

# 000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 PRICE OF QUALITY: SUFFICIENT CONDITIONS FOR SPARSE RECOVERY USING MIXED-QUALITY DATA

Anonymous authors

Paper under double-blind review

## ABSTRACT

We study sparse recovery when observations come from mixed-quality sources: a small collection of high-quality measurements with small noise variance and a larger collection of lower-quality measurements with higher variance. For this heterogeneous-noise setting, we establish sample-size conditions for information-theoretic and algorithmic recovery. On the information-theoretic side, we show that  $(n_1, n_2)$  must satisfy a linear trade-off defining the *Price of Quality*: the number of low-quality samples needed to replace one high-quality sample. In the agnostic setting, where the decoder is completely agnostic to the quality of the data, it is uniformly bounded, and in particular one high-quality sample is never worth more than two low-quality samples. In the informed setting, where the decoder is informed of per-sample variances, the price of quality can grow arbitrarily large. On the algorithmic side, we analyze the LASSO in the agnostic setting and show that the recovery threshold matches the homogeneous-noise case and only depends on the average noise level, revealing a striking robustness of computational recovery to data heterogeneity. Together, these results give the first conditions for sparse recovery with mixed-quality data and expose a fundamental difference between how the information-theoretic and algorithmic thresholds adapt to changes in data quality.

## 1 INTRODUCTION

### 1.1 OVERVIEW AND PREVIOUS WORK

#### 1.1.1 SPARSE RECOVERY

Sparse recovery is a central problem in high-dimensional statistics and machine learning. Its applications include compressive sensing (Foucart et al., 2013; Candès et al., 2006; Donoho, 2006), signal denoising (Chen et al., 2001), sparse regression (Miller, 2002), data-stream algorithms (Corriveau & Hadjieleftheriou, 2009; Indyk, 2007; Muthukrishnan et al., 2005), and combinatorial group testing (Du & Hwang, 1999). Other applications range from medical imaging to communications and compression (Foucart et al., 2013, Chap. 1).

We formulate the problem as follows. A high-dimensional *signal*  $\beta^* \in \mathbb{R}^p$  (also called *model* or *ground truth*), unknown but a-priori  $s$ -sparse, is transmitted through a noisy channel that projects it onto a collection of  $n$  random vectors  $\{x_i\}_{i \in [n]}$  in  $\mathbb{R}^p$ . This is expressed as:

$$Y := X\beta^* + Z, \quad (1)$$

where  $X = (x_1, \dots, x_n)^T$  is called *measurements, design* or *features*;  $Y$  *observations, annotations* or *labels*; and  $Z$  *noise*. On the other end of the channel, a decoder who observes  $(X, Y)$  is interested in recovering the support of the original signal  $\beta^*$ , i.e. the subset  $S^* := \{i \in [p] : \beta_i^* \neq 0\} \subseteq [p]$ , known a-priori to be of cardinality  $s$ . How many observations  $n$  (as a function of  $p$  and  $s$ ) does the decoder need to recover the support of the signal as the dimension of the problem grows to infinity?

Previous works have shown that the sparse recovery problem exhibits two phase transitions at two thresholds, one *information-theoretic* and one *algorithmic*:

$$n_{\text{INF}} = \frac{2s \log(p/s)}{\log s} \quad \text{and} \quad n_{\text{ALG}} = 2s \log(p - s) + s + 1, \quad (2)$$

054 leading to three regimes:  
 055

- 056 •  $n < n_{\text{INF}}$ : Signal support recovery is information-theoretically impossible. (Reeves et al., 2019).
- 057 •  $n_{\text{INF}} < n < n_{\text{ALG}}$ : The maximum likelihood estimator (MLE) recovers  $S^*$ . However, it is  
 058 believed that no algorithm can do it in polynomial time since the problem exhibits an Overlap Gap  
 059 Property (OGP) (Gamarnik & Zadik, 2022).
- 060 •  $n > n_{\text{ALG}}$ : The  $\ell_1$ -regularized least-squares estimator (also known as the LASSO (Tibshirani,  
 061 1996)) recovers  $S^*$  (Wainwright, 2009).

063 Of particular interest is the signal-to-noise ratio (SNR), known to be an important quantity for  
 064 characterizing the difficulty of sparse recovery problems (Wang et al., 2010; Reeves et al., 2019;  
 065 Chaabouni & Gamarnik, 2025). It's defined as follows:

$$066 \quad \text{SNR} := \frac{\mathbb{E}\|X\beta^*\|_2^2}{\mathbb{E}\|Z\|_2^2}. \quad (3)$$

### 069 1.1.2 MIXED QUALITY DATA

071 A recent body of work has explored how low-quality data, e.g. labeled by an LLM or weak annotator  
 072 (Ratner et al., 2017; Frénay & Verleysen, 2013), should be combined with fewer but higher-quality  
 073 data, e.g. labeled by humans or experts, for prediction and inference tasks (Gligorić et al., 2024; Li  
 074 et al., 2023; Zhang et al., 2023; Egami et al., 2023).

075 In this paper, we formalize the mixed-quality data setting for sparse signal recovery: the decoder  
 076 has access to  $n_1$  noisy projections of the signal  $\beta^*$  with a small noise level  $\sigma_1^2 > 0$  that we denote  
 077  $\{(y_i, x_i)\}_{i=1}^{n_1}$  and call *high-quality* data. In addition, the decoder also observes a larger set of  $n_2 >$   
 078  $n_1$  noisy projections of the same signal  $\beta^*$ , but with a higher noise level  $\sigma_2^2 > \sigma_1^2$ , that we denote  
 079  $\{(y_i, x_i)\}_{i=n_1+1}^{n_2}$  and call *low-quality* data. We distinguish two settings:

- 081 • **Agnostic setting:** The decoder lacks access to observation-level noise variances and treats all  
 082 measurements as if drawn from a single homogeneous model. This occurs when heterogeneous  
 083 data sources lose provenance: for example in web-scale text corpora (Ratner et al., 2017; Frénay &  
 084 Verleysen, 2013) or citizen-science campaigns lacking sensor calibration (Silvertown, 2009). The  
 085 decoder simply applies standard sparse-recovery methods without noise estimation or reweighting.
- 086 • **Informed setting:** where the decoder has access to the per-sample noise variance of the data. This  
 087 regime captures situations where provenance information accompanies each observation, so the  
 088 decoder knows which measurements are high- or low-quality. Examples include multi-site clinical  
 089 trials or sensor networks that log calibration statistics (Loh & Wainwright, 2011; Delaigle et al.,  
 090 2008), and medical-imaging datasets with per-rater confidence scores (Rajpurkar et al., 2018).

## 091 1.2 OUR WORK

093 In this paper, we consider the sparse recovery problem described above (1). Specifically, we study  
 094 the setting where the measurements are drawn i.i.d. from a standard normal Gaussian distribution,  
 095 and the noise is unbiased and drawn independently from Gaussian distributions of variance  $\sigma_1^2$  for  
 096 the high-quality samples and  $\sigma_2^2 > \sigma_1^2$  for the low-quality ones:

$$097 \quad \{X_{ij}\}_{i \in [n], j \in [p]} \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(0, 1) \text{ and } Z = \Sigma W; \text{ where } \Sigma = \begin{pmatrix} \sigma_1 I_{n_1} & 0 \\ 0 & \sigma_2 I_{n_2} \end{pmatrix}, W \sim \mathcal{N}(0, I_n). \quad (4)$$

100 Although much of the literature on sparse recovery in the homogeneous noise setting assumes con-  
 101 stant noise level  $\sigma^2$ , we don't assume in this work that  $\sigma_1^2$  and  $\sigma_2^2$  are constant. In fact, the reason  
 102 previous work can assume constant noise variance without loss of generality is that the model (1)  
 103 could be scaled down by  $\sigma$  when the noise is homogeneous with variance  $\sigma^2$  to make it constant.  
 104 However, it is not the case anymore when the noise is heterogeneous.

105 Since data come from two different sources, we define in addition to (3) two signal-to-noise ratios:  
 106  $\text{SNR}_1$  for high-quality observations and  $\text{SNR}_2$  corresponding to low-quality observations.

107 We are interested in the two following questions:

- **Sampling complexity of sparse recovery:** How large do the sample sizes  $(n_1, n_2)$  need to be for the decoder to be able, information-theoretically, to recover the support of the signal?
- **Algorithmic recovery:** How large do the sample sizes  $(n_1, n_2)$  need to be for the decoder to be able to recover the support of the signal using a polynomial-time algorithm?

We summarize below our findings on each of these questions in the agnostic and informed settings.

### 1.2.1 SAMPLING COMPLEXITY OF SPARSE RECOVERY

In the first part of work (section 3), we focus on the question of sampling complexity. For simplicity, we assume the signal is binary, i.e.  $\beta^* \in \{0, 1\}^p$ . Note that in this case, recovering the support is equivalent to recovering the signal. This assumption is very common in the literature (Aeron et al., 2010; Reeves et al., 2019; Gamarnik & Zadik, 2022; Chaabouni & Gamarnik, 2025). Intuitively, detecting a component of size 1 is at least as hard as detecting a stronger component, so the resulting thresholds are representative of signals with non-zero entries bounded away from zero. We discuss this assumption in more detail in Remark 3.1.

Our main results, Theorem 1 for the agnostic setting and Theorem 2 for the informed one, each provide a sufficient condition (9, 15) on the sample sizes  $(n_1, n_2)$  for support recovery. In both results, the condition requires that a linear combination of has the form  $\alpha_1 n_1 + \alpha_2 n_2 > n^*$ , for some coefficients  $\alpha_1, \alpha_2 > 0$  depending on  $\sigma_1^2, \sigma_2^2$  and  $s$ , and having different expressions in the agnostic and informed settings. In particular, we note that if  $(n_1, n_2)$  verify this condition (i.e. are together large enough), then so do  $(n_1 - 1, n_2 + \alpha_1/\alpha_2)$ . In this sense, we say that 1 unit of high-quality data is worth:

$$\gamma(s, \sigma_1^2, \sigma_2^2) := \frac{\alpha_1}{\alpha_2} \quad (5)$$

units of low-quality data. We label  $\gamma$  the *Price of Quality* and study its behavior in the agnostic and informed settings and for different regimes of  $\text{SNR}_1$  and  $\text{SNR}_2$ . In the agnostic setting, it is uniformly bounded. In particular, one high-quality sample is never worth more than *two* low-quality samples (12, 13). In the informed setting, where the decoder is informed of per-sample variances, the price of quality goes to infinity in the low  $\text{SNR}_2$  & high  $\text{SNR}_1$  regime (18), and can be arbitrarily large in both low and high SNR regimes (17, 19).

### 1.2.2 ALGORITHMIC RECOVERY

In the second part of our work (section 4), we focus on the question of algorithmic recovery. Unlike for sampling complexity, we don't assume that the signal is binary, but still require non-zero components to be bounded away from zero, i.e. there exists  $\rho > 0$  such that  $\min_{i \in S^*} |\beta_i^*| \geq \rho$ . This is standard in the literature (Aeron et al., 2010; Ndaoud & Tsybakov, 2020; Wang et al., 2010) since we can't hope to detect non-zero signal components if they can have arbitrarily small amplitude.

Specifically, we study the question of *signed support* recovery, that is, recovering not only the indices of the non-zero components of the signal but also their sign (+ or -). This is usual in the algorithmic sparse recovery literature (Wainwright, 2009; Wang et al., 2010; Omidiran & Wainwright, 2008), as it follows naturally from the standard proof techniques.

Our main result, Theorem 3, provides necessary and sufficient conditions for the  $\ell_1$ -regularized least-squares estimator (known as the LASSO) to recover the signed support of  $\beta^*$  in the agnostic setting. Our result reveals that the problem behaves like the homogeneous-noise setting (Wainwright, 2009) with a homogeneous noise level equal to the average noise level of  $Z$ :

$$\sigma_{\text{avg}}^2 := \frac{n_1 \sigma_1^2 + n_2 \sigma_2^2}{n}. \quad (6)$$

In particular, the sample size conditions (22, 23) do not depend on the noise levels  $\sigma_1^2, \sigma_2^2$ . The condition on the LASSO regularization parameter (24) only depends on  $\sigma_1^2$  and  $\sigma_2^2$  through  $\sigma_{\text{avg}}^2$  and is the same as the one for homogeneous noise  $\sigma_{\text{avg}}^2$  (see equation (28) in Wainwright (2009)). We further provide a necessary and sufficient condition on noise scaling (Proposition 4.1).

This shows that, unlike in sampling complexity, high-quality and low-quality data contribute equally to the sample size condition under which the LASSO recovers the support of the signal.

162 Although we don't address algorithmic recovery in the informed setting, we briefly discuss it in  
 163 Remark 4.2, where we discuss why the proof of Theorem 3 cannot be easily extended to the informed  
 164 case.

166 **1.3 CONTRIBUTIONS, OUTLINE AND NOTATIONS**

168 To the best of our knowledge, this paper is the first to:

170 1. Provide a sufficient condition for sparse recovery in the heterogeneous noise case, and quantify  
 171 the trade-off between high-quality and low-quality data in the agnostic and informed settings.  
 172 2. Extend necessary and sufficient conditions for LASSO sparse recovery to the heterogeneous-  
 173 noise, agnostic setting and show that high-quality and low-quality data contribute equally to  
 174 reaching the algorithmic threshold.

175 We organize the rest of the paper as follows. Section 2 introduces the problem setup. Section 3 studies  
 176 the sampling complexity of sparse recovery under heterogeneous noise. Section 4 investigates  
 177 algorithmic recovery using the LASSO. Section 5 concludes and outlines directions for future work.

178 Throughout this document, we will use the following notations:

180 • We say that  $f(x) \simeq g(x)$  as  $x \rightarrow a \in \mathbb{R} \cup \{-\infty, +\infty\}$  if and only if  $f(x) = g(x)(1 + o(1))$ .  
 181 • We denote by  $h(\cdot)$  the binary entropy:  $h(x) = -x \log x - (1-x) \log(1-x)$ ,  $x \in (0, 1)$ .  
 183 • We call  $\ell_0$ -norm the number of non-zero coordinates of  $x \in \mathbb{R}^d$ , that is  $\|x\|_0 := \sum_{i=1}^d \mathbb{1}(x_i \neq 0)$ .

185 **2 PRELIMINARIES**

187 The problem of sparse signal recovery is defined above (1). The decoder a-priori knows that  
 188  $\beta^*$  is  $s$ -sparse and belongs to a known set  $\mathcal{A} \subseteq \mathbb{R}^p$ . The design and noise are random with  
 189  $(X_{ij})_{i \in [n], j \in [p]} \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(0, 1)$  and  $Z := \Sigma W$  with  $\Sigma$  and  $W$  defined as in (4) and  $n_1 + n_2 = n$ .  
 190 The signal-to-noise ratio (3) writes:

$$192 \text{SNR} := \frac{\mathbb{E}\|X\beta\|_2^2}{\mathbb{E}\|Z\|_2^2} = \frac{ns}{n_1\sigma_1^2 + n_2\sigma_2^2} = \frac{s}{\sigma_{\text{avg}}^2}, \quad (7)$$

195 where  $\sigma_{\text{avg}}^2$  denotes the average noise level (6). In addition, we define the *high-quality SNR* and the  
 196 *low-quality SNR* respectively by:

$$198 \text{SNR}_1 := \frac{\mathbb{E}\left\| [y_i - x_i^T \beta^*]_{i=1}^{n_1} \right\|_2^2}{\mathbb{E}\|Z^1\|_2^2} = \frac{s}{\sigma_1^2}, \quad \text{SNR}_2 := \frac{\mathbb{E}\left\| [y_i - x_i^T \beta^*]_{i=n_1+1}^{n_2} \right\|_2^2}{\mathbb{E}\|Z^2\|_2^2} = \frac{s}{\sigma_2^2}.$$

201 In particular, we always have  $\text{SNR}_2 < \text{SNR}_1$ , which reveals three regimes of interest:

203 • High SNR: when  $\text{SNR}_1, \text{SNR}_2 \rightarrow +\infty$ , or equivalently  $\sigma_2^2 = o(s)$ .  
 204 • Low  $\text{SNR}_2$ , High  $\text{SNR}_1$ :  $\text{SNR}_2 \rightarrow 0$ ,  $\text{SNR}_1 \rightarrow +\infty$  or equivalently  $\sigma_2^2 = \omega(s)$ ,  $\sigma_1^2 = o(s)$ .  
 205 • Low SNR: when  $\text{SNR}_1, \text{SNR}_2 \rightarrow 0$ , or equivalently  $\sigma_1^2 = \omega(s)$ .

207 **3 SAMPLING COMPLEXITY OF SPARSE RECOVERY**

209 In this section, we are interested in determining whether it is possible, information-theoretically, to  
 210 recover the support of the signal, depending on the sample size  $n$ . We assume that  $\beta^*$  is binary and  
 211 a priori  $s$ -sparse, that is:  $\mathcal{A} := \mathcal{B}_{p,s} = \{\beta \in \{0, 1\}^p : \|\beta\|_0 = s\}$ .

213 **Remark 3.1** (Binary-signal assumption). Our results for sparse recovery can be viewed as applying  
 214 to signals whose non-zero components are at least 1 in magnitude, i.e.  $\beta^* \in \mathcal{C}_{p,s}$  (1) :=  
 215  $\{\beta \in \mathbb{R}^d : \min_{i \in \text{Supp}(\beta)} |\beta_i| \geq 1\}$ . Assuming that the non-zero entries are exactly equal to 1 serves  
 only to simplify computations. Intuitively, detecting a component of magnitude 1 is at least as hard

as detecting a stronger component, so stronger signals can only make recovery easier. Conversely, detecting a signal in  $\mathcal{C}_{p,s}(1)$  is at least as hard as detecting a binary signal, since  $\{0,1\}^p \subseteq \mathcal{C}_{p,s}(1)$ . More generally, recovering any signal whose non-zero entries are bounded below by some  $\rho > 0$  can be reduced to the case of  $\mathcal{C}_{p,s}(1)$  by rescaling the model (1) by  $\rho$ .

Let  $A \triangle B := (A \cup B) \setminus (A \cap B)$  denote the symmetric difference between any two finite sets  $A$  and  $B$ , and  $\text{Supp}(\beta) := \{i \in [p] : \beta_i \neq 0\}$  denote the support of any vector  $\beta \in \mathbb{R}^p$ . Let  $\delta \in (0, 1)$ . We say that  $\hat{\beta} \in \mathcal{B}_{p,s}$  recovers the support of  $\beta^*$  up to error  $\delta$  if  $|\text{Supp}(\hat{\beta}) \triangle \text{Supp}(\beta^*)| < 2\delta s$ .

### 3.1 AGNOSTIC SETTING

In the agnostic setting where the decoder ignores the quality of each observation, the sample sizes  $(n_1, n_2)$  and the noise levels  $(\sigma_1^2, \sigma_2^2)$ , we define the estimator:

$$\hat{\beta} := \arg \min_{\beta \in \mathcal{B}_{p,s}} \|Y - X\beta\|_2^2. \quad (8)$$

**Theorem 1** (Sufficient condition for support recovery in the agnostic setting).

1. Assume  $s = o(p)$  and  $s \rightarrow +\infty$  as  $p \rightarrow +\infty$ . Then let  $n^* := 2s \log(p/s)$ .

2. Assume  $s = \alpha p$  for some constant  $\alpha \in (0, 1)$ . Then let  $n^* := 2h(\alpha)p$ .

In both settings described above, if there exists  $\varepsilon > 0$  such that:

$$n_1 \log \left( 1 + \frac{\delta(2\sigma_2^2 - \sigma_1^2)s}{2\sigma_2^4} \right) + n_2 \log \left( 1 + \frac{\delta s}{2\sigma_2^2} \right) \geq (1 + \varepsilon)n^*, \quad (9)$$

then  $\hat{\beta}$  recovers the support of  $\beta^*$  up to error  $\delta$  w.h.p.:

$$\mathbb{P} \left( |\text{Supp}(\beta^*) \triangle \text{Supp}(\hat{\beta})| < 2\delta s \right) \geq 1 - \exp \left\{ -(\varepsilon + o(1))n^*/2 \right\} \xrightarrow{p \rightarrow +\infty} 1.$$

*Proof Sketch.* The proof of Theorem 1 is in appendix A and uses standard techniques. We control the probability that a high-error support attains a lower objective value in (8) than the ground truth and then take a union bound over such supports. For any  $\beta$ , we have:

$$\|Y - X\beta\|_2^2 - \|Y - X\beta^*\|_2^2 = \sum_{i=1}^n \left\{ \langle X_i, \beta^* - \beta \rangle^2 + 2Z_i \langle X_i, \beta^* - \beta \rangle \right\}. \quad (10)$$

Applying a Chernoff bound to the LHS above and analyzing the MGF of the summands yields an exponent that factorizes across two blocks (see Proposition A.1). We conclude using a union bound over supports  $S$  with  $|S \triangle S^*| \geq 2\delta s$  (there are at most  $\binom{p}{s}$  of them).  $\square$

We interpret Theorem 1 as follows.

• **Price of Quality.** The sufficient condition for recovery (9) is equivalent to a linear combination of the sample size  $n_1$  and  $n_2$  being larger than the threshold  $n^*$ . The coefficients of the sample sizes reveal that 1 unit of high-quality data is worth:

$$\gamma := \frac{\log(1 + \delta(2\sigma_2^2 - \sigma_1^2)s / (2\sigma_2^4))}{\log(1 + \delta s / (2\sigma_2^2))} > 1 \quad (11)$$

units of low-quality data. We call  $\gamma$  the *Price of Quality*. In fact, one unit of high-quality data can be replaced by  $\gamma$  units of low-quality data: that is, if  $(n_1, n_2)$  are sufficient for recovering  $\beta^*$ , then so are  $(n_1 - 1, n_2 + \gamma)$ .

• **High SNR<sub>2</sub> regime.** Assume  $s = \omega(\sigma_2^2)$ . The price of quality (11) writes:

$$\gamma \simeq \frac{\log(\delta s / (2\sigma_2^2)) + \log(2 - \sigma_1^2 / \sigma_2^2)}{\log(\delta s / (2\sigma_2^2))} \simeq 1, \quad (12)$$

which means that when  $\sigma_1^2, \sigma_2^2 = o(s)$ , the high-quality and low-quality data contribute equally to the recovery condition (9).

270 • **Low SNR<sub>2</sub> regime.** Assume  $s = o(\sigma_2^2)$ . The price of quality (11) writes:  
 271

$$272 \quad \gamma \simeq \frac{\delta (2\sigma_2^2 - \sigma_1^2) s / (2\sigma_4^2)}{\delta s / (2\sigma_2^2)} \simeq 2 - \frac{\sigma_1^2}{\sigma_2^2}. \quad (13)$$

273

274 Note that  $\gamma < 2$  for any  $\sigma_1^2, \sigma_2^2$ . We conclude that in the low SNR regime, one unit of high-quality  
 275 data is worth at most 2 units of low-quality data, regardless of the noise ratio.  
 276

277 **Remark 3.2** (Limitations).

278

279 • Unlike results on sufficient conditions for sparse recovery in the homogeneous-noise setting  
 280 (Gamarnik & Zadik, 2022), Theorem 1 might not be tight. In fact, Wang et al. (2010) showed  
 281 that in the homogeneous-noise setting, the sufficient condition in (Gamarnik & Zadik, 2022) is  
 282 also necessary. However, we believe it might not be the case for Theorem 1 since, unlike the  
 283 results in the homogeneous-noise setting, the sufficient condition (9) was not obtained using the  
 284 *best Chernoff bound* (see Remark A.1) due to the complexity of the minimization of the Chernoff  
 285 upper bound, which we reduce to finding the root of a third degree polynomial (33).  
 286

287 • Even under the assumption that the decoder is agnostic to the quality of the data, the estimator  $\hat{\beta}$   
 288 (8), might not constitute the best approach to recover the support of  $\beta^*$ . For instance, especially in  
 289 the low SNR regime, the decoder might re-weight the loss of each observation by the magnitude  
 290 of its observed label, i.e.:

$$290 \quad \arg \min_{\beta \in \mathcal{B}_{p,s}} \sum_{i=1}^n \frac{1}{Y_i^2} (Y_i - \langle x_i, \beta \rangle)^2,$$

291

292 as an attempt to rescale each row of data by its noise level. In fact, in the low SNR regime we have  
 293  $\mathbb{E} Y_i^2 \simeq \sigma_i^2$  where  $\sigma_i^2$  denotes the noise level corresponding to the  $i^{\text{th}}$  observation, which motivates  
 294 the use of  $Y_i^2$  as a proxy for  $\sigma_i^2$  when the noise levels are unknown.  
 295

296 **3.2 INFORMED SETTING**

297

298 In this section, we assume that the decoder knows the distribution of each noise entry:  $\mathcal{N}(0, \sigma_1^2)$  or  
 299  $\mathcal{N}(0, \sigma_2^2)$ . Recall the distributions of  $Z$  and  $W$  from (4). The MLE is (see appendix B for a proof):  
 300

$$301 \quad \hat{\beta}_{\text{MLE}} = \arg \min_{\beta \in \mathcal{B}_{p,s}} \|\Sigma^{-1} (Y - X\beta)\|_2^2. \quad (14)$$

302

303 **Theorem 2** (Sufficient condition for support recovery in the informed setting).

304

305 1. Assume  $s = o(p)$  and  $s \rightarrow +\infty$  as  $p \rightarrow +\infty$ . Then let  $n^* := 2s \log(p/s)$ .  
 306 2. Assume  $s = \alpha p$  for some constant  $\alpha \in (0, 1)$ . Then let  $n^* := 2h(\alpha)p$ .

307 In both settings described above, if there exists  $\varepsilon > 0$  such that:  
 308

$$309 \quad n_1 \log \left( 1 + \frac{\delta s}{2\sigma_1^2} \right) + n_2 \log \left( 1 + \frac{\delta s}{2\sigma_2^2} \right) \geq (1 + \varepsilon) n^*, \quad (15)$$

310

311 then  $\hat{\beta}_{\text{MLE}}$  recovers the support of  $\beta^*$  up to error  $\delta$  w.h.p.:  
 312

$$313 \quad \mathbb{P} \left( \left| \text{Supp}(\beta^*) \triangle \text{Supp}(\hat{\beta}_{\text{MLE}}) \right| < 2\delta s \right) \geq 1 - \exp \left\{ -(\varepsilon + o(1)) n^*/2 \right\} \xrightarrow{p \rightarrow +\infty} 1.$$

314

315 *Proof Sketch.* The proof of Theorem 2 is given in appendix C and follows a similar argument as  
 316 Theorem 1. Here, the rescaled loss in (14) leads to a Chernoff bound that can be optimized in  
 317 closed-form, yielding a sharp convergence rate.  $\square$   
 318

319 We interpret Theorem 2 as follows.  
 320

321 • **Price of Quality.** In the informed setting, the expression of the price of quality is different from  
 322 the one in the agnostic case (11). It writes:  
 323

$$323 \quad \gamma = \log \left( 1 + \frac{\delta s}{2\sigma_1^2} \right) / \log \left( 1 + \frac{\delta s}{2\sigma_2^2} \right). \quad (16)$$

324 • **Low SNR regime.** Assume  $\sigma_1^2 = \omega(s)$ . Then:

325 
$$\gamma \simeq \sigma_2^2 / \sigma_1^2. \quad (17)$$

326 • **Low SNR<sub>2</sub>, High SNR<sub>1</sub> regime.** Assume  $\sigma_2^2 = \omega(s)$  and  $\sigma_1^2 = o(s)$ . Then:

327 
$$\gamma = \Theta\left(\frac{\log(s/\sigma_1^2)}{s/\sigma_2^2}\right) = \Theta\left(\frac{\log \text{SNR}_1}{\text{SNR}_2}\right) \xrightarrow{p \rightarrow +\infty} +\infty. \quad (18)$$

328 • **High SNR regime.** Assume  $\sigma_2^2 = o(s)$ . Then:

329 
$$\gamma \simeq \log(s/\sigma_1^2) / \log(s/\sigma_2^2) = \log \text{SNR}_1 / \log \text{SNR}_2. \quad (19)$$

330 **Remark 3.3.**

331 • Compared to the agnostic setting (Theorem 1), the appropriate rescaling of the loss in the MLE  
 332 (14) constitutes a better use of the high-quality data, in the sense that it leads to a higher price  
 333 of quality  $\gamma$ . In particular,  $\gamma$  is infinite in the low SNR<sub>2</sub> & high SNR<sub>1</sub> setting (18) and can be  
 334 arbitrarily large in both low and high SNR regimes (17, 19).

335 • We believe that the sufficient condition for recovery in the informed setting (15) is also necessary  
 336 (and therefore tight), as it was obtained using the tightest Chernoff bound (see equations (35)  
 337 and (38) in the proof of Theorem 2), which has been shown to yield a necessary and sufficient  
 338 condition in the homogeneous noise setting in different sparse recovery settings (Gamarnik &  
 339 Zadik, 2022; Wang et al., 2010; Chaabouni & Gamarnik, 2025).

340 **4 ALGORITHMIC RECOVERY**

341 In this section, we are interested in the existence of a tractable algorithm to recover the support of  
 342 the underlying signal. We assume that the components of the signal  $\beta^*$  take real values and are  
 343 bounded away from zero: that is  $\mathcal{A} := \mathcal{C}_{p,s}(\rho) = \{\beta \in \mathbb{R}^p : \|\beta\|_0 = s, \min_{i \in \text{Supp}(\beta)} |\beta_i| \geq \rho\}$ , for  
 344 some  $\rho \in \mathbb{R}_+$ . We say that  $\hat{\beta} \in \mathbb{R}^p$  recovers the signed support of  $\beta^*$  if  $\text{sign}(\hat{\beta}) = \text{sign}(\beta^*)$ , where  
 345 the  $\text{sign} : \mathbb{R} \rightarrow \{-1, 0, 1\}$  function is defined by  $\text{sign}(0) = 0$  and  $\text{sign}(x) = x / |x|$  for all  $x \neq 0$ ,  
 346 and is applied coordinate-wise. A common approach to recovering the signed support of the signal  
 347 is using the solution to the following  $\ell_1$ -constrained quadratic program, also known as the LASSO:

348 
$$\mathcal{B}_{\text{LASSO}} := \min_{\beta \in \mathbb{R}^p} \left\{ \frac{1}{2n} \|Y - X\beta\|_2^2 + \lambda_p \|\beta\|_1 \right\}, \quad (20)$$

349 where  $\lambda_p \geq 0$  denotes a sequence of regularization parameters converging to 0 as  $p \rightarrow +\infty$ . We  
 350 are interested in characterizing the regime where the LASSO recovers the signed support of the true  
 351 signal. Specifically, we call “recovery” the event:

352 
$$\mathcal{R}(X, \beta^*, Z, \lambda_p) := \left\{ \exists \hat{\beta} \in \mathcal{B}_{\text{LASSO}} : \text{sign}(\hat{\beta}) = \text{sign}(\beta^*) \right\}. \quad (21)$$

353 In the homogeneous noise setting, Wainwright (2009) showed that the performance of the LASSO  
 354 in estimating the signed support of  $\beta^*$  exhibits a phase transition with respect to the sample size. In  
 355 fact, there exists a threshold  $n_{\text{ALG}}$  such that:

356 • If  $n > n_{\text{ALG}}$ : then the LASSO correctly recovers the signed support of  $\beta^*$ .  
 357 • If  $n < n_{\text{ALG}}$ : then the LASSO fails to recover the signed support of  $\beta^*$ .

358 In addition, it is widely believed that no algorithm can recover the support of  $\beta^*$  in polynomial time  
 359 when  $n < n_{\text{ALG}}$ . Indeed, Gamarnik & Zadik (2022) showed that the problem exhibits an OGP. This  
 360 motivates the use of (20) to estimate  $\beta^*$  in the agnostic setting where the decoder treats the data  
 361 impartially. Our main result of this section, Theorem 3, extends the result mentioned above on the  
 362 LASSO threshold (by Wainwright (2009)) to the heterogeneous, agnostic noise setting.

