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Abstract

Diffusion models have become a new genera-
tive paradigm for text generation. Considering
the discrete nature of text, in this paper, we
propose GLYPHDIFFUSION, a novel diffusion
approach for text generation via text-guided im-
age generation. Our key idea is to render the
target text as a glyph image containing visual
language content. In this way, conditional text
generation can be cast as a text-guided glyph
image generation task, and it is then natural
to apply continuous diffusion models to dis-
crete texts. Specially, we utilize a cascaded
architecture (i.e., a base and a super-resolution
diffusion model) to generate high-fidelity glyph
images based on the input text. Finally, we de-
sign a text grounding module to transform and
refine the visual language content from gener-
ated glyph images into the final texts. In ex-
periments over four conditional text generation
tasks and two classes of metrics (i.e., quality
and diversity), GLYPHDIFFUSION can achieve
comparable or even better results than several
baselines, including pretrained language mod-
els. Our model also makes significant improve-
ments compared to the recent diffusion model.

1 Introduction

Diffusion models (Sohl-Dickstein et al., 2015) are a
class of generative models that have recently shown
to be powerful in synthesizing high-quality im-
age (Saharia et al., 2022), audio (Kong et al., 2021)
and video (Ho et al., 2022a). They are trained to
gradually transform random noise drawn from a
Gaussian distribution into a sample from the target
distribution portrayed by a collection of samples.
Compared to existing generative models such as
GANs (Goodfellow et al., 2014), VAE (Kingma
and Welling, 2014), and flow-based models (Dinh
et al., 2017), diffusion models present several use-
ful properties, e.g., distribution coverage, a station-
ary training objective, and easy scalability (Dhari-
wal and Nichol, 2021). It has been shown that

diffusion models are theoretically underpinned by
non-equilibrium thermodynamics and score-based
generative models (Nichol and Dhariwal, 2021).

Although diffusion models have made great suc-
cess in the vision and audio domains (Kong et al.,
2021; Saharia et al., 2022; Ramesh et al., 2022),
it remains an open challenge to extend diffusion
models to natural language due to the inherently
discrete nature of texts. Consequently, prior work
has focused on developing approaches based on dis-
crete diffusion by introducing transition matrices
between tokens to corrupt and recover texts (Austin
et al.,, 2021; He et al., 2022; Reid et al., 2022).
However, these methods cannot benefit from the
improvements made on continuous diffusion mod-
els. Another line of work considers continuous
text representations (e.g., word embedding or hid-
den states) as training target, and learns diffusion
models in the corresponding semantic space (Li
et al., 2022; Gong et al., 2022; Strudel et al., 2022;
Lin et al., 2022). However, unlike the target is
usually fixed for continuous data (e.g., image and
audio), such training targets need to be learned
from scratch for discrete texts, and they also corre-
spond to different representation space depending
on the pre-trained models. Thus, it might cause the
collapse of the denoising loss function and bring
instability to the training process (Gao et al., 2022).

In this paper, we propose GLYPHDIFFUSION, a
novel diffusion approach for text generation via
text-guided image generation. The key idea is that
we render a target text as an image containing vi-
sual language content (called glyph image). In
this way, the conditional text generation task can
be cast as a text-guided glyph image generation
task, where the glyph image is expected to con-
tain the generated content in a visual form. Prior
research (Ma et al., 2023; Liu et al., 2022b) has
shown that the pixel representation of text can cap-
ture the spatial structure of characters for generat-
ing precise texts. More important, our method can



naturally leverage continuous diffusion models and
the fixed target (i.e., glyph image) can avoid simul-
taneous changes in model predictions and ground
truth to solve the collapse of the denoising loss.

Specifically, GlyphDiffusion introduces a cas-
caded architecture that integrates base and super-
resolution diffusion models for glyph image gener-
ation. We conduct the image generation based on
the input text semantics captured by a frozen T5
language model (Raffel et al., 2020). Since our goal
is to produce high-quality text output that satisfies
the need of the input text, we employ classifier-free
guidance (Ho and Salimans, 2022) to enhance the
content fidelity of a generated glyph image. Further,
to improve the quality of the text output, we design
a text grounding component to refine and transform
the visual language content from generated images
into the final generation results.

