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ABSTRACT

We study sparse recovery when observations come from mixed-quality sources:
a small collection of high-quality measurements with small noise variance and
a larger collection of lower-quality measurements with higher variance. For this
heterogeneous-noise setting, we establish sample-size conditions for information-
theoretic and algorithmic recovery. On the information-theoretic side, we show
that (n1, n2) must satisfy a linear trade-off defining the Price of Quality: the
number of low-quality samples needed to replace one high-quality sample. In
the agnostic setting, where the decoder is completely agnostic to the quality of
the data, it is uniformly bounded, and in particular one high-quality sample is
never worth more than two low-quality samples. In the informed setting, where
the decoder is informed of per-sample variances, the price of quality can grow
arbitrarily large. On the algorithmic side, we analyze the LASSO in the agnostic
setting and show that the recovery threshold matches the homogeneous-noise case
and only depends on the average noise level, revealing a striking robustness of
computational recovery to data heterogeneity. Together, these results give the first
conditions for sparse recovery with mixed-quality data and expose a fundamen-
tal difference between how the information-theoretic and algorithmic thresholds
adapt to changes in data quality.

1 INTRODUCTION

1.1 OVERVIEW AND PREVIOUS WORK

1.1.1 SPARSE RECOVERY

Sparse recovery is a central problem in high-dimensional statistics and machine learning. Its ap-
plications include compressive sensing (Foucart et al., 2013; Candès et al., 2006; Donoho, 2006),
signal denoising (Chen et al., 2001), sparse regression (Miller, 2002), data-stream algorithms (Cor-
mode & Hadjieleftheriou, 2009; Indyk, 2007; Muthukrishnan et al., 2005), and combinatorial group
testing (Du & Hwang, 1999). Other applications range from medical imaging to communications
and compression (Foucart et al., 2013, Chap. 1).

We formulate the problem as follows. A high-dimensional signal β⋆ ∈ Rp (also called model or
ground truth), unknown but a-priori s-sparse, is transmitted through a noisy channel that projects it
onto a collection of n random vectors {xi}i∈[n] in Rp. This is expressed as:

Y := Xβ⋆ + Z, (1)

where X = (x1, . . . , xn)
T is called measurements, design or features; Y observations, annotations

or labels; and Z noise. On the other end of the channel, a decoder who observes (X,Y ) is interested
in recovering the support of the original signal β⋆, i.e. the subset S⋆ := {i ∈ [p] : β⋆

i ̸= 0} ⊆ [p],
known a-priori to be of cardinality s. How many observations n (as a function of p and s) does the
decoder need to recover the support of the signal as the dimension of the problem grows to infinity?

Previous works have shown that the sparse recovery problem exhibits two phase transitions at two
thresholds, one information-theoretic and one algorithmic:

nINF =
2s log (p/s)

log s
and nALG = 2s log (p− s) + s+ 1, (2)

1
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leading to three regimes:

• n < nINF: Signal support recovery is information-theoretically impossible. (Reeves et al., 2019).
• nINF < n < nALG: The maximum likelihood estimator (MLE) recovers S⋆. However, it is

believed that no algorithm can do it in polynomial time since the problem exhibits an Overlap Gap
Property (OGP) (Gamarnik & Zadik, 2022).

• n > nALG: The ℓ1-regularized least-squares estimator (also known as the LASSO (Tibshirani,
1996)) recovers S⋆ (Wainwright, 2009).

Of particular interest is the signal-to-noise ratio (SNR), known to be an important quantity for
characterizing the difficulty of sparse recovery problems (Wang et al., 2010; Reeves et al., 2019;
Chaabouni & Gamarnik, 2025). It’s defined as follows:

SNR :=
E∥Xβ⋆∥22
E∥Z∥22

. (3)

1.1.2 MIXED QUALITY DATA

A recent body of work has explored how low-quality data, e.g. labeled by an LLM or weak annotator
(Ratner et al., 2017; Frénay & Verleysen, 2013), should be combined with fewer but higher-quality
data, e.g. labeled by humans or experts, for prediction and inference tasks (Gligorić et al., 2024; Li
et al., 2023; Zhang et al., 2023; Egami et al., 2023).

In this paper, we formalize the mixed-quality data setting for sparse signal recovery: the decoder
has access to n1 noisy projections of the signal β⋆ with a small noise level σ2

1 > 0 that we denote
{(yi, xi)}n1

i=1 and call high-quality data. In addition, the decoder also observes a larger set of n2 >
n1 noisy projections of the same signal β⋆, but with a higher noise level σ2

2 > σ2
1 , that we denote

{(yi, xi)}n2

i=n1+1 and call low-quality data. We distinguish two settings:

• Agnostic setting: The decoder lacks access to observation-level noise variances and treats all
measurements as if drawn from a single homogeneous model. This occurs when heterogeneous
data sources lose provenance: for example in web-scale text corpora (Ratner et al., 2017; Frénay &
Verleysen, 2013) or citizen-science campaigns lacking sensor calibration (Silvertown, 2009). The
decoder simply applies standard sparse-recovery methods without noise estimation or reweighting.

• Informed setting: where the decoder has access to the per-sample noise variance of the data. This
regime captures situations where provenance information accompanies each observation, so the
decoder knows which measurements are high- or low-quality. Examples include multi-site clinical
trials or sensor networks that log calibration statistics (Loh & Wainwright, 2011; Delaigle et al.,
2008), and medical-imaging datasets with per-rater confidence scores (Rajpurkar et al., 2018).

1.2 OUR WORK

In this paper, we consider the sparse recovery problem described above (1). Specifically, we study
the setting where the measurements are drawn i.i.d. from a standard normal Gaussian distribution,
and the noise is unbiased and drawn independently from Gaussian distributions of variance σ2

1 for
the high-quality samples and σ2

2 > σ2
1 for the low-quality ones:

{Xij}i∈[n],j∈[p]

i.i.d.∼ N (0, 1) and Z = ΣW ; where Σ =

(
σ1In1 0
0 σ2In2

)
,W ∼ N (0, In) .

(4)
Although much of the literature on sparse recovery in the homogeneous noise setting assumes con-
stant noise level σ2, we don’t assume in this work that σ2

1 and σ2
2 are constant. In fact, the reason

previous work can assume constant noise variance without loss of generality is that the model (1)
could be scaled down by σ when the noise is homogeneous with variance σ2 to make it constant.
However, it is not the case anymore when the noise is heterogeneous.

Since data come from two different sources, we define in addition to (3) two signal-to-noise ratios:
SNR1 for high-quality observations and SNR2 corresponding to low-quality observations.

We are interested in the two following questions:

2
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• Sampling complexity of sparse recovery: How large do the sample sizes (n1, n2) need to be for
the decoder to be able, information-theoretically, to recover the support of the signal?

• Algorithmic recovery: How large do the sample sizes (n1, n2) need to be for the decoder to be
able to recover the support of the signal using a polynomial-time algorithm?

We summarize below our findings on each of these questions in the agnostic and informed settings.

1.2.1 SAMPLING COMPLEXITY OF SPARSE RECOVERY

In the first part of work (section 3), we focus on the question of sampling complexity. For simplicity,
we assume the signal is binary, i.e. β⋆ ∈ {0, 1}p. Note that in this case, recovering the support is
equivalent to recovering the signal. This assumption is very common in the literature (Aeron et al.,
2010; Reeves et al., 2019; Gamarnik & Zadik, 2022; Chaabouni & Gamarnik, 2025). Intuitively,
detecting a component of size 1 is at least as hard as detecting a stronger component, so the resulting
thresholds are representative of signals with non-zero entries bounded away from zero. We discuss
this assumption in more detail in Remark 3.1.

Our main results, Theorem 1 for the agnostic setting and Theorem 2 for the informed one, each
provide a sufficient condition (9, 15) on the sample sizes (n1, n2) for support recovery. In both
results, the condition requires that a linear combination of has the form α1n1 + α2n2 > n⋆, for
some coefficients α1, α2 > 0 depending on σ2

1 , σ
2
2 and s, and having different expressions in the

agnostic and informed settings. In particular, we note that if (n1, n2) verify this condition (i.e.
are together large enough), then so do (n1 − 1, n2 + α1/α2). In this sense, we say that 1 unit of
high-quality data is worth:

γ
(
s, σ2

1 , σ
2
2

)
:=

α1

α2
(5)

units of low-quality data. We label γ the Price of Quality and study its behavior in the agnostic
and informed settings and for different regimes of SNR1 and SNR2. In the agnostic setting, it is
uniformly bounded. In particular, one high-quality sample is never worth more than two low-quality
samples (12, 13). In the informed setting, where the decoder is informed of per-sample variances,
the price of quality goes to infinity in the low SNR2 & high SNR1 regime (18), and can be arbitrarily
large in both low and high SNR regimes (17, 19).

1.2.2 ALGORITHMIC RECOVERY

In the second part of our work (section 4), we focus on the question of algorithmic recovery. Unlike
for sampling complexity, we don’t assume that the signal is binary, but still require non-zero com-
ponents to be bounded away from zero, i.e. there exists ρ > 0 such that mini∈S⋆ |β⋆

i | ≥ ρ. This is
standard in the literature (Aeron et al., 2010; Ndaoud & Tsybakov, 2020; Wang et al., 2010) since
we can’t hope to detect non-zero signal components if they can have arbitrarily small amplitude.

Specifically, we study the question of signed support recovery, that is, recovering not only the indices
of the non-zero components of the signal but also their sign (+ or −). This is usual in the algorithmic
sparse recovery literature (Wainwright, 2009; Wang et al., 2010; Omidiran & Wainwright, 2008), as
it follows naturally from the standard proof techniques.

Our main result, Theorem 3, provides necessary and sufficient conditions for the ℓ1-regularized least-
squares estimator (known as the LASSO) to recover the signed support of β⋆ in the agnostic setting.
Our result reveals that the problem behaves like the homogeneous-noise setting (Wainwright, 2009)
with a homogeneous noise level equal to the average noise level of Z:

σ2
avg :=

n1σ
2
1 + n2σ

2
2

n
. (6)

In particular, the sample size conditions (22, 23) do not depend on the noise levels σ2
1 , σ

2
2 . The

condition on the LASSO regularization parameter (24) only depends on σ2
1 and σ2

2 through σ2
avg and

is the same as the one for homogeneous noise σ2
avg (see equation (28) in Wainwright (2009)). We

further provide a necessary and sufficient condition on noise scaling (Proposition 4.1).

This shows that, unlike in sampling complexity, high-quality and low-quality data contribute equally
to the sample size condition under which the LASSO recovers the support of the signal.

3
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Although we don’t address algorithmic recovery in the informed setting, we briefly discuss it in
Remark 4.2, where we discuss why the proof of Theorem 3 cannot be easily extended to the informed
case.

1.3 CONTRIBUTIONS, OUTLINE AND NOTATIONS

To the best of our knowledge, this paper is the first to:

1. Provide a sufficient condition for sparse recovery in the heterogeneous noise case, and quantify
the trade-off between high-quality and low-quality data in the agnostic and informed settings.

2. Extend necessary and sufficient conditions for LASSO sparse recovery to the heterogeneous-
noise, agnostic setting and show that high-quality and low-quality data contribute equally to
reaching the algorithmic threshold.

We organize the rest of the paper as follows. Section 2 introduces the problem setup. Section 3 stud-
ies the sampling complexity of sparse recovery under heterogeneous noise. Section 4 investigates
algorithmic recovery using the LASSO. Section 5 concludes and outlines directions for future work.

Throughout this document, we will use the following notations:

• We say that f (x) ≃ g (x) as x → a ∈ R ∪ {−∞,+∞} if and only if f (x) = g (x) (1 + o (1)).
• We denote by h (·) the binary entropy: h (x) = −x log x− (1− x) log (1− x), x ∈ (0, 1).

• We call ℓ0-norm the number of non-zero coordinates of x ∈ Rd, that is ∥x∥0 :=
∑d

i=1 1 (xi ̸= 0).

2 PRELIMINARIES

The problem of sparse signal recovery is defined above (1). The decoder a-priori knows that
β⋆ is s-sparse and belongs to a known set A ⊆ Rp. The design and noise are random with
(Xij)i∈[n],j∈[p]

i.i.d.∼ N (0, 1) and Z := ΣW with Σ and W defined as in (4) and n1 + n2 = n.
The signal-to-noise ratio (3) writes:

SNR :=
E∥Xβ∥22
E∥Z∥22

=
ns

n1σ2
1 + n2σ2

2

=
s

σ2
avg

, (7)

where σ2
avg denotes the average noise level (6). In addition, we define the high-quality SNR and the

low-quality SNR respectively by:

SNR1 :=
E
∥∥[yi − xT

i β
⋆
]n1

i=1

∥∥2
2

E∥Z1∥22
=

s

σ2
1

, SNR2 :=
E
∥∥∥[yi − xT

i β
⋆
]n2

i=n1+1

∥∥∥2
2

E∥Z2∥22
=

s

σ2
2

.

In particular, we always have SNR2 < SNR1, which reveals three regimes of interest:

• High SNR: when SNR1, SNR2 → +∞, or equivalently σ2
2 = o (s).

• Low SNR2, High SNR1: SNR2 → 0, SNR1 → +∞ or equivalently σ2
2 = ω (s), σ2

1 = o (s).
• Low SNR: when SNR1, SNR2 → 0, or equivalently σ2

1 = ω (s).

3 SAMPLING COMPLEXITY OF SPARSE RECOVERY

In this section, we are interested in determining whether it is possible, information-theoretically, to
recover the support of the signal, depending on the sample size n. We assume that β⋆ is binary and
a priori s-sparse, that is: A := Bp,s = {β ∈ {0, 1}p : ∥β∥0 = s} .
Remark 3.1 (Binary-signal assumption). Our results for sparse recovery can be viewed as ap-
plying to signals whose non-zero components are at least 1 in magnitude, i.e. β⋆ ∈ Cp,s (1) :={
β ∈ Rd : mini∈Supp(β) |βi| ≥ 1

}
. Assuming that the non-zero entries are exactly equal to 1 serves

only to simplify computations. Intuitively, detecting a component of magnitude 1 is at least as hard

4
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as detecting a stronger component, so stronger signals can only make recovery easier. Conversely,
detecting a signal in Cp,s (1) is at least as hard as detecting a binary signal, since {0, 1}p ⊆ Cp,s (1).
More generally, recovering any signal whose non-zero entries are bounded below by some ρ > 0
can be reduced to the case of Cp,s (1) by rescaling the model (1) by ρ.

Let A△B := (A ∪B) \ (A ∩B) denote the symmetric difference between any two finite sets A
and B, and Supp (β) := {i ∈ [p] : βi ̸= 0} denote the support of any vector β ∈ Rp. Let δ ∈ (0, 1).
We say that β̂ ∈ Bp,s recovers the support of β⋆ up to error δ if

∣∣∣Supp
(
β̂
)
△Supp (β⋆)

∣∣∣ < 2δs.

3.1 AGNOSTIC SETTING

In the agnostic setting where the decoder ignores the quality of each observation, the sample sizes
(n1, n2) and the noise levels

(
σ2
1 , σ

2
2

)
, we define the estimator:

β̂ := argmin
β∈Bp,s

∥Y −Xβ∥22 . (8)

Theorem 1 (Sufficient condition for support recovery in the agnostic setting).

1. Assume s = o (p) and s → +∞ as p → +∞. Then let n⋆ := 2s log (p/s).

2. Assume s = αp for some constant α ∈ (0, 1). Then let n⋆ := 2h (α) p.

In both settings described above, if there exists ε > 0 such that:

n1 log

(
1 +

δ
(
2σ2

2 − σ2
1

)
s

2σ4
2

)
+ n2 log

(
1 +

δs

2σ2
2

)
≥ (1 + ε)n⋆, (9)

then β̂ recovers the support of β⋆ up to error δ w.h.p.:

P
(∣∣∣Supp (β⋆)△ Supp

(
β̂
)∣∣∣ < 2δs

)
≥ 1− exp

{
− (ε+ o (1))n⋆/2

}
p→+∞−→ 1.

Proof Sketch. The proof of Theorem 1 is in appendix A and uses standard techniques. We control
the probability that a high-error support attains a lower objective value in (8) than the ground truth
and then take a union bound over such supports. For any β, we have:

∥Y −Xβ∥22 − ∥Y −Xβ⋆∥22 =

n∑
i=1

{
⟨Xi, β

⋆ − β⟩2 + 2Zi⟨Xi, β
⋆ − β⟩

}
. (10)

Applying a Chernoff bound to the LHS above and analyzing the MGF of the summands yields an
exponent that factorizes across two blocks (see Proposition A.1). We conclude using a union bound
over supports S with |S△S⋆| ≥ 2δs (there are at most

(
p
s

)
of them).

We interpret Theorem 1 as follows.

• Price of Quality. The sufficient condition for recovery (9) is equivalent to a linear combination of
the sample size n1 and n2 being larger than the threshold n⋆. The coefficients of the sample sizes
reveal that 1 unit of high-quality data is worth:

γ :=
log
(
1 + δ

(
2σ2

2 − σ2
1

)
s/
(
2σ2

4

))
log (1 + δs/ (2σ2

2))
> 1 (11)

units of low-quality data. We call γ the Price of Quality. In fact, one unit of high-quality data can
be replaced by γ units of low-quality data: that is, if (n1, n2) are sufficient for recovering β⋆, then
so are (n1 − 1, n2 + γ).

