overall performances under both
random data forgetting and class-wise forgetting. Notably, in the class-wise forgetting scenario, MCUβ performs nearly on
par with the RT method. Additionally, MCUβ achieves superior overall performance compared to MCU, validating the
effectiveness of our proposed adaptive β strategy. Unlike the fixed β that requires extensive tuning, the adaptive β approach

9



495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

Table 3: Overall performance of MU methods for 20% random data forgetting. The table adopts the same format as Table 2.

Methods UA RA TA MIA Avg. Gap RTE

CIFAR-10 with PreResNet-110

RT 11.17±0.08(0.00) 99.97±0.01(0.00) 88.92±0.17(0.00) 19.03±0.28(0.00) 0.00 93.75
FT 0.34±0.05(10.83) 99.94±0.01(0.03) 90.89±0.14(1.97) 3.43±0.10(15.60) 7.11 4.72
RL 3.24±0.14(7.93) 99.34±0.04(0.63) 90.24±0.17(1.32) 23.64±0.27(4.61) 3.62 7.83
GA 0.03±0.00(11.14) 99.98±0.00(0.01) 90.86±0.01(1.94) 0.80±0.05(18.23) 7.83 0.65

NegGrad+ 5.22±0.16(5.95) 98.51±0.08(1.46) 89.32±0.13(0.40) 10.03±0.32(9.00) 4.20 2.96
SalUn 3.87±0.23(7.30) 98.76±0.04(1.21) 89.95±0.13(1.03) 24.94±0.49(5.91) 3.86 7.96
NegTV 3.33±0.35(7.84) 98.27±0.12(1.70) 86.86±0.32(2.06) 6.83±0.21(12.20) 5.95 1.28
MCU 7.21±0.03(3.96) 98.20±0.10(1.77) 88.23±0.12(0.69) 13.64±0.57(5.39) 2.95 6.88

MCUβ 8.04±0.03(2.50) 97.90±0.01(2.08) 88.68±0.14(0.91) 13.42±0.78(5.61) 2.78 6.92

ImageNet-100 with ViT

RT 11.89±0.00(0.00) 92.08±0.00(0.00) 88.04±0.04(0.00) 14.47±0.05(0.00) 0.00 837.96
FT 8.87±0.14(3.02) 92.32±0.01(0.24) 87.75±0.11(0.29) 10.53±0.91(3.94) 1.87 84.88
RL 9.54±0.10(2.35) 91.85±0.04(0.23) 87.83±0.11(0.21) 29.43±2.67(14.96) 4.44 245.60
GA 12.42±2.08(0.53) 87.68±2.25(4.40) 84.99±1.81(3.05) 12.12±1.05(2.35) 2.58 59.57

NegGrad+ 12.12±0.89(0.23) 91.67±0.27(0.41) 86.86±0.42(1.18) 15.63±0.45(1.16) 0.74 85.96
SalUn 8.85±0.88(3.04) 91.67±0.29(0.41) 87.75±0.29(0.29) 22.65±0.00(8.18) 2.98 225.75
NegTV 10.06±0.04(1.83) 91.47±0.05(0.61) 87.11±0.17(0.93) 13.07±0.29(1.40) 1.19 22.29
MCU 11.78±0.12(0.11) 91.06±0.03(1.02) 87.22±0.11(0.82) 14.89±0.22(0.42) 0.59 150.57

MCUβ 10.98±0.07(0.91) 92.06±0.10(0.02) 87.40±0.14(0.64) 14.58±0.18(0.11) 0.42 149.88

Tiny-ImageNet with VGG-16-BN

RT 46.72±0.25(0.00) 99.65±0.01(0.00) 54.10±0.06(0.00) 57.81±0.03(0.00) 0.00 33.73
FT 5.44±0.03(41.28) 99.44±0.01(0.21) 56.53±0.11(2.43) 15.85±0.16(41.96) 21.47 4.20
RL 30.49±0.39(16.23) 98.77±0.03(0.88) 52.61±0.19(1.49) 83.52±0.45(25.71) 11.08 14.11
GA 4.42±0.14(42.30) 95.91±0.13(3.74) 53.60±0.08(0.50) 7.83±0.19(49.98) 24.13 0.50