To the best of our knowledge, we are the first that
adapts continuous diffusion models to discrete text
generation via generating glyph images. While con-
ceptually and intuitively simple, our model yields
surprisingly strong results. Compared to AR and
NAR models, GlyphDiffusion obtains over 50% im-
provements in metrics such as BLEU and ROUGE-
L. Our model outperforms prior diffusion models
w.rt. quality and diversity (e.g., +2.54 BLEU in
Quasar-T and +2.24 Diverse-4 in GYAFC).

2 Background

Diffusion Models. Diffusion models are a class of
generative models that convert Gaussian noise into
samples via an iterative denoising process (Sohl-
Dickstein et al., 2015; Ho et al., 2020). Given
a sample from the target data distribution oy ~
q(x0), the forward process of diffusion models pro-
duces a Markov chain of latent variables x1, ..., x1
by adding Gaussian noise to the sample:

q($t|$t71) ZN(wt;\/l —ﬁtwt—17ﬂt1)7 1

where (1, ..., B are small enough noise levels that
make x7 well approximated by (0, I'). We can
further compute the posterior g(@;—1|x¢, () using
Bayes theorem:

q(mi—1|es, x0) = N(®4t-1; fir (20, ®0), Be),  (2)

where [i; = ¥ f‘t_’éjf Lxg+ \/Et(ll_;ft_l)azt. For gen-

eration, diffusion models are trained to reverse this
forward process. The reverse process starts from

a Gaussian noise 7 ~ N (0, I') and gradually de-
noise x; with learned Gaussian transition:

po(®i—1|et) = N(@t—1; pro(26, 1), o (1, 1)). ()

The reverse process is to match the joint distribu-
tion of the forward process by optimizing the varia-
tional lower bound (VLB). The VLB objective can
be estimated using the posterior q(x;—1|x, o) in
Eq. 2 and the prior pg(x;—1|x;) in Eq. 3. To param-
eterize pg(x¢—1|x;), the most straight method is to
predict pg(x¢, t) with a neural network. However,
(Ho et al., 2020) have shown that predicting the
noise € works much better. So the final objective
can be simplified as follows:

Lsimple(o) =Eoge.t(ll€ — EQ(wht)Hg)' “

This objective is equal to optimizing a
reweighted VLB and has a connection to genera-
tive score matching (Song and Ermon, 2019; Song
et al., 2020). To compute this surrogate objective,
we generate samples x; ~ q(x;|xo) by applying
Gaussian noise € to xq then train a model €y to
predict the added noise using Eq. 4.

Diffusion Models for Conditional Generation.
In conditional generation, the data x( is associated
with a condition ¢, such as a label in class-condition
generation (Ho et al., 2022b), a low-resolution im-
age for super-resolution (Saharia et al., 2021), or
a text prompt in text-guided generation (Ramesh
et al., 2022). The goal is to learn a conditional
diffusion model py(xo|c). Thus, the condition ¢
is included into the reverse process in Eq. 3 as
po(xi—1|xe, ) for deriving a new objective:

Lsimple(e) = Eag.ct(ll€ — €o(xe, 1, c)||§) ®
During training, the data xy and the condition c are
sampled jointly from the data distribution ¢(xg, ¢),
and the forward process q(x.7|xo) remains un-
changed. The only change required is to add the
condition c as an extra input to the neural network
in the reverse process pg(@;—1|x¢, €).

3 GLYPHDIFFUSION

In this section, we present GLYPHDIFFUSION that
casts conditional text generation as text-guided
image generation, by establishing the semantic
map from text condition to visual language con-
tent based on diffusion models. The overall sketch
of our approach is shown in Figure 1.
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Figure 1: Overview of our GLYPHDIFFUSION model. “MCA” denotes multi-head cross attention.

3.1 Overview

To adapt diffusion models to text generation, exist-
ing work typically reconstructs continuous targets,
e.g., word embeddings (Li et al., 2022; Gong et al.,
2022) and hidden states (Lovelace et al., 2022).
Since these targets need to be learned beforehand
during training, it is likely to cause the collapse
of the denoising loss function (Gao et al., 2022).
Different from previous work, we introduce a novel
diffusion approach for conditional text generation
by directly learning to map a text condition into an
image containing the generated text content.

Task Formulation. Formally, given an input
text (a.k.a., a condition) ¢, the conditional text
generation task aims to generate an output text
w = {wy,...,wy,} that consists of a sequence of
words. In our approach, we propose to represent
the output text with glyph image x, which is taken
as the training target of a text-guided image dif-
fusion model f(-). Our focus lies in training a
capable glyph image diffusion model, so as to gen-
erate high-quality language content in the visual
form. Furthermore, we use a lightweight and dis-
entangled text grounding model g(-) to refine and
transform the visual content (glyph image) into the
final text output w.