363 **Theorem 3** (Lasso recovery phase transition). *Assume that, as  $p \rightarrow +\infty$ ;  $s$  goes to infinity,  $s = o(p)$  and  $n_1, n_2 = \omega(s)$ . Let  $n_{\text{ALG}} := 2s \log(p - s) + s + 1$ .*

378 *i. If there exists  $\varepsilon > 0$  such that:*

$$379 \quad n < (1 - \varepsilon) n_{ALG}, \quad (22)$$

380 *then, for any sequence  $\lambda_p > 0$  such that  $\frac{n_1\sigma_1^2 + n_2\sigma_2^2}{\lambda_p^2 n^2}$  has a limit in  $\mathbb{R}_{\geq 0} \cup \{+\infty\}$ , we have*

$$381 \quad \mathbb{P}_{X,Z}(\mathcal{R}(X, \beta^*, Z, \lambda_p)) \rightarrow 0.$$

384 *ii. If there exists  $\varepsilon > 0$  such that:*

$$385 \quad n > (1 + \varepsilon) n_{ALG}, \quad (23)$$

386 *and  $(\lambda_p)_{p \geq 1} \rightarrow 0$  is chosen such that:*

$$388 \quad \frac{n\lambda_p^2}{\sigma_{avg}^2 \log(p-s)} \rightarrow +\infty, \quad \text{and} \quad 389 \quad \frac{1}{\rho} \left[ \lambda_p \sqrt{s} + \sqrt{\frac{\sigma_{avg}^2 \log s}{n}} \right] \rightarrow 0, \quad (24)$$

$$391 \quad \text{then } \mathbb{P}_{X,Z}(\mathcal{R}(X, \beta^*, Z, \lambda_p)) \rightarrow 1.$$

393 The full proof of Theorem 3 is given in Appendix D and follows the core LASSO threshold argument  
 394 of Wainwright (2009). We use the same argument but generalize it to the heterogeneous-noise setting,  
 395 where the presence of the matrix  $\Sigma$ , no longer a scalar multiple of the identity, causes key steps  
 396 of the classical proof to fail. We overcome this by applying a Gram–Schmidt (QR) decomposition  
 397 of  $X_S$  (45) and analyzing the resulting orthogonal matrix using properties of the Haar measure on  
 398 the orthogonal group (e.g. see Lemma D.6). The monograph of Meckes (2019) on Haar-distributed  
 399 matrices was particularly valuable in understanding this component from random-matrix theory.

400 *Proof Sketch of Theorem 3.* We express the recovery property (21) via the first-order optimality conditions of the LASSO (20):

$$403 \quad \mathcal{R}(X, \beta^*, \Sigma w, \lambda_p) \iff \begin{cases} \left| \left( \frac{1}{n} X_S^T X_S \right)^{-1} \left( \frac{1}{n} X_S^T \Sigma w - \lambda_p \text{sign}(\beta_S^*) \right) \right| < |\beta_S^*| \\ 404 \quad \left| X_{S^c}^T X_S \left( X_S^T X_S \right)^{-1} \left( \frac{1}{n} X_S^T \Sigma w - \lambda_p \text{sign}(\beta_S^*) \right) - \frac{1}{n} X_{S^c}^T \Sigma w \right| \leq \lambda_p \end{cases} \quad (25)$$

407 where absolute values and inequalities are taken component-wise. This well-known result (Wainwright, 2009; Fuchs, 2004; Meinshausen & Bühlmann, 2006; Tropp, 2006; Zhao & Yu, 2006) is  
 408 stated in Proposition D.1. When (23) and (24) hold, the random variables inside the absolute values  
 409 on the RHS of (25) concentrate below their respective upper bounds, establishing sufficiency. When  
 410 (22) holds, the second absolute value in (25) concentrates above  $\lambda_p$ , showing necessity.  $\square$

412 Although Theorem 3 does not explicitly state any condition on the scaling on the noise, the existence  
 413 of  $\lambda_p \rightarrow 0$  such that (24) holds requires that the noise does not scale arbitrarily large. The next result  
 414 explicitly states this condition.

416 **Proposition 4.1** (Necessary and sufficient condition on noise scaling). *If there exists  $(\lambda_p)_{p \geq 1} \rightarrow 0$   
 417 such that (24) holds, then:*

$$418 \quad \sigma_{avg}^2 = o \left( \frac{n}{(1 + s/\rho^2) \log(p-s)} \right). \quad (26)$$

421 *Conversely, if (26) holds, let:*

$$422 \quad \lambda_p := \left( \frac{\sigma_{avg}^2 \log(p-s)}{(1 + s/\rho^2) n} \right)^{1/4}. \quad (27)$$

424 *Then  $\lambda_p \rightarrow 0$  and (24) holds.*

426 *Proof.* See appendix E.  $\square$

428 **Remark 4.1** (Correlated features). Although we state Theorem 3 only for independent features, i.e.  
 429  $x_i \sim \mathcal{N}(0, I_p)$  for all  $i \in [n]$ , we believe a similar result should hold when the features are correlated  
 430 under suitable regularity conditions on their covariance matrix. Such a result was proved by  
 431 Wainwright (2009) in the homogeneous-noise setting. However, the proof of the extension to heterogeneous  
 noise is already technically heavy, and extending it to correlated designs would introduce

even more complexity and further reduce the readability of an already extensive proof. Because our focus is on the new heterogeneous-noise aspect rather than on re-deriving the covariance-matrix-dependent bound, we focus our analysis in this paper on the independent-feature case.

**Remark 4.2** (Informed setting). Although we only show the phase transition in the scope of the LASSO in the agnostic setting, we believe that a “rescaled” version of the LASSO where the loss is defined by  $\|\Sigma^{-1}(Y - X\beta)\|_2^2$  instead of  $\|Y - X\beta\|_2^2$  in (20) would exhibit a similar behavior in the informed setting. However, using the same argument as Theorem 3 and Wainwright (2009) is tricky in the rescaled setting, as it introduces  $\Sigma^{-1}$  factors alongside the  $X$  terms in (25), which breaks down not only the original proof of Wainwright (2009) but also our Gram-Schmidt argument. In fact, rescaling the rows of  $X$  invalidates the property  $X_S^T X_S \sim \mathcal{W}(I_s, n)$ , which both arguments use to compute the moments of its inverse using properties of inverse Wishart matrices (Anderson et al., 1958; Siskind, 1972). We believe this can be overcome by finding a way to study the moments of  $(X_S^T \Sigma^{-2} X_S)^{-1}$ , which we leave for future work.

## 5 CONCLUSION AND FUTURE WORK

We study the problem of sparse recovery when observations come from mixed-quality sources. We establish sufficient conditions on the sample sizes  $(n_1, n_2)$  for both information-theoretic and algorithmic recovery purposes and in two settings, one when the decoder is completely agnostic to the noise and one where they are informed of the per-sample noise variance.

At the level of the information-theoretic threshold, we study the trade-off between high-quality and low-quality samples, and label the number of low-quality samples required to replace one high-quality sample *the Price of Quality*. In the agnostic setting, we reveal that this entity is quite low: in particular, one high-quality sample is never worth more than two low-quality samples. However, in the informed setting, the price of quality can grow arbitrarily large depending on the noise variances and the signal-to-noise regime. This constitutes the most important takeaway from our work: whenever possible, quantify uncertainty in the annotations and rescale the loss accordingly.

At the algorithmic threshold, we show in the agnostic setting that the classical LASSO recovery results from the homogeneous setting remain valid in the heterogeneous case and depend only on the total sample size  $n_1 + n_2$ . First, the threshold itself is independent of the individual noise levels. Second, the sufficient condition on the penalization coefficient involves the noise only through its average, exactly as if all observations had that average noise. Consequently, high-quality and low-quality samples contribute *equally* to the sample-size requirement for LASSO recovery. This reveals an unexpected difference in the effect of data heterogeneity on the information-theoretic and algorithmic thresholds for recovery.

In a broader discussion on how the information-theoretic and algorithmic thresholds interact across different problem settings, our result further emphasizes that the algorithmic threshold seems to be more “robust” to changes in the traditional problem settings (Gamarnik & Zadik, 2022; Wainwright, 2009). In fact, Wang et al. (2010) and Chaabouni & Gamarnik (2025) observed that when the noise is homogeneous but the design is sparse (i.e.  $X_{ij}$  set to 0 uniformly at random) the information-theoretic threshold increases, while Omidiran & Wainwright (2008) showed that the algorithmic threshold remains the same and is unaffected by changes in the sparsity level of the data (although this was shown only for the sufficient condition, with no corresponding result on necessity).

Although we don’t study LASSO recovery in the informed setting, we believe this is a promising direction for future work. It would be interesting to study the price of quality there, and compare it to LASSO recovery in the agnostic setting on one hand, and to the price of quality of information-theoretic recovery on the other.

486 REFERENCES  
487

488 Shuchin Aeron, Venkatesh Saligrama, and Manqi Zhao. Information theoretic bounds for com-  
489 pressed sensing. *IEEE Transactions on Information Theory*, 56(10):5111–5130, 2010. doi:  
490 10.1109/TIT.2010.2059891.

491 Theodore Wilbur Anderson, Theodore Wilbur Anderson, Theodore Wilbur Anderson,  
492 Theodore Wilbur Anderson, and Etats-Unis Mathématicien. *An introduction to multivariate sta-  
493 tistical analysis*, volume 2. Wiley New York, 1958.

494 Emmanuel J Candès, Justin Romberg, and Terence Tao. Robust uncertainty principles: Exact signal  
495 reconstruction from highly incomplete frequency information. *IEEE Transactions on information  
496 theory*, 52(2):489–509, 2006.

497 Youssef Chaabouni and David Gamarnik. The price of sparsity: Sufficient conditions for sparse  
498 recovery using sparse and sparsified measurements. *arXiv preprint arXiv:2509.01809*, 2025.

499 Scott Shaobing Chen, David L Donoho, and Michael A Saunders. Atomic decomposition by basis  
500 pursuit. *SIAM review*, 43(1):129–159, 2001.

501 Graham Cormode and Marios Hadjieleftheriou. Finding the frequent items in streams of data. *Com-  
502 munications of the ACM*, 52(10):97–105, 2009.

503 Laurens De Haan and Ana Ferreira. *Extreme value theory: an introduction*. Springer, 2006.

504 Aurore Delaigle, Peter Hall, and Alexander Meister. On deconvolution with repeated measurements.  
505 2008.

506 David L Donoho. Compressed sensing. *IEEE Transactions on information theory*, 52(4):1289–  
507 1306, 2006.

508 Ding-Zhu Du and Frank Kwang-ming Hwang. *Combinatorial group testing and its applications*,  
509 volume 12. World Scientific, 1999.

510 Naoki Egami, Musashi Hinck, Brandon Stewart, and Hanying Wei. Using imperfect surrogates for  
511 downstream inference: Design-based supervised learning for social science applications of large  
512 language models. *Advances in Neural Information Processing Systems*, 36:68589–68601, 2023.

513 Simon Foucart, Holger Rauhut, Simon Foucart, and Holger Rauhut. *An invitation to compressive  
514 sensing*. Springer, 2013.

515 Benoît Frénay and Michel Verleysen. Classification in the presence of label noise: a survey. *IEEE  
516 transactions on neural networks and learning systems*, 25(5):845–869, 2013.

517 J-J Fuchs. Recovery of exact sparse representations in the presence of noise. In *2004 IEEE Inter-  
518 national Conference on Acoustics, Speech, and Signal Processing*, volume 2, pp. ii–533. IEEE,  
519 2004.

520 David Gamarnik and Ilias Zadik. Sparse high-dimensional linear regression. estimating squared  
521 error and a phase transition. *The Annals of Statistics*, 50(2):880–903, 2022.

522 Kristina Gligorić, Tijana Zrnic, Cinoo Lee, Emmanuel J Candès, and Dan Jurafsky. Can unconfident  
523 llm annotations be used for confident conclusions? *arXiv preprint arXiv:2408.15204*, 2024.

524 Yinzhen Gu. Moments of random matrices and. 2013.

525 Piotr Indyk. Sketching, streaming and sublinear-space algorithms. *Graduate course notes, available  
526 at*, 33:617, 2007.

527 Michel Ledoux. *The concentration of measure phenomenon*. Number 89. American Mathematical  
528 Soc., 2001.

529 Minzhi Li, Taiwei Shi, Caleb Ziems, Min-Yen Kan, Nancy F Chen, Zhengyuan Liu, and Diyi Yang.  
530 Coannotating: Uncertainty-guided work allocation between human and large language models for  
531 data annotation. *arXiv preprint arXiv:2310.15638*, 2023.

540 Po-Ling Loh and Martin J Wainwright. High-dimensional regression with noisy and missing data:  
 541 Provable guarantees with non-convexity. *Advances in neural information processing systems*, 24,  
 542 2011.

543

544 Pascal Massart. *Concentration inequalities and model selection: Ecole d'Eté de Probabilités de  
 545 Saint-Flour XXXIII-2003*. Springer, 2007.

546 Elizabeth S Meckes. *The random matrix theory of the classical compact groups*, volume 218. Cam-  
 547 bridge University Press, 2019.

548

549 Nicolai Meinshausen and Peter Bühlmann. High-dimensional graphs and variable selection with the  
 550 lasso. 2006.

551

552 Alan Miller. *Subset selection in regression*. chapman and hall/CRC, 2002.

553

554 Shanmugavelayutham Muthukrishnan et al. Data streams: Algorithms and applications. *Founda-  
 555 tions and Trends® in Theoretical Computer Science*, 1(2):117–236, 2005.

556

557 Mohamed Ndaoud and Alexandre B Tsybakov. Optimal variable selection and adaptive noisy com-  
 558 pressed sensing. *IEEE Transactions on Information Theory*, 66(4):2517–2532, 2020.

559

560 Dapo Omidiran and Martin J Wainwright. High-dimensional subset recovery in noise: Sparsified  
 561 measurements without loss of statistical efficiency. *arXiv preprint arXiv:0805.3005*, 2008.

562

563 Pranav Rajpurkar, Jeremy Irvin, Robyn L Ball, Kaylie Zhu, Brandon Yang, Hershel Mehta, Tony  
 564 Duan, Daisy Ding, Aarti Bagul, Curtis P Langlotz, et al. Deep learning for chest radiograph  
 565 diagnosis: A retrospective comparison of the chexnext algorithm to practicing radiologists. *PLoS  
 566 medicine*, 15(11):e1002686, 2018.

567

568 Alexander Ratner, Stephen H Bach, Henry Ehrenberg, Jason Fries, Sen Wu, and Christopher Ré.  
 569 Snorkel: Rapid training data creation with weak supervision. In *Proceedings of the VLDB en-  
 570 dowment. International conference on very large data bases*, volume 11, pp. 269, 2017.

571

572 Galen Reeves, Jiaming Xu, and Ilias Zadik. The all-or-nothing phenomenon in sparse linear regres-  
 573 sion. In *Conference on Learning Theory*, pp. 2652–2663. PMLR, 2019.

574

575 Alvin C Rencher and G Bruce Schaalje. *Linear models in statistics*. John Wiley & Sons, 2008.

576

577 Jonathan Silvertown. A new dawn for citizen science. *Trends in ecology & evolution*, 24(9):467–  
 578 471, 2009.

579

580 Victor Siskind. Second moments of inverse wishart-matrix elements. *Biometrika*, 59(3):690–691,  
 581 1972.

582

583 Robert Tibshirani. Regression shrinkage and selection via the lasso. *Journal of the Royal Statistical  
 584 Society Series B: Statistical Methodology*, 58(1):267–288, 1996.

585

586 Joel A Tropp. Just relax: Convex programming methods for identifying sparse signals in noise.  
 587 *IEEE transactions on information theory*, 52(3):1030–1051, 2006.

588

589 Martin J Wainwright. Sharp thresholds for high-dimensional and noisy sparsity recovery using  
 590  $\ell_1$ -constrained quadratic programming (lasso). *IEEE transactions on information theory*,  
 591 55(5):2183–2202, 2009.

592

593 Wei Wang, Martin J Wainwright, and Kannan Ramchandran. Information-theoretic limits on sparse  
 594 signal recovery: Dense versus sparse measurement matrices. *IEEE Transactions on Information  
 595 Theory*, 56(6):2967–2979, 2010.

596

597 Ruoyu Zhang, Yanzeng Li, Yongliang Ma, Ming Zhou, and Lei Zou. Llmaaa: Making large language  
 598 models as active annotators. *arXiv preprint arXiv:2310.19596*, 2023.

599

600 Peng Zhao and Bin Yu. On model selection consistency of lasso. *The Journal of Machine Learning  
 601 Research*, 7:2541–2563, 2006.

594 A PROOF OF THEOREM 1  
595596 *Proof of Theorem 1.* We denote by  $S^* := \text{Supp}(\beta^*)$ . Let  $\mathcal{S}_{p,s} := \{S \subset [p] : |S| = s\}$ . We define  
597 the function:  
598

599 
$$L : \mathcal{S}_{p,s} \longrightarrow \mathbb{R}_{\geq 0}$$
  
600 
$$S \longmapsto \|Y - X\mathbb{1}_S\|_2^2,$$
  
601

602 where  $\mathbb{1}_S$  denotes the vector in  $\{0, 1\}^p$  such that  $[\mathbb{1}_S]_j = 1$  ( $j \in S$ ) for all  $j \in [p]$ . In particular,  
603 note (8) that:

604 
$$\hat{\beta} = \mathbb{1}_{\hat{S}}, \quad \text{where } \hat{S} := \arg \min_{S \in \mathcal{S}_{p,s}} L(S).$$
  
605

606 For every  $S \in \mathcal{S}_{p,s}$ , we define:  $M(S) := |S \Delta S^*|/2$ , and let  $U(S) := S^* \setminus S$ ,  $V(S) := S \setminus S^*$ .  
607 Note that, since  $|S| = |S^*| = s$ , we have  $|U(S)| = |V(S)| = M(S)$ . We also define:  
608

609 
$$\Delta : \mathcal{S}_{p,s} \longrightarrow \mathbb{R}$$
  
610 
$$S \longmapsto L(S) - L(S^*).$$
  
611

612 **Proposition A.1.** *For any  $S \in \mathcal{S}_{p,s}$ : if  $M(S) \geq \delta s$ , then:*

613 
$$\mathbb{P}(\Delta(S) \leq 0) \leq \left(1 + \frac{\delta(2\sigma_2^2 - \sigma_1^2)s}{2\sigma_2^2}\right)^{-n_1/2} \left(1 + \frac{\delta s}{2\sigma_2^2}\right)^{-n_2/2}.$$
  
614  
615  
616

617 *Proof.* See section A.1. □  
618620 Hence we have, for any support  $S \in \mathcal{S}_{p,s}$  such that  $|S \Delta S^*| \geq 2\delta s$ :  
621

622 
$$\mathbb{P}(\|Y - X\mathbb{1}_S\|_2^2 \leq \|Y - X\mathbb{1}_{S^*}\|_2^2) \leq \left(1 + \frac{\delta(2\sigma_2^2 - \sigma_1^2)s}{2\sigma_2^2}\right)^{-n_1/2} \left(1 + \frac{\delta s}{2\sigma_2^2}\right)^{-n_2/2} \quad (28)$$
  
623  
624

625 Using (28) and a union bound over  $\{S \in \mathcal{S}_{p,s} : |S \Delta S^*| \geq 2\delta s\}$  we have:  
626

627 
$$\begin{aligned} & \mathbb{P}_{X,Z}\left(\left|\text{Supp}(\hat{\beta}) \Delta \text{Supp}(\beta^*)\right| < 2\delta s\right) \\ & \geq \mathbb{P}_{X,Z}\left(\|Y - X\mathbb{1}_S\|_2^2 > \|Y - X\mathbb{1}_{S^*}\|_2^2, \forall S \in \mathcal{S}_{p,s} : |S \Delta S^*| \geq 2\delta s\right) \\ & = 1 - \mathbb{P}_{X,Z}\left(\exists S \in \mathcal{S}_{p,s} : |S \Delta S^*| \geq 2\delta s, \|Y - X\mathbb{1}_S\|_2^2 \leq \|Y - X\mathbb{1}_{S^*}\|_2^2\right) \\ & \stackrel{\text{U.B.}}{\geq} 1 - \sum_{S \in \mathcal{S}_{p,s} : |S \Delta S^*| \geq 2\delta s} \mathbb{P}_{X,Z}\left(\|Y - X\mathbb{1}_S\|_2^2 \leq \|Y - X\mathbb{1}_{S^*}\|_2^2\right) \\ & \stackrel{(28)}{\geq} 1 - \sum_{S \in \mathcal{S}_{p,s} : |S \Delta S^*| \geq 2\delta s} \left(1 + \frac{\delta(2\sigma_2^2 - \sigma_1^2)s}{2\sigma_2^2}\right)^{-n_1/2} \left(1 + \frac{\delta s}{2\sigma_2^2}\right)^{-n_2/2} \\ & \geq 1 - |\mathcal{S}_{p,s}| \left(1 + \frac{\delta(2\sigma_2^2 - \sigma_1^2)s}{2\sigma_2^2}\right)^{-n_1/2} \left(1 + \frac{\delta s}{2\sigma_2^2}\right)^{-n_2/2} \\ & = 1 - \binom{p}{s} \left(1 + \frac{\delta(2\sigma_2^2 - \sigma_1^2)s}{2\sigma_2^2}\right)^{-n_1/2} \left(1 + \frac{\delta s}{2\sigma_2^2}\right)^{-n_2/2}. \end{aligned}$$
  
628  
629  
630  
631  
632  
633  
634  
635  
636  
637  
638  
639  
640  
641  
642  
643  
644

645 **Case 1: Assume**  $s = o(p)$ . We use the corollary of Stirling:  
646

647 
$$\binom{p}{s} = \exp\left(s \log(p/s)(1 + o(1))\right),$$

648 which yields:  
649

$$650 \mathbb{P}_{X,Z}\left(\left|\text{Supp}(\hat{\beta}) \triangle \text{Supp}(\beta^*)\right| < 2\delta s\right) \\ 651 \geq 1 - \exp\left\{s \log(p/s) (1 + o(1)) - \frac{n_1}{2} \log\left(1 + \frac{\delta(2\sigma_2^2 - \sigma_1^2)s}{2\sigma_2^2}\right) - \frac{n_2}{2} \log\left(1 + \frac{\delta s}{2\sigma_2^2}\right)\right\}. \\ 652$$

653 Now using (9) in above, we have:  
654

$$655 \mathbb{P}_{X,Z}\left(\left|\text{Supp}(\hat{\beta}) \triangle \text{Supp}(\beta^*)\right| < 2\delta s\right) \\ 656 \geq 1 - \exp\left\{s \log(p/s) (1 + o(1)) - (1 + \varepsilon)s \log(p/s)\right\} \\ 657 \geq 1 - \exp\left\{-\varepsilon s \log(p/s) - o(s \log(p/s))\right\}. \\ 658$$

659 Finally we conclude:  
660

$$661 \mathbb{P}_{X,Z}\left(\left|\text{Supp}(\hat{\beta}) \triangle \text{Supp}(\beta^*)\right| < 2\delta s\right) \geq 1 - \exp\left\{-(\varepsilon + o(1))n^*/2\right\} \xrightarrow{p \rightarrow +\infty} 1,$$

662 where  $n^* = 2s \log(p/s)$ .  
663

664 **Case 2: Assume  $s = \alpha(p)$  for some constant  $\alpha \in (0, 1)$ .** We use the corollary of Stirling:  
665

$$666 \binom{p}{s} = \exp\left(h(\alpha)p(1 + o(1))\right), \\ 667$$

668 which yields:  
669

$$670 \mathbb{P}_{X,Z}\left(\left|\text{Supp}(\hat{\beta}) \triangle \text{Supp}(\beta^*)\right| < 2\delta s\right) \\ 671 \geq 1 - \exp\left\{h(\alpha)p(1 + o(1)) - \frac{n_1}{2} \log\left(1 + \frac{\delta(2\sigma_2^2 - \sigma_1^2)s}{2\sigma_2^2}\right) - \frac{n_2}{2} \log\left(1 + \frac{\delta s}{2\sigma_2^2}\right)\right\}. \\ 672$$

673 Now using (9) in above, we have:  
674

$$675 \mathbb{P}_{X,Z}\left(\left|\text{Supp}(\hat{\beta}) \triangle \text{Supp}(\beta^*)\right| < 2\delta s\right) \\ 676 \geq 1 - \exp\left\{h(\alpha)p(1 + o(1)) - (1 + \varepsilon)h(\alpha)p\right\} \\ 677 \geq 1 - \exp\left\{-\varepsilon h(\alpha)p - o(p)\right\}. \\ 678$$

679 Finally we conclude:  
680

$$681 \mathbb{P}_{X,Z}\left(\left|\text{Supp}(\hat{\beta}) \triangle \text{Supp}(\beta^*)\right| < 2\delta s\right) \geq 1 - \exp\left\{-(\varepsilon + o(1))n^*/2\right\} \xrightarrow{p \rightarrow +\infty} 1,$$

682 where  $n^* = 2h(\alpha)p$ . □  
683

## 684 A.1 PROOF OF PROPOSITION A.1

685 *Proof of Proposition A.1.* Fix  $S \in \mathcal{S}_{p,s}$  such that  $M(S) \geq \delta s$ . We have:  
686

$$687 \Delta(S) = L(S) - L(S^*) \\ 688 = \|Y - X\mathbf{1}_S\|_2^2 - \|Y - X\mathbf{1}_{S^*}\|_2^2 \\ 689 = \|X\beta^* + Z - X\mathbf{1}_S\|_2^2 - \|X\beta^* + Z - X\mathbf{1}_{S^*}\|_2^2 \\ 690 = \|X(\mathbf{1}_{S^*} - \mathbf{1}_S)\|_2^2 + 2\langle Z, X(\mathbf{1}_{S^*} - \mathbf{1}_S) \rangle \\ 691 = \sum_{i=1}^n \langle X_i, \mathbf{1}_{S^*} - \mathbf{1}_S \rangle^2 + 2 \sum_{i=1}^n Z_i \langle X_i, \mathbf{1}_{S^*} - \mathbf{1}_S \rangle. \\ 692$$

693 Let  $X_1 \in \mathbb{R}^{n_1 \times p}$ ,  $X_2 \in \mathbb{R}^{n_2 \times p}$  such that:  
694

$$695 X = \begin{pmatrix} X_1 \\ X_2 \end{pmatrix}. \\ 696$$

702 Then the above expression of  $\Delta(S)$  writes:  
 703

$$\begin{aligned} 704 \quad \Delta(s) &= \sum_{i=1}^{n_1} \left\{ \langle X_i^1, \mathbb{1}_{S^*} - \mathbb{1}_S \rangle^2 + 2Z_i^1 \langle X_i^1, \mathbb{1}_{S^*} - \mathbb{1}_S \rangle \right\} \\ 705 \\ 706 \quad &+ \sum_{i=1}^{n_2} \left\{ \langle X_i^2, \mathbb{1}_{S^*} - \mathbb{1}_S \rangle^2 + 2Z_i^2 \langle X_i^2, \mathbb{1}_{S^*} - \mathbb{1}_S \rangle \right\}. \\ 707 \\ 708 \\ 709 \end{aligned}$$

710 We denote by  $(\Delta_i^1)_{i \in [n_1]}$  and  $(\Delta_i^2)_{i \in [n_2]}$  the terms of the sums above, that is:  
 711

$$\begin{cases} \Delta_i^1 := \langle X_i^1, \mathbb{1}_{S^*} - \mathbb{1}_S \rangle^2 + 2Z_i^1 \langle X_i^1, \mathbb{1}_{S^*} - \mathbb{1}_S \rangle \\ \Delta_i^2 := \langle X_i^2, \mathbb{1}_{S^*} - \mathbb{1}_S \rangle^2 + 2Z_i^2 \langle X_i^2, \mathbb{1}_{S^*} - \mathbb{1}_S \rangle \end{cases}.$$

712 Note that each of the elements of each of  $\{\Delta_i^1 : i \in [n_1]\}$  and  $\{\Delta_i^2 : i \in [n_2]\}$  are i.i.d. and:  
 713

$$\Delta(S) = \sum_{i=1}^{n_1} \Delta_i^1 + \sum_{i=1}^{n_2} \Delta_i^2.$$

714 Using the Chernoff bound, we have:  
 715

$$\begin{aligned} 716 \quad \mathbb{P}(\Delta(S) \leq 0) &= \mathbb{P}(-\Delta(S) \geq 0) \\ 717 \\ 718 \quad &= \inf_{\theta \geq 0} \mathbb{P}\left(e^{-\theta \Delta(S)} \geq 1\right) \\ 719 \\ 720 \quad &\leq \inf_{\theta \geq 0} \mathbb{E}\left[e^{-\theta \Delta(S)}\right] \\ 721 \\ 722 \quad &= \inf_{\theta \geq 0} \mathbb{E}\left[e^{-\sum_{i=1}^{n_1} \theta \Delta_i^1 + \sum_{i=1}^{n_2} \theta \Delta_i^2}\right] \\ 723 \\ 724 \quad &\stackrel{\text{ind.}}{=} \inf_{\theta \geq 0} \prod_{i=1}^{n_1} \mathbb{E}\left[e^{-\theta \Delta_i^1}\right] \prod_{i=1}^{n_2} \mathbb{E}\left[e^{-\theta \Delta_i^2}\right] \\ 725 \\ 726 \quad &= \inf_{\theta \geq 0} \prod_{i=1}^{n_1} M_{-\Delta_i^1}(\theta) \prod_{i=1}^{n_2} M_{-\Delta_i^2}(\theta) \\ 727 \\ 728 \quad &\stackrel{\text{i.d.}}{=} \inf_{\theta \geq 0} \left\{M_{-\Delta_i^1}(\theta)\right\}^{n_1} \left\{M_{-\Delta_i^2}(\theta)\right\}^{n_2}. \\ 729 \\ 730 \\ 731 \\ 732 \\ 733 \\ 734 \\ 735 \\ 736 \end{aligned}$$

737 Therefore:  
 738

$$\mathbb{P}(\Delta(S) \leq 0) \leq \inf_{\theta \geq 0} \left\{M_{-\Delta_i^1}(\theta)\right\}^{n_1} \left\{M_{-\Delta_i^2}(\theta)\right\}^{n_2}. \quad (29)$$

739 Now we have, for any  $\theta \geq 0$ :  
 740

$$\begin{aligned} 741 \quad M_{-\Delta_i^1}(\theta) &= \mathbb{E}_{X_i^1, Z_i^1} \left[ e^{-\theta[\langle X_i^1, \beta^* - \beta(S) \rangle^2 + 2Z_i^1 \langle X_i^1, \beta^* - \beta(S) \rangle]} \right] \\ 742 \\ 743 \quad &= \mathbb{E}_{X_i^1} \left[ e^{-\theta \langle X_i^1, \beta^* - \beta(S) \rangle^2} \mathbb{E}_{Z_i^1} \left[ e^{-2\theta Z_i^1 \langle X_i^1, \beta^* - \beta(S) \rangle} | X_i^1 \right] \right] \\ 744 \\ 745 \quad &= \mathbb{E}_{X_i^1} \left[ e^{-\theta \langle X_i^1, \beta^* - \beta(S) \rangle^2} M_{Z_i^1 | X_i^1}(-2\theta \langle X_i^1, \beta^* - \beta(S) \rangle) \right] \\ 746 \\ 747 \quad &= \mathbb{E}_{X_i^1} \left[ e^{-\theta \langle X_i^1, \beta^* - \beta(S) \rangle^2} e^{\frac{1}{2}(-2\theta \langle X_i^1, \beta^* - \beta(S) \rangle)^2 \sigma_1^2} \right] \\ 748 \\ 749 \quad &= \mathbb{E}_{X_i^1} \left[ e^{(-\theta + 2\theta^2 \sigma_1^2) \langle X_i^1, \beta^* - \beta(S) \rangle^2} \right] \\ 750 \\ 751 \quad &= \mathbb{E}_{X_i^1} \left[ e^{(-\theta + 2\theta^2 \sigma_1^2) (\sum_{j \in U} X_{ij}^1 - \sum_{j \in V} X_{ij}^1)^2} \right], \\ 752 \end{aligned}$$

753 where we write  $U$  and  $V$  for  $U(S)$  and  $V(S)$ , respectively, for simplicity. We know that:  
 754

$$\sum_{j \in U} X_{ij}^1 - \sum_{j \in V} X_{ij}^1 \stackrel{d}{=} \sum_{j \in U \cup V} X_{ij}^1 \sim \mathcal{N}(0, |U \cup V|).$$

756 Hence:

$$\begin{aligned} 758 \quad M_{-\Delta_i^1}(\theta) &= \mathbb{E}_{X_i} \left[ e^{(-\theta+2\theta^2\sigma_1^2)(\sum_{j \in U} X_{ij}^1 - \sum_{j \in V} X_{ij}^1)^2} \right] \\ 759 \\ 760 \quad &= \mathbb{E}_{X_i} \left[ e^{|U \cup V|(-\theta+2\theta^2\sigma_1^2)\Gamma} \right], \\ 761 \end{aligned}$$

762 where:

$$\Gamma = \left( \frac{\sum_{j \in U} X_{ij}^1 - \sum_{j \in V} X_{ij}^1}{\sqrt{|U \cup V|}} \right)^2 \sim \chi^2(1).$$

763 Therefore:

$$764 \quad M_{-\Delta_i^1}(\theta) = \begin{cases} \frac{1}{\sqrt{1-2|U \cup V|(-\theta+2\theta^2\sigma_1^2)}} & \text{if } |U \cup V|(-\theta+2\theta^2\sigma_1^2) < 1/2 \\ +\infty & \text{else.} \end{cases} \quad (30)$$

765 Similarly to (30), we obtain the following expression for  $M_{-\Delta_i^2}(\theta)$ :

$$766 \quad M_{-\Delta_i^2}(\theta) = \begin{cases} \frac{1}{\sqrt{1-2|U \cup V|(-\theta+2\theta^2\sigma_2^2)}} & \text{if } |U \cup V|(-\theta+2\theta^2\sigma_2^2) < 1/2 \\ +\infty & \text{else.} \end{cases} \quad (31)$$

767 Therefore, for any  $\theta \geq 0$ :

$$768 \quad M_{-\Delta_i^1}(\theta)^{n_1} M_{-\Delta_i^2}(\theta)^{n_2} = \begin{cases} \left(1 - 2|U \cup V|(-\theta+2\theta^2\sigma_1^2)\right)^{-n_1/2} \\ \times \left(1 - 2|U \cup V|(-\theta+2\theta^2\sigma_2^2)\right)^{-n_2/2} \\ \quad \text{if } \begin{cases} |U \cup V|(-\theta+2\theta^2\sigma_1^2) < 1/2 \\ |U \cup V|(-\theta+2\theta^2\sigma_2^2) < 1/2 \end{cases} \\ +\infty \quad \text{else.} \end{cases}$$

769 **Remark A.1** (Best Chernoff bound). To find the best Chernoff bound (29), we need to solve the  
770 optimization problem in (29), defined by:

$$771 \quad \inf_{\theta \geq 0} \left\{ M_{-\Delta_i^1}(\theta) \right\}^{n_1} \left\{ M_{-\Delta_i^2}(\theta) \right\}^{n_2}. \quad (32)$$

772 Using the First Order Optimality Condition, (32) reduces to finding the roots of  $\xi'(\theta) = 0$  is closed  
773 form, where  $\xi(\cdot)$  is defined by:

$$774 \quad \xi(\theta) := M_{-\Delta_i^1}(\theta)^{n_1} M_{-\Delta_i^2}(\theta)^{n_2}.$$

775 Using the closed-form solution of  $\xi(\cdot)$  obtained above, we conclude that solving 32 reduces to  
776 finding the positive roots of the following third-degree polynomial in  $\theta$ :

$$777 \quad n_1(4\sigma_1^2\theta - 1)(1 - 2|U \cup V|(-\theta+2\theta^2\sigma_1^2)) + n_2(4\sigma_2^2\theta - 1)(1 - 2|U \cup V|(-\theta+2\theta^2\sigma_2^2)). \quad (33)$$

778 To the best of our knowledge, this doesn't lead to any "reasonable" closed-form expression for the  
779 minimizer  $\theta_{\min}^*$ . Instead, we note that:

$$780 \quad \{\theta: |U \cup V|(-\theta+2\theta^2\sigma_2^2) < 1/2\} \subseteq \{\theta: |U \cup V|(-\theta+2\theta^2\sigma_1^2) < 1/2\},$$

781 and choose  $\theta$  to the middle of the LHS interval.