NegGrad+ 45.02±0.70(1.71) 85.23±0.31(14.42) 47.55±0.27(6.55) 40.13±0.11(17.68) 10.09 4.22
SalUn 39.55±0.01(7.17) 97.66±0.04(1.99) 53.32±0.29(0.78) 86.07±0.36(28.26) 9.55 13.73
NegTV 1.85±0.96(44.87) 98.81±0.54(0.84) 56.04±0.69(1.94) 6.95±1.83(50.86) 24.63 0.97
MCU 38.38±0.09(8.34) 97.73±0.18(1.92) 52.35±0.12(1.75) 47.25±1.12(10.56) 5.64 9.78

MCUβ 44.72±0.06(2.00) 96.94±0.07(2.71) 50.75±0.25(3.35) 45.25±0.50(12.56) 5.16 8.44

dynamically adjusts during the training process, ensuring an excellent balance between forgetting and retaining performance.
The adaptive β not only simplifies the training process but also enhances the effectiveness of our MCU framework.

The results highlight the superiority of nonlinear unlearning over the linear method NegTV, especially in the class-wise
scenario in CIFAR-10 and Tiny-ImageNet. In our experiments of the class-wise scenario, we attempted to optimize
NegTV by extensively tuning its scaling hyperparameter, but encountered a persistent dilemma: NegTV either resulted in
under-forgetting (failing to adequately remove the influence of the forgetting class) or over-forgetting (excessively degrading
model performance). This stark trade-off highlights the inherent challenge of weight entanglement in linear approaches,
which struggle to achieve the balance required for effective class-wise unlearning.

As a strong baseline, SalUn and RL is generally second only to MCUs and performs especially well in the class-wise
forgetting scenario. However, SalUn and RL tend to exhibit overly strong resistance to MIA, often deviating significantly
from RT in terms of membership privacy. While higher MIA efficacy is typically desirable for privacy, in the context of MU,
the goal is to align with the RT baseline rather than excessively suppress MIA scores. Excessive deviation from RT in MIA
efficacy could indicate a shift in model behavior that may introduce unintended privacy risks, as adversaries might exploit
this shift to infer whether unlearning has occurred.

In terms of RTE, our methods remain competitive with baselines. The total runtime of the MCU mainly consists of
three components: pre-unlearning model training, curve training, and optimal model selection. Taking 10% random data
forgetting on CIFAR-10 dataset as an example, these steps take 2.96, 2.76, and 1.1 minutes, respectively. When served as a
plug-and-play enhancement to existing MU methods, MCU requires only 2.76 additional minutes on average in this case.
For class-wise forgetting, MCUs demonstrate significantly higher efficiency, as it requires fewer training epochs to achieve
strong performance.

10



550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

Table 4: Unlearning performance of MU methods for class-wise forgetting on CIFAR-10 with PreResNet-110. The table adopts the
same format as Table 2.

Methods UA UAtest RA TA MIA Avg. Gap RTE

CIFAR-10 with PreResNet-110

RT 100.00±0.00(0.00) 100.00±0.00(0.00) 99.98±0.00(0.00) 90.37±0.08(0.00) 100.00±0.00(0.00) 0.00 104.93
FT 18.53±1.65(81.47) 24.63±2.75(75.37) 99.94±0.02(0.04) 91.01±0.10(0.64) 43.18±3.26(56.82) 42.87 5.52
RL 100.00±0.00(0.00) 100.00±0.00(0.00) 96.67±0.45(3.31) 87.81±0.61(2.56) 100.00±0.00(0.00) 1.17 6.80
GA 85.01±0.19(14.99) 88.50±0.08(11.50) 90.55±0.40(9.43) 80.90±0.40(9.47) 86.27±0.07(13.73) 11.82 0.40