Text Rendering. To train our diffusion model, we
need to prepare condition-image pairs (¢, x) to re-
place condition-text pairs (¢, w). For this purpose,
we follow Rust et al. (2022) to design a text ren-
derer that can convert one or more pieces of text
(i.e., a target text in text generation datasets) into
an RGB image € RT*WxC (taken as the tar-
get output of diffusion models). We set the height

H = 16, the width W = 8464, and select C' = 3
RGB input channels. In this setting, the rendered
glyph image is equal to a sequence of 529 image
patches of size 16 x 16 pixels, and can be equally
converted into a square image with a 368 x 368
resolution (see Figure 1 for an example of text ren-
dering). For those texts longer than the maximum
length, we truncate them as in discrete case. In
this way, we can readily transform any existing text
generation dataset to fit our setting.

3.2 Glyph Image Diffusion

In this section, we first introduce condition encod-
ing, then present text-guided glyph image diffusion,
and finally describe text grounding that maps im-
ages into text output.

3.2.1 Text Condition Encoding

In general text-to-image diffusion models, the input
texts are encoded by text encoders which can be
trained on specific datasets (Nichol et al., 2021) or
pretrained on large-scale image-text data (Radford
et al., 2021a). Since they focus on natural images
for generation, the goal of text encoder is to en-
code visually meaningful and relevant semantics
from input texts. By contrast, in our approach, the
image to be generated is a rendering image only
containing glyph features. Therefore, without con-
sidering visual features, we adopt pretrained text
language models (e.g., BERT (Devlin et al., 2019)
and TS5 (Raffel et al., 2020)) as text encoder to
capture the semantics from the condition.
Compared to pre-trained image-text models (Jia
et al., 2021; Radford et al., 2021b), language mod-
els are pretrained on text corpus substantially larger
than paired image-text data, thus being exposed to



very rich and diverse distribution of text and having
a strong ability of deep textual understanding. In
this paper, we use T5-Base model as our frozen text
encoder, which can achieve decent performance in
our experiments. We leave scaling the text encoder
size for an improvement as future work.

3.2.2 Text-Guided Glyph Image Diffusion

Since we consider glyph image containing visual
language content, it is infeasible to reuse or fine-
tune prior general text-to-image models (Nichol
etal., 2021; Ramesh et al., 2022) for glyph image.
In order to generate high-fidelity images contain-
ing clear glyphs, we adopt a cascaded architec-
ture (Ho et al., 2022b) to model the reverse process
po(xi—1|xy, ) for glyph image diffusion.

Cascaded Diffusion Achitecture. We use a
pipeline of a base 64 x 64 model and a super-
resolution model that upsamples a 64 x 64 base
image into a 368 x 368 image (the target glyph
image rendered in Section 3.1). For both base
and super-resolution models, we adopt the U-Net
model (Ronneberger et al., 2015), which is the
current best architecture for image diffusion mod-
els, but change the attention layers to use multi-
head attention (Vaswani et al., 2017). To adapt
U-Net to text-guided glyph image diffusion, we
take input text embeddings (encoded by the text
condition encoder in Section 3.2.1) as input. Each
step of the U-Net network can attend to the se-
quence of word emeddings via multi-head cross-
attention. Specifically, the condition encoder 7y
projects the input text ¢ to a sequence of em-
beddings 7p(c) € R™*% where m is the num-
ber of tokens and d is the embedding dimension.
The text-conditional cross-attention layer is imple-
mented as follows:

KT

MHA(Q, K,V) = softmax(Q

6
\/E)V’ (6)

Q = WS vi(xy), K = Wre(c),V = W m(c),

)

where 1); (x;) denotes the flatten representation at
the i-th layer, Wg) € Rixdy, WI(;), W‘(}) € Rdxdr
are learnable matrices. For super-resolution model,
we adopt the Efficient U-Net model (Saharia et al.,
2022) for improving the memory efficiency, infer-
ence time, and convergence speed.