803 In particular, setting  $\theta^* := \frac{1}{4\sigma_2^2}$ , we have:

$$805 \quad |U \cup V|(-\theta^* + 2\theta^{*2}\sigma_2^2) = -\theta^* |U \cup V|(-1 + 2\theta^*\sigma_2^2) = -\theta^* |U \cup V|/2 < 0 < 1/2,$$

806 and:

$$807 \quad |U \cup V|(-\theta^* + 2\theta^{*2}\sigma_1^2) = -\theta^* |U \cup V| \left( -1 + \frac{\sigma_1^2}{2\sigma_2^2} \right) < 0 < 1/2 \quad (\text{since } \sigma_1^2 < \sigma_2^2).$$

810 Therefore:

$$\begin{aligned}
 & M_{-\Delta_i^1}(\theta^*)^{n_1} M_{-\Delta_i^2}(\theta^*)^{n_2} \\
 &= \left(1 - 2|U \cup V| \left(-\theta^* + 2\theta^{*2}\sigma_1^2\right)\right)^{-n_1/2} \left(1 - 2|U \cup V| \left(-\theta^* + 2\theta^{*2}\sigma_2^2\right)\right)^{-n_2/2} \\
 &= \left(1 - 2|U \cup V| \left(-\frac{1}{4\sigma_2^2} + 2\left(\frac{1}{4\sigma_2^2}\right)^2\sigma_1^2\right)\right)^{-n_1/2} \\
 &\quad \times \left(1 - 2|U \cup V| \left(-\frac{1}{4\sigma_2^2} + 2\left(\frac{1}{4\sigma_2^2}\right)^2\sigma_2^2\right)\right)^{-n_2/2} \\
 &= \left(1 + |U \cup V| \left(\frac{2\sigma_2^2 - \sigma_1^2}{4\sigma_2^4}\right)\right)^{-n_1/2} \left(1 + \frac{|U \cup V|}{4\sigma_2^2}\right)^{-n_2/2} \\
 &\leq \left(1 + \frac{\delta(2\sigma_2^2 - \sigma_1^2)s}{2\sigma_2^4}\right)^{-n_1/2} \left(1 + \frac{\delta s}{2\sigma_2^2}\right)^{-n_2/2},
 \end{aligned}$$

827 where the last inequality holds because  $|U \cup V| = 2M(S) \geq 2\delta s$ . Finally, using this in (29) we  
828 conclude:

$$\mathbb{P}(\Delta(S) \leq 0) \leq \left(1 + \frac{\delta(2\sigma_2^2 - \sigma_1^2)s}{2\sigma_2^4}\right)^{-n_1/2} \left(1 + \frac{\delta s}{2\sigma_2^2}\right)^{-n_2/2}.$$

□

## 834 B PROOF OF (14)

835 *Proof of (14).* Let  $\beta \in \mathcal{B}_{p,s}$ . We know from (1) that:

$$Y | X, \beta \sim \mathcal{N}(X\beta, \Sigma^2).$$

836 Its pdf writes:

$$f_{Y|X,\beta}(y) = (2\pi)^{-n/2} \det(\Sigma)^{-1} \exp\left\{-(y - X\beta)^T \Sigma^{-2} (y - X\beta)\right\}.$$

837 The MLE is defined as:

$$\begin{aligned}
 \hat{\beta}_{\text{MLE}} &= \arg \max_{\beta \in \mathcal{B}_{p,s}} f_{Y|X,\beta}(Y) \\
 &= \arg \min_{\beta \in \mathcal{B}_{p,s}} (Y - X\beta)^T \Sigma^{-2} (Y - X\beta) \\
 &= \arg \min_{\beta \in \mathcal{B}_{p,s}} (Y - X\beta)^T (\Sigma^{-1})^T \Sigma^{-1} (Y - X\beta) \\
 &= \arg \min_{\beta \in \mathcal{B}_{p,s}} \|\Sigma^{-1} (Y - X\beta)\|_2^2.
 \end{aligned}$$

□

## 838 C PROOF OF THEOREM 2

839 *Proof of Theorem 2.* We denote by  $S^* := \text{Supp}(\beta^*)$ . Let  $\mathcal{S}_{p,s} := \{S \subset [p]: |S| = s\}$ . We define  
840 the  $\Sigma$ -rescaled loss:

$$\begin{aligned}
 L_\Sigma: \mathcal{S}_{p,s} &\longrightarrow \mathbb{R}_{\geq 0} \\
 S &\longmapsto \|\Sigma^{-1} (Y - X\mathbb{1}_S)\|_2^2,
 \end{aligned}$$

841 where  $\mathbb{1}_S$  denote the vector in  $\{0, 1\}^p$  such that  $[\mathbb{1}_S]_j = 1$  ( $j \in S$ ) for all  $j \in [p]$ . In particular, note  
842 from (14) that:

$$\hat{\beta}_{\text{MLE}} = \mathbb{1}_{\hat{S}_{\text{MLE}}}, \text{ where } \hat{S}_{\text{MLE}} := \arg \min_{S \in \mathcal{S}_{p,s}} L_\Sigma(S).$$

864 For every  $S \in \mathcal{S}_{p,s}$ , we define:  $M(S) := |S \triangle S^*|/2$ , and let  $U(S) := S^* \setminus S$ ,  $V(S) := S \setminus S^*$ .  
865 Note that, since  $|S| = |S^*| = s$ , we have  $|U(S)| = |V(S)| = M(S)$ . We also define:  
866

$$\begin{aligned} \Delta : \mathcal{S}_{p,s} &\longrightarrow \mathbb{R} \\ S &\longmapsto L_\Sigma(S) - L_\Sigma(S^*). \end{aligned}$$

869 **Proposition C.1.** For any  $S \in \mathcal{S}_{p,s}$ : if  $M(S) \geq \delta s$ , then:  
870

$$\mathbb{P}(\Delta(S) \leq 0) \leq \left(1 + \frac{\delta s}{2\sigma_1^2}\right)^{-n_1/2} \left(1 + \frac{\delta s}{2\sigma_2^2}\right)^{-n_2/2}.$$

874 *Proof.* See section C.1. □  
875

876 Hence we have, for any support  $S \in \mathcal{S}_{p,s}$  such that  $|S \triangle S^*| \geq 2\delta s$ :  
877

$$\mathbb{P}\left(\|\Sigma^{-1}(Y - X\mathbf{1}_S)\|_2^2 \leq \|\Sigma^{-1}(Y - X\mathbf{1}_{S^*})\|_2^2\right) \leq \left(1 + \frac{\delta s}{2\sigma_1^2}\right)^{-n_1/2} \left(1 + \frac{\delta s}{2\sigma_2^2}\right)^{-n_2/2}. \quad (34)$$

881 Using (34) and a union bound over  $\{S \in \mathcal{S}_{p,s} : |S \triangle S^*| \geq 2\delta s\}$  we have:  
882

$$\begin{aligned} \mathbb{P}_{X,Z}\left(\left|\text{Supp}(\hat{\beta}) \triangle \text{Supp}(\beta^*)\right| < 2\delta s\right) \\ \geq \mathbb{P}_{X,Z}\left(\|\Sigma^{-1}(Y - X\mathbf{1}_S)\|_2^2 > \|\Sigma^{-1}(Y - X\mathbf{1}_{S^*})\|_2^2, \forall S \in \mathcal{S}_{p,s} : |S \triangle S^*| \geq 2\delta s\right) \\ = 1 - \mathbb{P}_{X,Z}\left(\exists S \in \mathcal{S}_{p,s} : |S \triangle S^*| \geq 2\delta s, \|\Sigma^{-1}(Y - X\mathbf{1}_S)\|_2^2 \leq \|\Sigma^{-1}(Y - X\mathbf{1}_{S^*})\|_2^2\right) \\ \stackrel{\text{U.B.}}{\geq} 1 - \sum_{S \in \mathcal{S}_{p,s} : |S \triangle S^*| \geq 2\delta s} \mathbb{P}_{X,Z}\left(\|\Sigma^{-1}(Y - X\mathbf{1}_S)\|_2^2 \leq \|\Sigma^{-1}(Y - X\mathbf{1}_{S^*})\|_2^2\right) \\ \stackrel{(34)}{\geq} 1 - \sum_{S \in \mathcal{S}_{p,s} : |S \triangle S^*| \geq 2\delta s} \left(1 + \frac{\delta s}{2\sigma_1^2}\right)^{-n_1/2} \left(1 + \frac{\delta s}{2\sigma_2^2}\right)^{-n_2/2} \\ \geq 1 - |\mathcal{S}_{p,s}| \left(1 + \frac{\delta s}{2\sigma_1^2}\right)^{-n_1/2} \left(1 + \frac{\delta s}{2\sigma_2^2}\right)^{-n_2/2} \\ = 1 - \binom{p}{s} \left(1 + \frac{\delta s}{2\sigma_1^2}\right)^{-n_1/2} \left(1 + \frac{\delta s}{2\sigma_2^2}\right)^{-n_2/2}. \end{aligned}$$

891 **Case 1: Assume**  $s = o(p)$ . We use the corollary of Stirling:  
892

$$\binom{p}{s} = \exp\left(s \log(p/s) (1 + o(1))\right),$$

903 which yields:  
904

$$\begin{aligned} \mathbb{P}_{X,Z}\left(\left|\text{Supp}(\hat{\beta}) \triangle \text{Supp}(\beta^*)\right| < 2\delta s\right) \\ \geq 1 - \exp\left\{s \log(p/s) (1 + o(1)) - \frac{n_1}{2} \log\left(1 + \frac{\delta s}{2\sigma_1^2}\right) - \frac{n_2}{2} \log\left(1 + \frac{\delta s}{2\sigma_2^2}\right)\right\}. \end{aligned}$$

909 Now using (15) in above, we have:  
910

$$\begin{aligned} \mathbb{P}_{X,Z}\left(\left|\text{Supp}(\hat{\beta}) \triangle \text{Supp}(\beta^*)\right| < 2\delta s\right) \\ \geq 1 - \exp\left\{s \log(p/s) (1 + o(1)) - (1 + \varepsilon) s \log(p/s)\right\} \\ \geq 1 - \exp\left\{-\varepsilon s \log(p/s) - o(s \log(p/s))\right\}. \end{aligned}$$

916 Finally we conclude:  
917

$$\mathbb{P}_{X,Z}\left(\left|\text{Supp}(\hat{\beta}) \triangle \text{Supp}(\beta^*)\right| < 2\delta s\right) \geq 1 - \exp\left\{-(\varepsilon + o(1)) n^*/2\right\} \xrightarrow{p \rightarrow +\infty} 1,$$

918 where  $n^* = 2s \log(p/s)$ .  
919

920 **Case 2: Assume**  $s = h(\alpha)p$ , **for some constant**  $\alpha \in (0, 1)$ . We use the corollary of Stirling:  
921

$$\binom{p}{s} = \exp\left(h(\alpha)p(1 + o(1))\right),$$

924 which yields:  
925

$$\begin{aligned} \mathbb{P}_{X,Z}\left(\left|\text{Supp}(\hat{\beta}) \triangle \text{Supp}(\beta^*)\right| < 2\delta s\right) \\ \geq 1 - \exp\left\{h(\alpha)p(1 + o(1)) - \frac{n_1}{2} \log\left(1 + \frac{\delta s}{2\sigma_1^2}\right) - \frac{n_2}{2} \log\left(1 + \frac{\delta s}{2\sigma_2^2}\right)\right\}. \end{aligned}$$

930 Now using (15) in above, we have:  
931

$$\begin{aligned} \mathbb{P}_{X,Z}\left(\left|\text{Supp}(\hat{\beta}) \triangle \text{Supp}(\beta^*)\right| < 2\delta s\right) \\ \geq 1 - \exp\{h(\alpha)p(1 + o(1)) - (1 + \varepsilon)h(\alpha)p\} \\ \geq 1 - \exp\{-\varepsilon h(\alpha)p - o(p)\}. \end{aligned}$$

936 Finally we conclude:  
937

$$\mathbb{P}_{X,Z}\left(\left|\text{Supp}(\hat{\beta}) \triangle \text{Supp}(\beta^*)\right| < 2\delta s\right) \geq 1 - \exp\{-(\varepsilon + o(1))n^*/2\} \xrightarrow{p \rightarrow +\infty} 1,$$

940 where  $n^* = 2h(\alpha)p$ . □  
941

### 942 C.1 PROOF OF PROPOSITION C.1

943 *Proof of Proposition C.1.* Fix  $S \in \mathcal{S}_{p,s}$  such that  $M(S) \geq \delta s$ . We have:  
944

$$\begin{aligned} \Delta(S) &= L_\Sigma(S) - L_\Sigma(S^*) \\ &= \|\Sigma^{-1}(Y - X\mathbb{1}_S)\|_2^2 - \|\Sigma^{-1}(Y - X\mathbb{1}_{S^*})\|_2^2 \\ &= \|\Sigma^{-1}(X\beta^* + Z - X\mathbb{1}_S)\|_2^2 - \|\Sigma^{-1}(X\beta^* + Z - X\mathbb{1}_{S^*})\|_2^2 \\ &= \|\Sigma^{-1}X(\mathbb{1}_{S^*} - \mathbb{1}_S)\|_2^2 + 2\langle \Sigma^{-1}Z, \Sigma^{-1}X(\mathbb{1}_{S^*} - \mathbb{1}_S) \rangle \\ &= \sum_{i=1}^{n_1} \frac{1}{\sigma_1^2} \langle X_i, \mathbb{1}_{S^*} - \mathbb{1}_S \rangle^2 + \sum_{i=n_1+1}^{n_2} \frac{1}{\sigma_2^2} \langle X_i, \mathbb{1}_{S^*} - \mathbb{1}_S \rangle^2 \\ &\quad + 2 \sum_{i=1}^{n_1} \frac{1}{\sigma_1^2} Z_i \langle X_i, \mathbb{1}_{S^*} - \mathbb{1}_S \rangle + 2 \sum_{i=n_1+1}^{n_2} \frac{1}{\sigma_2^2} Z_i \langle X_i, \mathbb{1}_{S^*} - \mathbb{1}_S \rangle. \end{aligned}$$

957 Let  $X_1 \in \mathbb{R}^{n_1 \times p}$ ,  $X_2 \in \mathbb{R}^{n_2 \times p}$  such that:  
958

$$X = \begin{pmatrix} X_1 \\ X_2 \end{pmatrix}.$$

961 Then the above expression of  $\Delta(S)$  writes:  
962

$$\begin{aligned} \Delta(s) &= \frac{1}{\sigma_1^2} \sum_{i=1}^{n_1} \left\{ \langle X_i^1, \mathbb{1}_{S^*} - \mathbb{1}_S \rangle^2 + 2Z_i^1 \langle X_i^1, \mathbb{1}_{S^*} - \mathbb{1}_S \rangle \right\} \\ &\quad + \frac{1}{\sigma_2^2} \sum_{i=1}^{n_2} \left\{ \langle X_i^2, \mathbb{1}_{S^*} - \mathbb{1}_S \rangle^2 + 2Z_i^2 \langle X_i^2, \mathbb{1}_{S^*} - \mathbb{1}_S \rangle \right\}. \end{aligned}$$

968 We denote by  $(\Delta_i^1)_{i \in [n_1]}$  and  $(\Delta_i^2)_{i \in [n_2]}$  the terms of the sums above, that is:  
969

$$\begin{cases} \Delta_i^1 := \langle X_i^1, \mathbb{1}_{S^*} - \mathbb{1}_S \rangle^2 + 2Z_i^1 \langle X_i^1, \mathbb{1}_{S^*} - \mathbb{1}_S \rangle \\ \Delta_i^2 := \langle X_i^2, \mathbb{1}_{S^*} - \mathbb{1}_S \rangle^2 + 2Z_i^2 \langle X_i^2, \mathbb{1}_{S^*} - \mathbb{1}_S \rangle \end{cases}.$$

972 Note that each of the elements of each of  $\{\Delta_i^1 : i \in [n_1]\}$  and  $\{\Delta_i^2 : i \in [n_2]\}$  are i.i.d. and:  
973

$$974 \Delta(S) = \frac{1}{\sigma_1^2} \sum_{i=1}^{n_1} \Delta_i^1 + \frac{1}{\sigma_2^2} \sum_{i=1}^{n_2} \Delta_i^2.$$

977 Using the Chernoff bound, we have:

$$\begin{aligned} 978 \mathbb{P}(\Delta(S) \leq 0) &= \mathbb{P}(-\Delta(S) \geq 0) \\ 979 &= \inf_{\theta \geq 0} \mathbb{P}\left(e^{-\theta \Delta(S)} \geq 1\right) \\ 980 &\leq \inf_{\theta \geq 0} \mathbb{E}\left[e^{-\theta \Delta(S)}\right] \\ 981 &= \inf_{\theta \geq 0} \mathbb{E}\left[e^{-\frac{1}{\sigma_1^2} \sum_{i=1}^{n_1} \theta \Delta_i^1 + \frac{1}{\sigma_2^2} \sum_{i=1}^{n_2} \theta \Delta_i^2}\right] \\ 982 &\stackrel{\text{ind.}}{=} \inf_{\theta \geq 0} \prod_{i=1}^{n_1} \mathbb{E}\left[e^{-\theta \Delta_i^1 / \sigma_1^2}\right] \prod_{i=1}^{n_2} \mathbb{E}\left[e^{-\theta \Delta_i^2 / \sigma_2^2}\right] \\ 983 &= \inf_{\theta \geq 0} \prod_{i=1}^{n_1} M_{-\Delta_i^1}\left(\frac{\theta}{\sigma_1^2}\right) \prod_{i=1}^{n_2} M_{-\Delta_i^2}\left(\frac{\theta}{\sigma_2^2}\right) \\ 984 &\stackrel{\text{i.d.}}{=} \inf_{\theta \geq 0} \left\{M_{-\Delta_i^1}\left(\frac{\theta}{\sigma_1^2}\right)\right\}^{n_1} \left\{M_{-\Delta_i^2}\left(\frac{\theta}{\sigma_2^2}\right)\right\}^{n_2}. \\ 985 \end{aligned}$$

994 Therefore:

$$995 \mathbb{P}(\Delta(S) \leq 0) \leq \inf_{\theta \geq 0} \left\{M_{-\Delta_i^1}\left(\frac{\theta}{\sigma_1^2}\right)\right\}^{n_1} \left\{M_{-\Delta_i^2}\left(\frac{\theta}{\sigma_2^2}\right)\right\}^{n_2}. \quad (35)$$

997 Now we have, for any  $\theta \geq 0$ :

$$\begin{aligned} 999 M_{-\Delta_i^1}(\theta / \sigma_1^2) &= \mathbb{E}_{X_i^1, Z_i^1} \left[ e^{-\theta [\langle X_i^1, \beta^* - \beta(S) \rangle^2 + 2Z_i^1 \langle X_i^1, \beta^* - \beta(S) \rangle] / \sigma_1^2} \right] \\ 1000 &= \mathbb{E}_{X_i^1} \left[ e^{-\theta \langle X_i^1, \beta^* - \beta(S) \rangle^2 / \sigma_1^2} \mathbb{E}_{Z_i^1} \left[ e^{-2\theta Z_i^1 \langle X_i^1, \beta^* - \beta(S) \rangle / \sigma_1^2} \mid X_i^1 \right] \right] \\ 1001 &= \mathbb{E}_{X_i^1} \left[ e^{-\theta \langle X_i^1, \beta^* - \beta(S) \rangle^2 / \sigma_1^2} M_{Z_i^1 \mid X_i^1}(-2\theta \langle X_i^1, \beta^* - \beta(S) \rangle / \sigma_1^2) \right] \\ 1002 &= \mathbb{E}_{X_i^1} \left[ e^{-\theta \langle X_i^1, \beta^* - \beta(S) \rangle^2 / \sigma_1^2} e^{\frac{1}{2}(-2\theta \langle X_i^1, \beta^* - \beta(S) \rangle / \sigma_1^2)^2 \sigma_1^2} \right] \\ 1003 &= \mathbb{E}_{X_i} \left[ e^{(-\theta + 2\sigma_1^2) \langle X_i^1, \beta^* - \beta(S) \rangle^2 / \sigma_1^2} \right] \\ 1004 &= \mathbb{E}_{X_i} \left[ e^{(-\theta + 2\theta^2)(\sum_{j \in U} X_{ij}^1 - \sum_{j \in V} X_{ij}^1)^2 / \sigma_1^2} \right], \\ 1005 \end{aligned}$$

1006 where we write  $U$  and  $V$  for  $U(S)$  and  $V(S)$ , respectively, for simplicity. We know that:  
1007

$$1011 \sum_{j \in U} X_{ij}^1 - \sum_{j \in V} X_{ij}^1 \stackrel{d}{=} \sum_{j \in U \cup V} X_{ij}^1 \sim \mathcal{N}(0, |U \cup V|).$$

1014 Hence:

$$\begin{aligned} 1015 M_{-\Delta_i^1}(\theta) &= \mathbb{E}_{X_i} \left[ e^{(-\theta + 2\theta^2)(\sum_{j \in U} X_{ij}^1 - \sum_{j \in V} X_{ij}^1)^2 / \sigma_1^2} \right] \\ 1016 &= \mathbb{E}_{X_i} \left[ e^{|U \cup V|(-\theta + 2\theta^2)\Gamma / \sigma_1^2} \right], \\ 1017 \end{aligned}$$

1018 where:

$$1020 \Gamma = \left( \frac{\sum_{j \in U} X_{ij}^1 - \sum_{j \in V} X_{ij}^1}{\sqrt{|U \cup V|}} \right)^2 \sim \chi^2(1).$$

1023 Therefore:

$$1024 M_{-\Delta_i^1}(\theta / \sigma_1^2) = \begin{cases} \frac{1}{\sqrt{1-2|U \cup V|(-\theta + 2\theta^2)/\sigma_1^2}} & \text{if } |U \cup V|(-\theta + 2\theta^2) / \sigma_1^2 < 1/2 \\ +\infty & \text{else.} \end{cases} \quad (36)$$

1026 Similarly to (36), we obtain the following expression for  $M_{-\Delta_i^2}(\theta/\sigma_2^2)$ :  
1027

$$1028 M_{-\Delta_i^2}(\theta/\sigma_2^2) = \begin{cases} \frac{1}{\sqrt{1-2|U\cup V|(-\theta+2\theta^2)/\sigma_2^2}} & \text{if } |U\cup V|(-\theta+2\theta^2)/\sigma_2^2 < 1/2 \\ 1029 +\infty & \text{else.} \end{cases} \quad (37)$$

1031 From above, we clearly have:  
1032

$$1033 \arg \min_{\theta \geq 0} M_{-\Delta_i^1}(\theta/\sigma_1^2) = \arg \min_{\theta \geq 0} M_{-\Delta_i^2}(\theta/\sigma_2^2) = \arg \min_{\theta \geq 0} \{-\theta + 2\theta^2\} = \frac{1}{4},$$

1035 and, taking  $\theta^* := 1/4$  we have:  
1036

$$1037 M_{-\Delta_i^1}(\theta/\sigma_1^2) = \frac{1}{\sqrt{1 + \frac{|U\cup V|}{4\sigma_1^2}}} \quad \text{and} \quad M_{-\Delta_i^2}(\theta/\sigma_2^2) = \frac{1}{\sqrt{1 + \frac{|U\cup V|}{4\sigma_2^2}}}.$$

1040 Therefore:  
1041

$$\begin{aligned} 1042 \inf_{\theta \geq 0} \left\{ M_{-\Delta_i^1} \left( \frac{\theta}{\sigma_1^2} \right) \right\}^{n_1} \left\{ M_{-\Delta_i^2} \left( \frac{\theta}{\sigma_2^2} \right) \right\}^{n_2} &= \left\{ M_{-\Delta_i^1} \left( \frac{\theta^*}{\sigma_1^2} \right) \right\}^{n_1} \left\{ M_{-\Delta_i^2} \left( \frac{\theta^*}{\sigma_2^2} \right) \right\}^{n_2} \\ 1043 &= \left\{ \frac{1}{\sqrt{1 + \frac{|U\cup V|}{4\sigma_1^2}}} \right\}^{n_1} \left\{ \frac{1}{\sqrt{1 + \frac{|U\cup V|}{4\sigma_2^2}}} \right\}^{n_2} \end{aligned}$$

1047 Therefore:  
1048

$$1049 \inf_{\theta \geq 0} \left\{ M_{-\Delta_i^1} \left( \frac{\theta}{\sigma_1^2} \right) \right\}^{n_1} \left\{ M_{-\Delta_i^2} \left( \frac{\theta}{\sigma_2^2} \right) \right\}^{n_2} = \left( 1 + \frac{|U\cup V|}{4\sigma_1^2} \right)^{-n_1/2} \left( 1 + \frac{|U\cup V|}{4\sigma_2^2} \right)^{-n_2/2}. \quad (38)$$

1052 Since  $|U\cup V| = 2M(S) \geq 2\delta s$ , the above yields:  
1053

$$1054 \inf_{\theta \geq 0} \left\{ M_{-\Delta_i^1} \left( \frac{\theta}{\sigma_1^2} \right) \right\}^{n_1} \left\{ M_{-\Delta_i^2} \left( \frac{\theta}{\sigma_2^2} \right) \right\}^{n_2} \leq \left( 1 + \frac{\delta s}{2\sigma_1^2} \right)^{-n_1/2} \left( 1 + \frac{\delta s}{2\sigma_2^2} \right)^{-n_2/2}.$$

1056 Finally, using this in (35) we conclude:  
1057

$$1058 \mathbb{P}(\Delta(S) \leq 0) \leq \left( 1 + \frac{\delta s}{2\sigma_1^2} \right)^{-n_1/2} \left( 1 + \frac{\delta s}{2\sigma_2^2} \right)^{-n_2/2}.$$

1061  $\square$   
1062

## 1063 D PROOF OF THEOREM 3

1064

1065 *Proof of Theorem 3.* We define  $\Sigma \in \mathbb{R}^{n \times n}$  and  $W$  random vector in  $\mathbb{R}^n$  such that:  
1066

$$1067 Z = \Sigma W,$$

1068 where:  
1069

$$1070 \Sigma = \begin{pmatrix} \sigma_1 I_{n_1} & 0 \\ 0 & \sigma_2 I_{n_2} \end{pmatrix}, \quad W \sim \mathcal{N}(0, I_n).$$

1071 Let  $S := \text{Supp}(\beta^*)$  and  $S^c := [p] \setminus S$ . The following proposition characterizes the recovery property  
1072 in a more tractable way that will help us in the proof.  
1073

1074 **Proposition D.1.** *Assume that the matrix  $X_S^T X_S$  is invertible. Then, for any given  $\lambda_p > 0$  and noise  
1075  $\Sigma w \in \mathbb{R}^n$  we have:*

$$1076 \mathcal{R}(X, \beta^*, \Sigma w, \lambda_p) \iff \begin{cases} \left| \left( \frac{1}{n} X_S^T X_S \right)^{-1} \left( \frac{1}{n} X_S^T \Sigma w - \lambda_p \text{sign}(\beta_S^*) \right) \right| < |\beta_S^*| \\ 1077 \left| X_{S^c}^T X_S \left( X_S^T X_S \right)^{-1} \left( \frac{1}{n} X_S^T \Sigma w - \lambda_p \text{sign}(\beta_S^*) \right) - \frac{1}{n} X_{S^c}^T \Sigma w \right| \leq \lambda_p \end{cases}$$

1078 where the absolute values and inequalities are taken component-wise.  
1079

1080 *Proof.* The equivalence follows from the First Order Optimality Condition of the LASSO (20). It  
 1081 was used in the proof of the LASSO threshold (Wainwright, 2009) and previously by Fuchs (2004);  
 1082 Meinshausen & Bühlmann (2006); Tropp (2006); Zhao & Yu (2006). See appendix D.1 for the  
 1083 complete proof.  $\square$

1084

1085

1086 Let  $\vec{b} := \text{sign}(\beta^*)$ . We define:

1087

1088

1089

$$U_i := e_i^T \left( \frac{1}{n} X_S^T X_S \right)^{-1} \left[ \frac{1}{n} X_S^T \Sigma W - \lambda_p \vec{b} \right], \quad (39)$$

1090

1091

and

1092

1093

$$V_j := X_j^T \left\{ X_S \left( X_S^T X_S \right)^{-1} \lambda_p \vec{b} - \left[ X_S \left( X_S^T X_S \right)^{-1} X_S^T - I_n \right] \frac{\Sigma W}{n} \right\}, \quad (40)$$

1094

1095

for all  $i \in S$  and  $j \in S^c$ . Let  $\rho := \min_{i \in S} |\beta_i^*|$ . Note that:

1096

1097

1098

$$\max_{i \in S} |U_i| < \rho \implies \left| \left( \frac{1}{n} X_S^T X_S \right)^{-1} \left( \frac{1}{n} X_S^T \Sigma W - \lambda_p \text{sign}(\beta_S^*) \right) \right| < |\beta_S^*|, \quad (41)$$

1099

1100

and

1101

1102

1103

$$\max_{j \in S^c} |V_j| \leq \lambda_p \iff \left| X_{S^c}^T X_S \left( X_S^T X_S \right)^{-1} \left( \frac{1}{n} X_S^T \Sigma W - \lambda_p \text{sign}(\beta_S^*) \right) - \frac{1}{n} X_{S^c}^T \Sigma W \right| \leq \lambda_p. \quad (42)$$

1104

1105

1106

In addition, note that when  $s < n$ ,  $X_S$  is full-rank a.s., and hence  $X_S^T X_S$  is invertible a.s. Therefore, the equivalence in Proposition 3.1 holds a.s. The proof of Theorem 3 relies of the two following propositions:

1107

1108

## Proposition D.2.

1109

1110

i. Under the sample size condition (22) we have:

1111

1112

1113

1114

$$\mathbb{P} \left( \max_{j \in S^c} |V_j| \leq \lambda_p \right) \xrightarrow{p \rightarrow +\infty} 0.$$

1115

1116

ii. Under the sample size condition (23) and the regularization condition (24), we have:

1117

1118

1119

$$\mathbb{P} \left( \max_{j \in S^c} |V_j| \leq \lambda_p \right) \xrightarrow{p \rightarrow +\infty} 1.$$

1120

1121

*Proof.* See appendix D.2.  $\square$

1122

1123

1124

**Proposition D.3.** Under the sample size condition (23) and the regularization condition (24), we have:

1125

1126

1127

1128

1129

*Proof.* See appendix D.3.  $\square$

1130

1131

Necessity: assume (22) holds. Then we conclude by Proposition D.2 [i] and (42).