• High SNR2 regime. Assume s = ω
(
σ2
2

)
. The price of quality (11) writes:

γ ≃
log
(
δs/

(
2σ2

2

))
+ log

(
2− σ2

1/σ
2
2

)
log (δs/ (2σ2

2))
≃ 1, (12)

which means that when σ2
1 , σ

2
2 = o (s), the high-quality and low-quality data contribute equally

to the recovery condition (9).

5
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• Low SNR2 regime. Assume s = o
(
σ2
2

)
. The price of quality (11) writes:

γ ≃
δ
(
2σ2

2 − σ2
1

)
s/
(
2σ2

4

)
δs/ (2σ2

2)
≃ 2− σ2

1

σ2
2

. (13)

Note that γ < 2 for any σ2
1 , σ

2
2 . We conclude that in the low SNR regime, one unit of high-quality

data is worth at most 2 units of low-quality data, regardless of the noise ratio.

Remark 3.2 (Limitations).

• Unlike results on sufficient conditions for sparse recovery in the homogeneous-noise setting
(Gamarnik & Zadik, 2022), Theorem 1 might not be tight. In fact, Wang et al. (2010) showed
that in the homogeneous-noise setting, the sufficient condition in (Gamarnik & Zadik, 2022) is
also necessary. However, we believe it might not be the case for Theorem 1 since, unlike the
results in the homogeneous-noise setting, the sufficient condition (9) was not obtained using the
best Chernoff bound (see Remark A.1) due to the complexity of the minimization of the Chernoff
upper bound, which we reduce to finding the root of a third degree polynomial (33).

• Even under the assumption that the decoder is agnostic to the quality of the data, the estimator β̂
(8), might not constitute the best approach to recover the support of β⋆. For instance, especially in
the low SNR regime, the decoder might re-weight the loss of each observation by the magnitude
of its observed label, i.e.:

argmin
β∈Bp,s

n∑
i=1

1

Y 2
i

(
Yi − ⟨xi, β⟩

)2
,

as an attempt to rescale each row of data by its noise level. In fact, in the low SNR regime we have
EY 2

i ≃ σ2
i where σ2

i denotes the noise level corresponding to the ith observation, which motivates
the use of Y 2

i as a proxy for σ2
i when the noise levels are unknown.

3.2 INFORMED SETTING

In this section, we assume that the decoder knows the distribution of each noise entry: N
(
0, σ2

1

)
or

N
(
0, σ2

2

)
. Recall the distributions of Z and W from (4). The MLE is (see appendix B for a proof):

β̂MLE = argmin
β∈Bp,s

∥∥Σ−1 (Y −Xβ)
∥∥2
2
. (14)

Theorem 2 (Sufficient condition for support recovery in the informed setting).

1. Assume s = o (p) and s → +∞ as p → +∞. Then let n⋆ := 2s log (p/s).

2. Assume s = αp for some constant α ∈ (0, 1). Then let n⋆ := 2h (α) p.

In both settings described above, if there exists ε > 0 such that:

n1 log

(
1 +

δs

2σ2
1

)
+ n2 log

(
1 +

δs

2σ2
2

)
≥ (1 + ε)n⋆, (15)

then β̂MLE recovers the support of β⋆ up to error δ w.h.p.:

P
(∣∣∣Supp (β⋆)△ Supp

(
β̂MLE

)∣∣∣ < 2δs
)
≥ 1− exp

{
− (ε+ o (1))n⋆/2

}
p→+∞−→ 1.

Proof Sketch. The proof of Theorem 2 is given in appendix C and follows a similar argument as
Theorem 1. Here, the rescaled loss in (14) leads to a Chernoff bound that can be optimized in
closed-form, yielding a sharp convergence rate.

We interpret Theorem 2 as follows.

• Price of Quality. In the informed setting, the expression of the price of quality is different from
the one in the agnostic case (11). It writes:

γ = log

(
1 +

δs

2σ2
1

)/
log

(
1 +

δs

2σ2
2

)
. (16)

6
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• Low SNR regime. Assume σ2
1 = ω (s). Then:

γ ≃ σ2
2/σ

2
1 . (17)

• Low SNR2, High SNR1 regime. Assume σ2
2 = ω (s) and σ2

1 = o (s). Then:

γ = Θ

(
log
(
s/σ2

1

)
s/σ2

2

)
= Θ

(
log SNR1

SNR2

)
p→+∞−→ +∞. (18)

• High SNR regime. Assume σ2
2 = o (s). Then:

γ ≃ log
(
s/σ2

1

)
/ log

(
s/σ2

2

)
= log SNR1/ log SNR2. (19)

Remark 3.3.

• Compared to the agnostic setting (Theorem 1), the appropriate rescaling of the loss in the MLE
(14) constitutes a better use of the high-quality data, in the sense that it leads to a higher price
of quality γ. In particular, γ is infinite in the low SNR2 & high SNR1 setting (18) and can be
arbitrarily large in both low and high SNR regimes (17, 19).

• We believe that the sufficient condition for recovery in the informed setting (15) is also necessary
(and therefore tight), as it was obtained using the tightest Chernoff bound (see equations (35)
and (38) in the proof of Theorem 2), which has been shown to yield a necessary and sufficient
condition in the homogeneous noise setting in different sparse recovery settings (Gamarnik &
Zadik, 2022; Wang et al., 2010; Chaabouni & Gamarnik, 2025).

4 ALGORITHMIC RECOVERY

In this section, we are interested in the existence of a tractable algorithm to recover the support of
the underlying signal. We assume that the components of the signal β⋆ take real values and are
bounded away from zero: that is A := Cp,s (ρ) =

{
β ∈ Rp : ∥β∥0 = s, mini∈Supp(β) |βi| ≥ ρ

}
, for

some ρ ∈ R+. We say that β̂ ∈ Rp recovers the signed support of β⋆ if sign(β̂) = sign(β⋆), where
the sign: R −→ {−1, 0, 1} function is defined by sign (0) = 0 and sign (x) = x/ |x| for all x ̸= 0,
and is applied coordinate-wise. A common approach to recovering the signed support of the signal
is using the solution to the following ℓ1-constrained quadratic program, also known as the LASSO:

BLASSO := min
β∈Rp

{
1

2n
∥Y −Xβ∥22 + λp ∥β∥1

}
, (20)

where λp ≥ 0 denotes a sequence of regularization parameters converging to 0 as p → +∞. We
are interested in characterizing the regime where the LASSO recovers the signed support of the true
signal. Specifically, we call “recovery” the event:

R (X,β⋆, Z, λp) :=
{
∃ β̂ ∈ BLASSO : sign

(
β̂
)
= sign (β⋆)

}
. (21)

In the homogeneous noise setting, Wainwright (2009) showed that the performance of the LASSO
in estimating the signed support of β⋆ exhibits a phase transition with respect to the sample size. In
fact, there exists a threshold nALG such that:

• If n > nALG: then the LASSO correctly recovers the signed support of β⋆.
• If n < nALG: then the LASSO fails to recover the signed support of β⋆.

In addition, it is widely believed that no algorithm can recover the support of β⋆ in polynomial time
when n < nALG. Indeed, Gamarnik & Zadik (2022) showed that the problem exhibits an OGP. This
motivates the use of (20) to estimate β⋆ in the agnostic setting where the decoder treats the data
impartially. Our main result of this section, Theorem 3, extends the result mentioned above on the
LASSO threshold (by Wainwright (2009)) to the heterogeneous, agnostic noise setting.
Theorem 3 (Lasso recovery phase transition). Assume that, as p → +∞; s goes to infinity, s =
o (p) and n1, n2 = ω (s). Let nALG := 2s log (p− s) + s+ 1.
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i. If there exists ε > 0 such that:
n < (1− ε)nALG, (22)

then, for any sequence λp > 0 such that n1σ
2
1+n2σ

2
2

λ2
pn

2 has a limit in R≥0 ∪ {+∞}, we have

PX,Z

(
R (X,β⋆, Z, λp)

)
→ 0.

ii. If there exists ε > 0 such that:
n > (1 + ε)nALG, (23)

and (λp)p≥1 → 0 is chosen such that:

nλ2
p

σ2
avg log (p− s)

→ +∞, and
1

ρ

[
λp

√
s+

√
σ2

avg log s

n

]
→ 0, (24)

then PX,Z

(
R (X,β⋆, Z, λp)

)
→ 1.

The full proof of Theorem 3 is given in Appendix D and follows the core LASSO threshold argument
of Wainwright (2009). We use the same argument but generalize it to the heterogeneous-noise set-
ting, where the presence of the matrix Σ, no longer a scalar multiple of the identity, causes key steps
of the classical proof to fail. We overcome this by applying a Gram–Schmidt (QR) decomposition
of XS (45) and analyzing the resulting orthogonal matrix using properties of the Haar measure on
the orthogonal group (e.g. see Lemma D.6). The monograph of Meckes (2019) on Haar-distributed
matrices was particularly valuable in understanding this component from random-matrix theory.

Proof Sketch of Theorem 3. We express the recovery property (21) via the first-order optimality con-
ditions of the LASSO (20):

R (X,β⋆,Σw, λp) ⇐⇒


∣∣∣( 1nXT

S XS

)−1 ( 1
nX

T
S Σw − λp sign (β⋆

S)
)∣∣∣ < |β⋆

S |∣∣∣XT
ScXS

(
XT

S XS

)−1 ( 1
nX

T
S Σw − λp sign (β

⋆
S)
)
− 1

nX
T
ScΣw

∣∣∣ ≤ λp

(25)
where absolute values and inequalities are taken component-wise. This well-known result (Wain-
wright, 2009; Fuchs, 2004; Meinshausen & Bühlmann, 2006; Tropp, 2006; Zhao & Yu, 2006) is
stated in Proposition D.1. When (23) and (24) hold, the random variables inside the absolute values
on the RHS of (25) concentrate below their respective upper bounds, establishing sufficiency. When
(22) holds, the second absolute value in (25) concentrates above λp, showing necessity.

Although Theorem 3 does not explicitly state any condition on the scaling on the noise, the existence
of λp → 0 such that (24) holds requires that the noise does not scale arbitrarily large. The next result
explicitly states this condition.
Proposition 4.1 (Necessary and sufficient condition on noise scaling). If there exists (λp)p≥1 → 0

such that (24) holds, then:

σ2
avg = o

(
n

(1 + s/ρ2) log (p− s)

)
. (26)

Conversely, if (26) holds, let:

λp :=

(
σ2

avg log (p− s)

(1 + s/ρ2)n

)1/4

. (27)

Then λp → 0 and (24) holds.

Proof. See appendix E.

Remark 4.1 (Correlated features). Although we state Theorem 3 only for independent features, i.e.
xi ∼ N (0, Ip) for all i ∈ [n], we believe a similar result should hold when the features are corre-
lated under suitable regularity conditions on their covariance matrix. Such a result was proved by
Wainwright (2009) in the homogeneous-noise setting. However, the proof of the extension to hetero-
geneous noise is already technically heavy, and extending it to correlated designs would introduce

8
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even more complexity and further reduce the readability of an already extensive proof. Because our
focus is on the new heterogeneous-noise aspect rather than on re-deriving the covariance-matrix-
dependent bound, we focus our analysis in this paper on the independent-feature case.
Remark 4.2 (Informed setting). Although we only show the phase transition in the scope of the
LASSO in the agnostic setting, we believe that a “rescaled” version of the LASSO where the loss
is defined by

∥∥Σ−1 (Y −Xβ)
∥∥2
2

instead of ∥Y −Xβ∥22 in (20) would exhibit a similar behavior
in the informed setting. However, using the same argument as Theorem 3 and Wainwright (2009)
is tricky in the rescaled setting, as it introduces Σ−1 factors alongside the X terms in (25), which
breaks down not only the original proof of Wainwright (2009) but also our Gram-Schmidt argument.
In fact, rescaling the rows of X invalidates the property XT

S XS ∼ W (Is, n), which both arguments
use to compute the moments of its inverse using properties of inverse Wishart matrices (Anderson
et al., 1958; Siskind, 1972). We believe this can be overcome by finding a way to study the moments
of
(
XT

S Σ
−2XS

)−1
, which we leave for future work.

5 CONCLUSION AND FUTURE WORK

We study the problem of sparse recovery when observations come from mixed-quality sources.
We establish sufficient conditions on the sample sizes (n1, n2) for both information-theoretic and
algorithmic recovery purposes and in two settings, one when the decoder is completely agnostic to
the noise and one where they are informed of the per-sample noise variance.

At the level of the information-theoretic threshold, we study the trade-off between high-quality and
low-quality samples, and label the number of low-quality samples required to replace one high-
quality sample the Price of Quality. In the agnostic setting, we reveal that this entity is quite low:
in particular, one high-quality sample is never worth more than two low-quality samples. However,
in the informed setting, the price of quality can grow arbitrarily large depending on the noise vari-
ances and the signal-to-noise regime. This constitutes the most important takeaway from our work:
whenever possible, quantify uncertainty in the annotations and rescale the loss accordingly.

At the algorithmic threshold, we show in the agnostic setting that the classical LASSO recovery
results from the homogeneous setting remain valid in the heterogeneous case and depend only on
the total sample size n1 + n2. First, the threshold itself is independent of the individual noise lev-
els. Second, the sufficient condition on the penalization coefficient involves the noise only through
its average, exactly as if all observations had that average noise. Consequently, high-quality and
low-quality samples contribute equally to the sample-size requirement for LASSO recovery. This
reveals an unexpected difference in the effect of data heterogeneity on the information-theoretic and
algorithmic thresholds for recovery.

In a broader discussion on how the information-theoretic and algorithmic thresholds interact across
different problem settings, our result further emphasizes that the algorithmic threshold seems to be
more “robust” to changes in the traditional problem settings (Gamarnik & Zadik, 2022; Wainwright,
2009). In fact, Wang et al. (2010) and Chaabouni & Gamarnik (2025) observed that when the noise
is homogeneous but the design is sparse (i.e. Xij set to 0 uniformly at random) the information-
theoretic threshold increases, while Omidiran & Wainwright (2008) showed that the algorithmic
threshold remains the same and is unaffected by changes in the sparsity level of the data (although
this was shown only for the sufficient condition, with no corresponding result on necessity).

Although we don’t study LASSO recovery in the informed setting, we believe this is a promising
direction for future work. It would be interesting to study the price of quality there, and compare it
to LASSO recovery in the agnostic setting on one hand, and to the price of quality of information-
theoretic recovery on the other.
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A PROOF OF THEOREM 1

Proof of Theorem 1. We denote by S⋆ := Supp (β⋆). Let Sp,s := {S ⊂ [p] : |S| = s}. We define
the function:

L : Sp,s −→ R≥0

S 7−→ ∥Y −X1S∥22 ,

where 1S denotes the vector in {0, 1}p such that [1S ]j = 1 (j ∈ S) for all j ∈ [p]. In particular,
note (8) that:

β̂ = 1Ŝ , where Ŝ := argmin
S∈Sp,s

L (S) .

For every S ∈ Sp,s, we define: M (S) := |S△S⋆| /2, and let U (S) := S⋆ \ S, V (S) := S \ S⋆.
Note that, since |S| = |S⋆| = s, we have |U (S)| = |V (S)| = M (S). We also define:

∆ : Sp,s −→ R
S 7−→ L (S)− L (S⋆) .

Proposition A.1. For any S ∈ Sp,s: if M (S) ≥ δs, then:

P (∆ (S) ≤ 0) ≤

(
1 +

δ
(
2σ2

2 − σ2
1

)
s

2σ2
2

)−n1/2(
1 +

δs

2σ2
2

)−n2/2

.

Proof. See section A.1.

Hence we have, for any support S ∈ Sp,s such that |S△S⋆| ≥ 2δs:

P
(
∥Y −X1S∥22 ≤ ∥Y −X1S⋆∥22

)
≤

(
1 +

δ
(
2σ2

2 − σ2
1

)
s

2σ2
2

)−n1/2(
1 +

δs

2σ2
2

)−n2/2

(28)

Using (28) and a union bound over {S ∈ Sp,s : |S△S⋆| ≥ 2δs} we have:

PX,Z

(∣∣∣Supp
(
β̂
)
△Supp (β⋆)

∣∣∣ < 2δs
)

≥ PX,Z

(
∥Y −X1S∥22 > ∥Y −X1S⋆∥22 , ∀S ∈ Sp,s : |S△S⋆| ≥ 2δs

)
= 1− PX,Z

(
∃S ∈ Sp,s : |S△S⋆| ≥ 2δs , ∥Y −X1S∥22 ≤ ∥Y −X1S⋆∥22

)
U.B.
≥ 1−

∑
S∈Sp,s : |S△S⋆|≥2δs

PX,Z

(
∥Y −X1S∥22 ≤ ∥Y −X1S⋆∥22

)
(28)

≥ 1−
∑

S∈Sp,s : |S△S⋆|≥2δs

(
1 +

δ
(
2σ2

2 − σ2
1

)
s

2σ2
2

)−n1/2(
1 +

δs

2σ2
2

)−n2/2

≥ 1− |Sp,s|

(
1 +

δ
(
2σ2

2 − σ2
1

)
s

2σ2
2

)−n1/2(
1 +

δs

2σ2
2

)−n2/2

= 1−
(
p

s

)(
1 +

δ
(
2σ2

2 − σ2
1

)
s

2σ2
2

)−n1/2(
1 +

δs

2σ2
2

)−n2/2

.