Enhancing the Text Guidance. Unlike general
image generation, we rely on the visual content

of glyph images for text generation. Thus, text
semantics from the input text are particularly im-
portant to consider in our approach. To enhance
the guidance of input condition on the output, clas-
sifier guidance is proposed by equipping diffusion
models with a separate classifier (Dhariwal and
Nichol, 2021). However, this approach strength-
ens the impact of input condition at the expense
of output diversity. Thus, we adopt classifier-free
guidance (Ho and Salimans, 2022) by jointly train-
ing a single diffusion model on conditional and
unconditional objectives without a separate classi-
fier as follows:

(@, ) =w-€g(xe,e) + (1 —w) - €g(xs), (8)

where €y (¢, ¢) is implemented by the text-guided
cascaded diffusion model, eg(x;) is realized by
randomly dropping ¢ from the diffusion model with
a fixed probability (e.g., 10%), and w > 1 is the
guidance weight. By using classifier-free guidance,
the objective in Eq. 5 can be modified and adapt to
our text-guided glyph image diffusion as:

Lsimple = Eagc.t(|l€ — & (, c)||§) )

3.2.3 Output Text Grounding

Once a glyph image is generated under the guid-
ance of the text condition, we consider transform-
ing it into an output text. A simple way is to employ
some off-the-shelf toolkits such as optical charac-
ter recognition for recognizing the words on the
glyph image. However, such a way only focuses on
word-level recognition and lacks an overall consid-
eration of the text semantics, also suffering from
potential issues such as incorrect word spelling.
Therefore, we design a lightweight and disentan-
gled text grounding module for mapping the glyph
image into output text.

The text grounding module has a similar ar-
chitecture to Transformer layer (Vaswani et al.,
2017), while making special extensions that take
a glyph image as input and condition on the input
text. Specifically, it consists of three sub-layers,
including multi-head self-attention (MHA), cross-
attention (MCA), and feed-forward network (FFN).
To feed the image as input, we flatten it into a se-
quence of 16 x 16 patches and map them to patch

embeddings with dimension D:
Ring = [ B, ... 2 E, ..,z E] + Epos,  (10)

where E € R(P*O)*D js a Jearnable matricx that
projects each 2D patch &3, into a patch embedding,



and N is the number of patches described in Sec-
tion 3.1. The MHA and MCA layers use the same
attention layer in Eq. 7 and attend to the input text
embeddings 7p(c). The final FFN layer contains
two linear layers with a GELU activation and out-
puts a hidden state h,,;, which will be used to
compute the word probability distribution over the
vocabulary as follows:

Pr(w;|@o, ¢) = softmax(Wyhout + by). (11)

The text grounding model is trained to minimize
the negative log-likelihood (NLL) loss as follows:

n

Loy = — Y _ log Pr(wilzo, c). (12)
i=1

During optimization, the image diffusion model
and the text grounding module are separately
trained, and the text grounding module only in-
troduces almost negligible parameters compared
to the total parameters of the text-guided cascaded
diffusion model.

3.3 Discussion and Learning

Comparison. Existing diffusion models for text
generation can be categorized into two classes
based on the modeling space. The first line of
research, such as D3PM (Austin et al., 2021), Dif-
fusER (Reid et al., 2022), and DiffusionBERT (He
et al., 2022), proposed to model the transition be-
tween words considering the discrete categories
of texts. However, these models depart from the
diffusion modeling framework and lose some capa-
bilities of diffusion models designed for continuous
representations. Another line of research, such as
LDA4LG (Lovelace et al., 2022), DiffusionLLM (Li
et al., 2022), and DiffuSeq (Gong et al., 2022),
focused on mapping words to continuous represen-
tations (e.g., word embeddings), which need to be
learned beforehand. Such a way suffers from the
collapse of the denoising process and training insta-
bility. Our model is the first to map texts into glyph
images, in which conditional text generation is cast
as a glyph image generation task. We present a
detailed comparison in Table 4.

Optimization. The training procedure of GlyphD-
iffusion can be described as: given a training pair
(¢, o), we first obtain a low-resolution image 2
of the glyph image x( and map the text condition
c to embeddings; then, we add Gaussian noise to
zp and xy and obtain z; and x; using Eq. 1; fi-
nally, a neural network €y is trained to predict the

Gaussian noise based on ¢, z;, x;, and time step
t with classifier-free guidance (Eq. 8). The dif-
fusion model is optimized using Lgiyple in Eq. 9.
Besides, we train the text grounding model given
a training paier (¢, o, w), where w is the corre-
sponding text of @, using Ly in Eq. 12. At infer-
ence time, based on the text condition, GlyphDiffu-
sion first iteratively denoises the Gaussian noise to
low-resolution glyph images, upon which the final
glyph images can be generated in the same way.