1132

1133

Sufficiency: assume (23) and (24) hold. Then we conclude by Proposition D.2 [ii], Proposition D.3 and (41), (42).  $\square$

1134 D.1 PROOF OF PROPOSITION D.1  
11351136 *Proof of Proposition D.1.* Let  $\hat{\beta} \in \mathbb{R}^p$ . By First Order Optimality Condition of the LASSO,  $\hat{\beta}$  is  
1137 optimal if and only if the exists  $z \in \mathbb{R}^p$  such that:

1138 
$$\begin{cases} z \in \partial \ell_1(\hat{\beta}) = \left\{ z \in \mathbb{R}^p : z_i = \text{sign}(\hat{\beta}_i) \text{ for } \hat{\beta}_i \neq 0, |z_i| \leq 1 \text{ otherwise} \right\}, \\ \frac{1}{n} X^T (X \hat{\beta} - Y) + \lambda_p z = 0. \end{cases}$$
  
1141

1142 The condition above can be equivalently written as:  
1143

1144 
$$\begin{cases} z_S = \text{sign}(\hat{\beta}_S), \\ |z_{S^c}| \leq 1, \\ \frac{1}{n} X^T X \hat{\beta} - \frac{1}{n} X^T Y + \lambda_p z = 0. \end{cases}$$
  
1147

1148 Substituting  $Y = X\beta^* + \Sigma w$ , the condition writes:  
1149

1150 
$$\begin{cases} z_S = \text{sign}(\hat{\beta}_S), \\ |z_{S^c}| \leq 1, \\ \frac{1}{n} X^T X (\hat{\beta} - \beta^*) - \frac{1}{n} X^T \Sigma w + \lambda_p z = 0. \end{cases}$$
  
1153

1154 Splitting on  $S$  and  $S^c$  we get:  
1155

1156 
$$\begin{cases} z_S = \text{sign}(\hat{\beta}_S), \\ |z_{S^c}| \leq 1, \\ \frac{1}{n} X_S^T X (\hat{\beta} - \beta^*) - \frac{1}{n} X_S^T \Sigma w + \lambda_p \text{sign}(\hat{\beta}_S) = 0, \\ \frac{1}{n} X_{S^c}^T X (\hat{\beta} - \beta^*) - \frac{1}{n} X_{S^c}^T \Sigma w + \lambda_p z_{S^c} = 0. \end{cases}$$
  
1161

1162 Now the LASSO recovers the support of  $\beta^*$  if and only if there exists  $\hat{\beta} \in \mathbb{R}^p$  such that  $\text{sign}(\hat{\beta}) =$   
1163  $\text{sign}(\beta^*)$  and:  
1164

1165 
$$\exists z \in \mathbb{R}^p \text{ such that } \begin{cases} z_S = \text{sign}(\hat{\beta}_S), \\ |z_{S^c}| \leq 1, \\ \frac{1}{n} X_S^T X (\hat{\beta} - \beta^*) - \frac{1}{n} X_S^T \Sigma w + \lambda_p \text{sign}(\hat{\beta}_S) = 0, \\ \frac{1}{n} X_{S^c}^T X (\hat{\beta} - \beta^*) - \frac{1}{n} X_{S^c}^T \Sigma w + \lambda_p z_{S^c} = 0. \end{cases}$$
  
1170

1171 Which is equivalent to:  
1172

1173 
$$\exists z, \hat{\beta} \in \mathbb{R}^p \text{ such that } \begin{cases} \text{sign}(\hat{\beta}) = \text{sign}(\beta^*), \\ z_S = \text{sign}(\hat{\beta}_S), \\ |z_{S^c}| \leq 1, \\ \frac{1}{n} X_S^T X (\hat{\beta} - \beta^*) - \frac{1}{n} X_S^T \Sigma w + \lambda_p \text{sign}(\hat{\beta}_S) = 0, \\ \frac{1}{n} X_{S^c}^T X (\hat{\beta} - \beta^*) - \frac{1}{n} X_{S^c}^T \Sigma w + \lambda_p z_{S^c} = 0. \end{cases}$$
  
1180

1181 which is equivalent to

1182 
$$\exists z, \hat{\beta} \in \mathbb{R}^p \text{ such that } \begin{cases} \text{sign}(\hat{\beta}) = \text{sign}(\beta^*), \\ z_S = \text{sign}(\beta_S^*), \\ |z_{S^c}| \leq 1, \\ \frac{1}{n} X_S^T X_S (\hat{\beta}_S - \beta_S^*) - \frac{1}{n} X_S^T \Sigma w + \lambda_p \text{sign}(\beta_S^*) = 0, \\ \frac{1}{n} X_{S^c}^T X_S (\hat{\beta}_S - \beta_S^*) - \frac{1}{n} X_{S^c}^T \Sigma w + \lambda_p z_{S^c} = 0. \end{cases}$$
  
1187

1188 which is equivalent to  
 1189

$$1190 \quad \exists z, \hat{\beta} \in \mathbb{R}^p \text{ such that } \begin{cases} \hat{\beta}_{S^c} = 0, \\ z_S = \text{sign}(\hat{\beta}_S) = \text{sign}(\beta_S^*) \neq 0, \\ |z_{S^c}| \leq 1, \\ \hat{\beta}_S = \beta_S^* + \left(\frac{1}{n} X_S^T X_S\right)^{-1} \left(\frac{1}{n} X_S^T \Sigma w - \lambda_p \text{sign}(\beta_S^*)\right), \\ \left|\frac{1}{n} X_{S^c}^T X_S (\hat{\beta}_S - \beta_S^*) - \frac{1}{n} X_{S^c}^T \Sigma w\right| \leq \lambda_p. \end{cases}$$

1197 which is equivalent to

$$1198 \quad \begin{cases} \left|\left(\frac{1}{n} X_S^T X_S\right)^{-1} \left(\frac{1}{n} X_S^T \Sigma w - \lambda_p \text{sign}(\beta_S^*)\right)\right| < |\beta_S^*|, \\ \left|X_{S^c}^T X_S \left(X_S^T X_S\right)^{-1} \left(\frac{1}{n} X_S^T \Sigma w - \lambda_p \text{sign}(\beta_S^*)\right) - \frac{1}{n} X_{S^c}^T \Sigma w\right| \leq \lambda_p. \end{cases}$$

1201  $\square$

## 1203 D.2 PROOF OF PROPOSITION D.2

### 1205 D.2.1 PRELIMINARY RESULTS

1207 **Lemma D.1** (Moments of  $(V | X_S, W)$ ). *Conditionally on  $X_S$  and  $W$ ,  $V$  is Gaussian vector. In  
 1208 addition, we have:*

$$1209 \quad \mathbb{E}[V | X_S, W] = 0,$$

1210 and:

$$1211 \quad \text{Cov}[V | X_S, W] = M_p I_{|S^c|},$$

1212 where:

$$1213 \quad M_p := \left\| X_S \left(X_S^T X_S\right)^{-1} \lambda_p \vec{b} + \left[ I_n - X_S \left(X_S^T X_S\right)^{-1} X_S^T \right] \frac{\Sigma W}{n} \right\|_2^2,$$

$$1214 \quad = \lambda_p^2 \vec{b}^T \left(X_S^T X_S\right)^{-1} \vec{b} + \frac{1}{n^2} W^T \Sigma \left[ I_n - X_S \left(X_S^T X_S\right)^{-1} X_S^T \right] \Sigma W.$$

1218 *Proof.* See section D.2.4.  $\square$

1220 **Lemma D.2** (Bounding the second moment of  $(V | X_S, W)$ ). *We have:*

$$1222 \quad \mathbb{E}[M_p] = \frac{\lambda_p^2}{n-s-1} \|b\|_2^2 + \frac{(n-s)(n_1\sigma_1^2 + n_2\sigma_2^2)}{n^3}.$$

1224 In addition, for any constant  $\delta > 0$ , we have:

$$1226 \quad \mathbb{P}(|M_p - \mathbb{E}[M_p]| \geq \delta \mathbb{E}[M_p]) \rightarrow 0,$$

1227 as  $p \rightarrow +\infty$ .

1229 *Proof.* See Section D.2.5.  $\square$

1231 D.2.2 SHOWING THAT  $\mathbb{P}(\max_{j \in S^c} |V_j| \leq \lambda_p) \rightarrow 0$ :

1232 *Proof of Proposition D.2, part (i).* Let:

$$1234 \quad T(\delta) := \{ |M_p - \mathbb{E}[M_p]| \geq \delta \mathbb{E}[M_p] \}.$$

1235 We have, by total probability:

$$1237 \quad \mathbb{P}\left(\max_{j \in S^c} |V_j| \leq \lambda_p\right) \leq \mathbb{P}\left(\max_{j \in S^c} |V_j| \leq \lambda_p \mid T(\delta)^c\right) + \mathbb{P}(T(\delta)). \quad (43)$$

1239 Conditioning on  $X_S$  and  $W$ :

$$1241 \quad \mathbb{P}\left(\max_{j \in S^c} |V_j| \leq \lambda_p \mid T(\delta)^c\right) = \mathbb{E}\left[\mathbb{P}\left(\max_{j \in S^c} |V_j| \leq \lambda_p \mid X_S, W\right) \mid T(\delta)^c\right].$$

Note that, conditionally on  $(X_S, W)$ , we have  $V_j \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(0, M_p)$ , for  $j \in S^c$ . We know the bound on expectation of Gaussian maxima (see Theorem 5.3.1 in (De Haan & Ferreira, 2006)):

$$\mathbb{E} \left[ \max_{j \in S^c} V_j \mid X_S, W \right] = \sqrt{2 \log(p-s) M_p} (1 + o(1)),$$

Conditionally on  $T(\delta)^c$ , we have:

$$M_p \geq (1 - \delta) \mathbb{E}[M_p].$$

Hence, conditionally on  $T(\delta)^c$ :

$$\begin{aligned} & \frac{1}{\lambda_p} \mathbb{E} \left[ \max_{j \in S^c} |V_j| \mid X_S, W \right] \\ & \geq \frac{1}{\lambda_p} \sqrt{2 \log(p-s) (1 - \delta) \mathbb{E}[M_p]} (1 + o(1)) \\ & \geq (1 + o(1)) \frac{\sqrt{1 - \delta}}{\lambda_p} \sqrt{\frac{2 \lambda_p^2 s \log(p-s)}{n-s-1} + \frac{2(n-s)(n_1 \sigma_1^2 + n_2 \sigma_2^2) \log(p-s)}{n^3}} \\ & = (1 + o(1)) \sqrt{1 - \delta} \sqrt{\frac{2s \log(p-s)}{n-s-1} + \frac{2(n-s)(n_1 \sigma_1^2 + n_2 \sigma_2^2) \log(p-s)}{\lambda_p^2 n^3}}. \end{aligned}$$

We consider two cases, depending on the asymptotic behavior of  $\frac{n_1 \sigma_1^2 + n_2 \sigma_2^2}{\lambda_p^2 n^2}$ :

- Case 1:  $\lim_{p \rightarrow +\infty} \frac{n_1 \sigma_1^2 + n_2 \sigma_2^2}{\lambda_p^2 n^2} = 0$ .
- Case 2:  $\lim_{p \rightarrow +\infty} \frac{n_1 \sigma_1^2 + n_2 \sigma_2^2}{\lambda_p^2 n^2} > 0$ .

**Case 1:** Assume  $\lim_{p \rightarrow +\infty} \frac{n_1 \sigma_1^2 + n_2 \sigma_2^2}{\lambda_p^2 n^2} = 0$ . By the above inequality, we have:

$$\frac{1}{\lambda_p} \mathbb{E} \left[ \max_{j \in S^c} |V_j| \mid X_S, W \right] \geq (1 + o(1)) \sqrt{1 - \delta} \sqrt{\frac{2s \log(p-s)}{n-s-1}}.$$

Using condition (22), the above gives:

$$\begin{aligned} & \frac{1}{\lambda_p} \mathbb{E} \left[ \max_{j \in S^c} |V_j| \mid X_S, W \right] \geq (1 + o(1)) \sqrt{1 - \delta} \sqrt{\frac{2s \log(p-s)}{n-s-1}} \\ & \geq (1 + o(1)) \sqrt{1 - \delta} \sqrt{\frac{2s \log(p-s)}{(1-\varepsilon)(2s \log(p-s) + s + 1) - s - 1}} \\ & = (1 + o(1)) \sqrt{1 - \delta} \sqrt{\frac{2s \log(p-s)}{2s(1-\varepsilon) \log(p-s) - \varepsilon(s+1)}} \\ & \geq (1 + o(1)) \sqrt{1 - \delta} \sqrt{\frac{2s \log(p-s)}{2s(1-\varepsilon) \log(p-s)}} \\ & = (1 + o(1)) \sqrt{\frac{1 - \delta}{1 - \varepsilon}}. \end{aligned}$$

Taking the liminf as  $p \rightarrow +\infty$  we get, conditionally on  $T(\delta)^c$ :

$$\liminf_{n \rightarrow +\infty} \frac{1}{\lambda_p} \mathbb{E} \left[ \max_{j \in S^c} |V_j| \mid X_S, W \right] \geq \sqrt{\frac{1 - \delta}{1 - \varepsilon}}.$$

Therefore, for  $n$  large enough we have:

$$\frac{1}{\lambda_p} \mathbb{E} \left[ \max_{j \in S^c} |V_j| \mid X_S, W \right] \geq \frac{1}{2} \left( 1 + \sqrt{\frac{1 - \delta}{1 - \varepsilon}} \right) = \frac{1}{2} + \frac{1}{2} \sqrt{\frac{1 - \delta}{1 - \varepsilon}}.$$

1296 Taking  $\delta := \varepsilon/2$ , we get:  
 1297

$$1298 \quad \frac{1}{\lambda_p} \mathbb{E} \left[ \max_{j \in S^c} |V_j| \mid X_S, W \right] \geq \frac{1}{2} + \frac{1}{2} \sqrt{\frac{1 - \varepsilon/2}{1 - \varepsilon}} =: \kappa > 1.$$

1301 Next, we use the following the result on concentration of Gaussian maxima:  
 1302

1304 **Lemma D.3** (Concentration of Gaussian maxima). *Let  $k \in \mathbb{N}$  and  $(N_i)_{i=1}^{i=k} \stackrel{i.i.d.}{\sim} \mathcal{N}(0, \tau^2)$ . Then for  
 1305 any  $\eta > 0$ , we have:*

$$1308 \quad \begin{cases} \mathbb{P} \left( \max_{i \in [k]} N_i - \mathbb{E} \left[ \max_{i \in [k]} N_i \right] > \eta \right) \leq \exp \left( -\frac{\eta^2}{2\tau^2} \right), \\ 1309 \quad \mathbb{P} \left( \max_{i \in [k]} N_i - \mathbb{E} \left[ \max_{i \in [k]} N_i \right] < -\eta \right) \leq \exp \left( -\frac{\eta^2}{2\tau^2} \right). \end{cases}$$

1313 *Proof.* See appendix D.2.6. □  
 1314

1316 Using Lemma D.3 gives, for all  $\eta > 0$ :  
 1317

$$1319 \quad \mathbb{P} \left( \max_{j \in S^c} |V_j| < \mathbb{E} \left[ \max_{j \in S^c} |V_j| \right] - \eta \right) \leq \exp \left( -\frac{\eta^2}{2(1 + \delta) \mathbb{E}[M_p]} \right).$$

1322 Setting  $\eta := (\kappa - 1) \lambda_p / 2$ , we get:  
 1323

$$1324 \quad \begin{aligned} \mathbb{P} \left( \max_{j \in S^c} |V_j| \leq \lambda_p \mid T(\delta)^c \right) &\leq \mathbb{P} \left( \max_{j \in S^c} |V_j| < (\kappa + 1) \lambda_p / 2 \mid T(\delta)^c \right) \\ 1325 &\leq \mathbb{P} \left( \max_{j \in S^c} |V_j| < \mathbb{E} \left[ \max_{j \in S^c} |V_j| \right] - (\kappa - 1) \lambda_p / 2 \mid T(\delta)^c \right) \\ 1326 &\leq \exp \left( -\frac{(\kappa - 1)^2 \lambda_p^2}{4(2 + \varepsilon) \mathbb{E}[M_p]} \right) \\ 1327 &= \exp \left( -\frac{(\kappa - 1)^2 \lambda_p^2}{4(2 + \varepsilon) \left( \frac{\lambda_p^2 s}{n-s-1} + \frac{(n-s)(n_1 \sigma_1^2 + n_2 \sigma_2^2)}{n^3} \right)} \right) \\ 1328 &= \exp \left( -\frac{(\kappa - 1)^2}{4(2 + \varepsilon) \left( \frac{s}{n-s-1} + \frac{n-s}{n} \frac{n_1 \sigma_1^2 + n_2 \sigma_2^2}{\lambda_p^2 n^2} \right)} \right). \end{aligned}$$

1340 Now note that, because  $\lim_{p \rightarrow +\infty} \frac{n_1 \sigma_1^2 + n_2 \sigma_2^2}{\lambda_p^2 n^2} = 0$ , the above RHS goes to 0 as  $p \rightarrow +\infty$ . Hence,  
 1341 we get:  
 1342

$$1343 \quad \mathbb{P} \left( \max_{j \in S^c} |V_j| \leq \lambda_p \mid T(\delta)^c \right) \xrightarrow{p \rightarrow +\infty} 0.$$

1346 Taking the limit in (43) and using the fact that  $\mathbb{P}(T(\delta)) \xrightarrow{p \rightarrow +\infty} 0$ , we conclude:  
 1347

$$1348 \quad \lim_{p \rightarrow +\infty} \mathbb{P} \left( \max_{j \in S^c} |V_j| \leq \lambda_p \right) = 0.$$

1350 Case 2: Assume  $\lim_{p \rightarrow +\infty} \frac{n_1 \sigma_1^2 + n_2 \sigma_2^2}{\lambda_p^2 n^2} > 0$ . Note that this could be  $+\infty$ . We have:

$$\begin{aligned}
 1351 \quad & \frac{1}{\lambda_p} \mathbb{E} \left[ \max_{j \in S^c} |V_j| \mid X_S, W \right] \\
 1352 \quad & \geq (1 + o(1)) \sqrt{1 - \delta} \sqrt{\frac{2s \log(p - s)}{n - s - 1} + \frac{2(n - s)(n_1 \sigma_1^2 + n_2 \sigma_2^2) \log(p - s)}{\lambda_p^2 n^3}} \\
 1353 \quad & \geq (1 + o(1)) \sqrt{1 - \delta} \sqrt{\frac{2(n - s)(n_1 \sigma_1^2 + n_2 \sigma_2^2) \log(p - s)}{\lambda_p^2 n^3}} \\
 1354 \quad & = (1 + o(1)) \sqrt{1 - \delta} \sqrt{2 \frac{n - s}{n} \frac{n_1 \sigma_1^2 + n_2 \sigma_2^2}{\lambda_p^2 n^2} \sqrt{\log(p - s)}} \\
 1355 \quad & \xrightarrow{p \rightarrow +\infty} +\infty.
 \end{aligned}$$

1366 Therefore, for  $n$  large enough, we have:

$$\mathbb{E} \left[ \max_{j \in S^c} |V_j| \mid X_S, W \right] \geq 4\lambda_p.$$

1371 Now using Lemma D.3 on concentration of Gaussian maxima, we have for all  $\eta > 0$ :

$$\mathbb{P} \left( \max_{j \in S^c} |V_j| < \mathbb{E} \left[ \max_{j \in S^c} |V_j| \right] - \eta \right) \leq \exp \left( -\frac{\eta^2}{2(1 + \delta) \mathbb{E}[M_p]} \right).$$

1376 Fixing  $\eta := \mathbb{E} [\max_{j \in S^c} |V_j|] / 2$  and  $\delta := \varepsilon/2$  we get, for  $n$  large enough:

$$\begin{aligned}
 1377 \quad & \mathbb{P} \left( \max_{j \in S^c} |V_j| \leq \lambda_p \mid T(\delta)^c \right) \leq \mathbb{P} \left( \max_{j \in S^c} |V_j| < 2\lambda_p \mid T(\delta)^c \right) \\
 1378 \quad & \leq \mathbb{P} \left( \max_{j \in S^c} |V_j| < \frac{1}{2} \mathbb{E} \left[ \max_{j \in S^c} |V_j| \right] \mid T(\delta)^c \right) \\
 1379 \quad & = \mathbb{P} \left( \max_{j \in S^c} |V_j| < \mathbb{E} \left[ \max_{j \in S^c} |V_j| \right] - \frac{1}{2} \mathbb{E} \left[ \max_{j \in S^c} |V_j| \right] \mid T(\delta)^c \right) \\
 1380 \quad & \leq \exp \left( -\frac{\mathbb{E} [\max_{j \in S^c} |V_j|]^2}{4(2 + \varepsilon) \mathbb{E}[M_p]} \right) \\
 1381 \quad & = \exp \left( -\frac{\mathbb{E} [\max_{j \in S^c} |V_j|]^2 / \lambda_p^2}{4(2 + \varepsilon) \mathbb{E}[M_p] / \lambda_p^2} \right) \\
 1382 \quad & = \exp \left( -\frac{\mathbb{E} [\max_{j \in S^c} |V_j|]^2 / \lambda_p^2}{4(2 + \varepsilon) \left( \frac{\lambda_p^2 s}{n - s - 1} + \frac{(n - s)(n_1 \sigma_1^2 + n_2 \sigma_2^2)}{n^3} \right) / \lambda_p^2} \right) \\
 1383 \quad & = \exp \left( -\frac{\left( \mathbb{E} [\max_{j \in S^c} |V_j|] / \lambda_p \right)^2}{4(2 + \varepsilon) \left( \frac{s}{n - s - 1} + \frac{n - s}{n} \frac{n_1 \sigma_1^2 + n_2 \sigma_2^2}{\lambda_p^2 n^2} \right)} \right).
 \end{aligned}$$

1400 Since:

$$\frac{1}{\lambda_p} \mathbb{E} \left[ \max_{j \in S^c} |V_j| \mid X_S, W \right] \geq (1 + o(1)) \sqrt{1 - \delta} \sqrt{2 \frac{n - s}{n} \frac{n_1 \sigma_1^2 + n_2 \sigma_2^2}{\lambda_p^2 n^2} \sqrt{\log(p - s)}},$$

the above yields:

$$\begin{aligned}
 \mathbb{P} \left( \max_{j \in S^c} |V_j| \leq \lambda_p \mid T(\delta)^c \right) &\leq \exp \left( -\frac{2(1+o(1))(1-\delta) \left( \frac{n-s}{n} \frac{n_1 \sigma_1^2 + n_2 \sigma_2^2}{\lambda_p^2 n^2} \right) \log(p-s)}{4(2+\varepsilon) \left( \frac{s}{n-s-1} + \frac{n-s}{n} \frac{n_1 \sigma_1^2 + n_2 \sigma_2^2}{\lambda_p^2 n^2} \right)} \right) \\
 &= \exp \left( -\frac{2(1+o(1))(1-\delta) \left( \frac{n-s}{n} \frac{n_1 \sigma_1^2 + n_2 \sigma_2^2}{\lambda_p^2 n^2} \right) \log(p-s)}{4(2+\varepsilon)(1+o(1)) \left( \frac{n-s}{n} \frac{n_1 \sigma_1^2 + n_2 \sigma_2^2}{\lambda_p^2 n^2} \right)} \right) \\
 &= \exp \left( -\frac{(1-\delta) \log(p-s)}{2(2+\varepsilon)} (1+o(1)) \right) \\
 &\xrightarrow{p \rightarrow +\infty} 0.
 \end{aligned}$$

Hence, we get:

$$\mathbb{P} \left( \max_{j \in S^c} |V_j| \leq \lambda_p \mid T(\delta)^c \right) \xrightarrow{p \rightarrow +\infty} 0.$$

Taking the limit in (43) and using the fact that  $\mathbb{P}(T(\delta)) \xrightarrow{p \rightarrow +\infty} 0$ , we conclude:

$$\lim_{p \rightarrow +\infty} \mathbb{P} \left( \max_{j \in S^c} |V_j| \leq \lambda_p \right) = 0.$$

□

D.2.3 SHOWING THAT  $\mathbb{P}(\max_{j \in S^c} |V_j| \leq \lambda_p) \rightarrow 1$ :

*Proof of Proposition D.2, part (ii.)*. Let:

$$T(\delta) := \{ |M_p - \mathbb{E}[M_p]| \geq \delta \mathbb{E}[M_p] \}.$$

We have, by total probability:

$$\mathbb{P} \left( \max_{j \in S^c} |V_j| > \lambda_p \right) \leq \mathbb{P} \left( \max_{j \in S^c} |V_j| > \lambda_p \mid T(\delta)^c \right) + \mathbb{P}(T(\delta)). \quad (44)$$

Conditioning on  $X_S$  and  $W$ :

$$\mathbb{P} \left( \max_{j \in S^c} |V_j| > \lambda_p \mid T(\delta)^c \right) = \mathbb{E} \left[ \mathbb{P} \left( \max_{j \in S^c} |V_j| > \lambda_p \mid X_S, W \right) \mid T(\delta)^c \right]$$

Note that, conditionally on  $(X_S, W)$ , we have  $V_j \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(0, M_p)$ , for  $j \in S^c$ . Using the bound on expectation of Gaussian maxima (see Theorem 5.3.1 in (De Haan & Ferreira, 2006)):

$$\mathbb{E} \left[ \max_{j \in S^c} |V_j| \mid X_S, W \right] \leq \sqrt{2 \log(2(p-s)) M_p}.$$

Conditionally on  $T(\delta)^c$ , we have:

$$M_p \leq (1+\delta) \mathbb{E}[M_p].$$

Hence, conditionally on  $T(\delta)^c$ :

$$\begin{aligned}
 &\frac{1}{\lambda_p} \mathbb{E} \left[ \max_{j \in S^c} |V_j| \mid X_S, W \right] \\
 &\leq \frac{1}{\lambda_p} \sqrt{2 \log(2(p-s)) (1+\delta) \mathbb{E}[M_p]} \\
 &= \frac{1}{\lambda_p} \sqrt{2 \log(2(p-s)) (1+\delta) \left( \frac{\lambda_p^2 s}{n-s-1} + \frac{(n-s)(n_1 \sigma_1^2 + n_2 \sigma_2^2)}{n^3} \right)} \\
 &= \sqrt{2+2\delta} \sqrt{\frac{\log(2(p-s)) s}{n-s-1} + \frac{\log(2(p-s)) (n-s)(n_1 \sigma_1^2 + n_2 \sigma_2^2)}{\lambda_p^2 n^3}} \\
 &= \sqrt{2+2\delta} \\
 &\times \sqrt{\frac{s \log 2}{n-s-1} + \frac{s \log(p-s)}{n-s-1} + \frac{n-s}{n} \left( \frac{(n_1 \sigma_1^2 + n_2 \sigma_2^2) \log(p-s)}{\lambda_p^2 n^2} + \frac{(n_1 \sigma_1^2 + n_2 \sigma_2^2) \log 2}{\lambda_p^2 n^2} \right)}.
 \end{aligned}$$

1458 Taking the limsup as  $p \rightarrow +\infty$  and using conditions (23) and (24) we get, conditionally on  $T(\delta)^c$ :

$$\begin{aligned}
 1460 \quad & \limsup_{p \rightarrow +\infty} \frac{1}{\lambda_p} \mathbb{E} \left[ \max_{j \in S^c} |V_j| \mid X_S, W \right] \\
 1461 \quad & \leq \limsup_{p \rightarrow +\infty} \sqrt{(1 + \delta) \left( \frac{2s \log(p - s)}{(1 + \varepsilon)(2s \log(p - s) + s + 1) - s - 1} \right)} \\
 1462 \quad & \leq \limsup_{p \rightarrow +\infty} \sqrt{(1 + \delta) \left( \frac{2s \log(p - s)}{(1 + \varepsilon)(2s \log(p - s) + s + 1) - s - 1} \right)} \\
 1463 \quad & \leq \sqrt{\frac{1 + \delta}{1 + \varepsilon}}.
 \end{aligned}$$

1470 Fix  $\delta := \varepsilon/4$ . By the above, we know that for large enough  $n$ , we have:

$$\mathbb{E} \left[ \max_{j \in S^c} |V_j| \mid X_S, W \right] \leq \lambda_p \sqrt{\frac{1 + \varepsilon/2}{1 + \varepsilon}}.$$

1474 For simplicity of notation, set  $v := 1 - \sqrt{\frac{1 + \varepsilon/2}{1 + \varepsilon}} > 0$ . In addition, we by Lemma D.3 on concentra-  
1475 tion of Gaussian maxima, for all  $\eta > 0$ :

$$\mathbb{P} \left( \max_{j \in S^c} |V_j| > \eta + \mathbb{E} \left[ \max_{j \in S^c} |V_j| \right] \mid X_S, W \right) \leq \exp \left( -\frac{\eta^2}{2(1 + \delta) \mathbb{E}[M_p]} \right).$$