Case 1: Assume s = o (p). We use the corollary of Stirling:(
p

s

)
= exp

(
s log (p/s)

(
1 + o (1)

))
,
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which yields:

PX,Z

(∣∣∣Supp
(
β̂
)
△Supp (β⋆)

∣∣∣ < 2δs
)

≥ 1− exp

{
s log (p/s)

(
1 + o (1)

)
− n1

2
log

(
1 +

δ
(
2σ2

2 − σ2
1

)
s

2σ2
2

)
− n2

2
log

(
1 +

δs

2σ2
2

)}
.

Now using (9) in above, we have:

PX,Z

(∣∣∣Supp
(
β̂
)
△Supp (β⋆)

∣∣∣ < 2δs
)

≥ 1− exp
{
s log (p/s)

(
1 + o (1)

)
− (1 + ε) s log (p/s)

}
≥ 1− exp {−εs log (p/s)− o (s log (p/s))} .

Finally we conclude:

PX,Z

(∣∣∣Supp
(
β̂
)
△Supp (β⋆)

∣∣∣ < 2δs
)
≥ 1− exp {− (ε+ o (1))n⋆/2} p→+∞−→ 1,

where n⋆ = 2s log (p/s).

Case 2: Assume s = α (p) for some constant α ∈ (0, 1). We use the corollary of Stirling:(
p

s

)
= exp

(
h (α) p

(
1 + o (1)

))
,

which yields:

PX,Z

(∣∣∣Supp
(
β̂
)
△Supp (β⋆)

∣∣∣ < 2δs
)

≥ 1− exp

{
h (α) p

(
1 + o (1)

)
− n1

2
log

(
1 +

δ
(
2σ2

2 − σ2
1

)
s

2σ2
2

)
− n2

2
log

(
1 +

δs

2σ2
2

)}
.

Now using (9) in above, we have:

PX,Z

(∣∣∣Supp
(
β̂
)
△Supp (β⋆)

∣∣∣ < 2δs
)

≥ 1− exp
{
h (α) p

(
1 + o (1)

)
− (1 + ε)h (α) p

}
≥ 1− exp {−εh (α) p− o (p)} .

Finally we conclude:

PX,Z

(∣∣∣Supp
(
β̂
)
△Supp (β⋆)

∣∣∣ < 2δs
)
≥ 1− exp {− (ε+ o (1))n⋆/2} p→+∞−→ 1,

where n⋆ = 2h (α) p.

A.1 PROOF OF PROPOSITION A.1

Proof of Proposition A.1. Fix S ∈ Sp,s such that M (S) ≥ δs. We have:

∆(S) = L (S)− L (S⋆)

= ∥Y −X1S∥22 − ∥Y −X1S⋆∥22
= ∥Xβ⋆ + Z −X1S∥22 − ∥Xβ⋆ + Z −X1S⋆∥22
= ∥X (1S⋆ − 1S)∥22 + 2⟨Z,X (1S⋆ − 1S)⟩

=

n∑
i=1

⟨Xi,1S⋆ − 1S⟩2 + 2

n∑
i=1

Zi⟨Xi,1S⋆ − 1S⟩.

Let X1 ∈ Rn1×p, X2 ∈ Rn2×p such that:

X =

(
X1

X2

)
.
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Then the above expression of ∆(S) writes:

∆(s) =

n1∑
i=1

{
⟨X1

i ,1S⋆ − 1S⟩2 + 2Z1
i ⟨X1

i ,1S⋆ − 1S⟩
}

+

n2∑
i=1

{
⟨X2

i ,1S⋆ − 1S⟩2 + 2Z2
i ⟨X2

i ,1S⋆ − 1S⟩
}
.

We denote by
(
∆1

i

)
i∈[n1]

and
(
∆2

i

)
i∈[n2]

the terms of the sums above, that is:{
∆1

i := ⟨X1
i ,1S⋆ − 1S⟩2 + 2Z1

i ⟨X1
i ,1S⋆ − 1S⟩

∆2
i := ⟨X2

i ,1S⋆ − 1S⟩2 + 2Z2
i ⟨X2

i ,1S⋆ − 1S⟩
.

Note that each of the elements of each of
{
∆1

i : i ∈ [n1]
}

and
{
∆2

i : i ∈ [n2]
}

are i.i.d. and:

∆(S) =

n1∑
i=1

∆1
i +

n2∑
i=1

∆2
i .

Using the Chernoff bound, we have:

P (∆ (S) ≤ 0) = P (−∆(S) ≥ 0)

= inf
θ≥0

P
(
e−θ∆(S) ≥ 1

)
≤ inf

θ≥0
E
[
e−θ∆(S)

]
= inf

θ≥0
E
[
e−

∑n1
i=1 θ∆1

i+
∑n2

i=1 θ∆2
i

]
ind.
= inf

θ≥0

n1∏
i=1

E
[
e−θ∆1

i

] n2∏
i=1

E
[
e−θ∆2

i

]
= inf

θ≥0

n1∏
i=1

M−∆1
i
(θ)

n2∏
i=1

M−∆2
i
(θ)

i.d.
= inf

θ≥0

{
M−∆1

i
(θ)
}n1

{
M−∆2

i
(θ)
}n2

.

Therefore:

P (∆ (S) ≤ 0) ≤ inf
θ≥0

{
M−∆1

i
(θ)
}n1

{
M−∆2

i
(θ)
}n2

. (29)

Now we have, for any θ ≥ 0:

M−∆1
i
(θ) = EX1

i ,Z
1
i

[
e−θ[⟨X1

i ,β
⋆−β(S)⟩2+2Z1

i ⟨X
1
i ,β

⋆−β(S)⟩]
]

= EX1
i

[
e−θ⟨X1

i ,β
⋆−β(S)⟩2EZ1

i

[
e−2θZ1

i ⟨X
1
i ,β

⋆−β(S)⟩∣∣X1
i

]]
= EX1

i

[
e−θ⟨X1

i ,β
⋆−β(S)⟩2MZ1

i |X1
i

(
−2θ⟨X1

i , β
⋆ − β (S)⟩

)]
= EX1

i

[
e−θ⟨X1

i ,β
⋆−β(S)⟩2e

1
2 (−2θ⟨X1

i ,β
⋆−β(S)⟩)

2
σ2
1

]
= EXi

[
e(−θ+2θ2σ2

1)⟨X
1
i ,β

⋆−β(S)⟩2
]

= EXi

[
e(−θ+2θ2σ2

1)(
∑

j∈U X1
ij−

∑
j∈V X1

ij)
2]

,

where we write U and V for U (S) and V (S), respectively, for simplicity. We know that:∑
j∈U

X1
ij −

∑
j∈V

X1
ij

d
=

∑
j∈U∪V

X1
ij ∼ N (0, |U ∪ V |) .

14
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Hence:

M−∆1
i
(θ) = EXi

[
e(−θ+2θ2σ2

1)(
∑

j∈U X1
ij−

∑
j∈V X1

ij)
2]

= EXi

[
e|U∪V |(−θ+2θ2σ2

1)Γ
]
,

where:

Γ =

(∑
j∈U X1

ij −
∑

j∈V X1
ij√

|U ∪ V |

)2

∼ χ2 (1) .

Therefore:

M−∆1
i
(θ) =


1√

1−2|U∪V |(−θ+2θ2σ2
1)

if |U ∪ V |
(
−θ + 2θ2σ2

1

)
< 1/2

+∞ else.
(30)

Similarly to (30), we obtain the following expression for M−∆2
i
(θ):

M−∆2
i
(θ) =


1√

1−2|U∪V |(−θ+2θ2σ2
2)

if |U ∪ V |
(
−θ + 2θ2σ2

2

)
< 1/2

+∞ else.
(31)

Therefore, for any θ ≥ 0:

M−∆1
i
(θ)n1M−∆2

i
(θ)n2 =



(
1− 2 |U ∪ V |

(
−θ + 2θ2σ2

1

))−n1/2

×
(
1− 2 |U ∪ V |

(
−θ + 2θ2σ2

2

))−n2/2

if
{
|U ∪ V |

(
−θ + 2θ2σ2

1

)
< 1/2

|U ∪ V |
(
−θ + 2θ2σ2

2

)
< 1/2

+∞ else.

Remark A.1 (Best Chernoff bound). To find the best Chernoff bound (29), we need to solve the
optimization problem in (29), defined by:

inf
θ≥0

{
M−∆1

i
(θ)
}n1

{
M−∆2

i
(θ)
}n2

. (32)

Using the First Order Optimality Condition, (32) reduces to finding the roots of ξ′ (θ) = 0 is closed
form, where ξ (·) is defined by:

ξ (θ) := M−∆1
i
(θ)n1M−∆2

i
(θ)n2 .

Using the closed-form solution of ξ (·) obtained above, we conclude that solving 32 reduces to
finding the positive roots of the following third-degree polynomial in θ:

n1

(
4σ2

1θ − 1
) (

1− 2 |U ∪ V |
(
−θ + 2θ2σ2

2

))
+ n2

(
4σ2

2θ − 1
) (

1− 2 |U ∪ V |
(
−θ + 2θ2σ2

1

))
.

(33)
To the best of our knowledge, this doesn’t lead to any “reasonable” closed-form expression for the
minimizer θ⋆min. Instead, we note that:{

θ : |U ∪ V |
(
−θ + 2θ2σ2

2

)
< 1/2

}
⊆
{
θ : |U ∪ V |

(
−θ + 2θ2σ2

1

)
< 1/2

}
,

and choose θ to the middle of the LHS interval.

In particular, setting θ⋆ := 1
4σ2

2
, we have:

|U ∪ V |
(
−θ⋆ + 2θ⋆2σ2

2

)
= −θ⋆ |U ∪ V |

(
−1 + 2θ⋆σ2

2

)
= −θ⋆ |U ∪ V | /2 < 0 < 1/2,

and:

|U ∪ V |
(
−θ⋆ + 2θ⋆2σ2

1

)
= −θ⋆ |U ∪ V |

(
−1 +

σ2
1

2σ2
2

)
< 0 < 1/2 (since σ2

1 < σ2
2).

15
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Therefore:

M−∆1
i
(θ⋆)n1M−∆2

i
(θ⋆)n2

=
(
1− 2 |U ∪ V |

(
−θ⋆ + 2θ⋆2σ2

1

))−n1/2(
1− 2 |U ∪ V |

(
−θ⋆ + 2θ⋆2σ2

2

))−n2/2

=

(
1− 2 |U ∪ V |

(
− 1

4σ2
2

+ 2

(
1

4σ2
2

)2

σ2
1

))−n1/2

×

(
1− 2 |U ∪ V |

(
− 1

4σ2
2

+ 2

(
1

4σ2
2

)2

σ2
2

))−n2/2

=

(
1 + |U ∪ V |

(
2σ2

2 − σ2
1

4σ4
2

))−n1/2(
1 +

|U ∪ V |
4σ2

2

)−n2/2

≤

(
1 +

δ
(
2σ2

2 − σ2
1

)
s

2σ4
2

)−n1/2(
1 +

δs

2σ2
2

)−n2/2

,

where the last inequality holds because |U ∪ V | = 2M (S) ≥ 2δs. Finally, using this in (29) we
conclude:

P (∆ (S) ≤ 0) ≤

(
1 +

δ
(
2σ2

2 − σ2
1

)
s

2σ4
2

)−n1/2(
1 +

δs

2σ2
2

)−n2/2

.

B PROOF OF (14)

Proof of (14). Let β ∈ Bp,s. We know from (1) that:

Y |X,β ∼ N
(
Xβ,Σ2

)
.

Its pdf writes:

fY |X,β (y) = (2π)
−n/2

det (Σ)
−1

exp
{
− (y −Xβ)

T
Σ−2 (y −Xβ)

}
.

The MLE is defined as:

β̂MLE = argmax
β∈Bp,s

fY |X,β (Y )

= argmin
β∈Bp,s

(Y −Xβ)
T
Σ−2 (Y −Xβ)

= argmin
β∈Bp,s

(Y −Xβ)
T (

Σ−1
)T

Σ−1 (Y −Xβ)

= argmin
β∈Bp,s

∥∥Σ−1 (Y −Xβ)
∥∥2
2
.

C PROOF OF THEOREM 2

Proof of Theorem 2. We denote by S⋆ := Supp (β⋆). Let Sp,s := {S ⊂ [p] : |S| = s}. We define
the Σ-rescaled loss:

LΣ : Sp,s −→ R≥0

S 7−→
∥∥Σ−1 (Y −X1S)

∥∥2
2
,

where 1S denote the vector in {0, 1}p such that [1S ]j = 1 (j ∈ S) for all j ∈ [p]. In particular, note
from (14) that:

β̂MLE = 1ŜMLE
, where ŜMLE := argmin

S∈Sp,s

LΣ (S) .
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For every S ∈ Sp,s, we define: M (S) := |S△S⋆| /2, and let U (S) := S⋆ \ S, V (S) := S \ S⋆.
Note that, since |S| = |S⋆| = s, we have |U (S)| = |V (S)| = M (S). We also define:

∆ : Sp,s −→ R
S 7−→ LΣ (S)− LΣ (S⋆) .

Proposition C.1. For any S ∈ Sp,s: if M (S) ≥ δs, then:

P (∆ (S) ≤ 0) ≤
(
1 +

δs

2σ2
1

)−n1/2(
1 +

δs

2σ2
2

)−n2/2

.

Proof. See section C.1.

Hence we have, for any support S ∈ Sp,s such that |S△S⋆| ≥ 2δs:

P
(∥∥Σ−1 (Y −X1S)

∥∥2
2
≤
∥∥Σ−1 (Y −X1S⋆)

∥∥2
2

)
≤
(
1 +

δs

2σ2
1

)−n1/2(
1 +

δs

2σ2
2

)−n2/2

. (34)

Using (34) and a union bound over {S ∈ Sp,s : |S△S⋆| ≥ 2δs} we have:

PX,Z

(∣∣∣Supp
(
β̂
)
△Supp (β⋆)

∣∣∣ < 2δs
)

≥ PX,Z

(∥∥Σ−1 (Y −X1S)
∥∥2
2
>
∥∥Σ−1 (Y −X1S⋆)

∥∥2
2
, ∀S ∈ Sp,s : |S△S⋆| ≥ 2δs

)
= 1− PX,Z

(
∃S ∈ Sp,s : |S△S⋆| ≥ 2δs ,

∥∥Σ−1 (Y −X1S)
∥∥2
2
≤
∥∥Σ−1 (Y −X1S⋆)

∥∥2
2

)
U.B.
≥ 1−

∑
S∈Sp,s : |S△S⋆|≥2δs

PX,Z

(∥∥Σ−1 (Y −X1S)
∥∥2
2
≤
∥∥Σ−1 (Y −X1S⋆)

∥∥2
2

)
(34)

≥ 1−
∑

S∈Sp,s : |S△S⋆|≥2δs

(
1 +

δs

2σ2
1

)−n1/2(
1 +

δs

2σ2
2

)−n2/2

≥ 1− |Sp,s|
(
1 +

δs

2σ2
1

)−n1/2(
1 +

δs

2σ2
2

)−n2/2

= 1−
(
p

s

)(
1 +

δs

2σ2
1

)−n1/2(
1 +

δs

2σ2
2

)−n2/2

.

Case 1: Assume s = o (p). We use the corollary of Stirling:(
p

s

)
= exp

(
s log (p/s)

(
1 + o (1)

))
,

which yields:

PX,Z

(∣∣∣Supp
(
β̂
)
△Supp (β⋆)

∣∣∣ < 2δs
)

≥ 1− exp

{
s log (p/s)

(
1 + o (1)

)
− n1

2
log

(
1 +

δs

2σ2
1

)
− n2

2
log

(
1 +

δs

2σ2
2

)}
.

Now using (15) in above, we have:

PX,Z

(∣∣∣Supp
(
β̂
)
△Supp (β⋆)

∣∣∣ < 2δs
)

≥ 1− exp
{
s log (p/s)

(
1 + o (1)

)
− (1 + ε) s log (p/s)

}
≥ 1− exp {−εs log (p/s)− o (s log (p/s))} .

Finally we conclude:

PX,Z

(∣∣∣Supp
(
β̂
)
△Supp (β⋆)

∣∣∣ < 2δs
)
≥ 1− exp {− (ε+ o (1))n⋆/2} p→+∞−→ 1,
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where n⋆ = 2s log (p/s).

Case 2: Assume s = h (α) p, for some constant α ∈ (0, 1). We use the corollary of Stirling:(
p

s

)
= exp

(
h (α) p

(
1 + o (1)

))
,

which yields:

PX,Z

(∣∣∣Supp
(
β̂
)
△Supp (β⋆)

∣∣∣ < 2δs
)

≥ 1− exp

{
h (α) p

(
1 + o (1)

)
− n1

2
log

(
1 +

δs

2σ2
1

)
− n2

2
log

(
1 +

δs

2σ2
2

)}
.