NegGrad+ 99.94±0.05(0.06) 100.00±0.00(0.00) 98.07±0.25(1.91) 87.25±0.28(3.12) 99.97±0.04(0.03) 1.02 2.95
SalUn 100.00±0.00(0.00) 100.00±0.00(0.00) 99.81±0.01(0.17) 90.34±0.30(0.03) 100.00±0.00(0.00) 0.04 6.97
NegTV 25.28±4.92(74.72) 31.95±5.35(68.05) 93.03±0.04(6.95) 82.43±0.22(7.94) 29.05±3.75(70.95) 45.72 0.71
MCU 99.96±0.01(0.04) 100.00±0.00(0.00) 99.80±0.01(0.18) 90.37±0.03(0.00) 100.00±0.00(0.00) 0.04 7.27

MCUβ 100.00±0.00(0.00) 100.00±0.00(0.00) 99.85±0.00(0.13) 90.37±0.03(0.00) 100.00±0.00(0.00) 0.03 7.29

ImageNet-100 with ViT

RT 100.00±0.00(0.00) 100.00±0.00(0.00) 92.01±0.08(0.00) 88.17±0.11(0.00) 100.00±0.00(0.00) 0.00 606.93
FT 80.69±2.62(19.31) 83.00±1.00(17.00) 92.33±0.04(0.32) 87.82±0.04(0.35) 83.27±3.81(16.73) 10.74 100.68
RL 96.15±0.46(3.85) 100.00±0.00(0.00) 92.21±0.07(0.20) 88.10±0.04(0.07) 100.00±0.00(0.00) 0.82 200.23
GA 100.00±0.00(0.00) 100.00±0.00(0.00) 81.42±1.99(10.59) 78.11±2.03(10.06) 100.00±0.00(0.00) 4.13 0.76

NegGrad+ 97.46±1.34(2.54) 99.00±1.00(1.00) 92.17±0.03(0.16) 87.90±0.06(0.27) 96.58±0.27(3.42) 1.48 69.14
SalUn 95.35±0.88(4.65) 100.00±0.00(0.00) 92.06±0.09(0.05) 88.01±0.01(0.16) 100.00±0.00(0.00) 0.97 174.67
NegTV 97.85±0.15(2.15) 100.00±0.00(0.00) 91.39±0.02(0.62) 87.60±0.02(0.57) 99.15±0.00(0.85) 0.84 1.24
MCU 100.00±0.00(0.00) 100.00±0.00(0.00) 92.32±0.03(0.21) 87.92±0.11(0.25) 100.00±0.00(0.00) 0.09 105.49

MCUβ 100.00±0.00(0.00) 100.00±0.00(0.00) 92.18±0.05(0.17) 88.00±0.09(0.17) 100.00±0.00(0.00) 0.07 98.12

Tiny-ImageNet with VGG-16-BN

RT 100.00±0.00(0.00) 100.00±0.00(0.00) 99.34±0.03(0.00) 56.94±0.11(0.00) 100.00±0.00(0.00) 0.00 42.06
FT 74.27±2.45(25.73) 78.67±5.25(21.33) 99.29±0.02(0.05) 56.71±0.12(0.23) 90.53±2.07(9.47) 11.36 4.29
RL 98.87±1.04(1.13) 100.00±0.00(0.00) 98.83±0.01(0.51) 56.52±0.10(0.42) 100.00±0.00(0.00) 0.41 7.24
GA 91.80±0.59(8.20) 87.33±0.94(12.67) 94.75±0.06(4.59) 52.86±0.05(4.08) 96.60±0.16(3.40) 6.59 0.13

NegGrad+ 94.76±1.50(5.24) 93.60±3.67(6.40) 99.33±0.03(0.01) 56.73±0.06(0.21) 97.33±1.97(2.67) 2.91 2.25
SalUn 99.27±0.62(0.73) 100.00±0.00(0.00) 98.95±0.02(0.39) 56.58±0.15(0.36) 100.00±0.00(0.00) 0.30 7.25
NegTV 0.50±0.10(99.50) 50.00±0.00(50.00) 99.38±0.02(0.04) 56.96±0.00(0.02) 6.10±0.90(93.9) 48.69 0.20
MCU 100.00±0.00(0.00) 100.00±0.00(0.00) 99.10±0.01(0.24) 56.44±0.02(0.50) 100.00±0.00(0.00) 0.15 5.78

MCUβ 100.00±0.00(0.00) 100.00±0.00(0.00) 99.07±0.01(0.27) 56.47±0.09(0.47) 100.00±0.00(0.00) 0.15 5.77