1479 Let  $\eta := v\lambda_p$ . Then we get, for  $n$  large enough:

$$\begin{aligned}
 1480 \quad & \mathbb{P} \left( \max_{j \in S^c} |V_j| > \lambda_p \mid X_S, W \right) \leq \mathbb{P} \left( \max_{j \in S^c} |V_j| > \eta + \mathbb{E} \left[ \max_{j \in S^c} |V_j| \right] \mid X_S, W \right) \\
 1481 \quad & \leq \exp \left( -\frac{\eta^2}{2(1 + \delta) \mathbb{E}[M_p]} \right) \\
 1482 \quad & = \exp \left( -\frac{v^2 \lambda_p^2}{2(1 + \varepsilon/2) \left( \frac{\lambda_p^2 s}{n-s-1} + \frac{(n-s)(n_1 \sigma_1^2 + n_2 \sigma_2^2)}{n^3} \right)} \right) \\
 1483 \quad & = \exp \left( -\frac{v^2}{2(1 + \varepsilon/2) \left( \frac{s}{n-s-1} + \frac{n-s}{n} \frac{n_1 \sigma_1^2 + n_2 \sigma_2^2}{\lambda_p^2 n^2} \right)} \right).
 \end{aligned}$$

1492 Substituting in the above, we get:

$$\begin{aligned}
 1493 \quad & \mathbb{P} \left( \max_{j \in S^c} |V_j| > \lambda_p \mid T(\delta)^c \right) = \mathbb{E} \left[ \mathbb{P} \left( \max_{j \in S^c} |V_j| > \lambda_p \mid X_S, W \right) \mid T(\delta)^c \right] \\
 1494 \quad & \leq \mathbb{E} \left[ \exp \left( -\frac{v^2}{2(1 + \varepsilon/2) \left( \frac{s}{n-s-1} + \frac{n-s}{n} \frac{n_1 \sigma_1^2 + n_2 \sigma_2^2}{\lambda_p^2 n^2} \right)} \right) \mid T(\delta)^c \right] \\
 1495 \quad & = \exp \left( -\frac{v^2}{2(1 + \varepsilon/2) \left( \frac{s}{n-s-1} + \frac{n-s}{n} \frac{n_1 \sigma_1^2 + n_2 \sigma_2^2}{\lambda_p^2 n^2} \right)} \right) \\
 1496 \quad & \xrightarrow{p \rightarrow +\infty} 0,
 \end{aligned}$$

1504 since, by condition (24), we have:

$$1505 \quad 0 < \frac{n_1 \sigma_1^2 + n_2 \sigma_2^2}{\lambda_p^2 n^2} \leq \frac{(n_1 \sigma_1^2 + n_2 \sigma_2^2) \log(p - s)}{\lambda_p^2 n^2} \xrightarrow{p \rightarrow +\infty} 0.$$

1508 Taking the limit in (44) and using the fact that  $\mathbb{P}(T(\delta)) \rightarrow 0$ , we conclude:

$$1509 \quad \mathbb{P} \left( \max_{j \in S^c} |V_j| \leq \lambda_p \right) \xrightarrow{p \rightarrow +\infty} 1.$$

1511  $\square$

1512 D.2.4 PROOF OF LEMMA D.1  
15131514 *Proof of Lemma D.1.* Recall from (40) that:

1515  
1516 
$$V_j = \left\{ X_S (X_S^T X_S)^{-1} \lambda_p \vec{b} - \left[ X_S (X_S^T X_S)^{-1} X_S^T - I_n \right] \frac{\Sigma W}{n} \right\}^T X_j,$$
  
1517

1518 for all  $j \in S^c$ . Conditionally on  $X_S$  and  $W$ , the first term of the RHS above is constant and  
1519  $(X_j)_{j \in S^c} \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(0, I_n)$ . Therefore:

1520  
1521 
$$V_j | X_S, W \sim \mathcal{N}(0, A^T A),$$
  
1522

1523 where:

1524  
1525 
$$A = \left\{ X_S (X_S^T X_S)^{-1} \lambda_p \vec{b} - \left[ X_S (X_S^T X_S)^{-1} X_S^T - I_n \right] \frac{\Sigma W}{n} \right\} \in \mathbb{R}^n.$$

1526 Expanding the expression of  $A^T A$ , we get:

1527  
1528 
$$A^T A = \lambda_p^2 \vec{b}^T (X_S^T X_S)^{-1} \vec{b} + \frac{1}{n^2} W^T \Sigma^T \left[ I_n - X_S (X_S^T X_S)^{-1} X_S^T \right]^T \Sigma W.$$
  
1529

1530 In addition, we have:

1531  
1532 
$$\text{Cov}(X_{j_1}, X_{j_2}) = \delta_{j_1 j_2} I_n,$$
  
1533 therefore:

1534  
1535 
$$\text{Cov}(V_{j_1}, V_{j_2}) = \delta_{j_1 j_2} A^T A.$$
  
1536

We conclude:

1537  
1538 
$$V | X_S, W \sim \mathcal{N}(0, M_p I_{|S^c|}),$$
  
1539

1540 where  $M_p := A^T A = \|A\|_2^2$ . □

## 1541 D.2.5 PROOF OF LEMMA D.2

1542 *Proof of Lemma D.2.* Recall from Lemma D.1 that:

1543  
1544 
$$M_p = \lambda_p^2 \vec{b}^T (X_S^T X_S)^{-1} \vec{b} + \frac{1}{n^2} W^T \Sigma \left[ I_n - X_S (X_S^T X_S)^{-1} X_S^T \right] \Sigma W.$$
  
1545

By expectation of inverse Wishart matrices, we have:

1546  
1547 
$$\mathbb{E} \left[ \lambda_p^2 \vec{b}^T (X_S^T X_S)^{-1} \vec{b} \right] = \frac{\lambda_p^2}{n-s-1} \|b\|_2^2.$$
  
1548

1549 By Gram-Schmidt decomposition of  $X_S$  (Meckes, 2019), we write:

1550  
1551 
$$X_S = QR \in \mathbb{R}^{n \times s}, \tag{45}$$
  
1552

1553 with  $R_{ii} > 0$  and  $Q^T Q = I_s$ , where  $R \in \mathbb{R}^{s \times s}$  is upper triangular (hence invertible)  $Q \in \mathbb{R}^{n \times s}$   
1554 corresponds to  $s$  columns of a  $n \times n$  matrix of Haar distribution over the orthogonal group  $O(n)$ ,  
1555 which we define as follows:

1556  
1557 
$$U = [P \quad Q] \sim \text{Haar on } O(n).$$

1558 Then we have:

1559  
1560 
$$\begin{aligned} X_S (X_S^T X_S)^{-1} X_S^T &= QR (R^T Q^T Q R)^{-1} R^T Q^T \\ &= QR (R^T R)^{-1} R^T Q^T \\ &= Q R R^{-1} (R^T)^{-1} R^T Q^T \\ &= QQ^T. \end{aligned}$$
  
1561

1562 Therefore:

1563  
1564 
$$I_n - X_S (X_S^T X_S)^{-1} X_S^T = I_n - QQ^T = PP^T = [P \quad Q] \begin{bmatrix} I_{n-s} & 0_{(n-s) \times s} \\ 0_{s \times (n-s)} & 0_{s \times s} \end{bmatrix} \begin{bmatrix} P \\ Q \end{bmatrix} = UDU^T,$$
  
1565

1566 where:

$$1567 \quad D = \begin{bmatrix} I_{n-s} & 0_{(n-s) \times s} \\ 0_{s \times (n-s)} & 0_{s \times s} \end{bmatrix}.$$

1569 Note that unlike  $U$ ,  $D$  is deterministic. Since  $W \sim \mathcal{N}(0, I_n)$ , we have:

$$1571 \quad \mathbb{E} \left[ \frac{1}{n^2} W^T \Sigma \left[ I_n - X_S (X_S^T X_S)^{-1} X_S^T \right] \Sigma W \mid X_S \right] = \frac{1}{n^2} \text{tr} \left\{ \Sigma \left[ I_n - X_S (X_S^T X_S)^{-1} X_S^T \right] \Sigma \right\} \\ 1572 \quad = \frac{1}{n^2} \text{tr} (\Sigma^T U D U^T \Sigma).$$

1575 Hence, by total expectation:

$$1577 \quad \mathbb{E} \left[ \frac{1}{n^2} W^T \Sigma \left[ I_n - X_S (X_S^T X_S)^{-1} X_S^T \right] \Sigma W \right] = \mathbb{E}_{X_S} \left[ \frac{1}{n^2} \text{tr} (\Sigma^T U D U^T \Sigma) \right] \\ 1578 \quad = \frac{1}{n^2} \text{tr} (\mathbb{E}_{X_S} [\Sigma^T U D U^T \Sigma]) \\ 1579 \quad = \frac{1}{n^2} \text{tr} (\Sigma^T \mathbb{E}_U [U D U^T] \Sigma).$$

1584 By properties of the Haar distribution (see Example 1.8 of (Gu, 2013)), we have:

$$1585 \quad \mathbb{E}_{U \sim \text{Haar}(n)} [U^T D U] = \frac{\text{tr}(D)}{n} I_n.$$

1587 Substituting in the above, we get:

$$1589 \quad \mathbb{E} \left[ \frac{1}{n^2} W^T \Sigma \left[ I_n - X_S (X_S^T X_S)^{-1} X_S^T \right] \Sigma W \right] = \frac{1}{n^2} \text{tr} (\Sigma \mathbb{E}_U [U D U^T] \Sigma) \\ 1590 \quad = \frac{1}{n^2} \text{tr} \left( \frac{\text{tr}(D)}{n} \Sigma I_n \Sigma \right) \\ 1591 \quad = \frac{\text{tr}(D)}{n^3} \text{tr} (\Sigma^T I_n \Sigma) \\ 1592 \quad = \frac{n-s}{n^3} \text{tr} (\Sigma^T \Sigma) \\ 1593 \quad = \frac{(n-s)(n_1 \sigma_1^2 + n_2 \sigma_2^2)}{n^3}.$$

1600 Hence, we conclude:

$$1602 \quad \mathbb{E}[M_p] = \frac{\lambda_p^2}{n-s-1} \|b\|_2^2 + \frac{(n-s)(n_1 \sigma_1^2 + n_2 \sigma_2^2)}{n^3}.$$

1604 We now compute  $\text{Var}(M_p)$ . For simplicity, we write  $\Lambda = I_n - X_S (X_S^T X_S)^{-1} X_S^T = U D U^T$ , so  
1605 that:

$$1606 \quad M_p = \lambda_p^2 \vec{b}^T (X_S^T X_S)^{-1} \vec{b} + \frac{1}{n^2} W^T \Sigma \Lambda \Sigma W.$$

1608 Therefore:

$$1610 \quad M_p^2 = \lambda_p^4 \left[ \vec{b}^T (X_S^T X_S)^{-1} \vec{b} \right]^2 + \frac{1}{n^4} (W^T \Sigma \Lambda \Sigma W)^2 + 2 \frac{\lambda_p^2}{n^2} \left[ \vec{b}^T (X_S^T X_S)^{-1} \vec{b} \right] (W^T \Sigma \Lambda \Sigma W).$$

1612 Let:

$$1613 \quad T_1 := \left[ \vec{b}^T (X_S^T X_S)^{-1} \vec{b} \right]^2, \quad T_2 := (W^T \Sigma \Lambda \Sigma W)^2, \quad T_3 := \left[ \vec{b}^T (X_S^T X_S)^{-1} \vec{b} \right] (W^T \Sigma \Lambda \Sigma W),$$

1615 so that:

$$1616 \quad M_p^2 = \lambda_p^4 T_1 + \frac{1}{n^4} T_2 + 2 \frac{\lambda_p^2}{n^2} T_3.$$

1619 We start by computing  $\mathbb{E}[T_1]$ . Recall that  $X_S^T X_S \sim \mathcal{W}_s(I_s, n)$ . We use the following result for  
second moments of inverse Wishart matrices from (Siskind, 1972).

1620 **Lemma D.4** (Second moment of inverse Wishart matrices, (Siskind, 1972)). *Let  $a, b \in \mathbb{N}$  with  
1621  $a > b + 3$ . Let  $t \in \mathbb{R}^s$  and  $M \in R^{s \times s}$  and  $A \sim \mathcal{W}_a(T, b)$ . Then:*  
1622

$$1624 (b - a)(b - a - 3) \mathbb{E} [A^{-1} t t^T A^{-1}] = T^{-1} t t^T T^{-1} + T^{-1} (t^T T^{-1} t) / (b - a - 1).$$

1626 Setting  $b := n$ ;  $a := s$ ;  $t := \vec{b}$ ;  $T := I_s$  and  $A := X_S^T X_S$  in Lemma D.4, we get:  
1627

$$1630 (n - s)(n - s - 3) \mathbb{E} [(X_S^T X_S)^{-1} \vec{b} \vec{b}^T (X_S^T X_S)^{-1}] = \vec{b} \vec{b}^T + \|\vec{b}\|_2^2 I_s / (n - s - 1). \quad (46)$$

1633 Multiplying by the LHS by  $\vec{b}^T$  on the left and by  $\vec{b}$  on right we get:  
1634

$$1635 \mathbb{E} [T_1] = \frac{1}{(n - s)(n - s - 3)} \left( 1 + \frac{1}{n - s - 1} \right) (\vec{b}^T \vec{b})^2.$$

1639 Hence:  
1640

$$1641 \mathbb{E} [T_1] = \frac{1}{(n - s)(n - s - 3)} \left( 1 + \frac{1}{n - s - 1} \right) \|\vec{b}\|_2^4. \quad (47)$$

1645 Now let us compute  $\mathbb{E} [T_2]$ . Since  $W \sim \mathcal{N}(0, I_n)$ , we have by moments of the multivariate normal  
1646 distribution (see Theorem 5.2a and Theorem 5.2b in (Rencher & Schaafje, 2008)):  
1647

$$1648 \mathbb{E} [T_2 | X_S] = 2 \text{tr} [(\Sigma \Lambda \Sigma)^2] + [\text{tr} (\Sigma \Lambda \Sigma)]^2.$$

1651 **Lemma D.5.** *We have:*  
1652

$$1654 \mathbb{E} \left\{ [\text{tr} (\Sigma \Lambda \Sigma)]^2 \right\} \\ 1655 = (n_1 \sigma_1^2 + n_2 \sigma_2^2)^2 \left\{ \frac{(n+1)(n-s)}{(n-1)n(n+2)} \right\} \left\{ n-s - \frac{2}{n+1} \right\} \\ 1656 + (n_1 \sigma_1^4 + n_2 \sigma_2^4) \left\{ \frac{(n-s)(n-s+2)}{n(n+2)} - \frac{(n+1)(n-s)(n-s-\frac{2}{(n+1)})}{(n-1)n(n+2)} \right\}.$$

1662 and:  
1663

$$1665 \mathbb{E} \left\{ \text{tr} [(\Sigma \Lambda \Sigma)^2] \right\} = (n_1 \sigma_1^2 + n_2 \sigma_2^2)^2 \left\{ \frac{s(n-s)}{(n-1)n(n+2)} \right\} \\ 1666 + (n_1 \sigma_1^4 + n_2 \sigma_2^4) \left\{ \frac{n-s}{n(n+2)} \right\} \left\{ n-s+1 + \frac{n-s-1}{n-1} \right\}.$$

1673 *Proof.* See appendix D.2.7. □

1674 Substituting in the expression of  $\mathbb{E}[T_2 | X_S]$  and using total expectation, we get:  
 1675

$$\begin{aligned}
 1676 \quad & \mathbb{E}[T_2] \\
 1677 \quad &= \mathbb{E}[\mathbb{E}[T_2 | X_S]] \\
 1678 \quad &= \mathbb{E}\left[2 \operatorname{tr}\left[\left(\Sigma \Lambda \Sigma\right)^2\right]+\left[\operatorname{tr}\left(\Sigma \Lambda \Sigma\right)\right]^2\right] \\
 1680 \quad &= 2 \mathbb{E}\left[\operatorname{tr}\left[\left(\Sigma \Lambda \Sigma\right)^2\right]\right]+\mathbb{E}\left[\left[\operatorname{tr}\left(\Sigma \Lambda \Sigma\right)\right]^2\right] \\
 1682 \quad &= \left(n_1 \sigma_1^2+n_2 \sigma_2^2\right)^2\left\{\frac{2 s(n-s)}{(n-1) n(n+2)}\right\} \\
 1684 \quad &+\left(n_1 \sigma_1^4+n_2 \sigma_2^4\right)\left\{\frac{2(n-s)}{n(n+2)}\right\}\left\{n-s+1+\frac{n-s-1}{n-1}\right\} \\
 1686 \quad &+\left(n_1 \sigma_1^2+n_2 \sigma_2^2\right)^2\left\{\frac{(n+1)(n-s)}{(n-1) n(n+2)}\right\}\left\{n-s-\frac{2}{n+1}\right\} \\
 1688 \quad &+\left(n_1 \sigma_1^4+n_2 \sigma_2^4\right)\left\{\frac{(n-s)(n-s+2)}{n(n+2)}-\frac{(n+1)(n-s)\left(n-s-\frac{2}{(n+1)}\right)}{(n-1) n(n+2)}\right\} \\
 1690 \quad &=\left(n_1 \sigma_1^2+n_2 \sigma_2^2\right)^2\left\{\frac{n-s}{(n-1) n(n+2)}\right\}\left\{2 s+(n+1)\left(n-s-\frac{2}{n+1}\right)\right\} \\
 1692 \quad &+\left(n_1 \sigma_1^4+n_2 \sigma_2^4\right)\left\{\frac{n-s}{n(n+2)}\right\} \\
 1694 \quad &\times\left\{2 n-2 s+2+\frac{2(n-s-1)}{n-1}+n-s+2-\frac{(n+1)\left(n-s-\frac{2}{(n+1)}\right)}{n-1}\right\} \\
 1696 \quad &=\left(n_1 \sigma_1^2+n_2 \sigma_2^2\right)^2\left\{\frac{n-s}{(n-1) n(n+2)}\right\}\left\{2 s+(n+1)\left(n-s-\frac{2}{n+1}\right)\right\} \\
 1700 \quad &+\left(n_1 \sigma_1^4+n_2 \sigma_2^4\right)\left\{\frac{n-s}{n(n+2)}\right\} \\
 1702 \quad &\times\left\{3 n-3 s+4+\frac{2(n-s-1)}{n-1}-\frac{(n+1)\left(n-s-\frac{2}{(n+1)}\right)}{n-1}\right\} \\
 1704 \quad &.
 \end{aligned}$$

1709 Therefore:

$$\begin{aligned}
 1710 \quad & \mathbb{E}[T_2]=\left(n_1 \sigma_1^2+n_2 \sigma_2^2\right)^2\left\{\frac{n-s}{(n-1) n(n+2)}\right\}\left\{2 s+(n+1)\left(n-s-\frac{2}{n+1}\right)\right\} \\
 1711 \quad &+\left(n_1 \sigma_1^4+n_2 \sigma_2^4\right)\left\{\frac{n-s}{n(n+2)}\right\} \\
 1712 \quad &\times\left\{3 n-3 s+4+\frac{2(n-s-1)}{n-1}-\frac{(n+1)\left(n-s-\frac{2}{(n+1)}\right)}{n-1}\right\} . \quad (48) \\
 1713 \quad & \\
 1714 \quad & \\
 1715 \quad & \\
 1716 \quad & \\
 1717 \quad & \\
 1718 \quad & \\
 \end{aligned}$$

1719 Finally, we compute  $\mathbb{E}[T_3]$ . We have:  
 1720

$$\begin{aligned}
 1721 \quad & \mathbb{E}[T_3 | X_S]=\mathbb{E}\left\{\left[\vec{b}^T\left(X_S^T X_S\right)^{-1} \vec{b}\right]\left(W^T \Sigma \Lambda \Sigma W\right) \mid X_S\right\} \\
 1722 \quad &=\left[\vec{b}^T\left(X_S^T X_S\right)^{-1} \vec{b}\right] \mathbb{E}\left\{W^T \Sigma \Lambda \Sigma W \mid X_S\right\} \\
 1723 \quad &=\left[\vec{b}^T\left(X_S^T X_S\right)^{-1} \vec{b}\right] \operatorname{tr}\left(\Sigma \Lambda \Sigma\right) . \\
 1724 \quad & \\
 1725 \quad & \\
 1726 \quad & \\
 \end{aligned}$$

1727 Recall from (45) that:

$$X_S = QR,$$

1728 where  $Q \in \mathbb{R}^{n \times s}$  and  $R \in \mathbb{R}^{s \times s}$  are independent,  $R$  is upper triangular with  $R_{ii} > 0$  and  $Q^T Q = I_s$ . Therefore, by total expectation:

$$\begin{aligned}
 1731 \quad \mathbb{E}[T_3] &= \mathbb{E}\left[\mathbb{E}[T_3 | X_S]\right] \\
 1732 &= \mathbb{E}\left\{\left[\vec{b}^T (X_S^T X_S)^{-1} \vec{b}\right] \text{tr}(\Sigma \Lambda \Sigma)\right\} \\
 1733 &= \mathbb{E}\left\{\left[\vec{b}^T (X_S^T X_S)^{-1} \vec{b}\right] \text{tr}\left[\Sigma \left(I_n - X_S (X_S^T X_S)^{-1} X_S^T\right) \Sigma\right]\right\} \\
 1734 &= \mathbb{E}\left\{\left[\vec{b}^T (R^T Q^T QR)^{-1} \vec{b}\right] \text{tr}\left[\Sigma \left(I_n - QR (R^T Q^T QR)^{-1} R^T Q^T\right) \Sigma\right]\right\} \\
 1735 &= \mathbb{E}\left\{\left[\vec{b}^T (R^T R)^{-1} \vec{b}\right] \text{tr}\left[\Sigma \left(I_n - QR (R^T R)^{-1} R^T Q^T\right) \Sigma\right]\right\} \\
 1736 &= \mathbb{E}\left\{\left[\vec{b}^T (R^T R)^{-1} \vec{b}\right] \text{tr}\left[\Sigma \left(I_n - QRR^{-1} (R^T)^{-1} R^T Q^T\right) \Sigma\right]\right\} \\
 1737 &= \mathbb{E}\left\{\left[\vec{b}^T (R^T R)^{-1} \vec{b}\right] \text{tr}\left[\Sigma \left(I_n - QQ^T\right) \Sigma\right]\right\} \\
 1738 &= \mathbb{E}\left\{\left[\vec{b}^T (R^T R)^{-1} \vec{b}\right] \mathbb{E}\{\text{tr}[\Sigma (I_n - QQ^T) \Sigma]\}\right\} \\
 1739 &= \mathbb{E}\left\{\left[\vec{b}^T (R^T R)^{-1} \vec{b}\right] \mathbb{E}\{\text{tr}[\Sigma (I_n - QQ^T) \Sigma]\}\right\} \\
 1740 &= \mathbb{E}\left\{\left[\vec{b}^T (X_S^T X_S)^{-1} \vec{b}\right] \mathbb{E}\{\text{tr}(\Sigma UDU^T \Sigma)\}\right\} \\
 1741 &= \mathbb{E}\left\{\left[\vec{b}^T (X_S^T X_S)^{-1} \vec{b}\right] \mathbb{E}\{\text{tr}(\Sigma UDU^T \Sigma)\}\right\} \\
 1742 &= \mathbb{E}\left\{\left[\vec{b}^T (X_S^T X_S)^{-1} \vec{b}\right] \mathbb{E}\{\text{tr}(\Sigma UDU^T \Sigma)\}\right\} \\
 1743 &= \mathbb{E}\left\{\left[\vec{b}^T (X_S^T X_S)^{-1} \vec{b}\right] \mathbb{E}\{\text{tr}(\Sigma UDU^T \Sigma)\}\right\} \\
 1744 &= \mathbb{E}\left\{\left[\vec{b}^T (X_S^T X_S)^{-1} \vec{b}\right] \mathbb{E}\{\text{tr}(\Sigma UDU^T \Sigma)\}\right\} \\
 1745 &= \mathbb{E}\left\{\left[\vec{b}^T (X_S^T X_S)^{-1} \vec{b}\right] \mathbb{E}\{\text{tr}(\Sigma UDU^T \Sigma)\}\right\} \\
 1746 &= \mathbb{E}\left\{\left[\vec{b}^T (X_S^T X_S)^{-1} \vec{b}\right] \mathbb{E}\{\text{tr}(\Sigma UDU^T \Sigma)\}\right\} \\
 1747 &= \mathbb{E}\left\{\left[\vec{b}^T (X_S^T X_S)^{-1} \vec{b}\right] \mathbb{E}\{\text{tr}(\Sigma UDU^T \Sigma)\}\right\} \\
 1748 &= \mathbb{E}\left\{\left[\vec{b}^T (X_S^T X_S)^{-1} \vec{b}\right] \mathbb{E}\{\text{tr}(\Sigma UDU^T \Sigma)\}\right\}.
 \end{aligned}$$

1749 By expectation of inverse Wishart matrices (Anderson et al., 1958), we have:

$$1751 \quad \mathbb{E}\left\{\left[\vec{b}^T (X_S^T X_S)^{-1} \vec{b}\right]\right\} = \frac{1}{n-s-1} \|\vec{b}\|_2^2.$$

1753 Using this in the above expression of  $\mathbb{E}[T_3]$  yields:

$$\begin{aligned}
 1755 \quad \mathbb{E}[T_3] &= \mathbb{E}\left\{\left[\vec{b}^T (X_S^T X_S)^{-1} \vec{b}\right]\right\} \mathbb{E}\{\text{tr}(\Sigma UDU^T \Sigma)\} \\
 1756 &= \frac{1}{n-s-1} \|\vec{b}\|_2^2 \text{tr}\{\mathbb{E}[\Sigma UDU^T \Sigma]\} \\
 1757 &= \frac{1}{n-s-1} \|\vec{b}\|_2^2 \text{tr}\{\Sigma \mathbb{E}[UDU^T] \Sigma\} \\
 1758 &= \frac{1}{n-s-1} \|\vec{b}\|_2^2 \text{tr}\left\{\Sigma \left(\frac{\text{tr}(D)}{n} I_n\right) \Sigma\right\} \\
 1759 &= \frac{\text{tr}(D)}{n(n-s-1)} \|\vec{b}\|_2^2 \text{tr}(\Sigma^2) \\
 1760 &= \frac{(n-s)(n_1\sigma_1^2 + n_2\sigma_2^2)}{n(n-s-1)} \|\vec{b}\|_2^2.
 \end{aligned}$$

1763 Therefore:

$$1769 \quad \mathbb{E}[T_3] = \frac{(n-s)(n_1\sigma_1^2 + n_2\sigma_2^2)}{n(n-s-1)} \|\vec{b}\|_2^2. \quad (49)$$

1771 Now we have:

$$\begin{aligned}
 1772 \quad &\mathbb{E}[M_p^2] - (\mathbb{E}[M_p])^2 \\
 1773 &= \lambda_p^4 \mathbb{E}[T_1] + \frac{1}{n^4} \mathbb{E}[T_2] + \frac{2\lambda_p^2}{n^2} \mathbb{E}[T_3] - \left(\frac{\lambda_p^2 s}{n-s-1} + \frac{(n-s)(n_1\sigma_1^2 + n_2\sigma_2^2)}{n^3}\right)^2 \\
 1774 &= \lambda_p^4 \left(\mathbb{E}[T_1] - \frac{s^2}{(n-s-1)^2}\right) + \left(\frac{\mathbb{E}[T_2]}{n^4} - \frac{(n-s)^2 (n_1\sigma_1^2 + n_2\sigma_2^2)^2}{n^6}\right) \\
 1775 &+ \frac{2\lambda_p^2}{n^3} \left(\mathbb{E}[T_3] n - \frac{s(n-s)(n_1\sigma_1^2 + n_2\sigma_2^2)}{n-s-1}\right).
 \end{aligned}$$

1782  
1783

Let:

1784  
1785  
1786  
1787

$$H_1 := \lambda_p^4 \left( \mathbb{E}[T_1] - \frac{s^2}{(n-s-1)^2} \right),$$

1788  
17891790  
1791  
1792

$$H_2 := \frac{\mathbb{E}[T_2]}{n^4} - \frac{(n-s)^2 (n_1 \sigma_1^2 + n_2 \sigma_2^2)^2}{n^6},$$

1793

1794 and:

1795

1796  
1797  
1798

$$H_3 := \frac{2\lambda_p^2}{n^3} \left\{ \mathbb{E}[T_3] n - \frac{s(n-s)(n_1 \sigma_1^2 + n_2 \sigma_2^2)}{n-s-1} \right\}.$$

1799

1800  
1801

Then we have, using (47):

1802

1803  
1804  
1805  
1806

$$\begin{aligned} \frac{H_1}{(\mathbb{E}[M_p])^2} &= \frac{\lambda_p^4 \left( \mathbb{E}[T_1] - \frac{s^2}{(n-s-1)^2} \right)}{\left( \frac{\lambda_p^2 s}{n-s-1} + \frac{(n-s)(n_1 \sigma_1^2 + n_2 \sigma_2^2)}{n^3} \right)^2} \\ &\leq \frac{\lambda_p^4 s^2 \left( \frac{1}{(n-s)(n-s-3)} \left( 1 + \frac{1}{n-s-1} \right) - \frac{1}{(n-s-1)^2} \right)}{\frac{\lambda_p^4 s^2}{(n-s-1)^2}} \\ &= (n-s-1)^2 \left( \frac{1}{(n-s)(n-s-3)} \left( 1 + \frac{1}{n-s-1} \right) - \frac{1}{(n-s-1)^2} \right) \\ &= \frac{(n-s-1)^2}{(n-s)(n-s-3)} \left( 1 + \frac{1}{n-s-1} \right) - 1 \\ &= o(1). \end{aligned}$$

1817

1818  
1819

Similarly, using (48):

1820

1821

 $H_2$ 1822  
1823  
1824

$$\begin{aligned} H_2 &= \frac{\mathbb{E}[T_2]}{n^4} - \frac{(n-s)^2 (n_1 \sigma_1^2 + n_2 \sigma_2^2)^2}{n^6} \\ &= (n_1 \sigma_1^2 + n_2 \sigma_2^2)^2 \left\{ \frac{2s(n-s)}{(n-1)n^5(n+2)} + \frac{(n-s)(n+1)}{(n-1)n^5(n+2)} \left( n-s - \frac{2}{n+1} \right) - \frac{(n-s)^2}{n^6} \right\} \\ &\quad + (n_1 \sigma_1^4 + n_2 \sigma_2^4) \left\{ \frac{n-s}{n^5(n+2)} \right\} \left\{ 3n - 3s + 4 + \frac{2(n-s-1)}{n-1} - \frac{(n+1)(n-s-\frac{2}{(n+1)})}{n-1} \right\}. \end{aligned}$$

1827

1828  
1829  
1830

We have:

1831

1832  
18331834  
1835

$$(\mathbb{E}[M_p])^2 \geq \frac{(n-s)^2 (n_1 \sigma_1^2 + n_2 \sigma_2^2)^2}{n^6}.$$