Now using (15) in above, we have:

PX,Z

(∣∣∣Supp
(
β̂
)
△Supp (β⋆)

∣∣∣ < 2δs
)

≥ 1− exp
{
h (α) p

(
1 + o (1)

)
− (1 + ε)h (α) p

}
≥ 1− exp {−εh (α) p− o (p)} .

Finally we conclude:

PX,Z

(∣∣∣Supp
(
β̂
)
△Supp (β⋆)

∣∣∣ < 2δs
)
≥ 1− exp {− (ε+ o (1))n⋆/2} p→+∞−→ 1,

where n⋆ = 2h (α) p.

C.1 PROOF OF PROPOSITION C.1

Proof of Proposition C.1. Fix S ∈ Sp,s such that M (S) ≥ δs. We have:

∆(S) = LΣ (S)− LΣ (S⋆)

=
∥∥Σ−1 (Y −X1S)

∥∥2
2
−
∥∥Σ−1 (Y −X1S⋆)

∥∥2
2

=
∥∥Σ−1 (Xβ⋆ + Z −X1S)

∥∥2
2
−
∥∥Σ−1 (Xβ⋆ + Z −X1S⋆)

∥∥2
2

=
∥∥Σ−1X (1S⋆ − 1S)

∥∥2
2
+ 2 ⟨Σ−1Z,Σ−1X (1S⋆ − 1S)⟩

=

n1∑
i=1

1

σ2
1

⟨Xi,1S⋆ − 1S⟩2 +
n2∑

i=n1+1

1

σ2
2

⟨Xi,1S⋆ − 1S⟩2

+ 2

n1∑
i=1

1

σ2
1

Zi⟨Xi,1S⋆ − 1S⟩+ 2

n2∑
i=n1+1

1

σ2
2

Zi⟨Xi,1S⋆ − 1S⟩.

Let X1 ∈ Rn1×p, X2 ∈ Rn2×p such that:

X =

(
X1

X2

)
.

Then the above expression of ∆(S) writes:

∆(s) =
1

σ2
1

n1∑
i=1

{
⟨X1

i ,1S⋆ − 1S⟩2 + 2Z1
i ⟨X1

i ,1S⋆ − 1S⟩
}

+
1

σ2
2

n2∑
i=1

{
⟨X2

i ,1S⋆ − 1S⟩2 + 2Z2
i ⟨X2

i ,1S⋆ − 1S⟩
}
.

We denote by
(
∆1

i

)
i∈[n1]

and
(
∆2

i

)
i∈[n2]

the terms of the sums above, that is:{
∆1

i := ⟨X1
i ,1S⋆ − 1S⟩2 + 2Z1

i ⟨X1
i ,1S⋆ − 1S⟩

∆2
i := ⟨X2

i ,1S⋆ − 1S⟩2 + 2Z2
i ⟨X2

i ,1S⋆ − 1S⟩
.
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Note that each of the elements of each of
{
∆1

i : i ∈ [n1]
}

and
{
∆2

i : i ∈ [n2]
}

are i.i.d. and:

∆(S) =
1

σ2
1

n1∑
i=1

∆1
i +

1

σ2
2

n2∑
i=1

∆2
i .

Using the Chernoff bound, we have:

P (∆ (S) ≤ 0) = P (−∆(S) ≥ 0)

= inf
θ≥0

P
(
e−θ∆(S) ≥ 1

)
≤ inf

θ≥0
E
[
e−θ∆(S)

]
= inf

θ≥0
E
[
e
− 1

σ2
1

∑n1
i=1 θ∆1

i+
1

σ2
2

∑n2
i=1 θ∆2

i

]
ind.
= inf

θ≥0

n1∏
i=1

E
[
e−θ∆1

i /σ
2
1

] n2∏
i=1

E
[
e−θ∆2

i /σ
2
2

]
= inf

θ≥0

n1∏
i=1

M−∆1
i

(
θ

σ2
1

) n2∏
i=1

M−∆2
i

(
θ

σ2
2

)
i.d.
= inf

θ≥0

{
M−∆1

i

(
θ

σ2
1

)}n1
{
M−∆2

i

(
θ

σ2
1

)}n2

.

Therefore:

P (∆ (S) ≤ 0) ≤ inf
θ≥0

{
M−∆1

i

(
θ

σ2
1

)}n1
{
M−∆2

i

(
θ

σ2
2

)}n2

. (35)

Now we have, for any θ ≥ 0:

M−∆1
i
(θ/σ2

1) = EX1
i ,Z

1
i

[
e−θ[⟨X1

i ,β
⋆−β(S)⟩2+2Z1

i ⟨X
1
i ,β

⋆−β(S)⟩]/σ2
1

]
= EX1

i

[
e−θ⟨X1

i ,β
⋆−β(S)⟩2/σ2

1EZ1
i

[
e−2θZ1

i ⟨X
1
i ,β

⋆−β(S)⟩/σ2
1

∣∣X1
i

]]
= EX1

i

[
e−θ⟨X1

i ,β
⋆−β(S)⟩2/σ2

1MZ1
i |X1

i

(
−2θ⟨X1

i , β
⋆ − β (S)⟩/σ2

1

)]
= EX1

i

[
e−θ⟨X1

i ,β
⋆−β(S)⟩2/σ2

1e
1
2 (−2θ⟨X1

i ,β
⋆−β(S)⟩/σ2

1)
2
σ2
1

]
= EXi

[
e(−θ+2σ2

1)⟨X
1
i ,β

⋆−β(S)⟩2/σ2
1

]
= EXi

[
e(−θ+2θ2)(

∑
j∈U X1

ij−
∑

j∈V X1
ij)

2
/σ2

1

]
,

where we write U and V for U (S) and V (S), respectively, for simplicity. We know that:∑
j∈U

X1
ij −

∑
j∈V

X1
ij

d
=

∑
j∈U∪V

X1
ij ∼ N (0, |U ∪ V |) .

Hence:

M−∆1
i
(θ) = EXi

[
e(−θ+2θ2)(

∑
j∈U X1

ij−
∑

j∈V X1
ij)

2
/σ2

1

]
= EXi

[
e|U∪V |(−θ+2θ2)Γ/σ2

1

]
,

where:

Γ =

(∑
j∈U X1

ij −
∑

j∈V X1
ij√

|U ∪ V |

)2

∼ χ2 (1) .

Therefore:

M−∆1
i
(θ/σ2

1) =

{
1√

1−2|U∪V |(−θ+2θ2)/σ2
1

if |U ∪ V |
(
−θ + 2θ2

)
/σ2

1 < 1/2

+∞ else.
(36)
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Similarly to (36), we obtain the following expression for M−∆2
i
(θ/σ2

2):

M−∆2
i
(θ/σ2

2) =

{
1√

1−2|U∪V |(−θ+2θ2)/σ2
2

if |U ∪ V |
(
−θ + 2θ2

)
/σ2

2 < 1/2

+∞ else.
(37)

From above, we clearly have:

argmin
θ≥0

M−∆1
i
(θ/σ2

1) = argmin
θ≥0

M−∆2
i
(θ/σ2

2) = argmin
θ≥0

{
−θ + 2θ2

}
=

1

4
,

and, taking θ⋆ := 1/4 we have:

M−∆1
i
(θ/σ2

1) =
1√

1 + |U∪V |
4σ2

1

and M−∆2
i
(θ/σ2

2) =
1√

1 + |U∪V |
4σ2

2

.

Therefore:

inf
θ≥0

{
M−∆1

i

(
θ

σ2
1

)}n1
{
M−∆2

i

(
θ

σ2
2

)}n2

=

{
M−∆1

i

(
θ⋆

σ2
1

)}n1
{
M−∆2

i

(
θ⋆

σ2
2

)}n2

=

 1√
1 + |U∪V |

4σ2
1


n1
 1√

1 + |U∪V |
4σ2

2


n2

Therefore:

inf
θ≥0

{
M−∆1

i

(
θ

σ2
1

)}n1
{
M−∆2

i

(
θ

σ2
2

)}n2

=

(
1 +

|U ∪ V |
4σ2

1

)−n1/2(
1 +

|U ∪ V |
4σ2

2

)−n2/2

.

(38)
Since |U ∪ V | = 2M (S) ≥ 2δs, the above yields:

inf
θ≥0

{
M−∆1

i

(
θ

σ2
1

)}n1
{
M−∆2

i

(
θ

σ2
2

)}n2

≤
(
1 +

δs

2σ2
1

)−n1/2(
1 +

δs

2σ2
2

)−n2/2

.

Finally, using this in (35) we conclude:

P (∆ (S) ≤ 0) ≤
(
1 +

δs

2σ2
1

)−n1/2(
1 +

δs

2σ2
2

)−n2/2

.

D PROOF OF THEOREM 3

Proof of Theorem 3. We define Σ ∈ Rn×n and W random vector in Rn such that:

Z = ΣW,

where:

Σ =

(
σ1In1

0
0 σ2In2

)
, W ∼ N (0, In) .

Let S := Supp (β⋆) and Sc := [p]\S. The following proposition characterizes the recovery property
in a more tractable way that will help us in the proof.

Proposition D.1. Assume that the matrix XT
S XS is invertible. Then, for any given λp > 0 and noise

Σw ∈ Rn we have:

R (X,β⋆,Σw, λp) ⇐⇒


∣∣∣( 1nXT

S XS

)−1 ( 1
nX

T
S Σw − λp sign (β⋆

S)
)∣∣∣ < |β⋆

S |∣∣∣XT
ScXS

(
XT

S XS

)−1 ( 1
nX

T
S Σw − λp sign (β

⋆
S)
)
− 1

nX
T
ScΣw

∣∣∣ ≤ λp

where the absolute values and inequalities are taken component-wise.
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Proof. The equivalence follows from the First Order Optimality Condition of the LASSO (20). It
was used in the proof of the LASSO threshold (Wainwright, 2009) and previously by Fuchs (2004);
Meinshausen & Bühlmann (2006); Tropp (2006); Zhao & Yu (2006). See appendix D.1 for the
complete proof.

Let b⃗ := sign (β⋆). We define:

Ui := eTi

(
1

n
XT

S XS

)−1 [
1

n
XT

S ΣW − λp⃗b

]
, (39)

and

Vj := XT
j

{
XS

(
XT

S XS

)−1
λp⃗b−

[
XS

(
XT

S XS

)−1
XT

S − In

] ΣW
n

}
, (40)

for all i ∈ S and j ∈ Sc. Let ρ := mini∈S |β⋆
i |. Note that:

max
i∈S

|Ui| < ρ =⇒

∣∣∣∣∣
(
1

n
XT

S XS

)−1(
1

n
XT

S Σw − λp sign (β⋆
S)

)∣∣∣∣∣ < |β⋆
S | , (41)

and

max
j∈Sc

|Vj | ≤ λp ⇐⇒
∣∣∣∣XT

ScXS

(
XT

S XS

)−1
(
1

n
XT

S Σw − λp sign (β
⋆
S)

)
− 1

n
XT

ScΣw

∣∣∣∣ ≤ λp.

(42)
In addition, note that when s < n, XS is full-rank a.s., and hence XT

S XS is invertible a.s. Therefore,
the equivalence in Proposition 3.1 holds a.s. The proof of Theorem 3 relies of the two following
propositions:

Proposition D.2.

i. Under the sample size condition (22) we have:

P
(
max
j∈Sc

|Vj | ≤ λp

)
p→+∞−→ 0.

ii. Under the sample size condition (23) and the regularization condition (24), we have:

P
(
max
j∈Sc

|Vj | ≤ λp

)
p→+∞−→ 1.

Proof. See appendix D.2.

Proposition D.3. Under the sample size condition (23) and the regularization condition (24), we
have:

P
(
max
i∈S

|Ui| < ρ

)
p→+∞−→ 1.

Proof. See appendix D.3.

Necessity: assume (22) holds. Then we conclude by Proposition D.2 [i] and (42).

Sufficiency: assume (23) and (24) hold. Then we conclude by Proposition D.2 [ii], Proposition D.3
and (41), (42).
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D.1 PROOF OF PROPOSITION D.1

Proof of Proposition D.1. Let β̂ ∈ Rp. By First Order Optimality Condition of the LASSO, β̂ is
optimal if and only if the exits z ∈ Rp such that:z ∈ ∂ℓ1

(
β̂
)
=
{
z ∈ Rp : zi = sign

(
β̂i

)
for β̂i ̸= 0, |zi| ≤ 1 otherwise

}
,

1
nX

T
(
Xβ̂ − Y

)
+ λpz = 0.

The condition above can be equivalently written as:
zS = sign

(
β̂S

)
,

|zSc | ≤ 1,
1
nX

TXβ̂ − 1
nX

TY + λpz = 0.

Substituting Y = Xβ⋆ +Σw, the condition writes:
zS = sign

(
β̂S

)
,

|zSc | ≤ 1,
1
nX

TX
(
β̂ − β⋆

)
− 1

nX
TΣw + λpz = 0.

Splitting on S and Sc we get:
zS = sign

(
β̂S

)
,

|zSc | ≤ 1,
1
nX

T
S X

(
β̂ − β⋆

)
− 1

nX
T
S Σw + λp sign

(
β̂S

)
= 0,

1
nX

T
ScX

(
β̂ − β⋆

)
− 1

nX
T
ScΣw + λpzSc = 0.

Now the LASSO recovers the support of β⋆ if and only if there exits β̂ ∈ Rp such that sign
(
β̂
)
=

sign (β⋆) and:

∃ z ∈ Rp such that


zS = sign

(
β̂S

)
,

|zSc | ≤ 1,
1
nX

T
S X

(
β̂ − β⋆

)
− 1

nX
T
S Σw + λp sign

(
β̂S

)
= 0,

1
nX

T
ScX

(
β̂ − β⋆

)
− 1

nX
T
ScΣw + λpzSc = 0.

Which is equivalent to:

∃ z, β̂ ∈ Rp such that



sign
(
β̂
)
= sign (β⋆) ,

zS = sign
(
β̂S

)
,

|zSc | ≤ 1,
1
nX

T
S X

(
β̂ − β⋆

)
− 1

nX
T
S Σw + λp sign

(
β̂S

)
= 0,

1
nX

T
ScX

(
β̂ − β⋆

)
− 1

nX
T
ScΣw + λpzSc = 0.

which is equivalent to

∃ z, β̂ ∈ Rp such that



sign
(
β̂
)
= sign (β⋆) ,

zS = sign (β⋆
S) ,

|zSc | ≤ 1,
1
nX

T
S XS

(
β̂S − β⋆

S

)
− 1

nX
T
S Σw + λp sign (β⋆

S) = 0,

1
nX

T
ScXS

(
β̂S − β⋆

S

)
− 1

nX
T
ScΣw + λpzSc = 0.
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which is equivalent to

∃ z, β̂ ∈ Rp such that



β̂Sc = 0,

zS = sign
(
β̂S

)
= sign (β⋆

S) ̸= 0,

|zSc | ≤ 1,

β̂S = β⋆
S +

(
1
nX

T
S XS

)−1 ( 1
nX

T
S Σw − λp sign (β⋆

S)
)
,∣∣∣ 1nXT

ScXS

(
β̂S − β⋆

S

)
− 1

nX
T
ScΣw

∣∣∣ ≤ λp.

which is equivalent to
∣∣∣( 1nXT

S XS

)−1 ( 1
nX

T
S Σw − λp sign (β⋆

S)
)∣∣∣ < |β⋆

S | ,∣∣∣XT
ScXS

(
XT

S XS

)−1 ( 1
nX

T
S Σw − λp sign (β

⋆
S)
)
− 1

nX
T
ScΣw

∣∣∣ ≤ λp.

D.2 PROOF OF PROPOSITION D.2

D.2.1 PRELIMINARY RESULTS

Lemma D.1 (Moments of (V |XS ,W )). Conditionally on XS and W , V is Gaussian vector. In
addition, we have:

E [V |XS ,W ] = 0,

and:
Cov [V |XS ,W ] = MpI|Sc|,

where:

Mp :=

∥∥∥∥XS

(
XT

S XS

)−1
λp⃗b+

[
In −XS

(
XT

S XS

)−1
XT

S

] ΣW
n

∥∥∥∥2
2

,

= λ2
pb⃗

T
(
XT

S XS

)−1
b⃗+

1

n2
WTΣ

[
In −XS

(
XT

S XS

)−1
XT

S

]
ΣW.

Proof. See section D.2.4.

Lemma D.2 (Bounding the second moment of (V |XS ,W )). We have:

E [Mp] =
λ2
p

n− s− 1
∥b∥22 +

(n− s)
(
n1σ

2
1 + n2σ

2
2

)
n3

.

In addition, for any constant δ > 0, we have:

P (|Mp − E [Mp]| ≥ δE [Mp]) → 0,

as p → +∞.

Proof. See Section D.2.5.

D.2.2 SHOWING THAT P (maxj∈Sc |Vj | ≤ λp) −→ 0:

Proof of Proposition D.2, part (i.) . Let:

T (δ) :=
{
|Mp − E [Mp]| ≥ δE [Mp]

}
.