11



605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

0.0 0.25 0.5 0.75 1.0
t

8084889296100

A
cc

ur
ac

y(
%

)

0.85

Df Dr Dt Effective Region

0.0 0.25 0.5 0.75 1.0
t

80
84
88
92
96

100

A
cc

ur
ac

y(
%

)

1.20

(a) β = 0.1

0.0 0.25 0.5 0.75 1.0
t

80
84
88
92
96

100

A
cc

ur
ac

y(
%

)

1.07

(b) β = 0.15

0.0 0.25 0.5 0.75 1.0
t

80
84
88
92
96

100

A
cc

ur
ac

y(
%

)

0.86

(c) β = 0.2

0.0 0.25 0.5 0.75 1.0
t

80
84
88
92
96

100

A
cc

ur
ac

y(
%

)

0.73

(d) β = 0.25

0.0 0.25 0.5 0.75 1.0
t

80
84
88
92
96

100

A
cc

ur
ac

y(
%

)

0.66

(e) β = 0.3

Figure 4: Ablation study for β on MCU. Overall, increasing β effectively enhances the unlearning effect but damages retaining predictive
performance, while decreasing β weakens the ability of the pathway to forget data.

0.0 0.25 0.5 0.75 1.0
t

80
84
88
92
96

100

A
cc

ur
ac

y(
%

)

1.20

(a) k = 0.1

0.0 0.25 0.5 0.75 1.0
t

80
84
88
92
96

100

A
cc

ur
ac

y(
%

)

1.10

(b) k = 0.3

0.0 0.25 0.5 0.75 1.0
t

80
84
88
92
96

100

A
cc

ur
ac

y(
%

)

0.86

(c) k = 0.5

0.0 0.25 0.5 0.75 1.0
t

80
84
88
92
96

100

A
cc

ur
ac

y(
%

)

0.77

(d) k = 0.8

0.0 0.25 0.5 0.75 1.0
t

80
84
88
92
96

100

A
cc

ur
ac

y(
%

)

0.57

(e) k = 1.0

Figure 5: Ablation study for k on MCU. As k increases, the average accuracy gap decreases, but the effective region also shrinks.

Ablation Study. To better understand the role of hyperparameters, β, k, and kr within our MCU, we conduct an ablation
study on CIFAR-10 with PreResNet-110 under 10% random data forgetting scenario. Figures 4-6 maintain the same format
as Figure 3, with red-framed sub-captions indicating our default settings, i.e., β = 0.2, k = 0.5, and kr = 0.1. For each
ablation experiment, we vary one parameter while keeping the others fixed at their default values.

Higher β value leads to a smaller average accuracy gap in Figure 4. Notably, when β = 0.3, the average gap is only 0.66.
However, increasing β also results in a reduced effective region. This suggests that while a larger β improves forgetting, it
leads to a degradation in model utility. Clearly, β = 0.2 offers the best balance between average accuracy gap and effective
region. Nonetheless, choosing a larger β can still be a viable and wise option when minimizing the accuracy gap is the
primary objective, and the effective region is of secondary importance.

Similarly, we analyze the impact of k and kr, in our mask strategy. A larger k allows more parameters retained for training,
which significantly reduces the accuracy on Df , Dr, and Dt, especially Df (orange lines in Figure 5). As for kr, increasing
kr results in the removal of essential parameters related to Dr, thereby effectively preserving the accuracy on Dr (blue lines
in Figure 6). In our experiments, we set k = 0.5 and kr = 0.1 as default values, as they provide a good balance between
enhancing forgetting quality and maintaining predictive performance.

0.0 0.25 0.5 0.75 1.0
t

80
84
88
92
96

100

A
cc

ur
ac

y(
%

)

0.62

(a) Under-forgetting

0.0 0.25 0.5 0.75 1.0
t

80
84
88
92
96

100

A
cc

ur
ac

y(
%

)

0.43

(b) Over-forgetting

Figure 7: Effectiveness of MCUβ across both under-
forgetting and over-forgetting pre-unlearning model θp.