1836 Hence:

1837

1838

1839

1840

1841

1842

1843

1844

$$1845 \frac{H_2}{(\mathbb{E}[M_p])^2}$$

$$1846 \leq \left\{ \frac{n^6}{(n-s)^2} \right\} \left\{ \frac{2s(n-s)}{(n-1)n^5(n+2)} + \frac{(n-s)(n+1)}{(n-1)n^5(n+2)} \left( n-s - \frac{2}{n+1} \right) - \frac{(n-s)^2}{n^6} \right\}$$

$$1847 + \frac{n_1\sigma_1^4 + n_2\sigma_2^4}{(n_1\sigma_1^2 + n_2\sigma_2^2)^2} \left\{ \frac{n^6}{(n-s)^2} \right\} \left\{ \frac{(n-s)}{n^5(n+2)} \right\}$$

$$1848 \times \left\{ 3n - 3s + 4 + \frac{2(n-s-1)}{n-1} - \frac{(n+1)(n-s-\frac{2}{(n+1)})}{n-1} \right\}$$

$$1849 = \left\{ \frac{2sn}{(n-1)(n-s)(n+2)} + \frac{n(n+1)}{(n-s)(n-1)(n+2)} \left( n-s - \frac{2}{n+1} \right) - 1 \right\}$$

$$1850 + \frac{n_1\sigma_1^4 + n_2\sigma_2^4}{(n_1\sigma_1^2 + n_2\sigma_2^2)^2} \left\{ \frac{n}{(n+2)(n-s)} \right\}$$

$$1851 \times \left\{ 3n - 3s + 4 + \frac{2(n-s-1)}{n-1} - \frac{(n+1)(n-s-\frac{2}{(n+1)})}{n-1} \right\}$$

$$1852 = \left\{ \frac{2sn}{(n-1)(n-s)(n+2)} + \frac{n(n+1)}{(n-s)(n-1)(n+2)} \left( n-s - \frac{2}{n+1} \right) - 1 \right\}$$

$$1853 + \frac{n_1\sigma_1^4 + n_2\sigma_2^4}{(n_1\sigma_1^2 + n_2\sigma_2^2)^2}$$

$$1854 \times \left\{ \frac{3n}{(n+2)} + \frac{4n}{(n+2)(n-s)} + \frac{2(n-s-1)n}{(n-s)(n-1)(n+2)} - \frac{n(n+1)(n-s-\frac{2}{(n+1)})}{(n-s)(n-1)(n+2)} \right\}$$

$$1855 = \left\{ \frac{2sn}{(n-1)(n-s)(n+2)} + \frac{n(n+1)}{(n-s)(n-1)(n+2)} \left( n-s - \frac{2}{n+1} \right) - 1 \right\}$$

$$1856 + \left\{ \frac{n_1\sigma_1^4}{(n_1\sigma_1^2 + n_2\sigma_2^2)^2} + \frac{n_2\sigma_2^4}{(n_1\sigma_1^2 + n_2\sigma_2^2)^2} \right\}$$

$$1857 \times \left\{ \frac{3n}{(n+2)} + \frac{4n}{(n+2)(n-s)} + \frac{2(n-s-1)n}{(n-s)(n-1)(n+2)} - \frac{n(n+1)(n-s-\frac{2}{(n+1)})}{(n-s)(n-1)(n+2)} \right\}$$

$$1858 \leq \left\{ \frac{2sn}{(n-1)(n-s)(n+2)} + \frac{n(n+1)}{(n-s)(n-1)(n+2)} \left( n-s - \frac{2}{n+1} \right) - 1 \right\}$$

$$1859 + \left\{ \frac{1}{n_1} + \frac{1}{n_2} \right\}$$

$$1860 \times \left\{ \frac{3n}{(n+2)} + \frac{4n}{(n+2)(n-s)} + \frac{2(n-s-1)n}{(n-s)(n-1)(n+2)} - \frac{n(n+1)(n-s-\frac{2}{(n+1)})}{(n-s)(n-1)(n+2)} \right\}$$

$$1861 = o(1).$$

1890 For  $H_3$ , using (49):  
 1891

$$\begin{aligned}
 1893 \quad H_3 &:= \frac{2\lambda_p^2}{n^3} \left\{ \mathbb{E}[T_3] n - \frac{s(n-s)(n_1\sigma_1^2 + n_2\sigma_2^2)}{n-s-1} \right\} \\
 1894 \\
 1895 \quad &= \frac{2\lambda_p^2}{n^3} \left\{ \frac{n(n-s)s(n_1\sigma_1^2 + n_2\sigma_2^2)}{n(n-s-1)} - \frac{s(n-s)(n_1\sigma_1^2 + n_2\sigma_2^2)}{n-s-1} \right\} \\
 1896 \\
 1897 \quad &= 0.
 \end{aligned}$$

1900  
 1901 Therefore, we conclude:  
 1902

$$\frac{\mathbb{E}[M_p^2] - (\mathbb{E}[M_p])^2}{(\mathbb{E}[M_p])^2} = \frac{H_1}{(\mathbb{E}[M_p])^2} + \frac{H_2}{(\mathbb{E}[M_p])^2} + \frac{H_3}{(\mathbb{E}[M_p])^2} = o(1).$$

1903  $\square$   
 1904  
 1905  
 1906  
 1907  
 1908  
 1909  
 1910  
 1911  
 1912  
 1913

#### D.2.6 PROOF OF LEMMA D.3

1914 *Proof of Lemma D.3.* Define:  
 1915

$$\begin{aligned}
 1916 \quad f: \mathbb{R}^k &\longrightarrow \mathbb{R} \\
 1917 \quad w &\longmapsto \max_{i \in [k]} w_i.
 \end{aligned}$$

1918 Note that for any  $u, v \in \mathbb{R}^k$ :  
 1919

$$\begin{aligned}
 1920 \quad |f(u) - f(v)| &= \left| \max_{i \in [k]} u_i - \max_{i \in [k]} v_i \right| \\
 1921 \quad &\leq \max_{i \in [k]} |u_i - v_i| \\
 1922 \quad &\leq \sqrt{\sum_{i \in [k]} (u_i - v_i)^2} \\
 1923 \quad &= \|u - v\|_2.
 \end{aligned}$$

1924 Therefore  $f$  is 1-Lipschitz. Assume  $\tau^2 = 1$ . By Gaussian concentration of measure for Lipschitz  
 1925 functions (Ledoux, 2001; Massart, 2007), we have for all  $t \geq 0$ :  
 1926

$$\begin{cases} \mathbb{P}(\max_{i \in [k]} N_i - \mathbb{E}[\max_{i \in [k]} N_i] > t) \leq \exp(-t^2/2), \\ \mathbb{P}(\max_{i \in [k]} N_i - \mathbb{E}[\max_{i \in [k]} N_i] < -t) \leq \exp(-t^2/2). \end{cases}$$

1927 The result for general  $\tau^2$  follows by substituting  $t := \eta/\tau$ .  
 1928  $\square$   
 1929  
 1930  
 1931  
 1932  
 1933  
 1934  
 1935

1944 D.2.7 PROOF OF LEMMA D.5

1945

1946 *Proof of Lemma D.5.* We have, by Einstein notation:

1947

$$\begin{aligned}
& [\text{tr}(\Sigma \Lambda \Sigma)]^2 \\
&= \left( \sum_{a=1}^n [\Sigma U D U^T \Sigma]_{aa} \right)^2 \\
&= \left( \sum_{a=1}^n \sum_{b=1}^n \sum_{c=1}^n \sum_{d=1}^n \sum_{e=1}^n \Sigma_{ab} U_{bc} D_{cd} [U^T]_{de} \Sigma_{ea} \right)^2 \\
&= \left( \sum_{a=1}^n \sum_{c=1}^n \Sigma_{aa} U_{ac} D_{cc} U_{ac} \Sigma_{aa} \right)^2 \\
&= \left( \sum_{a=1}^n \sum_{c=1}^n D_{aa} U_{ac}^2 \Sigma_{cc}^2 \right)^2 \\
&= \sum_{a=1}^n \sum_{c=1}^n D_{cc}^2 U_{ac}^4 \Sigma_{aa}^4 + \sum_{a=1}^n \sum_{c \neq d \in [n]} D_{cc} D_{dd} U_{ac}^2 U_{ad}^2 \Sigma_{aa}^4 \\
&\quad + \sum_{a \neq b \in [n]} \sum_{c=1}^n D_{cc}^2 U_{ac}^2 U_{bc}^2 \Sigma_{aa}^2 \Sigma_{bb}^2 + \sum_{a \neq b \in [n]} \sum_{c \neq d \in [n]} D_{cc} D_{dd} U_{ac}^2 U_{bd}^2 \Sigma_{aa}^2 \Sigma_{bb}^2.
\end{aligned}$$

1968

1969 Therefore:

1970

$$\begin{aligned}
\mathbb{E} \left\{ [\text{tr}(\Sigma \Lambda \Sigma)]^2 \right\} &= \sum_{a=1}^n \sum_{c=1}^n D_{cc}^2 \Sigma_{aa}^4 \mathbb{E} [U_{ac}^4] \\
&\quad + \sum_{a=1}^n \sum_{c \neq d \in [n]} D_{cc} D_{dd} \Sigma_{aa}^4 \mathbb{E} [U_{ac}^2 U_{ad}^2] \\
&\quad + \sum_{a \neq b \in [n]} \sum_{c=1}^n D_{cc}^2 \Sigma_{aa}^2 \Sigma_{bb}^2 \mathbb{E} [U_{ac}^2 U_{bc}^2] \\
&\quad + \sum_{a \neq b \in [n]} \sum_{c \neq d \in [n]} D_{cc} D_{dd} \Sigma_{aa}^2 \Sigma_{bb}^2 \mathbb{E} [U_{ac}^2 U_{bd}^2].
\end{aligned}$$

1983

1984 We use the following result from (Meckes, 2019) on fourth-moments of Haar( $n$ ) matrices:

1985

1986

1987

1988

1989 **Lemma D.6** (Fourth-moments of Haar( $n$ ) matrices, Lemma 2.22 in (Meckes, 2019)).1990 Let  $U \sim \text{Haar}(n)$ . Then for all  $i, j, r, s, \alpha, \beta, \lambda, \mu \in [n]$  we have:

1991

$$\begin{aligned}
& \mathbb{E} [U_{ij} U_{rs} U_{\alpha\beta} U_{\lambda\mu}] \\
&= -\frac{1}{(n-1)n(n+2)} \left[ \delta_{ir} \delta_{\alpha\lambda} \delta_{j\beta} \delta_{s\mu} + \delta_{ir} \delta_{\alpha\lambda} \delta_{j\mu} \delta_{s\beta} + \delta_{i\alpha} \delta_{r\lambda} \delta_{js} \delta_{\beta\mu} \right. \\
&\quad \left. + \delta_{i\alpha} \delta_{r\lambda} \delta_{j\mu} \delta_{\beta s} + \delta_{i\lambda} \delta_{r\alpha} \delta_{js} \delta_{\beta\mu} + \delta_{i\lambda} \delta_{r\alpha} \delta_{j\beta} \delta_{s\mu} \right] \\
&+ \frac{n+1}{(n-1)n(n+2)} \left[ \delta_{ir} \delta_{\alpha\lambda} \delta_{js} \delta_{\beta\mu} + \delta_{i\alpha} \delta_{r\lambda} \delta_{j\beta} \delta_{s\mu} + \delta_{i\lambda} \delta_{r\alpha} \delta_{j\mu} \delta_{s\beta} \right].
\end{aligned}$$

1998 Substituting:  $i, r, \alpha, \lambda := a$ ; and  $j, s, \beta, \mu := c$ , we get:  
 1999

$$\begin{aligned}
 2000 \quad & \mathbb{E} [U_{ac}^4] \\
 2001 \quad & = -\frac{1}{(n-1)n(n+2)} \left[ \delta_{aa}\delta_{aa}\delta_{cc}\delta_{cc} + \delta_{aa}\delta_{aa}\delta_{cc}\delta_{cc} + \delta_{aa}\delta_{aa}\delta_{cc}\delta_{cc} \right. \\
 2002 \quad & \quad \left. + \delta_{aa}\delta_{aa}\delta_{cc}\delta_{cc} + \delta_{aa}\delta_{aa}\delta_{cc}\delta_{cc} + \delta_{aa}\delta_{aa}\delta_{cc}\delta_{cc} \right] \\
 2003 \quad & + \frac{n+1}{(n-1)n(n+2)} \left[ \delta_{aa}\delta_{aa}\delta_{cc}\delta_{cc} + \delta_{aa}\delta_{aa}\delta_{cc}\delta_{cc} + \delta_{aa}\delta_{aa}\delta_{cc}\delta_{cc} \right] \\
 2004 \quad & = -\frac{6}{(n-1)n(n+2)} + \frac{3(n+1)}{(n-1)n(n+2)} \\
 2005 \quad & = \frac{3}{n(n+2)}. \\
 2006 \quad & \\
 2007 \quad & \\
 2008 \quad & \\
 2009 \quad & \\
 2010 \quad & \\
 2011 \quad & 
 \end{aligned}$$

2012 Thus:  
 2013

$$\mathbb{E} [U_{ac}^4] = \frac{3}{n(n+2)}. \quad (50)$$

2016 Now substituting  $i, r, \alpha, \lambda := a$ ;  $j, s, \beta, \mu := c$ ; and  $\beta, \mu := d$ , we get:  
 2017

$$\begin{aligned}
 2018 \quad & \mathbb{E} [U_{ac}^2 U_{ad}^2] \\
 2019 \quad & = -\frac{1}{(n-1)n(n+2)} \left[ \delta_{aa}\delta_{aa}\delta_{cd}\delta_{cd} + \delta_{aa}\delta_{aa}\delta_{cd}\delta_{cd} + \delta_{aa}\delta_{aa}\delta_{cc}\delta_{dd} \right. \\
 2020 \quad & \quad \left. + \delta_{aa}\delta_{aa}\delta_{cd}\delta_{dc} + \delta_{aa}\delta_{aa}\delta_{cc}\delta_{dd} + \delta_{aa}\delta_{aa}\delta_{cd}\delta_{cd} \right] \\
 2021 \quad & + \frac{n+1}{(n-1)n(n+2)} \left[ \delta_{aa}\delta_{aa}\delta_{cc}\delta_{dd} + \delta_{aa}\delta_{aa}\delta_{cd}\delta_{cd} + \delta_{aa}\delta_{aa}\delta_{cd}\delta_{cd} \right] \\
 2022 \quad & = -\frac{2}{(n-1)n(n+2)} + \frac{n+1}{(n-1)n(n+2)} \\
 2023 \quad & = \frac{1}{n(n+2)}. \\
 2024 \quad & \\
 2025 \quad & \\
 2026 \quad & \\
 2027 \quad & \\
 2028 \quad & \\
 2029 \quad & 
 \end{aligned}$$

2030 Thus:  
 2031

$$\mathbb{E} [U_{ac}^2 U_{ad}^2] = \frac{1}{n(n+2)}. \quad (51)$$

2034 Now substituting  $i, r := a$ ;  $j, s, \beta, \mu := c$ ; and  $\alpha, \lambda := b$ , we get:  
 2035

$$\begin{aligned}
 2036 \quad & \mathbb{E} [U_{ac}^2 U_{bc}^2] \\
 2037 \quad & = -\frac{1}{(n-1)n(n+2)} \left[ \delta_{aa}\delta_{bb}\delta_{cc}\delta_{cc} + \delta_{aa}\delta_{bb}\delta_{cc}\delta_{cc} + \delta_{ab}\delta_{ab}\delta_{cc}\delta_{cc} \right. \\
 2038 \quad & \quad \left. + \delta_{ab}\delta_{ab}\delta_{cc}\delta_{cc} + \delta_{ab}\delta_{ab}\delta_{cc}\delta_{cc} + \delta_{ab}\delta_{ab}\delta_{cc}\delta_{cc} \right] \\
 2039 \quad & + \frac{n+1}{(n-1)n(n+2)} \left[ \delta_{aa}\delta_{bb}\delta_{cc}\delta_{cc} + \delta_{ab}\delta_{ab}\delta_{cc}\delta_{cc} + \delta_{ab}\delta_{ab}\delta_{cc}\delta_{cc} \right] \\
 2040 \quad & + \frac{n+1}{(n-1)n(n+2)} \left[ \delta_{aa}\delta_{aa}\delta_{cc}\delta_{dd} + \delta_{aa}\delta_{aa}\delta_{cd}\delta_{cd} + \delta_{aa}\delta_{aa}\delta_{cd}\delta_{cd} \right] \\
 2041 \quad & = -\frac{2}{(n-1)n(n+2)} + \frac{n+1}{(n-1)n(n+2)} \\
 2042 \quad & = \frac{1}{n(n+2)}. \\
 2043 \quad & \\
 2044 \quad & \\
 2045 \quad & \\
 2046 \quad & \\
 2047 \quad & \\
 2048 \quad & \\
 2049 \quad & 
 \end{aligned}$$

2050 Thus:  
 2051

$$\mathbb{E} [U_{ac}^2 U_{bc}^2] = \frac{1}{n(n+2)}. \quad (52)$$

2052 Now substituting  $i, r := a; j, s := c; \alpha, \lambda := b$ ; and  $\beta, \mu := d$ , we get:  
 2053

2054

2055

2056

2057

2058

2059

2060

2061

2062

2063

2064

$$2065 \mathbb{E} [U_{ac}^2 U_{bd}^2]$$

$$2066 = -\frac{1}{(n-1)n(n+2)} \left[ \delta_{aa}\delta_{bb}\delta_{cd}\delta_{cd} + \delta_{aa}\delta_{bb}\delta_{cd}\delta_{cd} + \delta_{ab}\delta_{ab}\delta_{cc}\delta_{dd} \right.$$

$$2067 \quad \quad \quad \left. + \delta_{ab}\delta_{ab}\delta_{cd}\delta_{dc} + \delta_{ab}\delta_{ab}\delta_{cc}\delta_{dd} + \delta_{ab}\delta_{ab}\delta_{cd}\delta_{cd} \right]$$

$$2068 \quad \quad \quad + \frac{n+1}{(n-1)n(n+2)} \left[ \delta_{aa}\delta_{bb}\delta_{cc}\delta_{dd} + \delta_{ab}\delta_{ab}\delta_{cd}\delta_{cd} + \delta_{ab}\delta_{ab}\delta_{cd}\delta_{cd} \right]$$

$$2069 \quad \quad \quad = \frac{n+1}{(n-1)n(n+2)}.$$

2070

2071

2072

2073

2074

2075

2076

2077

2078

2079

2080

2081

2082

2083

2084

2085

2086

2087 Thus:  
 2088  
 2089  
 2090  
 2091  
 2092  
 2093  
 2094  
 2095  
 2096  
 2097  
 2098  
 2099  
 2100  
 2101  
 2102  
 2103  
 2104

$$2105 \mathbb{E} [U_{ac}^2 U_{bd}^2] = \frac{n+1}{(n-1)n(n+2)}. \quad (53)$$

2106 Substituting (50), (51), (52), and (53) in the expression of  $\mathbb{E} \left\{ \left[ \text{tr} (\Sigma \Lambda \Sigma) \right]^2 \right\}$  above, we get:  
 2107

2108

2109

2110

2111

2112

2113

$$2114 \mathbb{E} \left\{ \left[ \text{tr} (\Sigma \Lambda \Sigma) \right]^2 \right\}$$

2115

$$2116 = \sum_{a=1}^n \sum_{c=1}^n D_{cc}^2 \Sigma_{aa}^4 \mathbb{E} [U_{ac}^4] + \sum_{a=1}^n \sum_{c \neq d \in [n]} D_{cc} D_{dd} \Sigma_{aa}^4 \mathbb{E} [U_{ac}^2 U_{ad}^2]$$

2118

$$2119 + \sum_{a \neq b \in [n]} \sum_{c=1}^n D_{cc}^2 \Sigma_{aa}^2 \Sigma_{bb}^2 \mathbb{E} [U_{ac}^2 U_{bc}^2] + \sum_{a \neq b \in [n]} \sum_{c \neq d \in [n]} D_{cc} D_{dd} \Sigma_{aa}^2 \Sigma_{bb}^2 \mathbb{E} [U_{ac}^2 U_{bd}^2]$$

2121

$$2122 = \frac{3}{n(n+2)} \left( \sum_{a=1}^n \Sigma_{aa}^4 \right) \left( \sum_{c=1}^n D_{cc}^2 \right) + \frac{1}{n(n+2)} \left( \sum_{a=1}^n \Sigma_{aa}^4 \right) \left( \sum_{c \neq d \in [n]} D_{cc} D_{dd} \right)$$

2124

$$2125 + \frac{1}{n(n+2)} \left( \sum_{a \neq b \in [n]} \Sigma_{aa}^2 \Sigma_{bb}^2 \right) \left( \sum_{c=1}^n D_{cc}^2 \right)$$

2127

$$2128 + \frac{n+1}{(n-1)n(n+2)} \left( \sum_{a \neq b \in [n]} \Sigma_{aa}^2 \Sigma_{bb}^2 \right) \left( \sum_{c \neq d \in [n]} D_{cc} D_{dd} \right)$$

2131

$$2132 = \frac{1}{n(n+2)} \left( \sum_{a=1}^n \Sigma_{aa}^4 \right) \left\{ 3 \left( \sum_{c=1}^n D_{cc}^2 \right) + \left( \sum_{c \neq d \in [n]} D_{cc} D_{dd} \right) \right\}$$

2134

$$2135 + \frac{n+1}{(n-1)n(n+2)} \left( \sum_{a \neq b \in [n]} \Sigma_{aa}^2 \Sigma_{bb}^2 \right) \left\{ \frac{n-1}{n+1} \left( \sum_{c=1}^n D_{cc}^2 \right) + \left( \sum_{c \neq d \in [n]} D_{cc} D_{dd} \right) \right\}$$

2138

$$2139 = \frac{1}{n(n+2)} \left( \sum_{a=1}^n \Sigma_{aa}^4 \right) \left\{ 2 \left( \sum_{c=1}^n D_{cc}^2 \right) + \left( \sum_{c=1}^n D_{cc} \right)^2 \right\}$$

2141

$$2142 + \frac{n+1}{(n-1)n(n+2)} \left\{ \left( \sum_{a=1}^n \Sigma_{aa}^2 \right)^2 - \sum_{a=1}^n \Sigma_{aa}^4 \right\} \left\{ -\frac{2}{n+1} \left( \sum_{c=1}^n D_{cc}^2 \right) + \left( \sum_{c=1}^n D_{cc} \right)^2 \right\}$$

2144

$$2145 = \frac{\text{tr} (\Sigma^4)}{n(n+2)} \left\{ 2 \text{tr} (D^2) + \text{tr} (D)^2 \right\}$$

2147

$$2148 + \frac{n+1}{(n-1)n(n+2)} \left\{ \text{tr} (\Sigma^2)^2 - \text{tr} (\Sigma^4) \right\} \left\{ -\frac{2 \text{tr} (D^2)}{n+1} + \text{tr} (D)^2 \right\}$$

2149

$$2150 = \frac{n_1 \sigma_1^4 + n_2 \sigma_2^4}{n(n+2)} \left\{ 2(n-s) + (n-s)^2 \right\}$$

2152

$$2153 + \frac{n+1}{(n-1)n(n+2)} \left\{ (n_1 \sigma_1^2 + n_2 \sigma_2^2)^2 - (n_1 \sigma_1^4 + n_2 \sigma_2^4) \right\} \left\{ -\frac{2(n-s)}{n+1} + (n-s)^2 \right\}$$

2154

$$2155 = (n_1 \sigma_1^2 + n_2 \sigma_2^2)^2 \left\{ \frac{(n+1)(n-s)}{(n-1)n(n+2)} \right\} \left\{ n-s - \frac{2}{n+1} \right\}$$

2157

$$2158 + (n_1 \sigma_1^4 + n_2 \sigma_2^4) \left\{ \frac{(n-s)(n-s+2)}{n(n+2)} - \frac{(n+1)(n-s)(n-s-\frac{2}{(n+1)})}{(n-1)n(n+2)} \right\}.$$

2159

2160 Now we have, by Einstein notation:  
 2161

$$\begin{aligned}
 2162 \quad & \text{tr} \left[ (\Sigma \Lambda \Sigma)^2 \right] \\
 2163 \quad & = \text{tr} \left[ \Sigma U D U^T \Sigma^2 U D U^T \Sigma \right] \\
 2164 \quad & = \sum_{a=1}^n \left[ \Sigma U D U^T \Sigma^2 U D U^T \Sigma \right]_{aa} \\
 2165 \quad & = \sum_{a=1}^n \sum_{b=1}^n \sum_{c=1}^n \sum_{d=1}^n \sum_{e=1}^n \sum_{f=1}^n \sum_{g=1}^n \sum_{h=1}^n \sum_{j=1}^n \Sigma_{ab} U_{bc} D_{cd} [U^T]_{de} [\Sigma^2]_{ef} U_{fg} D_{gh} [U^T]_{hj} \Sigma_{ja} \\
 2166 \quad & = \sum_{a=1}^n \sum_{c=1}^n \sum_{e=1}^n \sum_{h=1}^n \Sigma_{aa} U_{ac} D_{cc} U_{ec} \Sigma_{ee}^2 U_{eh} D_{hh} U_{ah} \Sigma_{aa} \\
 2167 \quad & = \sum_{a=1}^n \sum_{c=1}^n \sum_{e=1}^n \sum_{h=1}^n D_{cc} D_{hh} \Sigma_{aa}^2 \Sigma_{ee}^2 U_{ac} U_{ec} U_{eh} U_{ah} \\
 2168 \quad & = \sum_{a=1}^n \sum_{c=1}^n D_{cc}^2 \Sigma_{aa}^4 U_{ac}^4 + \sum_{a \neq e \in [n]} \sum_{c=1}^n D_{cc}^2 \Sigma_{aa}^2 \Sigma_{ee}^2 U_{ac}^2 U_{ec}^2 + \sum_{a=1}^n \sum_{c \neq h \in [n]} D_{cc} D_{hh} \Sigma_{aa}^4 U_{ac}^2 U_{ah}^2 \\
 2169 \quad & + \sum_{a \neq e \in [n]} \sum_{c \neq h \in [n]} D_{cc} D_{hh} \Sigma_{aa}^2 \Sigma_{ee}^2 U_{ac} U_{ec} U_{eh} U_{ah}.
 \end{aligned}$$

2170 Therefore:  
 2171

$$\begin{aligned}
 2172 \quad & \mathbb{E} \left\{ \text{tr} \left[ (\Sigma \Lambda \Sigma)^2 \right] \right\} = \sum_{a=1}^n \sum_{c=1}^n D_{cc}^2 \Sigma_{aa}^4 \mathbb{E} [U_{ac}^4] \\
 2173 \quad & + \sum_{a \neq e \in [n]} \sum_{c=1}^n D_{cc}^2 \Sigma_{aa}^2 \Sigma_{ee}^2 \mathbb{E} [U_{ac}^2 U_{ec}^2] \\
 2174 \quad & + \sum_{a=1}^n \sum_{c \neq h \in [n]} D_{cc} D_{hh} \Sigma_{aa}^4 \mathbb{E} [U_{ac}^2 U_{ah}^2] \\
 2175 \quad & + \sum_{a \neq e \in [n]} \sum_{c \neq h \in [n]} D_{cc} D_{hh} \Sigma_{aa}^2 \Sigma_{ee}^2 \mathbb{E} [U_{ac} U_{ec} U_{eh} U_{ah}].
 \end{aligned}$$

2176 Recall that:  
 2177

$$\mathbb{E} [U_{ac}^4] = \frac{3}{n(n+2)},$$

2178 and:  
 2179

$$\mathbb{E} [U_{ac}^2 U_{ec}^2] = \mathbb{E} [U_{ac}^2 U_{ah}^2] = \frac{1}{n(n+2)}.$$

2180 Now substituting  $i, \lambda := a$ ;  $j, s := c$ ;  $r, \alpha := e$ ; and  $\beta, \mu := h$  in Lemma D.6, we get:  
 2181

$$\begin{aligned}
 2182 \quad & \mathbb{E} [U_{ac} U_{ec} U_{eh} U_{ah}] \\
 2183 \quad & = -\frac{1}{(n-1)n(n+2)} \left[ \delta_{ae} \delta_{ea} \delta_{ch} \delta_{ch} + \delta_{ae} \delta_{ea} \delta_{ch} \delta_{ch} + \delta_{ae} \delta_{ea} \delta_{cc} \delta_{hh} \right. \\
 2184 \quad & \quad \left. + \delta_{ae} \delta_{ea} \delta_{ch} \delta_{hc} + \delta_{aa} \delta_{ee} \delta_{cc} \delta_{hh} + \delta_{aa} \delta_{ee} \delta_{ch} \delta_{ch} \right] \\
 2185 \quad & + \frac{n+1}{(n-1)n(n+2)} \left[ \delta_{ae} \delta_{ea} \delta_{cc} \delta_{hh} + \delta_{ae} \delta_{ea} \delta_{ch} \delta_{ch} + \delta_{aa} \delta_{ee} \delta_{ch} \delta_{ch} \right] \\
 2186 \quad & = -\frac{1}{(n-1)n(n+2)}.
 \end{aligned}$$

2187 Therefore:  
 2188

$$\mathbb{E} [U_{ac} U_{ec} U_{eh} U_{ah}] = -\frac{1}{(n-1)n(n+2)}. \quad (54)$$

2214 Substituting (50), (52), (51), and (54) in the expression of  $\mathbb{E} \left\{ \text{tr} \left[ (\Sigma \Lambda \Sigma)^2 \right] \right\}$  above, we get:  
 2215

2216

2217

2218

2219

2220

2221

2222

2223

2224

2225

2226

2227

2228  $\mathbb{E} \left\{ \text{tr} \left[ (\Sigma \Lambda \Sigma)^2 \right] \right\}$

2229

2230  $= \frac{3}{n(n+2)} \sum_{a=1}^n \sum_{c=1}^n D_{cc}^2 \Sigma_{aa}^4 + \frac{1}{n(n+2)} \sum_{a \neq e \in [n]} \sum_{c=1}^n D_{cc}^2 \Sigma_{aa}^2 \Sigma_{ee}^2$

2231

2232

2233  $+ \frac{1}{n(n+2)} \sum_{a=1}^n \sum_{c \neq h \in [n]} D_{cc} D_{hh} \Sigma_{aa}^4$

2234

2235

2236  $- \frac{1}{(n-1)n(n+2)} \sum_{a \neq e \in [n]} \sum_{c \neq h \in [n]} D_{cc} D_{hh} \Sigma_{aa}^2 \Sigma_{ee}^2$

2237

2238

2239  $= \frac{3}{n(n+2)} \left( \sum_{a=1}^n \Sigma_{aa}^4 \right) \left( \sum_{c=1}^n D_{cc}^2 \right) + \frac{1}{n(n+2)} \left( \sum_{a \neq e \in [n]} \Sigma_{aa}^2 \Sigma_{ee}^2 \right) \left( \sum_{c=1}^n D_{cc}^2 \right)$

2240

2241

2242  $+ \frac{1}{n(n+2)} \left( \sum_{a=1}^n \Sigma_{aa}^4 \right) \left( \sum_{c \neq h \in [n]} D_{cc} D_{hh} \right)$

2243

2244

2245  $- \frac{1}{(n-1)n(n+2)} \left( \sum_{a \neq e \in [n]} \Sigma_{aa}^2 \Sigma_{ee}^2 \right) \left( \sum_{c \neq h \in [n]} D_{cc} D_{hh} \right)$

2246

2247

2248

2249  $= \frac{1}{n(n+2)} \left( \sum_{c=1}^n D_{cc}^2 \right) \left\{ 3 \sum_{a=1}^n \Sigma_{aa}^4 + \sum_{a \neq e \in [n]} \Sigma_{aa}^2 \Sigma_{ee}^2 \right\}$

2250

2251

2252  $+ \frac{1}{n(n+2)} \left( \sum_{a=1}^n \Sigma_{aa}^4 \right) \left\{ \left( \sum_{c=1}^n D_{cc} \right)^2 - \sum_{c=1}^n D_{cc}^2 \right\}$

2253

2254

2255  $- \frac{1}{(n-1)n(n+2)} \left\{ \left( \sum_{a=1}^n \Sigma_{aa}^2 \right)^2 - \sum_{a=1}^n \Sigma_{aa}^4 \right\} \left\{ \left( \sum_{c=1}^n D_{cc} \right)^2 - \sum_{c=1}^n D_{cc}^2 \right\}$

2256

2257

2258

2259  $= \frac{1}{n(n+2)} \left( \sum_{c=1}^n D_{cc}^2 \right) \left\{ 2 \sum_{a=1}^n \Sigma_{aa}^4 + \left( \sum_{a=1}^n \Sigma_{aa}^2 \right)^2 \right\}$

2260

2261

2262  $+ \frac{1}{n(n+2)} \left( \sum_{a=1}^n \Sigma_{aa}^4 \right) \left\{ \left( \sum_{c=1}^n D_{cc} \right)^2 - \sum_{c=1}^n D_{cc}^2 \right\}$

2263

2264

2265  $- \frac{1}{(n-1)n(n+2)} \left\{ \left( \sum_{a=1}^n \Sigma_{aa}^2 \right)^2 - \sum_{a=1}^n \Sigma_{aa}^4 \right\} \left\{ \left( \sum_{c=1}^n D_{cc} \right)^2 - \sum_{c=1}^n D_{cc}^2 \right\}.$

2266

2267

2268 Thus:

2269

2270 
$$\mathbb{E} \left\{ \text{tr} \left[ (\Sigma \Lambda \Sigma)^2 \right] \right\}$$

2271 
$$= \frac{\text{tr} (D^2)}{n(n+2)} \left\{ 2 \text{tr} (\Sigma^4) + (\text{tr} \Sigma^2)^2 \right\} + \frac{\text{tr} (\Sigma^4)}{n(n+2)} \left\{ \text{tr} (D)^2 - \text{tr} (D^2) \right\}$$

2272 
$$- \frac{1}{(n-1)n(n+2)} \left\{ \text{tr} (\Sigma^2)^2 - \text{tr} (\Sigma^4) \right\} \left\{ \text{tr} (D)^2 - \text{tr} (D^2) \right\}$$

2273 
$$= \frac{n-s}{n(n+2)} \left\{ 2(n_1 \sigma_1^4 + n_2 \sigma_2^4) + (n_1 \sigma_1^2 + n_2 \sigma_2^2)^2 \right\} + \frac{n_1 \sigma_1^4 + n_2 \sigma_2^4}{n(n+2)} \left\{ (n-s)^2 - (n-s) \right\}$$

2274 
$$- \frac{1}{(n-1)n(n+2)} \left\{ (n_1 \sigma_1^2 + n_2 \sigma_2^2)^2 - (n_1 \sigma_1^4 + n_2 \sigma_2^4) \right\} \left\{ (n-s)^2 - (n-s) \right\}$$

2275 
$$= (n_1 \sigma_1^2 + n_2 \sigma_2^2)^2 \left\{ \frac{n-s}{n(n+2)} \right\} \left\{ 1 - \frac{n-s-1}{n-1} \right\}$$

2276 
$$+ (n_1 \sigma_1^4 + n_2 \sigma_2^4) \left\{ \frac{2(n-s)}{n(n+2)} + \frac{(n-s)(n-s-1)}{n(n+2)} \frac{(n-s)(n-s-1)}{(n-1)n(n+2)} \right\}$$

2277 
$$= (n_1 \sigma_1^2 + n_2 \sigma_2^2)^2 \left\{ \frac{s(n-s)}{(n-1)n(n+2)} \right\}$$

2278 
$$+ (n_1 \sigma_1^4 + n_2 \sigma_2^4) \left\{ \frac{n-s}{n(n+2)} \right\} \left\{ n-s+1 + \frac{n-s-1}{n-1} \right\}.$$

2279

2280

2281

2282

2283

2284

2285

2286

2287

2288

2289

□

2290

2291

### D.3 PROOF OF PROPOSITION D.3

2292 *Proof of Proposition D.3.* Recall that:

2293

2294

2295

2296 
$$U_i := e_i^T \left( \frac{1}{n} X_S^T X_S \right)^{-1} \left[ \frac{1}{n} X_S^T \Sigma W - \lambda_p \vec{b} \right].$$

2297

2298 Note that conditionally on  $X_S$ ,  $U_i$  is Gaussian for each  $i \in S$  and:

2299

2300 
$$Y_i := \mathbb{E} [U_i | X_S] = -\lambda_p e_i^T \left( \frac{1}{n} X_S^T X_S \right)^{-1} \vec{b},$$

2301

2302 
$$Y'_i := \text{Var} [U_i | X_S] = \frac{1}{n^2} e_i^T \left( \frac{1}{n} X_S^T X_S \right)^{-1} X_S^T \Sigma^2 X_S \left( \frac{1}{n} X_S^T X_S \right)^{-1} e_i.$$

2303

2304

2305

#### Lemma D.7.

2306 (a) The random variables  $Y_i$  and  $Y'_i$  have means:

2307

2308 
$$\mathbb{E} [Y_i] = \frac{-\lambda_p n}{n-s-1} e_i^T \vec{b}, \quad \text{and} \quad \mathbb{E} [Y'_i] = \frac{n_1 \sigma_1^2 + n_2 \sigma_2^2}{n(n-s-1)}.$$

2309

2310

2311 (b) Moreover, each pair  $(Y_i, Y'_i)$  is concentrated such that:

2312

2313 
$$\mathbb{P} \left( |Y_i| \geq \frac{n \lambda_p \sqrt{s}}{n-s-1}, \text{ or } |Y'_i| \geq 2\mathbb{E} [Y'_i] \right) \leq K \left( \frac{1}{n_1} + \frac{1}{n_2} \right),$$

2314

2315 where  $K$  is a universal constant.