We have, by total probability:

P
(
max
j∈Sc

|Vj | ≤ λp

)
≤ P

(
max
j∈Sc

|Vj | ≤ λp

∣∣T (δ)
c
)
+ P

(
T (δ)

)
. (43)

Conditioning on XS and W :

P
(
max
j∈Sc

|Vj | ≤ λp

∣∣T (δ)
c
)
= E

[
P
(
max
j∈Sc

|Vj | ≤ λp

∣∣XS ,W
) ∣∣T (δ)

c

]
.
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Note that, conditionally on (XS ,W ), we have Vj
i.i.d.∼ N (0,Mp), for j ∈ Sc. We know the bound

on expectation of Gaussian maxima (see Theorem 5.3.1 in (De Haan & Ferreira, 2006)):

E
[
max
j∈Sc

Vj

∣∣XS ,W

]
=
√

2 log (p− s)Mp (1 + o (1)) ,

Conditionally on T (δ)
c, we have:

Mp ≥ (1− δ)E [Mp] .

Hence, conditionally on T (δ)
c:

1

λp
E
[
max
j∈Sc

|Vj |
∣∣XS ,W

]
≥ 1

λp

√
2 log (p− s) (1− δ)E [Mp] (1 + o (1))

≥ (1 + o (1))

√
1− δ

λp

√
2λ2

ps log (p− s)

n− s− 1
+

2 (n− s) (n1σ2
1 + n2σ2

2) log (p− s)

n3

= (1 + o (1))
√
1− δ

√
2s log (p− s)

n− s− 1
+

2 (n− s) (n1σ2
1 + n2σ2

2) log (p− s)

λ2
pn

3
.

We consider two cases, depending on the asymptotic behavior of n1σ
2
1+n2σ

2
2

λ2
pn

2 :

• Case 1: limp→+∞
n1σ

2
1+n2σ

2
2

λ2
pn

2 = 0.

• Case 2: limp→+∞
n1σ

2
1+n2σ

2
2

λ2
pn

2 > 0.

Case 1: Assume limp→+∞
n1σ

2
1+n2σ

2
2

λ2
pn

2 = 0. By the above inequality, we have:

1

λp
E
[
max
j∈Sc

|Vj |
∣∣XS ,W

]
≥ (1 + o (1))

√
1− δ

√
2s log (p− s)

n− s− 1
.

Using condition (22), the above gives:

1

λp
E
[
max
j∈Sc

|Vj |
∣∣XS ,W

]
≥ (1 + o (1))

√
1− δ

√
2s log (p− s)

n− s− 1

≥ (1 + o (1))
√
1− δ

√
2s log (p− s)

(1− ε) (2s log (p− s) + s+ 1)− s− 1

= (1 + o (1))
√
1− δ

√
2s log (p− s)

2s (1− ε) log (p− s)− ε (s+ 1)

≥ (1 + o (1))
√
1− δ

√
2s log (p− s)

2s (1− ε) log (p− s)

= (1 + o (1))

√
1− δ

1− ε
.

Taking the liminf as p → +∞ we get, conditionally on T (δ)
c:

lim inf
n→+∞

1

λp
E
[
max
j∈Sc

|Vj |
∣∣XS ,W

]
≥
√

1− δ

1− ε
.

Therefore, for n large enough we have:

1

λp
E
[
max
j∈Sc

|Vj |
∣∣XS ,W

]
≥ 1

2

(
1 +

√
1− δ

1− ε

)
=

1

2
+

1

2

√
1− δ

1− ε
.

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Taking δ := ε/2, we get:

1

λp
E
[
max
j∈Sc

|Vj |
∣∣XS ,W

]
≥ 1

2
+

1

2

√
1− ε/2

1− ε
=: κ > 1.

Next, we use the following the result on concentration of Gaussian maxima:

Lemma D.3 (Concentration of Gaussian maxima). Let k ∈ N and (Ni)
i=k
i=1

i.i.d.∼ N
(
0, τ2

)
. Then for

any η > 0, we have:P
(
maxi∈[k] Ni − E

[
maxi∈[k] Ni

]
> η

)
≤ exp

(
− η2

2τ2

)
,

P
(
maxi∈[k] Ni − E

[
maxi∈[k] Ni

]
< −η

)
≤ exp

(
− η2

2τ2

)
.

Proof. See appendix D.2.6.

Using Lemma D.3 gives, for all η > 0:

P
(
max
j∈Sc

|Vj | < E
[
max
j∈Sc

|Vj |
]
− η

)
≤ exp

(
− η2

2 (1 + δ)E [Mp]

)
.

Setting η := (κ− 1)λp/2, we get:

P
(
max
j∈Sc

|Vj | ≤ λp

∣∣∣T (δ)
c

)
≤ P

(
max
j∈Sc

|Vj | < (κ+ 1)λp/2
∣∣∣T (δ)

c

)
≤ P

(
max
j∈Sc

|Vj | < E
[
max
j∈Sc

|Vj |
]
− (κ− 1)λp/2

∣∣∣T (δ)
c

)
≤ exp

(
−

(κ− 1)
2
λ2
p

4 (2 + ε)E [Mp]

)

= exp

−
(κ− 1)

2
λ2
p

4 (2 + ε)

(
λ2
ps

n−s−1 +
(n−s)(n1σ2

1+n2σ2
2)

n3

)


= exp

− (κ− 1)
2

4 (2 + ε)
(

s
n−s−1 + n−s

n
n1σ2

1+n2σ2
2

λ2
pn

2

)
 .

Now note that, because limp→+∞
n1σ

2
1+n2σ

2
2

λ2
pn

2 = 0, the above RHS goes to 0 as p → +∞. Hence,
we get:

P
(
max
j∈Sc

|Vj | ≤ λp

∣∣∣T (δ)
c

)
p→+∞−→ 0.

Taking the limit in (43) and using the fact that P
(
T (δ)

) p→+∞−→ 0, we conclude:

lim
p→+∞

P
(
max
j∈Sc

|Vj | ≤ λp

)
= 0.
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Case 2: Assume limp→+∞
n1σ

2
1+n2σ

2
2

λ2
pn

2 > 0. Note that this could be +∞. We have:

1

λp
E
[
max
j∈Sc

|Vj |
∣∣XS ,W

]
≥ (1 + o (1))

√
1− δ

√
2s log (p− s)

n− s− 1
+

2 (n− s) (n1σ2
1 + n2σ2

2) log (p− s)

λ2
pn

3

≥ (1 + o (1))
√
1− δ

√
2 (n− s) (n1σ2

1 + n2σ2
2) log (p− s)

λ2
pn

3

= (1 + o (1))
√
1− δ

√
2
n− s

n

n1σ2
1 + n2σ2

2

λ2
pn

2

√
log (p− s)

p→+∞−→ +∞.

Therefore, for n large enough, we have:

E
[
max
j∈Sc

|Vj |
∣∣XS ,W

]
≥ 4λp.

Now using Lemma D.3 on concentration of Gaussian maxima, we have for all η > 0:

P
(
max
j∈Sc

|Vj | < E
[
max
j∈Sc

|Vj |
]
− η

)
≤ exp

(
− η2

2 (1 + δ)E [Mp]

)
.

Fixing η := E [maxj∈Sc |Vj |] /2 and δ := ε/2 we get, for n large enough:

P
(
max
j∈Sc

|Vj | ≤ λp

∣∣∣T (δ)
c

)
≤ P

(
max
j∈Sc

|Vj | < 2λp

∣∣∣T (δ)
c

)
≤ P

(
max
j∈Sc

|Vj | <
1

2
E
[
max
j∈Sc

|Vj |
] ∣∣∣T (δ)

c

)
= P

(
max
j∈Sc

|Vj | < E
[
max
j∈Sc

|Vj |
]
− 1

2
E
[
max
j∈Sc

|Vj |
] ∣∣∣T (δ)

c

)
≤ exp

(
−E [maxj∈Sc |Vj |]2

4 (2 + ε)E [Mp]

)

= exp

(
−
E [maxj∈Sc |Vj |]2 /λ2

p

4 (2 + ε)E [Mp] /λ2
p

)

= exp

−
E [maxj∈Sc |Vj |]2 /λ2

p

4 (2 + ε)

(
λ2
ps

n−s−1 +
(n−s)(n1σ2

1+n2σ2
2)

n3

)
/λ2

p



= exp

−

(
E [maxj∈Sc |Vj |] /λp

)2
4 (2 + ε)

(
s

n−s−1 + n−s
n

n1σ2
1+n2σ2

2

λ2
pn

2

)
 .

Since:

1

λp
E
[
max
j∈Sc

|Vj |
∣∣XS ,W

]
≥ (1 + o (1))

√
1− δ

√
2
n− s

n

n1σ2
1 + n2σ2

2

λ2
pn

2

√
log (p− s),
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the above yields:

P
(
max
j∈Sc

|Vj | ≤ λp

∣∣∣T (δ)
c

)
≤ exp

−
2 (1 + o (1)) (1− δ)

(
n−s
n

n1σ
2
1+n2σ

2
2

λ2
pn

2

)
log (p− s)

4 (2 + ε)
(

s
n−s−1 + n−s

n
n1σ2

1+n2σ2
2

λ2
pn

2

)


= exp

−
2 (1 + o (1)) (1− δ)

(
n−s
n

n1σ
2
1+n2σ

2
2

λ2
pn

2

)
log (p− s)

4 (2 + ε) (1 + o (1))
(

n−s
n

n1σ2
1+n2σ2

2

λ2
pn

2

)


= exp

(
− (1− δ) log (p− s)

2 (2 + ε)
(1 + o (1))

)
p→+∞−→ 0.

Hence, we get:

P
(
max
j∈Sc

|Vj | ≤ λp

∣∣∣T (δ)
c

)
p→+∞−→ 0.

Taking the limit in (43) and using the fact that P
(
T (δ)

) p→+∞−→ 0, we conclude:

lim
p→+∞

P
(
max
j∈Sc

|Vj | ≤ λp

)
= 0.

D.2.3 SHOWING THAT P (maxj∈Sc |Vj | ≤ λp) −→ 1:

Proof of Proposition D.2, part (ii.) . Let:
T (δ) :=

{
|Mp − E [Mp]| ≥ δE [Mp]

}
.

We have, by total probability:

P
(
max
j∈Sc

|Vj | > λp

)
≤ P

(
max
j∈Sc

|Vj | > λp

∣∣∣T (δ)
c

)
+ P (T (δ)) . (44)

Conditioning on XS and W :

P
(
max
j∈Sc

|Vj | > λp

∣∣∣T (δ)
c

)
= E

[
P
(
max
j∈Sc

|Vj | > λp

∣∣∣XS ,W

) ∣∣∣T (δ)
c

]
Note that, conditionally on (XS ,W ), we have Vj

i.i.d.∼ N (0,Mp), for j ∈ Sc. Using the bound on
expectation of Gaussian maxima (see Theorem 5.3.1 in (De Haan & Ferreira, 2006)):

E
[
max
j∈Sc

|Vj |
∣∣∣XS ,W

]
≤
√
2 log

(
2 (p− s)

)
Mp.

Conditionally on T (δ)
c, we have:

Mp ≤ (1 + δ)E [Mp] .

Hence, conditionally on T (δ)
c:

1

λp
E
[
max
j∈Sc

|Vj |
∣∣∣XS ,W

]
≤ 1

λp

√
2 log

(
2 (p− s)

)
(1 + δ)E [Mp]

=
1

λp

√
2 log

(
2 (p− s)

)
(1 + δ)

(
λ2
ps

n− s− 1
+

(n− s) (n1σ2
1 + n2σ2

2)

n3

)

=
√
2 + 2δ

√
log
(
2 (p− s)

)
s

n− s− 1
+

log
(
2 (p− s)

)
(n− s) (n1σ2

1 + n2σ2
2)

λ2
pn

3

=
√
2 + 2δ

×

√
s log 2

n− s− 1
+

s log (p− s)

n− s− 1
+

n− s

n

(
(n1σ2

1 + n2σ2
2) log (p− s)

λ2
pn

2
+

(n1σ2
1 + n2σ2

2) log 2

λ2
pn

2

)
.
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Taking the limsup as p → +∞ and using conditions (23) and (24) we get, conditionally on T (δ)
c:

lim sup
p→+∞

1

λp
E
[
max
j∈Sc

|Vj |
∣∣∣XS ,W

]

≤ lim sup
p→+∞

√
(1 + δ)

(
2s log (p− s)

(1 + ε) (2s log (p− s) + s+ 1)− s− 1

)

≤ lim sup
p→+∞

√
(1 + δ)

(
2s log (p− s)

(1 + ε) (2s log (p− s) + s+ 1)− s− 1

)
≤
√

1 + δ

1 + ε
.

Fix δ := ε/4. By the above, we know that for large enough n, we have:

E
[
max
j∈Sc

|Vj |
∣∣∣XS ,W

]
≤ λp

√
1 + ε/2

1 + ε
.

For simplicity of notation, set υ := 1−
√

1+ε/2
1+ε > 0. In addition, we by Lemma D.3 on concentra-

tion of Gaussian maxima, for all η > 0:

P
(
max
j∈Sc

|Vj | > η + E
[
max
j∈Sc

|Vj |
] ∣∣∣XS ,W

)
≤ exp

(
− η2

2 (1 + δ)E [Mp]

)
.

Let η := υλp. Then we get, for n large enough:

P
(
max
j∈Sc

|Vj | > λp

∣∣∣XS ,W

)
≤ P

(
max
j∈Sc

|Vj | > η + E
[
max
j∈Sc

|Vj |
] ∣∣∣XS ,W

)
≤ exp

(
− η2

2 (1 + δ)E [Mp]

)

= exp

−
υ2λ2

p

2 (1 + ε/2)

(
λ2
ps

n−s−1 +
(n−s)(n1σ2

1+n2σ2
2)

n3

)


= exp

− υ2

2 (1 + ε/2)
(

s
n−s−1 + n−s

n
n1σ2

1+n2σ2
2

λ2
pn

2

)
 .

Substituting in the above, we get:

P
(
max
j∈Sc

|Vj | > λp

∣∣∣T (δ)
c

)
= E

[
P
(
max
j∈Sc

|Vj | > λp

∣∣∣XS ,W

) ∣∣∣T (δ)
c

]

≤ E

exp
− υ2

2 (1 + ε/2)
(

s
n−s−1 + n−s

n
n1σ2

1+n2σ2
2

λ2
pn

2

)
 ∣∣∣T (δ)

c


= exp

− υ2

2 (1 + ε/2)
(

s
n−s−1 + n−s

n
n1σ2

1+n2σ2
2

λ2
pn

2

)


p→+∞−→ 0,

since, by condition (24), we have:

0 <
n1σ

2
1 + n2σ

2
2

λ2
pn

2
≤
(
n1σ

2
1 + n2σ

2
2

)
log (p− s)

λ2
pn

2

p→+∞−→ 0.

Taking the limit in (44) and using the fact that P (T (δ)) → 0, we conclude:

P
(
max
j∈Sc

|Vj | ≤ λp

)
p→+∞−→ 1.
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D.2.4 PROOF OF LEMMA D.1

Proof of Lemma D.1. Recall from (40) that:

Vj =

{
XS

(
XT

S XS

)−1
λp⃗b−

[
XS

(
XT

S XS

)−1
XT

S − In

] ΣW
n

}T

Xj ,

for all j ∈ Sc. Conditionally on XS and W , the first term of the RHS above is constant and
(Xj)j∈Sc

i.i.d.∼ N (0, In). Therefore:

Vj |XS ,W ∼ N
(
0, ATA

)
,

where:

A =

{
XS

(
XT

S XS

)−1
λp⃗b−

[
XS

(
XT

S XS

)−1
XT

S − In

] ΣW
n

}
∈ Rn.

Expanding the expression of ATA, we get:

ATA = λ2
pb⃗

T
(
XT

S XS

)−1
b⃗+

1

n2
WTΣT

[
In −XS

(
XT

S XS

)−1
XT

S

]T
ΣW.

In addition, we have:
Cov (Xj1 , Xj2) = δj1j2In,

therefore:
Cov (Vj1 , Vj2) = δj1j2A

TA.

We conclude:
V |XS ,W ∼ N

(
0,MpI|Sc|

)
,

where Mp := ATA = ∥A∥22.

D.2.5 PROOF OF LEMMA D.2

Proof of Lemma D.2. Recall from Lemma D.1 that:

Mp = λ2
pb⃗

T
(
XT

S XS

)−1
b⃗+

1

n2
WTΣ

[
In −XS

(
XT

S XS

)−1
XT

S

]
ΣW.

By expectation of inverse Wishart matrices, we have:

E
[
λ2
pb⃗

T
(
XT

S XS

)−1
b⃗
]
=

λ2
p

n− s− 1
∥b∥22 .

By Gram-Schmidt decomposition of XS (Meckes, 2019), we write:

XS = QR ∈ Rn×s, (45)

with Rii > 0 and QTQ = Is, where R ∈ Rs×s is upper triangular (hence invertible) Q ∈ Rn×s

corresponds to s columns of a n × n matrix of Haar distribution over the orthogonal group O (n),
which we define as follows:

U = [P Q] ∼ Haar on O (n) .