Effectiveness across Under-forgetting and Over-forgetting Pre-
unlearning Models. To further demonstrate the versatility of
MCUβ , we evaluate its ability to handle both under-forgetting and
over-forgetting scenarios in a pre-unlearning model. While Figure 7a
shows the under-forgetting case where RL is trained for 15 epochs,
we intentionally over-trained RL for 20 epochs as an over-forgetting
pre-unlearning model in Figure 7b. As shown in Figure 7, MCUβ-RL
consistently enhances RL in both scenarios. Specifically, it reduces
the average gap across Df , Dr, Dt to 0.62 in the under-forgetting
scenario and 0.43 in the over-forgetting scenario. These results high-
light MCUβ’s adaptability across different pre-unlearning conditions.
This is attributed to the adaptive unlearning penalty coefficient β, with the alignment condition ➊ handling over-forgetting
and conditions ➋ and ➌ handling under-forgetting.

Stability to Scarce Retaining Data. In Figure 8 and 9, we validate the stability of our framework to scarce
retaining data. These experiments were conducted using MCUβ with NegGrad+ as pre-unlearning model on

12



660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

0.0 0.25 0.5 0.75 1.0
t

80
84
88
92
96

100
A

cc
ur

ac
y(

%
)

0.66

(a) kr = 0.0

0.0 0.25 0.5 0.75 1.0
t

80
84
88
92
96

100

A
cc

ur
ac

y(
%

)

0.86

(b) kr = 0.1

0.0 0.25 0.5 0.75 1.0
t

80
84
88
92
96

100

A
cc

ur
ac

y(
%

)

1.02

(c) kr = 0.2

0.0 0.25 0.5 0.75 1.0
t

80
84
88
92
96

100

A
cc

ur
ac

y(
%

)

1.01

(d) kr = 0.3

0.0 0.25 0.5 0.75 1.0
t

80
84
88
92
96

100

A
cc

ur
ac

y(
%

)

1.00

(e) kr = 0.4

Figure 6: Ablation study for kr on MCU. When kr = 0, we preserve all parameters important to retaining data, leading to a noticeable
drop in Dr accuracy during the unlearning process.

CIFAR-10 under the 10% random data forgetting scenario. As illustrated in Figure 8, the accuracy values
of the optimal unlearning model on the MCU pathway remain stable across varying retaining data proportions.

10 40 70 100
Proportion(%)

80

85

90

95

100

A
cc

ur
ac

y(
%

)

Df Dr Dt

Figure 8: The accuracy on Df , Dr ,
and Dt across different proportions
of retaining data used in our train-
ing process. It shows that all ac-
curacy performance remains stable
even with 10% retaining data.

In Figure 9, we further present the results of nonlinear pathway searching across vary-
ing proportions of retaining data Dr, ranging from 10% to 100%. MCUβ consistently
outperforms other unlearning methods across all retaining data proportion settings. As
expected, the optimal performance is achieved when utilizing 100% of the retaining
data for curve training. In this case, the pathway searching process fully leverages the
entire dataset, leading to the highest retaining accuracy and minimizing any degradation
in model utility. By comparison, the worst performance occurs when only 10% or
20% of the retaining data is available. In these cases, the retaining accuracy drops
significantly, indicating that an insufficient amount of retaining data negatively impacts
the learning process. However, when the proportion of Dr exceeds 30%, retaining
accuracy remains consistently high with relatively small average accuracy gaps. This
demonstrates the inherent stability of our MCU framework even under limited retaining
data conditions. This stems from our framework of searching nonlinear pathways in the
parameter space between the original and pre-unlearning models as end points, which
effectively preserves critical retaining data information along the pathway. Conse-
quently, an effective unlearning model can consistently be identified across the pathway,
regardless of the scarce retaining data used. Overall, we suggest that maintaining at least 30% of the retaining data during
pathway searching is enough to achieve a balance between training efficiency, effective unlearning, and model utility.

E. Pseudo Code of MCU Framework
The pseudo code can be found in 1. We present it with three components: parameter mask generating, nonlinear pathway
searching and optimal model, and effective unlearning region searching.