2316

2317 *Proof.* See appendix D.3.1. □

2318

2319 Now define the event:

2320

2321 
$$T := \bigcup_{i=1}^s \left\{ |Y_i| \geq \frac{n \lambda_p \sqrt{s}}{n-s-1} \text{ or } |Y'_i| \geq 2\mathbb{E} [Y'_i] \right\}.$$

2322 By union bound and statement (b) of Lemma D.7, we have:  
 2323

$$\begin{aligned} 2324 \quad \mathbb{P}(T) &\leq \sum_{i \in S} \mathbb{P}\left(|Y_i| \geq \frac{n\lambda_p\sqrt{s}}{n-s-1}, \text{ or } |Y'_i| \geq 2\mathbb{E}[Y'_i]\right) \\ 2325 \\ 2326 \\ 2327 &\leq sK\left(\frac{1}{n_1} + \frac{1}{n_2}\right) \\ 2328 \\ 2329 &= K\left(\frac{s}{n_1} + \frac{s}{n_2}\right), \\ 2330 \\ 2331 \end{aligned}$$

2332 which converges to 0 as  $p \rightarrow +\infty$ . Conditionning on  $T$ , we have by total probability:  
 2333

$$\begin{aligned} 2334 \quad \mathbb{P}\left(\max_{i \in S} U_i \geq \rho \mid T^c\right) &\leq \mathbb{P}\left(\max_{i \in S} U_i \geq \rho \mid T^c\right) + \mathbb{P}(T) \\ 2335 \\ 2336 &\leq \mathbb{P}\left(\max_{i \in S} U_i \geq \rho \mid T^c\right) + K\left(\frac{s}{n_1} + \frac{s}{n_2}\right). \\ 2337 \end{aligned}$$

2338 In addition:  
 2339

$$\begin{aligned} 2340 \quad \mathbb{P}\left(\max_{i \in S} U_i \geq \rho \mid T^c\right) &= \mathbb{E}\left[\mathbb{1}\left\{\max_{i \in S} U_i \geq \rho\right\} \mid T^c\right] \\ 2341 \\ 2342 &= \mathbb{E}\left[\mathbb{E}\left[\mathbb{1}\left\{\max_{i \in S} U_i \geq \rho\right\} \mid T^c, X_S\right]\right] \\ 2343 \\ 2344 &= \mathbb{E}\left[\mathbb{P}\left(\max_{i \in S} U_i \geq \rho \mid T^c, X_S\right)\right]. \\ 2345 \\ 2346 \end{aligned}$$

2347 Now we have:  
 2348

$$\begin{aligned} 2349 \quad \mathbb{P}\left(\max_{i \in S} U_i \geq \rho \mid T^c, X_S\right) &\leq \mathbb{P}_{N_i \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(Y_i, Y'_i)}\left(\max_{i \in S} N_i \geq \rho \mid T^c\right) \\ 2350 \\ 2351 &\leq \mathbb{P}_{N_i \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}\left(\frac{n\lambda_p\sqrt{s}}{n-s-1}, \frac{2(n_1\sigma_1^2 + n_2\sigma_2^2)}{n(n-s-1)}\right)}\left(\max_{i \in S} N_i \geq \rho\right), \\ 2352 \\ 2353 \end{aligned}$$

2354 where:  
 2355

- 2356 • The first inequality holds because the maximum of independent Gaussians has a heavier positive  
 2357 tail than the maximum of correlated ones (under the same distributions).
- 2358 • The second inequality holds because a Gaussian with a larger mean and variance has a heavier  
 2359 positive tail than one with a smaller mean and variance (therefore each of the  $N_i$ s would have a  
 2360 heavier tail if its mean and variance were equal to their respective upper bounds).

2362 For simplicity, we drop the long subscript and assume  $N_i \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}\left(\frac{n\lambda_p\sqrt{s}}{n-s-1}, \frac{2(n_1\sigma_1^2 + n_2\sigma_2^2)}{n(n-s-1)}\right)$ . Using  
 2363 Markov's inequality in the above, we have:  
 2364

$$\mathbb{P}\left(\max_{i \in S} U_i \geq \rho \mid T^c, X_S\right) \leq \mathbb{P}\left(\max_{i \in S} N_i \geq \rho\right) \leq \frac{\mathbb{E}[\max_{i \in S} N_i]}{\rho}. \quad (55)$$

2368 Using the formula for expectation of Gaussian (see Theorem 5.3.1 in (De Haan & Ferreira, 2006))  
 2369 maxima, we have:  
 2370

$$\begin{aligned} 2371 \quad \mathbb{E}\left[\max_{i \in S} N_i\right] &\leq \frac{n\lambda_p\sqrt{s}}{n-s-1} + \sqrt{2\log(s) \frac{2(n_1\sigma_1^2 + n_2\sigma_2^2)}{n(n-s-1)}} \\ 2372 \\ 2373 &= \frac{n\lambda_p\sqrt{s}}{n-s-1} + 2\sqrt{\frac{(n_1\sigma_1^2 + n_2\sigma_2^2) \log(s)}{n(n-s-1)}}. \\ 2374 \\ 2375 \end{aligned}$$

2376 Therefore, we have:

$$\begin{aligned}
 2378 \quad \mathbb{P} \left( \max_{i \in S} U_i \geq \rho \right) &\leq \mathbb{P} \left( \max_{i \in S} U_i \geq \rho \mid T^c \right) + K \left( \frac{s}{n_1} + \frac{s}{n_2} \right) \\
 2379 &\leq \mathbb{E} \left[ \mathbb{P} \left( \max_{i \in S} U_i \geq \rho \mid T^c, X_S \right) \right] + K \left( \frac{s}{n_1} + \frac{s}{n_2} \right) \\
 2380 &\stackrel{(55)}{\leq} \frac{1}{\rho} \left( \frac{n \lambda_p \sqrt{s}}{n - s - 1} + 2 \sqrt{\frac{(n_1 \sigma_1^2 + n_2 \sigma_2^2) \log(s)}{n(n - s - 1)}} \right) + K \left( \frac{s}{n_1} + \frac{s}{n_2} \right).
 \end{aligned}$$

2385 Hence we have:

$$2387 \quad \mathbb{P} \left( \max_{i \in S} U_i \geq \rho \right) \leq \frac{1}{\rho} \left( \lambda_p \sqrt{s} + \sqrt{\frac{(n_1 \sigma_1^2 + n_2 \sigma_2^2) \log(s)}{n^2}} \right) (1 + o_p(1)) + o_p(1), \quad (56)$$

2389 which converges to 0 as  $p \rightarrow +\infty$  under condition (24). Using a similar argument, we establish the  
2390 same bound for  $\{-U_i\}_{i \in S}$ , that:

$$2392 \quad \mathbb{P} \left( \max_{i \in S} \{-U_i\} \geq \rho \right) \leq \frac{1}{\rho} \left( \lambda_p \sqrt{s} + \sqrt{\frac{(n_1 \sigma_1^2 + n_2 \sigma_2^2) \log(s)}{n^2}} \right) (1 + o_p(1)) + o_p(1). \quad (57)$$

2395 Bringing together (56) and (57) and using a union bound, we conclude:

$$2396 \quad \mathbb{P} \left( \max_{i \in S} |U_i| < \rho \right) \xrightarrow{p \rightarrow +\infty} 1.$$

2399  $\square$

### 2400 D.3.1 PROOF OF LEMMA D.7

2402 *Proof of Lemma D.7.*

2404 **Mean of  $Y_i$ .** Recall that:

$$2405 \quad Y_i = -\lambda_p e_i^T \left( \frac{1}{n} X_S^T X_S \right)^{-1} \vec{b} = -\lambda_p n e_i^T (X_S^T X_S)^{-1} \vec{b}$$

2407 Note that  $X_S^T X_S \sim \mathcal{W}_s(I_s, n)$ . Using properties of the Wishart distribution (see Lemma 7.7.1 of  
2408 (Anderson et al., 1958)), we have:

$$2410 \quad \mathbb{E} \left[ (X_S^T X_S)^{-1} \right] = \left( \frac{1}{n - s - 1} \right) I_s.$$

2412 Therefore, we get:

$$2414 \quad \mathbb{E} [Y_i] = \frac{-\lambda_p n}{n - s - 1} e_i^T \vec{b}. \quad (58)$$

2416 **Mean of  $Y'_i$ .** Recall that:

$$\begin{aligned}
 2418 \quad Y'_i &= \frac{1}{n^2} e_i^T \left( \frac{1}{n} X_S^T X_S \right)^{-1} X_S^T \Sigma^2 X_S \left( \frac{1}{n} X_S^T X_S \right)^{-1} e_i \\
 2419 &= e_i^T (X_S^T X_S)^{-1} X_S^T \Sigma^2 X_S (X_S^T X_S)^{-1} e_i.
 \end{aligned}$$

2421 Now recall from (45) in the proof of Lemma D.2 the matrices  $Q \in \mathbb{R}^{n \times s}$ ,  $R \in \mathbb{R}^{s \times s}$ ,  $U \in \mathbb{R}^{n \times n}$   
2422 such that:

$$2423 \quad X_S = QR, \quad U = [P \quad Q],$$

2425 where  $Q^T Q = I_s$ ,  $R$  is upper triangular and  $U \sim \text{Haar}(n)$ . We have:

$$\begin{aligned}
 2426 \quad Y'_i &= e_i^T (X_S^T X_S)^{-1} X_S^T \Sigma^2 X_S (X_S^T X_S)^{-1} e_i \\
 2427 &= e_i^T (R^T R)^{-1} R^T Q^T \Sigma^2 Q R (R^T R)^{-1} e_i \\
 2428 &= e_i^T R^{-1} Q^T \Sigma^2 Q (R^T)^{-1} e_i.
 \end{aligned}$$

2430 Note that:

2431

$$2432 U^T \Sigma^2 U = \begin{bmatrix} P^T \\ Q^T \end{bmatrix} \Sigma^2 \begin{bmatrix} P & Q \end{bmatrix} = \begin{bmatrix} P^T \Sigma^2 \\ Q^T \Sigma^2 \end{bmatrix} \begin{bmatrix} P & Q \end{bmatrix} = \begin{bmatrix} P^T \Sigma^2 P & P^T \Sigma^2 Q \\ Q^T \Sigma^2 P & Q^T \Sigma^2 Q \end{bmatrix}.$$

2433

2434 Therefore:

2435

$$2436 \mathbb{E} [U^T \Sigma^2 U] = \begin{bmatrix} \mathbb{E} [P^T \Sigma^2 P] & \mathbb{E} [P^T \Sigma^2 Q] \\ \mathbb{E} [Q^T \Sigma^2 P] & \mathbb{E} [Q^T \Sigma^2 Q] \end{bmatrix}.$$

2437

2438 On the other hand, we know by the properties of the Haar distribution (see Example 1.8 of (Gu, 2013)) that:

2439

$$2440 \mathbb{E} [U^T \Sigma^2 U] = \frac{\text{tr}(\Sigma^2)}{n} I_n = \frac{n_1 \sigma_1^2 + n_2 \sigma_2^2}{n} I_n.$$

2441

2442 Hence:

2443

$$2444 \mathbb{E} [Q^T \Sigma^2 Q] = \frac{n_1 \sigma_1^2 + n_2 \sigma_2^2}{n} I_s.$$

2445

2446 Therefore:

2447

$$\begin{aligned} 2448 \mathbb{E} [Y'_i] &= \mathbb{E}_{Q,R} \left[ e_i^T R^{-1} Q^T \Sigma^2 Q (R^T)^{-1} e_i \right] \\ 2449 &= \mathbb{E} \left[ \mathbb{E} \left[ e_i^T R^{-1} Q^T \Sigma^2 Q (R^T)^{-1} e_i \mid R \right] \right] \\ 2450 &= \mathbb{E} \left[ e_i^T R^{-1} \mathbb{E} [Q^T \Sigma^2 Q \mid R] (R^T)^{-1} e_i \right] \\ 2451 &= \mathbb{E} \left[ e_i^T R^{-1} \mathbb{E} [Q^T \Sigma^2 Q] (R^T)^{-1} e_i \right] \\ 2452 &= \mathbb{E} \left[ e_i^T R^{-1} \left( \frac{n_1 \sigma_1^2 + n_2 \sigma_2^2}{n} I_s \right) (R^T)^{-1} e_i \right] \\ 2453 &= \left( \frac{n_1 \sigma_1^2 + n_2 \sigma_2^2}{n} \right) \mathbb{E} \left[ e_i^T (R^T R)^{-1} e_i \right] \\ 2454 &= \left( \frac{n_1 \sigma_1^2 + n_2 \sigma_2^2}{n} \right) \mathbb{E} \left[ e_i^T (R^T R)^{-1} e_i \right] \\ 2455 &= \left( \frac{n_1 \sigma_1^2 + n_2 \sigma_2^2}{n} \right) \mathbb{E} \left[ e_i^T (X_S^T X_S)^{-1} e_i \right] \\ 2456 &= \frac{n_1 \sigma_1^2 + n_2 \sigma_2^2}{n(n-s-1)} e_i^T e_i \\ 2457 &= \frac{n_1 \sigma_1^2 + n_2 \sigma_2^2}{n(n-s-1)}. \end{aligned}$$

2458

2459 **Concentration of  $Y_i$ .** Recall that:

2460

$$2461 Y_i = -\lambda_p n e_i^T (X_S^T X_S)^{-1} \vec{b}.$$

2462

2463 Thus:

2464

$$2465 Y_i^2 = Y_i Y_i^T = \lambda_p^2 n^2 e_i^T (X_S^T X_S)^{-1} \vec{b} \vec{b}^T (X_S^T X_S)^{-1} e_i.$$

2466

2467 Taking the expectation and recalling (46), we have:

2468

$$\begin{aligned} 2469 \mathbb{E} [Y_i^2] &= \lambda_p^2 n^2 e_i^T \mathbb{E} \left[ (X_S^T X_S)^{-1} \vec{b} \vec{b}^T (X_S^T X_S)^{-1} \right] e_i \\ 2470 &\stackrel{(46)}{=} \frac{\lambda_p^2 n^2}{(n-s-3)(n-s)} e_i^T \left[ \vec{b} \vec{b}^T + \left\| \vec{b} \right\|_2^2 I_s / (n-s-1) \right] e_i \\ 2471 &= \frac{\lambda_p^2 n^2}{(n-s-3)(n-s)} \left[ \vec{b}_i^2 + \left\| \vec{b} \right\|_2^2 / (n-s-1) \right] \\ 2472 &= \frac{\lambda_p^2 n^2}{(n-s-3)(n-s)} \left[ 1 + \frac{s}{n-s-1} \right], \end{aligned}$$

2473

where the last equality above holds because  $\vec{b} = \text{sign}(\beta^*)$  and  $i \in S = \text{Supp}(\beta^*)$ . Thus:

$$\mathbb{E}[Y_i^2] = \frac{\lambda_p^2 n^2 (n-1)}{(n-s-3)(n-s-1)(n-s)}.$$

Recalling (58), we get:

$$\begin{aligned} \text{Var}[Y_i] &= \frac{\lambda_p^2 n^2 (n-1)}{(n-s-3)(n-s-1)(n-s)} - \left( \frac{-\lambda_p n}{n-s-1} e_i^T \vec{b} \right)^2 \\ &= \frac{\lambda_p^2 n^2 (n-1)}{(n-s-3)(n-s-1)(n-s)} - \frac{\lambda_p^2 n^2 \vec{b}_i^2}{(n-s-1)^2} \\ &= \frac{\lambda_p^2 n^2}{(n-s-1)} \left[ \frac{(n-1)}{(n-s-3)(n-s)} - \frac{1}{n-s-1} \right]. \end{aligned}$$

Therefore:

$$\begin{aligned} \frac{\text{Var}[Y_i]}{s(\mathbb{E}[Y_i])^2} &= \frac{(n-s-1)^2}{s\lambda_p^2 n^2} \times \frac{\lambda_p^2 n^2}{(n-s-1)} \left[ \frac{(n-1)}{(n-s-3)(n-s)} - \frac{1}{n-s-1} \right] \\ &= \frac{1}{s} \left( \frac{(n-1)(n-s-1)}{(n-s-3)(n-s)} - 1 \right) \\ &= \frac{n^2 - n - ns + s - n + 1 - n^2 + ns + ns - s^2 + 3n - 3s}{s(n-s-3)(n-s)} \\ &= \frac{1 + ns - s^2 + n - 2s}{s(n-s-3)(n-s)} \\ &= \Theta\left(\frac{1}{n}\right). \end{aligned}$$

Now using inclusion and Chebyshev's inequality, we have:

$$\begin{aligned} \mathbb{P}\left(|Y_i| \geq \frac{n\lambda_p \sqrt{s}}{n-s-1}\right) &\stackrel{(58)}{\leq} \mathbb{P}\left(|Y_i - \mathbb{E}[Y_i]| \geq |\mathbb{E}[Y_i]|(\sqrt{s}-1)\right) \\ &\leq \frac{\text{Var}[Y_i]}{(\sqrt{s}-1)^2 (\mathbb{E}[Y_i])^2} \\ &= \Theta\left(\frac{\text{Var}[Y_i]}{s(\mathbb{E}[Y_i])^2}\right) \\ &= \Theta\left(\frac{1}{n}\right). \end{aligned}$$

In particular, the above implies:

$$\mathbb{P}\left(|Y_i| \geq \frac{n\lambda_p \sqrt{s}}{n-s-1}\right) = \mathcal{O}\left(\frac{1}{n_1} + \frac{1}{n_2}\right).$$

Therefore, there exists a universal constant  $K_1 > 0$  such that:

$$\mathbb{P}\left(|Y_i| \geq \frac{n\lambda_p \sqrt{s}}{n-s-1}\right) \leq K_1 \left(\frac{1}{n_1} + \frac{1}{n_2}\right). \quad (59)$$

**Concentration of  $Y'_i$ .** We have:

$$\begin{aligned} \mathbb{E}\left[(Y'_i)^2 | R\right] &= \mathbb{E}\left[\left(e_i^T R^{-1} Q^T \Sigma^2 Q (R^T)^{-1} e_i\right)^2 | R\right] \\ &= \mathbb{E}\left[\left(\left[R^{-1} Q^T \Sigma^2 Q (R^T)^{-1}\right]_{ii}\right)^2 | R\right] \end{aligned}$$

2538 We have, by Einstein notation:  
 2539  
 2540  
 2541  
 2542

$$\begin{aligned}
 2543 \left[ R^{-1} Q^T \Sigma^2 Q (R^T)^{-1} \right]_{ii} &= \sum_{a=1}^s \sum_{b=1}^n \sum_{c=1}^n \sum_{e=1}^s [R^{-1}]_{ia} [Q^T]_{ab} [\Sigma^2]_{bc} Q_{ce} \left[ (R^T)^{-1} \right]_{ei} \\
 2544 &= \sum_{a=1}^s \sum_{b=1}^n \sum_{c=1}^n \sum_{e=1}^s [R^{-1}]_{ia} [Q^T]_{ab} [\Sigma^2]_{bc} Q_{ce} \left[ (R^{-1})^T \right]_{ei} \\
 2545 &= \sum_{a=1}^s \sum_{b=1}^n \sum_{c=1}^n \sum_{e=1}^s [R^{-1}]_{ia} [Q^T]_{ab} [\Sigma^2]_{bc} Q_{ce} [R^{-1}]_{ie} \\
 2546 &= \sum_{a=1}^s \sum_{c=1}^n \sum_{e=1}^s [R^{-1}]_{ia} Q_{ca} \Sigma_{cc}^2 Q_{ce} [R^{-1}]_{ie} \\
 2547 &= \sum_{c=1}^n \sum_{a=1}^s \sum_{e=1}^s \Sigma_{cc}^2 [R^{-1}]_{ia} [R^{-1}]_{ie} Q_{ca} Q_{ce}.
 \end{aligned}$$

2551  
 2552  
 2553  
 2554  
 2555  
 2556  
 2557  
 2558  
 2559  
 2560 Therefore:  
 2561  
 2562  
 2563  
 2564  
 2565  $\left( \left[ R^{-1} Q^T \Sigma^2 Q (R^T)^{-1} \right]_{ii} \right)^2$   
 2566  
 2567  $= \left( \sum_{c=1}^n \sum_{a=1}^s \sum_{e=1}^s \Sigma_{cc}^2 [R^{-1}]_{ia} [R^{-1}]_{ie} Q_{ca} Q_{ce} \right)^2$   
 2568  
 2569  
 2570  $= \sum_{c=1}^n \sum_{a=1}^s \sum_{e=1}^s (\Sigma_{cc}^2 [R^{-1}]_{ia} [R^{-1}]_{ie} Q_{ca} Q_{ce})^2$   
 2571  
 2572  $+ \sum_{c=1}^n \sum_{a=1}^s \sum_{e \neq f \in [s]} (\Sigma_{cc}^2 [R^{-1}]_{ia} [R^{-1}]_{ie} Q_{ca} Q_{ce}) (\Sigma_{cc}^2 [R^{-1}]_{ia} [R^{-1}]_{if} Q_{ca} Q_{cf})$   
 2573  
 2574  
 2575  $+ \sum_{c=1}^n \sum_{a \neq b \in [s]} \sum_{e=1}^s (\Sigma_{cc}^2 [R^{-1}]_{ia} [R^{-1}]_{ie} Q_{ca} Q_{ce}) (\Sigma_{cc}^2 [R^{-1}]_{ib} [R^{-1}]_{ie} Q_{cb} Q_{ce})$   
 2576  
 2577  
 2578  $+ \sum_{c=1}^n \sum_{a \neq b \in [s]} \sum_{e \neq f \in [s]} (\Sigma_{cc}^2 [R^{-1}]_{ia} [R^{-1}]_{ie} Q_{ca} Q_{ce}) (\Sigma_{cc}^2 [R^{-1}]_{ib} [R^{-1}]_{if} Q_{cb} Q_{cf})$   
 2579  
 2580  
 2581  $+ \sum_{c \neq d \in [n]} \sum_{a=1}^s \sum_{e=1}^s (\Sigma_{cc}^2 [R^{-1}]_{ia} [R^{-1}]_{ie} Q_{ca} Q_{ce}) (\Sigma_{dd}^2 [R^{-1}]_{ia} [R^{-1}]_{ie} Q_{da} Q_{de})$   
 2582  
 2583  
 2584  $+ \sum_{c \neq d \in [n]} \sum_{a=1}^s \sum_{e \neq f \in [s]} (\Sigma_{cc}^2 [R^{-1}]_{ia} [R^{-1}]_{ie} Q_{ca} Q_{ce}) (\Sigma_{dd}^2 [R^{-1}]_{ia} [R^{-1}]_{if} Q_{da} Q_{df})$   
 2585  
 2586  
 2587  $+ \sum_{c \neq d \in [n]} \sum_{a \neq b \in [s]} \sum_{e=1}^s (\Sigma_{cc}^2 [R^{-1}]_{ia} [R^{-1}]_{ie} Q_{ca} Q_{ce}) (\Sigma_{dd}^2 [R^{-1}]_{ib} [R^{-1}]_{ie} Q_{db} Q_{de})$   
 2588  
 2589  
 2590  $+ \sum_{c \neq d \in [n]} \sum_{a \neq b \in [s]} \sum_{e \neq f \in [s]} (\Sigma_{cc}^2 [R^{-1}]_{ia} [R^{-1}]_{ie} Q_{ca} Q_{ce}) (\Sigma_{dd}^2 [R^{-1}]_{ib} [R^{-1}]_{if} Q_{db} Q_{df})$   
 2591

$$\begin{aligned}
&= \sum_{c=1}^n \sum_{a=1}^s \sum_{e=1}^s \Sigma_{cc}^4 [R^{-1}]_{ia}^2 [R^{-1}]_{ie}^2 Q_{ca}^2 Q_{ce}^2 \\
&\quad + \sum_{c=1}^n \sum_{a=1}^s \sum_{e \neq f \in [s]} \Sigma_{cc}^4 [R^{-1}]_{ia}^2 [R^{-1}]_{ie} [R^{-1}]_{if}^2 Q_{ca}^2 Q_{ce} Q_{cf} \\
&\quad + \sum_{c=1}^n \sum_{a \neq b \in [s]} \sum_{e=1}^s \Sigma_{cc}^4 [R^{-1}]_{ia} [R^{-1}]_{ib} [R^{-1}]_{ie}^2 Q_{ca} Q_{cb} Q_{ce}^2 \\
&\quad + \sum_{c=1}^n \sum_{a \neq b \in [s]} \sum_{e \neq f \in [s]} \Sigma_{cc}^4 [R^{-1}]_{ia} [R^{-1}]_{ib} [R^{-1}]_{ie} [R^{-1}]_{if}^2 Q_{ca} Q_{cb} Q_{ce} Q_{cf} \\
&\quad + \sum_{c \neq d \in [n]} \sum_{a=1}^s \sum_{e=1}^s \Sigma_{cc}^2 \Sigma_{dd}^2 [R^{-1}]_{ia}^2 [R^{-1}]_{ie}^2 Q_{ca} Q_{ce} Q_{da} Q_{de} \\
&\quad + \sum_{c \neq d \in [n]} \sum_{a=1}^s \sum_{e \neq f \in [s]} \Sigma_{cc}^2 \Sigma_{dd}^2 [R^{-1}]_{ia}^2 [R^{-1}]_{ie} [R^{-1}]_{if}^2 Q_{ca} Q_{ce} Q_{da} Q_{df} \\
&\quad + \sum_{c \neq d \in [n]} \sum_{a \neq b \in [s]} \sum_{e=1}^s \Sigma_{cc}^2 \Sigma_{dd}^2 [R^{-1}]_{ia} [R^{-1}]_{ib} [R^{-1}]_{ie}^2 Q_{ca} Q_{ce} Q_{db} Q_{de} \\
&\quad + \sum_{c \neq d \in [n]} \sum_{a \neq b \in [s]} \sum_{e \neq f \in [s]} \Sigma_{cc}^2 \Sigma_{dd}^2 [R^{-1}]_{ia} [R^{-1}]_{ib} [R^{-1}]_{ie} [R^{-1}]_{if}^2 Q_{ca} Q_{ce} Q_{db} Q_{df} \\
&= \sum_{c=1}^n \sum_{a=1}^s \sum_{e=1}^s \Sigma_{cc}^4 [R^{-1}]_{ia}^2 [R^{-1}]_{ie}^2 Q_{ca}^2 Q_{ce}^2 \\
&\quad + 2 \sum_{c=1}^n \sum_{a=1}^s \sum_{e \neq f \in [s]} \Sigma_{cc}^4 [R^{-1}]_{ia}^2 [R^{-1}]_{ie} [R^{-1}]_{if}^2 Q_{ca}^2 Q_{ce} Q_{cf} \\
&\quad + \sum_{c=1}^n \sum_{a \neq b \in [s]} \sum_{e \neq f \in [s]} \Sigma_{cc}^4 [R^{-1}]_{ia} [R^{-1}]_{ib} [R^{-1}]_{ie} [R^{-1}]_{if}^2 Q_{ca} Q_{cb} Q_{ce} Q_{cf} \\
&\quad + \sum_{c \neq d \in [n]} \sum_{a=1}^s \sum_{e=1}^s \Sigma_{cc}^2 \Sigma_{dd}^2 [R^{-1}]_{ia}^2 [R^{-1}]_{ie}^2 Q_{ca} Q_{ce} Q_{da} Q_{de} \\
&\quad + 2 \sum_{c \neq d \in [n]} \sum_{a=1}^s \sum_{e \neq f \in [s]} \Sigma_{cc}^2 \Sigma_{dd}^2 [R^{-1}]_{ia}^2 [R^{-1}]_{ie} [R^{-1}]_{if}^2 Q_{ca} Q_{ce} Q_{da} Q_{df} \\
&\quad + \sum_{c \neq d \in [n]} \sum_{a \neq b \in [s]} \sum_{e \neq f \in [s]} \Sigma_{cc}^2 \Sigma_{dd}^2 [R^{-1}]_{ia} [R^{-1}]_{ib} [R^{-1}]_{ie} [R^{-1}]_{if}^2 Q_{ca} Q_{ce} Q_{db} Q_{df}.
\end{aligned}$$