Then we have:

XS

(
XT

S XS

)−1
XT

S = QR
(
RTQTQR

)−1
RTQT

= QR
(
RTR

)−1
RTQT

= QRR−1
(
RT
)−1

RTQT

= QQT .

Therefore:

In−XS

(
XT

S XS

)−1
XT

S = In−QQT = PPT = [P Q]

[
In−s 0(n−s)×s

0s×(n−s) 0s×s

] [
P
Q

]
= UDUT ,
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where:

D =

[
In−s 0(n−s)×s

0s×(n−s) 0s×s

]
.

Note that unlike U , D is deterministic. Since W ∼ N (0, In), we have:

E
[
1

n2
WTΣ

[
In −XS

(
XT

S XS

)−1
XT

S

]
ΣW

∣∣∣ XS

]
=

1

n2
tr
{
Σ
[
In −XS

(
XT

S XS

)−1
XT

S

]
Σ
}

=
1

n2
tr
(
ΣTUDUTΣ

)
.

Hence, by total expectation:

E
[
1

n2
WTΣ

[
In −XS

(
XT

S XS

)−1
XT

S

]
ΣW

]
= EXS

[
1

n2
tr
(
ΣTUDUTΣ

)]
=

1

n2
tr
(
EXS

[
ΣTUDUTΣ

])
=

1

n2
tr
(
ΣTEU

[
UDUT

]
Σ
)
.

By properties of the Haar distribution (see Example 1.8 of (Gu, 2013)), we have:

EU∼Haar(n)
[
UTDU

]
=

tr (D)

n
In.

Substituting in the above, we get:

E
[
1

n2
WTΣ

[
In −XS

(
XT

S XS

)−1
XT

S

]
ΣW

]
=

1

n2
tr
(
ΣEU

[
UDUT

]
Σ
)

=
1

n2
tr
(

tr (D)

n
Σ InΣ

)
=

tr (D)

n3
tr
(
ΣT InΣ

)
=

n− s

n3
tr
(
ΣTΣ

)
=

(n− s)
(
n1σ

2
1 + n2σ

2
2

)
n3

.

Hence, we conclude:

E [Mp] =
λ2
p

n− s− 1
∥b∥22 +

(n− s)
(
n1σ

2
1 + n2σ

2
2

)
n3

.

We now compute Var (Mp). For simplicity, we write Λ = In −XS

(
XT

S XS

)−1
XT

S = UDUT , so
that:

Mp = λ2
pb⃗

T
(
XT

S XS

)−1
b⃗+

1

n2
WTΣΛΣW.

Therefore:

M2
p = λ4

p

[⃗
bT
(
XT

S XS

)−1
b⃗
]2

+
1

n4

(
WTΣΛΣW

)2
+ 2

λ2
p

n2

[⃗
bT
(
XT

S XS

)−1
b⃗
] (

WTΣΛΣW
)
.

Let:

T1 :=
[⃗
bT
(
XT

S XS

)−1
b⃗
]2

, T2 :=
(
WTΣΛΣW

)2
, T3 :=

[⃗
bT
(
XT

S XS

)−1
b⃗
] (

WTΣΛΣW
)
,

so that:

M2
p = λ4

pT1 +
1

n4
T2 + 2

λ2
p

n2
T3.

We start by computing E [T1]. Recall that XT
S XS ∼ Ws (Is, n). We use the following result for

second moments of inverse Wishart matrices from (Siskind, 1972).
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Lemma D.4 (Second moment of inverse Wishart matrices, (Siskind, 1972)). Let a, b ∈ N with
a > b+ 3. Let t ∈ Rs and M ∈ Rs×s and A ∼ Wa (T, b). Then:

(b− a) (b− a− 3)E
[
A−1ttTA−1

]
= T−1ttTT−1 + T−1

(
tTT−1t

)
/ (b− a− 1) .

Setting b := n; a := s; t := b⃗; T := Is and A := XT
S XS in Lemma D.4, we get:

(n− s) (n− s− 3)E
[(
XT

S XS

)−1
b⃗⃗bT

(
XT

S XS

)−1
]
= b⃗⃗bT +

∥∥∥⃗b∥∥∥2
2
Is/ (n− s− 1) . (46)

Multiplying by the LHS by b⃗T on the left and by b⃗ on right we get:

E [T1] =
1

(n− s) (n− s− 3)

(
1 +

1

n− s− 1

) (⃗
bT b⃗
)2

.

Hence:

E [T1] =
1

(n− s) (n− s− 3)

(
1 +

1

n− s− 1

)∥∥∥⃗b∥∥∥4
2
. (47)

Now let us compute E [T2]. Since W ∼ N (0, In), we have by moments of the multivariate normal
distribution (see Theorem 5.2a and Theorem 5.2b in (Rencher & Schaalje, 2008)):

E [T2 |XS ] = 2 tr
[
(ΣΛΣ)

2
]
+
[
tr (ΣΛΣ)

]2
.

Lemma D.5. We have:

E
{[

tr (ΣΛΣ)
]2}

=
(
n1σ

2
1 + n2σ

2
2

)2{ (n+ 1) (n− s)

(n− 1)n (n+ 2)

}{
n− s− 2

n+ 1

}

+
(
n1σ

4
1 + n2σ

4
2

) (n− s) (n− s+ 2)

n (n+ 2)
−

(n+ 1) (n− s)
(
n− s− 2

(n+1)

)
(n− 1)n (n+ 2)

 .

and:

E
{
tr
[
(ΣΛΣ)

2
]}

=
(
n1σ

2
1 + n2σ

2
2

)2{ s (n− s)

(n− 1)n (n+ 2)

}
+
(
n1σ

4
1 + n2σ

4
2

){ n− s

n (n+ 2)

}{
n− s+ 1 +

n− s− 1

n− 1

}
.

Proof. See appendix D.2.7.
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Substituting in the expression of E [T2 |XS ] and using total expectation, we get:

E [T2]

= E [E [T2 |XS ]]

= E
[
2 tr

[
(ΣΛΣ)

2
]
+
[
tr (ΣΛΣ)

]2]
= 2E

[
tr
[
(ΣΛΣ)

2
]]

+ E
[[
tr (ΣΛΣ)

]2]
=
(
n1σ

2
1 + n2σ

2
2

)2{ 2s (n− s)

(n− 1)n (n+ 2)

}
+
(
n1σ

4
1 + n2σ

4
2

){ 2 (n− s)

n (n+ 2)

}{
n− s+ 1 +

n− s− 1

n− 1

}
+
(
n1σ

2
1 + n2σ

2
2

)2{ (n+ 1) (n− s)

(n− 1)n (n+ 2)

}{
n− s− 2

n+ 1

}

+
(
n1σ

4
1 + n2σ

4
2

) (n− s) (n− s+ 2)

n (n+ 2)
−

(n+ 1) (n− s)
(
n− s− 2

(n+1)

)
(n− 1)n (n+ 2)


=
(
n1σ

2
1 + n2σ

2
2

)2{ n− s

(n− 1)n (n+ 2)

}{
2s+ (n+ 1)

(
n− s− 2

n+ 1

)}
+
(
n1σ

4
1 + n2σ

4
2

){ n− s

n (n+ 2)

}

×

2n− 2s+ 2 +
2 (n− s− 1)

n− 1
+ n− s+ 2−

(n+ 1)
(
n− s− 2

(n+1)

)
n− 1


=
(
n1σ

2
1 + n2σ

2
2

)2{ n− s

(n− 1)n (n+ 2)

}{
2s+ (n+ 1)

(
n− s− 2

n+ 1

)}
+
(
n1σ

4
1 + n2σ

4
2

){ n− s

n (n+ 2)

}

×

3n− 3s+ 4 +
2 (n− s− 1)

n− 1
−

(n+ 1)
(
n− s− 2

(n+1)

)
n− 1

 .

Therefore:

E [T2] =
(
n1σ

2
1 + n2σ

2
2

)2{ n− s

(n− 1)n (n+ 2)

}{
2s+ (n+ 1)

(
n− s− 2

n+ 1

)}
+
(
n1σ

4
1 + n2σ

4
2

){ n− s

n (n+ 2)

}

×

3n− 3s+ 4 +
2 (n− s− 1)

n− 1
−

(n+ 1)
(
n− s− 2

(n+1)

)
n− 1

 . (48)

Finally, we compute E [T3]. We have:

E [T3 |XS ] = E
{[⃗

bT
(
XT

S XS

)−1
b⃗
] (

WTΣΛΣW
) ∣∣∣XS

}
=
[⃗
bT
(
XT

S XS

)−1
b⃗
]
E
{
WTΣΛΣW

∣∣∣XS

}
=
[⃗
bT
(
XT

S XS

)−1
b⃗
]
tr
(
ΣΛΣ

)
.

Recall from (45) that:
XS = QR,
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where Q ∈ Rn×s and R ∈ Rs×s are independent, R is upper triangular with Rii > 0 and QTQ =
Is. Therefore, by total expectation:

E [T3] = E
[
E [T3 |XS ]

]
= E

{[⃗
bT
(
XT

S XS

)−1
b⃗
]
tr (ΣΛΣ)

}
= E

{[⃗
bT
(
XT

S XS

)−1
b⃗
]
tr
[
Σ
(
In −XS

(
XT

S XS

)−1
XT

S

)
Σ
]}

= E
{[⃗

bT
(
RTQTQR

)−1
b⃗
]
tr
[
Σ
(
In −QR

(
RTQTQR

)−1
RTQT

)
Σ
]}

= E
{[⃗

bT
(
RTR

)−1
b⃗
]
tr
[
Σ
(
In −QR

(
RTR

)−1
RTQT

)
Σ
]}

= E
{[⃗

bT
(
RTR

)−1
b⃗
]
tr
[
Σ
(
In −QRR−1

(
RT
)−1

RTQT
)
Σ
]}

= E
{[⃗

bT
(
RTR

)−1
b⃗
]
tr
[
Σ
(
In −QQT

)
Σ
]}

= E
{[⃗

bT
(
RTR

)−1
b⃗
]}

E
{
tr
[
Σ
(
In −QQT

)
Σ
]}

= E
{[⃗

bT
(
RTR

)−1
b⃗
]}

E
{
tr
[
Σ
(
In −QQT

)
Σ
]}

= E
{[⃗

bT
(
XT

S XS

)−1
b⃗
]}

E
{
tr
(
ΣUDUTΣ

)}
.

By expectation of inverse Wishart matrices (Anderson et al., 1958), we have:

E
{[⃗

bT
(
XT

S XS

)−1
b⃗
]}

=
1

n− s− 1

∥∥∥⃗b∥∥∥2
2
.

Using this in the above expression of E [T3] yields:

E [T3] = E
{[⃗

bT
(
XT

S XS

)−1
b⃗
]}

E
{
tr
(
ΣUDUTΣ

)}
=

1

n− s− 1

∥∥∥⃗b∥∥∥2
2
tr
{
E
[
ΣUDUTΣ

]}
=

1

n− s− 1

∥∥∥⃗b∥∥∥2
2
tr
{
ΣE
[
UDUT

]
Σ
}

=
1

n− s− 1

∥∥∥⃗b∥∥∥2
2
tr

{
Σ

(
tr (D)

n
In

)
Σ

}
=

tr (D)

n (n− s− 1)

∥∥∥⃗b∥∥∥2
2
tr
(
Σ2
)

=
(n− s)

(
n1σ

2
1 + n2σ

2
2

)
n (n− s− 1)

∥∥∥⃗b∥∥∥2
2
.

Therefore:

E [T3] =
(n− s)

(
n1σ

2
1 + n2σ

2
2

)
n (n− s− 1)

∥∥∥⃗b∥∥∥2
2
. (49)

Now we have:

E
[
M2

p

]
− (E [Mp])

2

= λ4
pE [T1] +

1

n4
E [T2] +

2λ2
p

n2
E [T3]−

(
λ2
ps

n− s− 1
+

(n− s)
(
n1σ

2
1 + n2σ

2
2

)
n3

)2

= λ4
p

(
E [T1]−

s2

(n− s− 1)
2

)
+

(
E [T2]

n4
−

(n− s)
2 (

n1σ
2
1 + n2σ

2
2

)2
n6

)

+
2λ2

p

n3

(
E [T3]n−

s (n− s)
(
n1σ

2
1 + n2σ

2
2

)
n− s− 1

)
.
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Let:

H1 := λ4
p

(
E [T1]−

s2

(n− s− 1)
2

)
,

H2 :=
E [T2]

n4
−

(n− s)
2 (

n1σ
2
1 + n2σ

2
2

)2
n6

,

and:

H3 :=
2λ2

p

n3

{
E [T3]n−

s (n− s)
(
n1σ

2
1 + n2σ

2
2

)
n− s− 1

}
.

Then we have, using (47):

H1

(E [Mp])
2 =

λ4
p

(
E [T1]− s2

(n−s−1)2

)
(

λ2
ps

n−s−1 +
(n−s)(n1σ2

1+n2σ2
2)

n3

)2

≤
λ4
ps

2
(

1
(n−s)(n−s−3)

(
1 + 1

n−s−1

)
− 1

(n−s−1)2

)
λ4
ps

2

(n−s−1)2

= (n− s− 1)
2

(
1

(n− s) (n− s− 3)

(
1 +

1

n− s− 1

)
− 1

(n− s− 1)
2

)

=
(n− s− 1)

2

(n− s) (n− s− 3)

(
1 +

1

n− s− 1

)
− 1

= o (1) .

Similarly, using (48):

H2

=
E [T2]

n4
−

(n− s)
2 (

n1σ
2
1 + n2σ

2
2

)2
n6

=
(
n1σ

2
1 + n2σ

2
2

)2{ 2s (n− s)

(n− 1)n5 (n+ 2)
+

(n− s) (n+ 1)

(n− 1)n5 (n+ 2)

(
n− s− 2

n+ 1

)
− (n− s)

2

n6

}

+
(
n1σ

4
1 + n2σ

4
2

){ n− s

n5 (n+ 2)

}3n− 3s+ 4 +
2 (n− s− 1)

n− 1
−

(n+ 1)
(
n− s− 2

(n+1)

)
n− 1

 .

We have:

(E [Mp])
2 ≥

(n− s)
2 (

n1σ
2
1 + n2σ

2
2

)2
n6

.
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Hence:

H2

(E [Mp])
2

≤

{
n6

(n− s)
2

}{
2s (n− s)

(n− 1)n5 (n+ 2)
+

(n− s) (n+ 1)

(n− 1)n5 (n+ 2)

(
n− s− 2

n+ 1

)
− (n− s)

2

n6

}

+
n1σ

4
1 + n2σ

4
2

(n1σ2
1 + n2σ2

2)
2

{
n6

(n− s)
2

}{
(n− s)

n5 (n+ 2)

}

×

3n− 3s+ 4 +
2 (n− s− 1)

n− 1
−

(n+ 1)
(
n− s− 2

(n+1)

)
n− 1


=

{
2sn

(n− 1) (n− s) (n+ 2)
+

n (n+ 1)

(n− s) (n− 1) (n+ 2)

(
n− s− 2

n+ 1

)
− 1

}
+

n1σ
4
1 + n2σ

4
2

(n1σ2
1 + n2σ2

2)
2

{
n

(n+ 2) (n− s)

}

×

3n− 3s+ 4 +
2 (n− s− 1)

n− 1
−

(n+ 1)
(
n− s− 2

(n+1)

)
n− 1


=

{
2sn

(n− 1) (n− s) (n+ 2)
+

n (n+ 1)

(n− s) (n− 1) (n+ 2)

(
n− s− 2

n+ 1

)
− 1

}
+

n1σ
4
1 + n2σ

4
2

(n1σ2
1 + n2σ2

2)
2

×

 3n

(n+ 2)
+

4n

(n+ 2) (n− s)
+

2 (n− s− 1)n

(n− s) (n− 1) (n+ 2)
−

n (n+ 1)
(
n− s− 2

(n+1)

)
(n− s) (n− 1) (n+ 2)


=

{
2sn

(n− 1) (n− s) (n+ 2)
+

n (n+ 1)

(n− s) (n− 1) (n+ 2)

(
n− s− 2

n+ 1

)
− 1

}
+

{
n1σ

4
1

(n1σ2
1 + n2σ2

2)
2 +

n2σ
4
2

(n1σ2
1 + n2σ2

2)
2

}

×

 3n

(n+ 2)
+

4n

(n+ 2) (n− s)
+

2 (n− s− 1)n

(n− s) (n− 1) (n+ 2)
−

n (n+ 1)
(
n− s− 2

(n+1)

)
(n− s) (n− 1) (n+ 2)


≤
{

2sn

(n− 1) (n− s) (n+ 2)
+

n (n+ 1)

(n− s) (n− 1) (n+ 2)

(
n− s− 2

n+ 1

)
− 1

}
+

{
1

n1
+

1

n2

}

×

 3n

(n+ 2)
+

4n

(n+ 2) (n− s)
+

2 (n− s− 1)n

(n− s) (n− 1) (n+ 2)
−

n (n+ 1)
(
n− s− 2

(n+1)

)
(n− s) (n− 1) (n+ 2)


= o (1) .
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For H3, using (49):

H3 :=
2λ2

p

n3

{
E [T3]n−

s (n− s)
(
n1σ

2
1 + n2σ

2
2

)
n− s− 1

}

=
2λ2

p

n3

{
n (n− s) s

(
n1σ

2
1 + n2σ

2
2

)
n (n− s− 1)

−
s (n− s)

(
n1σ

2
1 + n2σ

2
2

)
n− s− 1

}
= 0.