13



715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769

0.0 0.25 0.5 0.75 1.0
t

8084889296100

A
cc

ur
ac

y(
%

)

0.85

Df Dr Dt Effective Region

0.0 0.25 0.5 0.75 1.0
t

80
84
88
92
96

100

A
cc

ur
ac

y(
%

)

1.00

(a) 10%

0.0 0.25 0.5 0.75 1.0
t

80
84
88
92
96

100

A
cc

ur
ac

y(
%

)

1.04

(b) 20%

0.0 0.25 0.5 0.75 1.0
t

80
84
88
92
96

100

A
cc

ur
ac

y(
%

)

0.80

(c) 30%

0.0 0.25 0.5 0.75 1.0
t

80
84
88
92
96

100

A
cc

ur
ac

y(
%

)

0.80

(d) 40%

0.0 0.25 0.5 0.75 1.0
t

80
84
88
92
96

100

A
cc

ur
ac

y(
%

)

0.67

(e) 50%

0.0 0.25 0.5 0.75 1.0
t

80
84
88
92
96

100

A
cc

ur
ac

y(
%

)

0.81

(f) 60%

0.0 0.25 0.5 0.75 1.0
t

80
84
88
92
96

100

A
cc

ur
ac

y(
%

)

0.76

(g) 70%

0.0 0.25 0.5 0.75 1.0
t

80
84
88
92
96

100

A
cc

ur
ac

y(
%

)

0.61

(h) 80%

0.0 0.25 0.5 0.75 1.0
t

80
84
88
92
96

100

A
cc

ur
ac

y(
%

)

0.80

(i) 90%

0.0 0.25 0.5 0.75 1.0
t

80
84
88
92
96

100

A
cc

ur
ac

y(
%

)

0.60

(j) 100%

Figure 9: Performance with different proportions of retaining data in pathway searching process. The results show that MCUβ

consistently outperforms other unlearning methods across all retaining data proportion settings.

Algorithm 1 Pseudo code of MCUβ

1: Hyper-parameters: number of iterations n, learning rate η, parameter mask parameter k and kr
2: Require: original model θo, pre-unlearning model θp, training accuracy and test accuracy on the original model θo
3: # 1. Generate a parameter mask
4: Compute loss L(Dr;θo) and L(Df ;θo)
5: Compute gradient∇θoL(Dr;θo) and ∇θoL(Df ;θo)
6: Calculate ∥∇θi

o
L(Dr;θo)∥2/|θi

o| and ∥∇θi
o
L(Df ;θo)∥2/|θi

o| for each parameter
7: Filter out top kr proportion of parameters based on ∥∇θi

o
L(Dr;θo)∥2/|θi

o| and generate mask mr

8: Preserve top k proportion of parameters based on ∥∇θi
o
L(Df ;θo)∥2/|θi

o| and generate mask mf

9: Calculate parameter mask m = 1(mr & mf )
10: # 2. Search pathways in parameter space
11: β ← 0.5 (unlearing penalty coefficient is initialized as 0.5)
12: for i← 1, 2, ..., n do
13: Sample t ∼ U(0, 1)
14: Compute accuracy of retaining data and forgetting data
15: Adaptively update β
16: Compute cross-entropy loss L(Dr;ϕθc(t)) for retaining data
17: Compute cross-entropy loss L(Df ;ϕθc(t)) for forgetting data
18: Compute MCU loss Lmcu = L(Dr;ϕθc

(t))− β · L(Df ;ϕθc
(t))

19: Compute gradient∇θc⊙mLmcu based on the parameter mask m
20: Update θc using gradient descent:
21: θc ⊙m← θc ⊙m− η∇θc⊙mLmcu

22: end for
23: # 3. Search optimal model and effective unlearning region on the pathway
24: Sample t ∼ U(0, 1)
25: for each t do
26: Compute accuracy of retaining data Dr, forgetting data Df and test data Dt

27: Calculate retaining gap, forgetting gap and test gap and their average gap
28: Compare average gap with pre-unlearning model θp and search the optimal model and effective unlearning models
29: end for
30: Return: The optimized pathway ϕθc

(t) which connects θo and θp, optimal unlearning model θ∗
u and a range of t

where can generate effective unlearning models θu across pathway

14