2646 Taking the expectation of the above conditionally on  $R$  and by independence of  $Q$  and  $R$ , we get:  
 2647

$$\begin{aligned}
 & \mathbb{E} \left[ (Y'_i)^2 \mid R \right] \\
 &= \mathbb{E} \left[ \left( \left[ R^{-1} Q^T \Sigma^2 Q (R^T)^{-1} \right]_{ii} \right)^2 \mid R \right] \\
 &= \sum_{c=1}^n \sum_{a=1}^s \sum_{e=1}^s \Sigma_{cc}^4 [R^{-1}]_{ia}^2 [R^{-1}]_{ie}^2 \mathbb{E} [Q_{ca}^2 Q_{ce}^2] \\
 &+ 2 \sum_{c=1}^n \sum_{a=1}^s \sum_{e \neq f \in [s]} \Sigma_{cc}^4 [R^{-1}]_{ia}^2 [R^{-1}]_{ie}^2 [R^{-1}]_{if}^2 \mathbb{E} [Q_{ca}^2 Q_{ce} Q_{cf}] \\
 &+ \sum_{c=1}^n \sum_{a \neq b \in [s]} \sum_{e \neq f \in [s]} \Sigma_{cc}^4 [R^{-1}]_{ia}^2 [R^{-1}]_{ib}^2 [R^{-1}]_{ie}^2 [R^{-1}]_{if}^2 \mathbb{E} [Q_{ca} Q_{cb} Q_{ce} Q_{cf}] \\
 &+ \sum_{c \neq d \in [n]} \sum_{a=1}^s \sum_{e=1}^s \Sigma_{cc}^2 \Sigma_{dd}^2 [R^{-1}]_{ia}^2 [R^{-1}]_{ie}^2 \mathbb{E} [Q_{ca} Q_{ce} Q_{da} Q_{de}] \\
 &+ 2 \sum_{c \neq d \in [n]} \sum_{a=1}^s \sum_{e \neq f \in [s]} \Sigma_{cc}^2 \Sigma_{dd}^2 [R^{-1}]_{ia}^2 [R^{-1}]_{ie}^2 [R^{-1}]_{if}^2 \mathbb{E} [Q_{ca} Q_{ce} Q_{da} Q_{df}] \\
 &+ \sum_{c \neq d \in [n]} \sum_{a \neq b \in [s]} \sum_{e \neq f \in [s]} \Sigma_{cc}^2 \Sigma_{dd}^2 [R^{-1}]_{ia}^2 [R^{-1}]_{ib}^2 [R^{-1}]_{ie}^2 [R^{-1}]_{if}^2 \mathbb{E} [Q_{ca} Q_{ce} Q_{db} Q_{df}],
 \end{aligned}$$

2670 Now recall from Lemma D.6 above (by Meckes (2019)) that for all  $i, j, r, s, \alpha, \beta, \lambda, \mu \in [n]$  we  
 2671 have:  
 2672

$$\begin{aligned}
 & \mathbb{E} [U_{ij} U_{rs} U_{\alpha\beta} U_{\lambda\mu}] \\
 &= -\frac{1}{(n-1)n(n+2)} \left[ \delta_{ir} \delta_{\alpha\lambda} \delta_{j\beta} \delta_{s\mu} + \delta_{ir} \delta_{\alpha\lambda} \delta_{j\mu} \delta_{s\beta} + \delta_{i\alpha} \delta_{r\lambda} \delta_{js} \delta_{\beta\mu} \right. \\
 & \quad \left. + \delta_{i\alpha} \delta_{r\lambda} \delta_{j\mu} \delta_{\beta s} + \delta_{i\lambda} \delta_{r\alpha} \delta_{js} \delta_{\beta\mu} + \delta_{i\lambda} \delta_{r\alpha} \delta_{j\beta} \delta_{s\mu} \right] \\
 &+ \frac{n+1}{(n-1)n(n+2)} \left[ \delta_{ir} \delta_{\alpha\lambda} \delta_{js} \delta_{\beta\mu} + \delta_{i\alpha} \delta_{r\lambda} \delta_{j\beta} \delta_{s\mu} + \delta_{i\lambda} \delta_{r\alpha} \delta_{j\mu} \delta_{s\beta} \right].
 \end{aligned}$$

2682 Also, recall from (45) that:  
 2683

$$U = [P \quad Q],$$

2686 hence for any  $\alpha \in [n], \beta \in [s]$ :

$$Q_{\alpha\beta} = U_{\alpha(n-s+\beta)}. \quad (60)$$

2690 Since the above fourth-order formula only depends on indices through Kronecker deltas, it holds  
 2691 that for any  $i, r, \alpha, \lambda \in [n], j, s, \alpha, \beta, \mu \in [s]$ :

$$\begin{aligned}
 & \mathbb{E} [Q_{ij} Q_{rs} Q_{\alpha\beta} Q_{\lambda\mu}] \\
 &= -\frac{1}{(n-1)n(n+2)} \left[ \delta_{ir} \delta_{\alpha\lambda} \delta_{j\beta} \delta_{s\mu} + \delta_{ir} \delta_{\alpha\lambda} \delta_{j\mu} \delta_{s\beta} + \delta_{i\alpha} \delta_{r\lambda} \delta_{js} \delta_{\beta\mu} \right. \\
 & \quad \left. + \delta_{i\alpha} \delta_{r\lambda} \delta_{j\mu} \delta_{\beta s} + \delta_{i\lambda} \delta_{r\alpha} \delta_{js} \delta_{\beta\mu} + \delta_{i\lambda} \delta_{r\alpha} \delta_{j\beta} \delta_{s\mu} \right] \\
 &+ \frac{n+1}{(n-1)n(n+2)} \left[ \delta_{ir} \delta_{\alpha\lambda} \delta_{js} \delta_{\beta\mu} + \delta_{i\alpha} \delta_{r\lambda} \delta_{j\beta} \delta_{s\mu} + \delta_{i\lambda} \delta_{r\alpha} \delta_{j\mu} \delta_{s\beta} \right]
 \end{aligned}$$

In addition, note that the expression above is equal to zero when one of  $\{j, s, \alpha, \mu\}$  is different than all the others. This observation simplifies the expression of  $\mathbb{E}[(Y'_i)^2 | R]$  above as follows:

$$\begin{aligned}
 \mathbb{E}[(Y'_i)^2 | R] &= \sum_{c=1}^n \sum_{a=1}^s \sum_{e=1}^s \Sigma_{cc}^4 [R^{-1}]_{ia}^2 [R^{-1}]_{ie}^2 \mathbb{E}[Q_{ca}^2 Q_{ce}^2] \\
 &\quad + \sum_{c=1}^n \sum_{a \neq b \in [s]} \sum_{e \neq f \in [s]} \Sigma_{cc}^4 [R^{-1}]_{ia} [R^{-1}]_{ib} [R^{-1}]_{ie} [R^{-1}]_{if} \mathbb{E}[Q_{ca} Q_{cb} Q_{ce} Q_{cf}] \\
 &\quad + \sum_{c \neq d \in [n]} \sum_{a=1}^s \sum_{e=1}^s \Sigma_{cc}^2 \Sigma_{dd}^2 [R^{-1}]_{ia}^2 [R^{-1}]_{ie}^2 \mathbb{E}[Q_{ca} Q_{ce} Q_{da} Q_{de}] \\
 &\quad + \sum_{c \neq d \in [n]} \sum_{a \neq b \in [s]} \sum_{e \neq f \in [s]} \Sigma_{cc}^2 \Sigma_{dd}^2 [R^{-1}]_{ia} [R^{-1}]_{ib} [R^{-1}]_{ie} [R^{-1}]_{if} \mathbb{E}[Q_{ca} Q_{ce} Q_{db} Q_{df}].
 \end{aligned}$$

Thus:

$$\begin{aligned}
 \mathbb{E}[(Y'_i)^2 | R] &= \sum_{c=1}^n \sum_{a=1}^s \Sigma_{cc}^4 [R^{-1}]_{ia}^4 \mathbb{E}[Q_{ca}^4] \\
 &\quad + \sum_{c=1}^n \sum_{a \neq e \in [s]} \Sigma_{cc}^4 [R^{-1}]_{ia}^2 [R^{-1}]_{ie}^2 \mathbb{E}[Q_{ca}^2 Q_{ce}^2] \\
 &\quad + \sum_{c=1}^n \sum_{a \neq b \in [s]} \sum_{e \neq f \in [s]} \Sigma_{cc}^4 [R^{-1}]_{ia} [R^{-1}]_{ib} [R^{-1}]_{ie} [R^{-1}]_{if} \\
 &\quad \quad \quad \times \mathbb{E}[Q_{ca} Q_{cb} Q_{ce} Q_{cf}] \mathbb{1}\{(a, b) = (e, f)\} \\
 &\quad + \sum_{c=1}^n \sum_{a \neq b \in [s]} \sum_{e \neq f \in [s]} \Sigma_{cc}^4 [R^{-1}]_{ia} [R^{-1}]_{ib} [R^{-1}]_{ie} [R^{-1}]_{if} \\
 &\quad \quad \quad \times \mathbb{E}[Q_{ca} Q_{cb} Q_{ce} Q_{cf}] \mathbb{1}\{(a, b) = (f, e)\} \\
 &\quad + \sum_{c \neq d \in [n]} \sum_{a=1}^s \Sigma_{cc}^2 \Sigma_{dd}^2 [R^{-1}]_{ia}^4 \mathbb{E}[Q_{ca}^2 Q_{da}^2] \\
 &\quad + \sum_{c \neq d \in [n]} \sum_{a \neq e \in [s]} \Sigma_{cc}^2 \Sigma_{dd}^2 [R^{-1}]_{ia}^2 [R^{-1}]_{ie}^2 \mathbb{E}[Q_{ca} Q_{ce} Q_{da} Q_{de}] \\
 &\quad + \sum_{c \neq d \in [n]} \sum_{a \neq b \in [s]} \sum_{e \neq f \in [s]} \Sigma_{cc}^2 \Sigma_{dd}^2 [R^{-1}]_{ia} [R^{-1}]_{ib} [R^{-1}]_{ie} [R^{-1}]_{if} \\
 &\quad \quad \quad \times \mathbb{E}[Q_{ca} Q_{ce} Q_{db} Q_{df}] \mathbb{1}\{(a, b) = (e, f)\} \\
 &\quad + \sum_{c \neq d \in [n]} \sum_{a \neq b \in [s]} \sum_{e \neq f \in [s]} \Sigma_{cc}^2 \Sigma_{dd}^2 [R^{-1}]_{ia} [R^{-1}]_{ib} [R^{-1}]_{ie} [R^{-1}]_{if} \\
 &\quad \quad \quad \times \mathbb{E}[Q_{ca} Q_{ce} Q_{db} Q_{df}] \mathbb{1}\{(a, b) = (f, e)\}.
 \end{aligned}$$

2754

Thus:

2755

2756

$$\begin{aligned}
\mathbb{E} \left[ (Y'_i)^2 \mid R \right] &= \sum_{c=1}^n \sum_{a=1}^s \Sigma_{cc}^4 [R^{-1}]_{ia}^4 \mathbb{E} [Q_{ca}^4] \\
&\quad + \sum_{c=1}^n \sum_{a \neq e \in [s]} \Sigma_{cc}^4 [R^{-1}]_{ia}^2 [R^{-1}]_{ie}^2 \mathbb{E} [Q_{ca}^2 Q_{ce}^2] \\
&\quad + \sum_{c=1}^n \sum_{a \neq b \in [s]} \Sigma_{cc}^4 [R^{-1}]_{ia}^2 [R^{-1}]_{ib}^2 \mathbb{E} [Q_{ca}^2 Q_{cb}^2] \\
&\quad + \sum_{c=1}^n \sum_{a \neq b \in [s]} \Sigma_{cc}^4 [R^{-1}]_{ia}^2 [R^{-1}]_{ib}^2 \mathbb{E} [Q_{ca}^2 Q_{cb}^2] \\
&\quad + \sum_{c \neq d \in [n]} \sum_{a=1}^s \Sigma_{cc}^2 \Sigma_{dd}^2 [R^{-1}]_{ia}^4 \mathbb{E} [Q_{ca}^2 Q_{da}^2] \\
&\quad + \sum_{c \neq d \in [n]} \sum_{a \neq e \in [s]} \Sigma_{cc}^2 \Sigma_{dd}^2 [R^{-1}]_{ia}^2 [R^{-1}]_{ie}^2 \mathbb{E} [Q_{ca} Q_{ce} Q_{da} Q_{de}] \\
&\quad + \sum_{c \neq d \in [n]} \sum_{a \neq b \in [s]} \Sigma_{cc}^2 \Sigma_{dd}^2 [R^{-1}]_{ia}^2 [R^{-1}]_{ib}^2 \mathbb{E} [Q_{ca}^2 Q_{db}^2] \\
&\quad + \sum_{c \neq d \in [n]} \sum_{a \neq b \in [s]} \Sigma_{cc}^2 \Sigma_{dd}^2 [R^{-1}]_{ia}^2 [R^{-1}]_{ib}^2 \mathbb{E} [Q_{ca} Q_{cb} Q_{db} Q_{da}].
\end{aligned}$$

2768

Hence:

2769

2770

2771

2772

2773

2774

2775

2776

2777

2778

2779

2780

2781

2782

$$\begin{aligned}
\mathbb{E} \left[ (Y'_i)^2 \mid R \right] &= \sum_{c=1}^n \sum_{a=1}^s \Sigma_{cc}^4 [R^{-1}]_{ia}^4 \mathbb{E} [Q_{ca}^4] \\
&\quad + 3 \sum_{c=1}^n \sum_{a \neq b \in [s]} \Sigma_{cc}^4 [R^{-1}]_{ia}^2 [R^{-1}]_{ib}^2 \mathbb{E} [Q_{ca}^2 Q_{cb}^2]
\end{aligned}$$

2783

2784

2785

2786

2787

2788

2789

2790

2791

2792

2793

2794

2795

2796

2797

2798

Now recalling (50), (51), (52), (53), (54), and using (60) we have:

2799

2800

2801

2802

2803

2804

2805

2806

2807

$$\begin{aligned}
\mathbb{E} [Q_{ca}^4] &= \frac{3}{n(n+2)} \\
\mathbb{E} [Q_{ca}^2 Q_{cb}^2] &= \mathbb{E} [Q_{ca}^2 Q_{da}^2] = \frac{1}{n(n+2)} \\
\mathbb{E} [Q_{ca}^2 Q_{db}^2] &= \frac{n+1}{(n-1)n(n+2)} \\
\mathbb{E} [Q_{ca} Q_{cb} Q_{db} Q_{da}] &= -\frac{1}{(n-1)n(n+2)}.
\end{aligned}$$

2808

Therefore:

2809

2810

$$\begin{aligned}
\mathbb{E} \left[ (Y'_i)^2 \mid R \right] &= \sum_{c=1}^n \sum_{a=1}^s \Sigma_{cc}^4 [R^{-1}]_{ia}^4 \mathbb{E} [Q_{ca}^4] \\
&\quad + 3 \sum_{c=1}^n \sum_{a \neq b \in [s]} \Sigma_{cc}^4 [R^{-1}]_{ia}^2 [R^{-1}]_{ib}^2 \mathbb{E} [Q_{ca}^2 Q_{cb}^2] \\
&\quad + \sum_{c \neq d \in [n]} \sum_{a=1}^s \Sigma_{cc}^2 \Sigma_{dd}^2 [R^{-1}]_{ia}^4 \mathbb{E} [Q_{ca}^2 Q_{da}^2] \\
&\quad + \sum_{c \neq d \in [n]} \sum_{a \neq b \in [s]} \Sigma_{cc}^2 \Sigma_{dd}^2 [R^{-1}]_{ia}^2 [R^{-1}]_{ib}^2 \mathbb{E} [Q_{ca}^2 Q_{db}^2] \\
&\quad + 2 \sum_{c \neq d \in [n]} \sum_{a \neq b \in [s]} \Sigma_{cc}^2 \Sigma_{dd}^2 [R^{-1}]_{ia}^2 [R^{-1}]_{ib}^2 \mathbb{E} [Q_{ca} Q_{cb} Q_{db} Q_{da}]
\end{aligned}$$

2824

Thus:

2825

2826

2827

$$\begin{aligned}
\mathbb{E} \left[ (Y'_i)^2 \mid R \right] &= \frac{3}{n(n+2)} \sum_{c=1}^n \sum_{a=1}^s \Sigma_{cc}^4 [R^{-1}]_{ia}^4 \\
&\quad + \frac{3}{n(n+2)} \sum_{c=1}^n \sum_{a \neq b \in [s]} \Sigma_{cc}^4 [R^{-1}]_{ia}^2 [R^{-1}]_{ib}^2 \\
&\quad + \frac{1}{n(n+2)} \sum_{c \neq d \in [n]} \sum_{a=1}^s \Sigma_{cc}^2 \Sigma_{dd}^2 [R^{-1}]_{ia}^4 \\
&\quad + \frac{n+1}{(n-1)n(n+2)} \sum_{c \neq d \in [n]} \sum_{a \neq b \in [s]} \Sigma_{cc}^2 \Sigma_{dd}^2 [R^{-1}]_{ia}^2 [R^{-1}]_{ib}^2 \\
&\quad - \frac{2}{(n-1)n(n+2)} \sum_{c \neq d \in [n]} \sum_{a \neq b \in [s]} \Sigma_{cc}^2 \Sigma_{dd}^2 [R^{-1}]_{ia}^2 [R^{-1}]_{ib}^2
\end{aligned}$$

2841

Thus:

2842

2843

2844

2845

2846

2847

2848

2849

2850

2851

2852

2853

2854

2855

2856

2857

2858

2859

2860

2861

$$\begin{aligned}
\mathbb{E} \left[ (Y'_i)^2 \mid R \right] &= \frac{3}{n(n+2)} \left( \sum_{c=1}^n \Sigma_{cc}^4 \right) \left\{ \sum_{a=1}^s [R^{-1}]_{ia}^4 + \sum_{a \neq b \in [s]} [R^{-1}]_{ia}^2 [R^{-1}]_{ib}^2 \right\} \\
&\quad + \frac{1}{n(n+2)} \left( \sum_{c \neq d \in [n]} \Sigma_{cc}^2 \Sigma_{dd}^2 \right) \left\{ \sum_{a=1}^s [R^{-1}]_{ia}^4 + \sum_{a \neq b \in [s]} [R^{-1}]_{ia}^2 [R^{-1}]_{ib}^2 \right\} \\
&= \frac{1}{n(n+2)} \left\{ 3 \sum_{c=1}^n \Sigma_{cc}^4 + \sum_{c \neq d \in [n]} \Sigma_{cc}^2 \Sigma_{dd}^2 \right\} \left\{ \sum_{a=1}^s [R^{-1}]_{ia}^4 + \sum_{a \neq b \in [s]} [R^{-1}]_{ia}^2 [R^{-1}]_{ib}^2 \right\} \\
&= \frac{1}{n(n+2)} \left\{ 3 \sum_{c=1}^n \Sigma_{cc}^4 + \left[ \left( \sum_{c=1}^n \Sigma_{cc}^2 \right)^2 - \sum_{c=1}^n \Sigma_{cc}^4 \right] \right\} \left( \sum_{a=1}^s [R^{-1}]_{ia}^2 \right)^2 \\
&= \frac{1}{n(n+2)} \left\{ 2 \text{tr} (\Sigma^4) + \text{tr} (\Sigma^2)^2 \right\} \left( \sum_{a=1}^s [R^{-1}]_{ia}^2 \right)^2.
\end{aligned}$$

2862 Now note that:  
 2863

$$\begin{aligned}
 e_i^T (X_S^T X_S)^{-1} e_i &= \left[ (R^T R)^{-1} \right]_{ii} \\
 &= \left[ R^{-1} (R^{-1})^T \right]_{ii} \\
 &= \sum_{a=1}^s [R^{-1}]_{ia} \left[ (R^{-1})^T \right]_{ai} \\
 &= \sum_{a=1}^s [R^{-1}]_{ia} [R^{-1}]_{ia} \\
 &= \sum_{a=1}^s [R^{-1}]_{ia}^2.
 \end{aligned}$$

2868 On the other hand, recall that  $X_S^T X_S \sim \mathcal{W}_s(I_s, n)$ . Setting  $b := n$ ;  $a := s$ ;  $t := e_i$ ;  $T := I_s$  and  
 2869  $A := X_S^T X_S$  in Lemma D.4, we get:

$$\begin{aligned}
 \mathbb{E} \left[ (X_S^T X_S)^{-1} e_i e_i^T (X_S^T X_S)^{-1} \right] &= \frac{1}{(n-s)(n-s-3)} (e_i e_i^T + (e_i^T e_i) I_s / (n-s-1)) \\
 &= \frac{1}{(n-s)(n-s-3)} \left( e_i e_i^T + \frac{1}{n-s-1} I_s \right).
 \end{aligned}$$

2870 Therefore:

$$\begin{aligned}
 \mathbb{E} \left[ \left( e_i^T (X_S^T X_S)^{-1} e_i \right)^2 \right] &= e_i^T \mathbb{E} \left[ (X_S^T X_S)^{-1} e_i e_i^T (X_S^T X_S)^{-1} \right] e_i \\
 &= \left[ \mathbb{E} \left[ (X_S^T X_S)^{-1} e_i e_i^T (X_S^T X_S)^{-1} \right] \right]_{ii} \\
 &= \left[ \frac{1}{(n-s)(n-s-3)} \left( e_i e_i^T + \frac{1}{n-s-1} I_s \right) \right]_{ii}.
 \end{aligned}$$

2871 Hence:

$$\mathbb{E} \left[ \left( \sum_{a=1}^s [R^{-1}]_{ia}^2 \right)^2 \right] = \mathbb{E} \left[ \left( e_i^T (X_S^T X_S)^{-1} e_i \right)^2 \right] = \frac{1}{(n-s)(n-s-3)} \left( 1 + \frac{1}{n-s-1} \right).$$

2872 Hence, we get:

$$\begin{aligned}
 \mathbb{E} \left[ (Y'_i)^2 \right] &= \mathbb{E} \left[ \mathbb{E} \left[ (Y'_i)^2 | R \right] \right] \\
 &= \mathbb{E} \left[ \frac{1}{n(n+2)} \left\{ 2 \text{tr}(\Sigma^4) + \text{tr}(\Sigma^2)^2 \right\} \left( \sum_{a=1}^s [R^{-1}]_{ia}^2 \right)^2 \right] \\
 &= \frac{1}{n(n+2)} \left\{ 2 \text{tr}(\Sigma^4) + \text{tr}(\Sigma^2)^2 \right\} \mathbb{E} \left[ \left( \sum_{a=1}^s [R^{-1}]_{ia}^2 \right)^2 \right] \\
 &= \frac{1}{(n-s)(n-s-3)n(n+2)} \left( 1 + \frac{1}{n-s-1} \right) \left\{ 2 \text{tr}(\Sigma^4) + \text{tr}(\Sigma^2)^2 \right\} \\
 &= \frac{2(n_1\sigma_1^4 + n_2\sigma_2^4) + (n_1\sigma_1^2 + n_2\sigma_2^2)^2}{(n-s)(n-s-3)n(n+2)} \left( 1 + \frac{1}{n-s-1} \right).
 \end{aligned}$$

Therefore:

$$\begin{aligned}
 \text{2918} \quad \text{Var}(Y'_i) &= \frac{\mathbb{E}[(Y'_i)^2] - (\mathbb{E}[Y'_i])^2}{(\mathbb{E}[Y'_i])^2} \\
 \text{2919} \quad &= \frac{\frac{2(n_1\sigma_1^4 + n_2\sigma_2^4) + (n_1\sigma_1^2 + n_2\sigma_2^2)^2}{(n-s)(n-s-3)n(n+2)} \left(1 + \frac{1}{n-s-1}\right) - \left(\frac{n_1\sigma_1^2 + n_2\sigma_2^2}{n(n-s-1)}\right)^2}{\left(\frac{n_1\sigma_1^2 + n_2\sigma_2^2}{n(n-s-1)}\right)^2} \\
 \text{2920} \quad &= \frac{\frac{2(n_1\sigma_1^4 + n_2\sigma_2^4) + (n_1\sigma_1^2 + n_2\sigma_2^2)^2}{(n-s)(n-s-3)n(n+2)} \left(1 + \frac{1}{n-s-1}\right) - \left(\frac{n_1\sigma_1^2 + n_2\sigma_2^2}{n(n-s-1)}\right)^2}{\left(\frac{n_1\sigma_1^2 + n_2\sigma_2^2}{n(n-s-1)}\right)^2} \\
 \text{2921} \quad &= \frac{n^2(n-s-1)^2}{(n-s)(n-s-3)n(n+2)} \left( \frac{2(n_1\sigma_1^4 + n_2\sigma_2^4) + (n_1\sigma_1^2 + n_2\sigma_2^2)^2}{(n_1\sigma_1^2 + n_2\sigma_2^2)^2} \right) \\
 \text{2922} \quad &\quad \times \left(1 + \frac{1}{n-s-1}\right) - 1 \\
 \text{2923} \quad &= \frac{n(n-s-1)}{(n-s-3)(n+2)} \left( \frac{2(n_1\sigma_1^4 + n_2\sigma_2^4)}{(n_1\sigma_1^2 + n_2\sigma_2^2)^2} + 1 \right) - 1 \\
 \text{2924} \quad &= \frac{n(n-s-1)}{(n-s-3)(n+2)} \left( \frac{2n_1\sigma_1^4 + 2n_2\sigma_2^4}{n_1^2\sigma_1^4 + n_2^2\sigma_2^4 + 2n_1n_2\sigma_1^2\sigma_2^2} + 1 \right) - 1 \\
 \text{2925} \quad &\leq \frac{n(n-s-1)}{(n-s-3)(n+2)} \left( \frac{2}{n_1} + \frac{2}{n_2} + 1 \right) - 1 \\
 \text{2926} \quad &= \frac{n(n-s-1)}{(n-s-3)(n+2)} \left( \frac{2}{n_1} + \frac{2}{n_2} \right) + \left\{ \frac{n(n-s-1)}{(n-s-3)(n+2)} - 1 \right\} \\
 \text{2927} \quad &= \frac{n(n-s-1)}{(n-s-3)(n+2)} \left( \frac{2}{n_1} + \frac{2}{n_2} \right) \\
 \text{2928} \quad &\quad + \frac{n^2 - ns - n - n^2 + ns + 3n - 2n + 2s + 6}{(n-s-3)(n+2)} \\
 \text{2929} \quad &= \frac{n(n-s-1)}{(n-s-3)(n+2)} \left( \frac{2}{n_1} + \frac{2}{n_2} \right) + \frac{2(s+3)}{(n-s-3)(n+2)}.
 \end{aligned}$$

Hence there exists a universal constant  $K_2$  such that:

$$\frac{\text{Var}(Y'_i)}{(\mathbb{E}[Y'_i])^2} \leq K_2 \left( \frac{1}{n_1} + \frac{1}{n_2} \right).$$

By Chebyshev's inequality, we conclude:

$$\mathbb{P}(Y'_i \geq 2\mathbb{E}[Y'_i]) \leq K_2 \left( \frac{1}{n_1} + \frac{1}{n_2} \right). \quad (61)$$

Bringing together (59) and (61) and using a union bound, we conclude that there exists a universal constant  $K > 0$  such that:

$$\mathbb{P}(|Y_i| \geq \frac{n\lambda_p\sqrt{s}}{n-s-1}, \text{ or } |Y'_i| \geq 2\mathbb{E}[Y'_i]) \leq K \left( \frac{1}{n_1} + \frac{1}{n_2} \right). \quad (62)$$

□

## E PROOF OF PROPOSITION 4.1

*Proof of Proposition 4.1.* First, assume there exists  $(\lambda_p)_{p \geq 1} \rightarrow 0$  such that (24) holds. By the first part of (24), we have:

$$\frac{\sigma_{\text{avg}}^2 \log(p-s)}{n} = o(\lambda_p^2). \quad (63)$$

2970 Using (63) and  $(\lambda_p)_{p \geq 1} \rightarrow 0$ , we get:  
 2971

$$\frac{\sigma_{\text{avg}}^2 \log(p-s)}{n} \rightarrow 0. \quad (64)$$

2972 In addition, by the second part of (24), we have:  
 2973

$$\lambda_p^2 = o\left(\frac{\rho^2}{s}\right). \quad (65)$$

2974 Using (63) and (65), we get:  
 2975

$$\frac{\sigma_{\text{avg}}^2 \log(p-s) s}{n \rho^2} \rightarrow 0. \quad (66)$$

2976 Taking the sum of (64) and (66), we obtain:  
 2977

$$\frac{\sigma_{\text{avg}}^2 \log(p-s) (1 + s/\rho^2)}{n} \rightarrow 0.$$

2978 Hence, we conclude:  
 2979

$$\sigma_{\text{avg}}^2 = o\left(\frac{n}{(1 + s/\rho^2) \log(p-s)}\right).$$

2980 Second, assume (26) holds and let:  
 2981

$$\lambda_p := \left(\frac{\sigma_{\text{avg}}^2 \log(p-s)}{n(1 + s/\rho^2)}\right)^{1/4}.$$

2982 Then we have:  
 2983

$$\lambda_p^2 = \sqrt{\frac{\sigma_{\text{avg}}^2 \log(p-s)}{(1 + s/\rho^2) n}}.$$

2984 By (26), we have:  
 2985

$$\begin{aligned} \lambda_p^2 &= o\left(\sqrt{\frac{n \log(p-s)}{(1 + s/\rho^2)^2 \log(p-s) n}}\right) \\ &= o\left(\frac{1}{1 + s/\rho^2}\right), \end{aligned}$$

2986 thus:  
 2987

$$\lambda_p^2 (1 + s/\rho^2) \rightarrow 0.$$

2988 Therefore  
 2989

$$\lambda_p \rightarrow 0 \quad \text{and} \quad \frac{\lambda_p \sqrt{s}}{\rho} \rightarrow 0. \quad (67)$$

2990 In addition, we have by definition of  $\lambda_p$ :  
 2991

$$\begin{aligned} \frac{n \lambda_p^2}{\sigma_{\text{avg}}^2 \log(p-s)} &= \sqrt{\frac{\sigma_{\text{avg}}^2 \log(p-s) n^2}{\sigma_{\text{avg}}^4 \log(p-s)^2 (1 + s/\rho^2) n}} \\ &= \sqrt{\frac{n}{\sigma_{\text{avg}}^2 (1 + s/\rho^2) \log(p-s)}}. \end{aligned}$$

2992 Therefore we have, by (26):  
 2993

$$\frac{n \lambda_p^2}{\sigma_{\text{avg}}^2 \log(p-s)} \rightarrow +\infty. \quad (68)$$

2994 Finally, by (26) it holds that:  
 2995

$$\begin{aligned} \frac{\sigma_{\text{avg}}^2 \log s}{n \rho^2} &= o\left(\frac{n \log s}{n \rho^2 (1 + s/\rho^2) \log(p-s)}\right) \\ &= o\left(\frac{1}{\rho^2 + s}\right) = o\left(\frac{1}{s}\right). \end{aligned}$$

2996 Therefore:  
 2997

$$\frac{1}{\rho} \sqrt{\frac{\sigma_{\text{avg}}^2 \log s}{n}} \rightarrow 0. \quad (69)$$

2998 Bring together (67), (68) and (69), we conclude that  $\lambda_p \rightarrow 0$  and (24) holds.  $\square$   
 2999