Therefore, we conclude:

E
[
M2

p

]
− (E [Mp])

2

(E [Mp])
2 =

H1

(E [Mp])
2 +

H2

(E [Mp])
2 +

H3

(E [Mp])
2 = o (1) .

D.2.6 PROOF OF LEMMA D.3

Proof of Lemma D.3. Define:

f : Rk −→ R
w 7−→ max

i∈[k]
wi.

Note that for any u, v ∈ Rk:

|f (u)− f (v)| =
∣∣∣∣max
i∈[k]

ui −max
i∈[k]

vi

∣∣∣∣
≤ max

i∈[k]
|ui − vi|

≤
√∑

i∈[k]

(ui − vi)
2

= ∥u− v∥2 .

Therefore f is 1-Lipschitz. Assume τ2 = 1. By Gaussian concentration of measure for Lipschitz
functions (Ledoux, 2001; Massart, 2007), we have for all t ≥ 0:

{
P
(
maxi∈[k] Ni − E

[
maxi∈[k] Ni

]
> t
)
≤ exp

(
−t2/2

)
,

P
(
maxi∈[k] Ni − E

[
maxi∈[k] Ni

]
< −t

)
≤ exp

(
−t2/2

)
.

The result for general τ2 follows by substituting t := η/τ .
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D.2.7 PROOF OF LEMMA D.5

Proof of Lemma D.5. We have, by Einstein notation:

[
tr (ΣΛΣ)

]2
=

(
n∑

a=1

[
ΣUDUTΣ

]
aa

)2

=

(
n∑

a=1

n∑
b=1

n∑
c=1

n∑
d=1

n∑
e=1

ΣabUbcDcd

[
UT
]
de

Σea

)2

=

(
n∑

a=1

n∑
c=1

ΣaaUacDccUacΣaa

)2

=

(
n∑

a=1

n∑
c=1

DaaU
2
acΣ

2
cc

)2

=

n∑
a=1

n∑
c=1

D2
ccU

4
acΣ

4
aa +

n∑
a=1

∑
c̸=d∈[n]

DccDddU
2
acU

2
adΣ

4
aa

+
∑

a ̸=b∈[n]

n∑
c=1

D2
ccU

2
acU

2
bcΣ

2
aaΣ

2
bb +

∑
a̸=b∈[n]

∑
c̸=d∈[n]

DccDddU
2
acU

2
bdΣ

2
aaΣ

2
bb.

Therefore:

E
{[

tr (ΣΛΣ)
]2}

=

n∑
a=1

n∑
c=1

D2
ccΣ

4
aaE

[
U4
ac

]
+

n∑
a=1

∑
c ̸=d∈[n]

DccDddΣ
4
aaE

[
U2
acU

2
ad

]
+

∑
a ̸=b∈[n]

n∑
c=1

D2
ccΣ

2
aaΣ

2
bbE

[
U2
acU

2
bc

]
+

∑
a ̸=b∈[n]

∑
c̸=d∈[n]

DccDddΣ
2
aaΣ

2
bbE

[
U2
acU

2
bd

]
.

We use the following result from (Meckes, 2019) on fourth-moments of Haar(n) matrices:

Lemma D.6 (Fourth-moments of Haar(n) matrices, Lemma 2.22 in (Meckes, 2019)).
Let U ∼ Haar (n). Then for all i, j, r, s, α, β, λ, µ ∈ [n] we have:

E [UijUrsUαβUλµ]

= − 1

(n− 1)n (n+ 2)

[
δirδαλδjβδsµ + δirδαλδjµδsβ + δiαδrλδjsδβµ

+ δiαδrλδjµδβs + δiλδrαδjsδβµ + δiλδrαδjβδsµ

]
+

n+ 1

(n− 1)n (n+ 2)

[
δirδαλδjsδβµ + δiαδrλδjβδsµ + δiλδrαδjµδsβ

]
.
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Substituting: i, r, α, λ := a; and j, s, β, µ := c, we get:

E
[
U4
ac

]
= − 1

(n− 1)n (n+ 2)

[
δaaδaaδccδcc + δaaδaaδccδcc + δaaδaaδccδcc

+ δaaδaaδccδcc + δaaδaaδccδcc + δaaδaaδccδcc

]
+

n+ 1

(n− 1)n (n+ 2)

[
δaaδaaδccδcc + δaaδaaδccδcc + δaaδaaδccδcc

]
= − 6

(n− 1)n (n+ 2)
+

3 (n+ 1)

(n− 1)n (n+ 2)

=
3

n (n+ 2)
.

Thus:

E
[
U4
ac

]
=

3

n (n+ 2)
. (50)

Now substituting i, r, α, λ := a; j, s := c; and β, µ := d, we get:

E
[
U2
acU

2
ad

]
= − 1

(n− 1)n (n+ 2)

[
δaaδaaδcdδcd + δaaδaaδcdδcd + δaaδaaδccδdd

+ δaaδaaδcdδdc + δaaδaaδccδdd + δaaδaaδcdδcd

]
+

n+ 1

(n− 1)n (n+ 2)

[
δaaδaaδccδdd + δaaδaaδcdδcd + δaaδaaδcdδcd

]
= − 2

(n− 1)n (n+ 2)
+

n+ 1

(n− 1)n (n+ 2)

=
1

n (n+ 2)
.

Thus:

E
[
U2
acU

2
ad

]
=

1

n (n+ 2)
. (51)

Now substituting i, r := a; j, s, β, µ := c; and α, λ := b, we get:

E
[
U2
acU

2
bc

]
= − 1

(n− 1)n (n+ 2)

[
δaaδbbδccδcc + δaaδbbδccδcc + δabδabδccδcc

+ δabδabδccδcc + δabδabδccδcc + δabδabδccδcc

]
+

n+ 1

(n− 1)n (n+ 2)

[
δaaδbbδccδcc + δabδabδccδcc + δabδabδccδcc

]
+

n+ 1

(n− 1)n (n+ 2)

[
δaaδaaδccδdd + δaaδaaδcdδcd + δaaδaaδcdδcd

]
= − 2

(n− 1)n (n+ 2)
+

n+ 1

(n− 1)n (n+ 2)

=
1

n (n+ 2)
.

Thus:

E
[
U2
acU

2
bc

]
=

1

n (n+ 2)
. (52)
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Now substituting i, r := a; j, s := c; α, λ := b; and β, µ := d, we get:

E
[
U2
acU

2
bd

]
= − 1

(n− 1)n (n+ 2)

[
δaaδbbδcdδcd + δaaδbbδcdδcd + δabδabδccδdd

+ δabδabδcdδdc + δabδabδccδdd + δabδabδcdδcd

]
+

n+ 1

(n− 1)n (n+ 2)

[
δaaδbbδccδdd + δabδabδcdδcd + δabδabδcdδcd

]
=

n+ 1

(n− 1)n (n+ 2)
.

Thus:

E
[
U2
acU

2
bd

]
=

n+ 1

(n− 1)n (n+ 2)
. (53)
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Substituting (50), (51), (52), and (53) in the expression of E
{[

tr (ΣΛΣ)
]2}

above, we get:

E
{[

tr (ΣΛΣ)
]2}

=

n∑
a=1

n∑
c=1

D2
ccΣ

4
aaE

[
U4
ac

]
+

n∑
a=1

∑
c̸=d∈[n]

DccDddΣ
4
aaE

[
U2
acU

2
ad

]
+

∑
a ̸=b∈[n]

n∑
c=1

D2
ccΣ

2
aaΣ

2
bbE

[
U2
acU

2
bc

]
+

∑
a ̸=b∈[n]

∑
c̸=d∈[n]

DccDddΣ
2
aaΣ

2
bbE

[
U2
acU

2
bd

]

=
3

n (n+ 2)

(
n∑

a=1

Σ4
aa

)(
n∑

c=1

D2
cc

)
+

1

n (n+ 2)

(
n∑

a=1

Σ4
aa

) ∑
c̸=d∈[n]

DccDdd


+

1

n (n+ 2)

 ∑
a̸=b∈[n]

Σ2
aaΣ

2
bb

( n∑
c=1

D2
cc

)

+
n+ 1

(n− 1)n (n+ 2)

 ∑
a̸=b∈[n]

Σ2
aaΣ

2
bb

 ∑
c ̸=d∈[n]

DccDdd


=

1

n (n+ 2)

(
n∑

a=1

Σ4
aa

)3

(
n∑

c=1

D2
cc

)
+

 ∑
c ̸=d∈[n]

DccDdd


+

n+ 1

(n− 1)n (n+ 2)

 ∑
a̸=b∈[n]

Σ2
aaΣ

2
bb

n− 1

n+ 1

(
n∑

c=1

D2
cc

)
+

 ∑
c̸=d∈[n]

DccDdd


=

1

n (n+ 2)

(
n∑

a=1

Σ4
aa

)2

(
n∑

c=1

D2
cc

)
+

(
n∑

c=1

Dcc

)2


+
n+ 1

(n− 1)n (n+ 2)


(

n∑
a=1

Σ2
aa

)2

−
n∑

a=1

Σ4
aa


− 2

n+ 1

(
n∑

c=1

D2
cc

)
+

(
n∑

c=1

Dcc

)2


=
tr
(
Σ4
)

n (n+ 2)

{
2 tr

(
D2
)
+ tr (D)

2
}

+
n+ 1

(n− 1)n (n+ 2)

{
tr
(
Σ2
)2 − tr

(
Σ4
)}{

−
2 tr

(
D2
)

n+ 1
+ tr (D)

2

}

=
n1σ

4
1 + n2σ

4
2

n (n+ 2)

{
2 (n− s) + (n− s)

2
}

+
n+ 1

(n− 1)n (n+ 2)

{(
n1σ

2
1 + n2σ

2
2

)2 − (n1σ
4
1 + n2σ

4
2

)}{
−2 (n− s)

n+ 1
+ (n− s)

2

}
=
(
n1σ

2
1 + n2σ

2
2

)2{ (n+ 1) (n− s)

(n− 1)n (n+ 2)

}{
n− s− 2

n+ 1

}

+
(
n1σ

4
1 + n2σ

4
2

) (n− s) (n− s+ 2)

n (n+ 2)
−

(n+ 1) (n− s)
(
n− s− 2

(n+1)

)
(n− 1)n (n+ 2)

 .
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Now we have, by Einstein notation:

tr
[
(ΣΛΣ)

2
]

= tr
[
ΣUDUTΣ2UDUTΣ

]
=

n∑
a=1

[
ΣUDUTΣ2UDUTΣ

]
aa

=

n∑
a=1

n∑
b=1

n∑
c=1

n∑
d=1

n∑
e=1

n∑
f=1

n∑
g=1

n∑
h=1

n∑
j=1

ΣabUbcDcd

[
UT
]
de

[
Σ2
]
ef

UfgDgh

[
UT
]
hj

Σja

=

n∑
a=1

n∑
c=1

n∑
e=1

n∑
h=1

ΣaaUacDccUecΣ
2
eeUehDhhUahΣaa

=

n∑
a=1

n∑
c=1

n∑
e=1

n∑
h=1

DccDhhΣ
2
aaΣ

2
eeUacUecUehUah

=

n∑
a=1

n∑
c=1

D2
ccΣ

4
aaU

4
ac +

∑
a̸=e∈[n]

n∑
c=1

D2
ccΣ

2
aaΣ

2
eeU

2
acU

2
ec +

n∑
a=1

∑
c ̸=h∈[n]

DccDhhΣ
4
aaU

2
acU

2
ah

+
∑

a̸=e∈[n]

∑
c̸=h∈[n]

DccDhhΣ
2
aaΣ

2
eeUacUecUehUah.

Therefore:

E
{
tr
[
(ΣΛΣ)

2
]}

=

n∑
a=1

n∑
c=1

D2
ccΣ

4
aaE

[
U4
ac

]
+

∑
a̸=e∈[n]

n∑
c=1

D2
ccΣ

2
aaΣ

2
eeE

[
U2
acU

2
ec

]
+

n∑
a=1

∑
c̸=h∈[n]

DccDhhΣ
4
aaE

[
U2
acU

2
ah

]
+

∑
a̸=e∈[n]

∑
c ̸=h∈[n]

DccDhhΣ
2
aaΣ

2
eeE [UacUecUehUah] .

Recall that:
E
[
U4
ac

]
=

3

n (n+ 2)
,

and:
E
[
U2
acU

2
ec

]
= E

[
U2
acU

2
ah

]
=

1

n (n+ 2)
.

Now substituting i, λ := a; j, s := c; r, α := e; and β, µ := h in Lemma D.6, we get:

E [UacUecUehUah]

= − 1

(n− 1)n (n+ 2)

[
δaeδeaδchδch + δaeδeaδchδch + δaeδeaδccδhh

+ δaeδeaδchδhc + δaaδeeδccδhh + δaaδeeδchδch

]
+

n+ 1

(n− 1)n (n+ 2)

[
δaeδeaδccδhh + δaeδeaδchδch + δaaδeeδchδch

]
= − 1

(n− 1)n (n+ 2)
.

Therefore:
E [UacUecUehUah] = − 1

(n− 1)n (n+ 2)
. (54)
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Substituting (50), (52), (51), and (54) in the expression of E
{
tr
[
(ΣΛΣ)

2
]}

above, we get:

E
{
tr
[
(ΣΛΣ)

2
]}

=
3

n (n+ 2)

n∑
a=1

n∑
c=1

D2
ccΣ

4
aa +

1

n (n+ 2)

∑
a ̸=e∈[n]

n∑
c=1

D2
ccΣ

2
aaΣ

2
ee

+
1

n (n+ 2)

n∑
a=1

∑
c̸=h∈[n]

DccDhhΣ
4
aa

− 1

(n− 1)n (n+ 2)

∑
a̸=e∈[n]

∑
c̸=h∈[n]

DccDhhΣ
2
aaΣ

2
ee

=
3

n (n+ 2)

(
n∑

a=1

Σ4
aa

)(
n∑

c=1

D2
cc

)
+

1

n (n+ 2)

 ∑
a ̸=e∈[n]

Σ2
aaΣ

2
ee

( n∑
c=1

D2
cc

)

+
1

n (n+ 2)

(
n∑

a=1

Σ4
aa

) ∑
c̸=h∈[n]

DccDhh


− 1

(n− 1)n (n+ 2)

 ∑
a̸=e∈[n]

Σ2
aaΣ

2
ee

 ∑
c̸=h∈[n]

DccDhh


=

1

n (n+ 2)

(
n∑

c=1

D2
cc

)3

n∑
a=1

Σ4
aa +

∑
a̸=e∈[n]

Σ2
aaΣ

2
ee


+

1

n (n+ 2)

(
n∑

a=1

Σ4
aa

)
(

n∑
c=1

Dcc

)2

−
n∑

c=1

D2
cc


− 1

(n− 1)n (n+ 2)


(

n∑
a=1

Σ2
aa

)2

−
n∑

a=1

Σ4
aa



(

n∑
c=1

Dcc

)2

−
n∑

c=1

D2
cc


=

1

n (n+ 2)

(
n∑

c=1

D2
cc

)2

n∑
a=1

Σ4
aa +

(
n∑

a=1

Σ2
aa

)2


+
1

n (n+ 2)

(
n∑

a=1

Σ4
aa

)
(

n∑
c=1

Dcc

)2

−
n∑

c=1

D2
cc


− 1

(n− 1)n (n+ 2)


(

n∑
a=1

Σ2
aa

)2

−
n∑

a=1

Σ4
aa



(

n∑
c=1

Dcc

)2

−
n∑

c=1

D2
cc

 .
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Thus:

E
{
tr
[
(ΣΛΣ)

2
]}

=
tr
(
D2
)

n (n+ 2)

{
2 tr

(
Σ4
)
+
(
tr Σ2

)2}
+

tr
(
Σ4
)

n (n+ 2)

{
tr (D)

2 − tr
(
D2
)}

− 1

(n− 1)n (n+ 2)

{
tr
(
Σ2
)2 − tr

(
Σ4
)}{

tr (D)
2 − tr

(
D2
)}

=
n− s

n (n+ 2)

{
2
(
n1σ

4
1 + n2σ

4
2

)
+
(
n1σ

2
1 + n2σ

2
2

)2}
+

n1σ
4
1 + n2σ

4
2

n (n+ 2)

{
(n− s)

2 − (n− s)
}

− 1

(n− 1)n (n+ 2)

{(
n1σ

2
1 + n2σ

2
2

)2 − (n1σ
4
1 + n2σ

4
2

)}{
(n− s)

2 − (n− s)
}

=
(
n1σ

2
1 + n2σ

2
2

)2{ n− s

n (n+ 2)

}{
1− n− s− 1

n− 1

}
+
(
n1σ

4
1 + n2σ

4
2

){ 2 (n− s)

n (n+ 2)
+

(n− s) (n− s− 1)

n (n+ 2)

(n− s) (n− s− 1)

(n− 1)n (n+ 2)

}
=
(
n1σ

2
1 + n2σ

2
2

)2{ s (n− s)

(n− 1)n (n+ 2)

}
+
(
n1σ

4
1 + n2σ

4
2

){ n− s

n (n+ 2)

}{
n− s+ 1 +

n− s− 1

n− 1

}
.

D.3 PROOF OF PROPOSITION D.3

Proof of Proposition D.3. Recall that:

Ui := eTi

(
1

n
XT

S XS

)−1 [
1

n
XT

S ΣW − λp⃗b

]
.

Note that conditionally on XS , Ui is Gaussian for each i ∈ S and:

Yi := E [Ui |XS ] = −λpe
T
i

(
1

n
XT

S XS

)−1

b⃗,

Y ′
i := Var [Ui |XS ] =

1

n2
eTi

(
1

n
XT

S XS

)−1

XT
S Σ

2XS

(
1

n
XT

S XS

)−1

ei.

Lemma D.7.

(a) The random variables Yi and Y ′
i have means:

E [Yi] =
−λpn

n− s− 1
eTi b⃗, and E [Y ′

i ] =
n1σ

2
1 + n2σ

2
2

n (n− s− 1)
.

(b) Moreover, each pair (Yi, Y
′
i ) is concentrated such that:

P
(
|Yi| ≥

nλp
√
s

n− s− 1
, or |Y ′

i | ≥ 2E [Y ′
i ]

)
≤ K

(
1

n1
+

1

n2

)
,

where K is a universal constant.

Proof. See appendix D.3.1.

Now define the event:

T :=

s⋃
i=1

{
|Yi| ≥

nλp
√
s

n− s− 1
or |Y ′

i | ≥ 2E [Y ′
i ]

}
.
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By union bound and statement (b) of Lemma D.7, we have:

P (T ) ≤
∑
i∈S

P
(
|Yi| ≥

nλp
√
s

n− s− 1
, or |Y ′

i | ≥ 2E [Y ′
i ]

)
≤ sK

(
1

n1
+

1

n2

)
= K

(
s

n1
+

s

n2

)
,

which converges to 0 as p → +∞. Conditionning on T , we have by total probability:

P
(
max
i∈S

Ui ≥ ρ

)
≤ P

(
max
i∈S

Ui ≥ ρ
∣∣ T c

)
+ P (T )

≤ P
(
max
i∈S

Ui ≥ ρ
∣∣ T c

)
+K

(
s

n1
+

s

n2

)
.

In addition:

P
(
max
i∈S

Ui ≥ ρ
∣∣ T c

)
= E

[
1

{
max
i∈S

Ui ≥ ρ

} ∣∣ T c

]
= E

[
E
[
1

{
max
i∈S

Ui ≥ ρ

} ∣∣ T c, XS

]]
= E

[
P
(
max
i∈S

Ui ≥ ρ
∣∣ T c, XS

)]
.

Now we have:

P
(
max
i∈S

Ui ≥ ρ
∣∣ T c, XS

)
≤ P

Ni
ind.∼N(Yi,Y ′

i )

(
max
i∈S

Ni ≥ ρ
∣∣ T c

)
≤ P

Ni
i.i.d.∼N

(
nλp

√
s

n−s−1 ,
2(n1σ2

1+n2σ2
2)

n(n−s−1)

)(max
i∈S

Ni ≥ ρ

)
,

where:

• The first inequality holds because the maximum of independent Gaussians has a heavier positive
tail than the maximum of correlated ones (under the same distributions).

• The second inequality holds because a Gaussian with a larger mean and variance has a heavier
positive tail than one with a smaller mean and variance (therefore each of the Nis would have a
heavier tail if its mean and variance were equal to their respective upper bounds).

For simplicity, we drop the long subscript and assume Ni
i.i.d.∼ N

(
nλp

√
s

n−s−1 ,
2(n1σ

2
1+n2σ

2
2)

n(n−s−1)

)
. Using

Markov’s inequality in the above, we have:

P
(
max
i∈S

Ui ≥ ρ
∣∣ T c, XS

)
≤ P

(
max
i∈S

Ni ≥ ρ

)
≤ E [maxi∈S Ni]

ρ
. (55)

Using the formula for expectation of Gaussian (see Theorem 5.3.1 in (De Haan & Ferreira, 2006))
maxima, we have:

E
[
max
i∈S

Ni

]
≤ nλp

√
s

n− s− 1
+

√
2 log (s)

2 (n1σ2
1 + n2σ2

2)

n (n− s− 1)

=
nλp

√
s

n− s− 1
+ 2

√
(n1σ2

1 + n2σ2
2) log (s)

n (n− s− 1)
.
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Therefore, we have:

P
(
max
i∈S

Ui ≥ ρ

)
≤ P

(
max
i∈S

Ui ≥ ρ
∣∣ T c

)
+K

(
s

n1
+

s

n2

)
≤ E

[
P
(
max
i∈S

Ui ≥ ρ
∣∣ T c, XS

)]
+K

(
s

n1
+

s

n2

)
(55)

≤ 1

ρ

(
nλp

√
s

n− s− 1
+ 2

√
(n1σ2

1 + n2σ2
2) log (s)

n (n− s− 1)

)
+K

(
s

n1
+

s

n2

)
.

Hence we have:

P
(
max
i∈S

Ui ≥ ρ

)
≤ 1

ρ

(
λp

√
s+

√
(n1σ2

1 + n2σ2
2) log (s)

n2

)
(1 + op (1)) + op (1) , (56)

which converges to 0 as p → +∞ under condition (24). Using a similar argument, we establish the
same bound for {−Ui}i∈S , that:

P
(
max
i∈S

{−Ui} ≥ ρ

)
≤ 1

ρ

(
λp

√
s+

√
(n1σ2

1 + n2σ2
2) log (s)

n2

)
(1 + op (1)) + op (1) . (57)

Bringing together (56) and (57) and using a union bound, we conclude:

P
(
max
i∈S

|Ui| < ρ

)
p→+∞−→ 1.

D.3.1 PROOF OF LEMMA D.7

Proof of Lemma D.7.

Mean of Yi. Recall that:

Yi = −λpe
T
i

(
1

n
XT

S XS

)−1

b⃗ = −λpne
T
i

(
XT

S XS

)−1
b⃗

Note that XT
S XS ∼ Ws (Is, n). Using properties of the Wishart distribution (see Lemma 7.7.1 of

(Anderson et al., 1958)), we have:

E
[(
XT

S XS

)−1
]
=

(
1

n− s− 1

)
Is.

Therefore, we get:

E [Yi] =
−λpn

n− s− 1
eTi b⃗. (58)

Mean of Y ′
i . Recall that:

Y ′
i =

1

n2
eTi

(
1

n
XT

S XS

)−1

XT
S Σ

2XS

(
1

n
XT

S XS

)−1

ei

= eTi
(
XT

S XS

)−1
XT

S Σ
2XS

(
XT

S XS

)−1
ei.

Now recall from (45) in the proof of Lemma D.2 the matrices Q ∈ Rn×s, R ∈ Rs×s, U ∈ Rn×n

such that:
XS = QR, U = [P Q] ,

where QTQ = Is, R is upper triangular and U ∼ Haar (n). We have:

Y ′
i = eTi

(
XT

S XS

)−1
XT

S Σ
2XS

(
XT

S XS

)−1
ei

= eTi
(
RTR

)−1
RTQTΣ2QR

(
RTR

)−1
ei

= eTi R
−1QTΣ2Q

(
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Note that:

UTΣ2U =

[
PT

QT

]
Σ2 [P Q] =

[
PTΣ2

QTΣ2

]
[P Q] =

[
PTΣ2P PTΣ2Q
QTΣ2P QTΣ2Q

]
.

Therefore:

E
[
UTΣ2U

]
=

[
E
[
PTΣ2P

]
E
[
PTΣ2Q

]
E
[
QTΣ2P

]
E
[
QTΣ2Q

]] .
On the other hand, we know by the properties of the Haar distribution (see Example 1.8 of (Gu,
2013)) that:

E
[
UTΣ2U

]
=

tr
(
Σ2
)

n
In =

n1σ
2
1 + n2σ

2
2

n
In.

Hence:

E
[
QTΣ2Q

]
=

n1σ
2
1 + n2σ

2
2

n
Is.

Therefore:

E [Y ′
i ] = EQ,R

[
eTi R

−1QTΣ2Q
(
RT
)−1

ei

]
= E

[
E
[
eTi R

−1QTΣ2Q
(
RT
)−1

ei
∣∣R]]

= E
[
eTi R

−1E
[
QTΣ2Q

∣∣R] (RT
)−1

ei

]
= E

[
eTi R

−1E
[
QTΣ2Q

] (
RT
)−1

ei

]
= E

[
eTi R

−1

(
n1σ

2
1 + n2σ

2
2

n
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)(
RT
)−1

ei

]
=

(
n1σ

2
1 + n2σ

2
2

n

)
E
[
eTi
(
RTR

)−1
ei

]
=

(
n1σ

2
1 + n2σ

2
2

n

)
E
[
eTi
(
RTR

)−1
ei

]
=

(
n1σ

2
1 + n2σ

2
2

n

)
E
[
eTi
(
XT

S XS

)−1
ei

]
=

n1σ
2
1 + n2σ

2
2

n (n− s− 1)
eTi ei

=
n1σ

2
1 + n2σ

2
2

n (n− s− 1)
.

Concentration of Yi. Recall that:

Yi = −λpne
T
i

(
XT

S XS

)−1
b⃗.

Thus:

Y 2
i = YiY

T
i = λ2

pn
2eTi

(
XT

S XS

)−1
b⃗⃗bT

(
XT

S XS

)−1
ei.

Taking the expectation and recalling (46), we have:

E
[
Y 2
i

]
= λ2

pn
2eTi E

[(
XT

S XS

)−1
b⃗⃗bT

(
XT

S XS

)−1
]
ei

(46)
=

λ2
pn

2

(n− s− 3) (n− s)
eTi

[⃗
b⃗bT +

∥∥∥⃗b∥∥∥2
2
Is/ (n− s− 1)

]
ei

=
λ2
pn

2

(n− s− 3) (n− s)

[⃗
b2i +

∥∥∥⃗b∥∥∥2
2
/ (n− s− 1)

]
=

λ2
pn

2

(n− s− 3) (n− s)

[
1 +

s

n− s− 1

]
,
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where the last equality above holds because b⃗ = sign (β⋆) and i ∈ S = Supp (β⋆). Thus:

E
[
Y 2
i

]
=

λ2
pn

2 (n− 1)

(n− s− 3) (n− s− 1) (n− s)
.

Recalling (58), we get:

Var [Yi] =
λ2
pn

2 (n− 1)

(n− s− 3) (n− s− 1) (n− s)
−
(

−λpn

n− s− 1
eTi b⃗

)2

=
λ2
pn

2 (n− 1)

(n− s− 3) (n− s− 1) (n− s)
−

λ2
pn

2⃗b2i

(n− s− 1)
2

=
λ2
pn

2

(n− s− 1)

[
(n− 1)

(n− s− 3) (n− s)
− 1

n− s− 1

]
.

Therefore:

Var [Yi]

s (E [Yi])
2 =

(n− s− 1)
2

sλ2
pn

2
×

λ2
pn

2

(n− s− 1)

[
(n− 1)

(n− s− 3) (n− s)
− 1

n− s− 1

]
=

1

s

(
(n− 1) (n− s− 1)

(n− s− 3) (n− s)
− 1

)
=

n2 − n− ns+ s− n+ 1− n2 + ns+ ns− s2 + 3n− 3s

s (n− s− 3) (n− s)

=
1 + ns− s2 + n− 2s

s (n− s− 3) (n− s)

= Θ

(
1

n

)
.

Now using inclusion and Chebyshev’s inequality, we have:

P
(
|Yi| ≥

nλp
√
s

n− s− 1

)
(58)

≤ P
(∣∣∣Yi − E [Yi]

∣∣∣ ≥ |E [Yi]|
(√

s− 1
))

≤ Var [Yi]

(
√
s− 1)

2
(E [Yi])

2

= Θ

(
Var [Yi]

s (E [Yi])
2

)

= Θ

(
1

n

)
.

In particular, the above implies:

P
(
|Yi| ≥

nλp
√
s

n− s− 1

)
= O

(
1

n1
+

1

n2

)
.

Therefore, the exists a universal constant K1 > 0 such that:

P
(
|Yi| ≥

nλp
√
s

n− s− 1

)
≤ K1

(
1

n1
+

1

n2

)
. (59)

Concentration of Y ′
i . We have:

E
[
(Y ′

i )
2 |R

]
= E

[(
eTi R

−1QTΣ2Q
(
RT
)−1

ei

)2 ∣∣R]
= E

[([
R−1QTΣ2Q

(
RT
)−1
]
ii

)2 ∣∣∣R]
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We have, by Einstein notation:

[
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n∑
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Therefore:

([
R−1QTΣ2Q

(
RT
)−1
]
ii

)2
=

(
n∑

c=1

s∑
a=1

s∑
e=1

Σ2
cc

[
R−1

]
ia

[
R−1

]
ie
QcaQce

)2

=

n∑
c=1

s∑
a=1

s∑
e=1

(
Σ2

cc

[
R−1

]
ia

[
R−1

]
ie
QcaQce

)2
+

n∑
c=1

s∑
a=1

∑
e ̸=f∈[s]

(
Σ2

cc

[
R−1

]
ia

[
R−1

]
ie
QcaQce

) (
Σ2

cc

[
R−1

]
ia

[
R−1

]
if
QcaQcf

)

+
n∑

c=1

∑
a̸=b∈[s]

s∑
e=1

(
Σ2

cc

[
R−1

]
ia

[
R−1

]
ie
QcaQce

) (
Σ2

cc

[
R−1

]
ib

[
R−1

]
ie
QcbQce

)
+

n∑
c=1

∑
a̸=b∈[s]

∑
e ̸=f∈[s]

(
Σ2

cc

[
R−1

]
ia

[
R−1

]
ie
QcaQce

) (
Σ2

cc

[
R−1

]
ib

[
R−1

]
if
QcbQcf

)

+
∑

c̸=d∈[n]

s∑
a=1

s∑
e=1

(
Σ2

cc

[
R−1

]
ia

[
R−1

]
ie
QcaQce

) (
Σ2

dd

[
R−1

]
ia

[
R−1

]
ie
QdaQde

)
+

∑
c̸=d∈[n]

s∑
a=1

∑
e ̸=f∈[s]

(
Σ2

cc

[
R−1

]
ia

[
R−1

]
ie
QcaQce

) (
Σ2

dd

[
R−1

]
ia

[
R−1

]
if
QdaQdf

)

+
∑

c̸=d∈[n]

∑
a ̸=b∈[s]

s∑
e=1

(
Σ2

cc

[
R−1

]
ia

[
R−1

]
ie
QcaQce

) (
Σ2

dd

[
R−1

]
ib

[
R−1

]
ie
QdbQde

)
+

∑
c̸=d∈[n]

∑
a ̸=b∈[s]

∑
e ̸=f∈[s]

(
Σ2

cc

[
R−1

]
ia

[
R−1

]
ie
QcaQce

) (
Σ2

dd

[
R−1

]
ib

[
R−1

]
if
QdbQdf

)

48



2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645

Under review as a conference paper at ICLR 2026
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Taking the expectation of the above conditionally on R and by independence of Q and R, we get:
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Now recall from Lemma D.6 above (by Meckes (2019)) that for all i, j, r, s, α, β, λ, µ ∈ [n] we
have:

E [UijUrsUαβUλµ]

= − 1

(n− 1)n (n+ 2)

[
δirδαλδjβδsµ + δirδαλδjµδsβ + δiαδrλδjsδβµ

+ δiαδrλδjµδβs + δiλδrαδjsδβµ + δiλδrαδjβδsµ

]
+

n+ 1

(n− 1)n (n+ 2)
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δirδαλδjsδβµ + δiαδrλδjβδsµ + δiλδrαδjµδsβ

]
.

Also, recall from (45) that:

U = [P Q] ,

hence for any α ∈ [n], β ∈ [s]:

Qαβ = Uα(n−s+β). (60)

Since the above fourth-order formula only depends on indices through Kronecker deltas, it holds
that for any i, r, α, λ ∈ [n], j, s, α, β, µ ∈ [s]:
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]
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In addition, note that the expression above is equal to zero when one of {j, s, α, µ} is different than
all the others. This observation simplifies the expression of E

[
(Y ′

i )
2 |R

]
above as follows:
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Now note that:
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On the other hand, recall that XT
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Hence there exists a universal constant K2 such that:
Var (Y ′

i )

(E [Y ′
i ])

2 ≤ K2

(
1

n1
+

1

n2

)
.

By Chebyshev’s inequality, we conclude:
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Bringing together (59) and (61) and using a union bound, we conclude that there exists a universal
constant K > 0 such that:
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E PROOF OF PROPOSITION 4.1

Proof of Proposition 4.1. First, assume there exists (λp)p≥1 → 0 such that (24) holds. By the first
part of (24), we have:
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Using (63) and (λp)p≥1 → 0, we get:
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In addition, by the second part of (24), we have:
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Using (63) and (65), we get:
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Finally, by (26) it holds that:
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Bring together (67), (68) and (69), we conclude that λp −→ 0 and (24) holds.
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