4 Experiments

In this section, we detail the experimental setup
and then highlight the conclusions of our results.

4.1 Experimental Setup

Tasks and Datasets. We evaluate GLYPHDIFFU-
SION on four conditional text generation tasks and
datasets: 1) Open-domain dialogue: we adopt the
DailyDialogue dataset (Li et al., 2017a), which
contains 13, 118 multi-turn dialogues covering di-
verse daily topics; 2) Question generation: we
use the Quasar-T dataset (Dhingra et al., 2017),
consisting of 43, 013 open-domain trivia questions
and their answers obtained from various internet
sources; 3) Style transfer: we test on Entertain-
ment&Music and Family&Relationship domains of
the Grammarly’s Yahoo Answers Formality Corpus
(GYAFC) dataset (Rao and Tetreault, 2018), con-
taining a total of 56, 888 informal/formal sentence
pairs; and 4) Paraphrase generation: we adopt the
Quora Question Pairs (QQP) dataset crawled from
the community question answering forum Quora
with 147K positive pairs. The detailed descriptions
and statistics of these tasks and datasets are shown
in Appendix A.

Baselines. Following previous work (Gong et al.,
2022), we compare GLYPHDIFFUSION to four
groups of baselines: 1) GRU with attention (Cho
et al., 2014) and Transformer (Vaswani et al.,
2017); 2) GPT-2 (Radford et al., 2019) and GP-
VAE (Du et al., 2022); 3) NAR-LevT (Gu et al.,
2019); and 4) DiffuSeq (Gong et al., 2022) and
RDMs (Zheng et al., 2023). We implement these
models following their original papers. Other dif-
fusion models (Lovelace et al., 2022; Yuan et al.,
2022) present similar performance to DiffuSeq, so
we select DiffuSeq as a representative. The details
of baselines are shown in Appendix B.

Evaluation Metrics. In text generation tasks, qual-



Table 1: Evaluation results on four text generation tasks. The best results are denoted by bold fonts, and the best
results without PLMs are denoted by underline fonts. “FT” means fine-tuning PLMs.

Tasks Models BLEUT ROUGE-LT BERTScoret Dist-17  Self-BLEU]  Diverse-4T  Length

GRU-attention  0.0662 0.2137 0.4545 0.7889 0.8145 0.1540 10.45

Transformer-base  0.0704 0.1990 0.4778 0.8934 0.4003 0.5777 20.01

Open-domain GPT2-base FT ~ 0.0749 0.2176 0.5223 0.9445 0.0229 0.9654 20.23
Dialogue GPT2-large FT ~ 0.0803 0.2434 0.5189 0.9502 0.0221 0.9500 20.33
GPVAE-T5FT  0.0843 0.2402 0.5089 0.6634 0.3677 0.5809 21.90

NAR-LevT  0.0489 0.1054 0.4634 0.9233 0.8207 0.1453 6.43

DiffuSeq  0.0740 0.2329 0.5794 0.9490 0.0136 0.9641 11.84
GlyphDiffusion  0.0855 0.2450 0.5844 0.9500 0.0200 0.9660 13.20
GRU-attention ~ 0.0651 0.2617 0.5222 0.7930 0.9999 0.3178 10.10
Transformer-base ~ 0.0364 0.1994 0.5334 0.8236 0.8767 0.4055 12.10
Question GPT2-base FT ~ 0.0741 0.2714 0.6052 0.9602 0.1403 0.9216 10.00
Generation GPT2-large FT  0.1110 0.3215 0.6346 0.9670 0.2910 0.8062 10.00
GPVAE-T5FT  0.1251 0.3390 0.6308 0.9381 0.3567 0.7282 11.40

NAR-LevT  0.0930 0.2893 0.5491 0.8914 0.9830 0.4776 6.93
DiffuSeq  0.1731 0.3665 0.6123 0.9056 0.2789 0.8103 11.50
RDMs  0.1802 0.3550 0.6310 0.9082 - - -

GlyphDiffusion ~ 0.1985 0.3566 0.6530 0.9137 0.2005 0.8334 14.31

GRU-attention ~ 0.0502 0.2757 0.3145 0.8390 0.8290 0.3321 10.34

Transformer-base  0.0677 0.2860 0.3232 0.8591 0.7991 0.3550 13.23

Style GPT2-base FT ~ 0.0734 0.2945 0.4360 0.9477 0.0657 09112 16.50
Transfer GPT2-large FT ~ 0.0757 0.3050 0.4143 0.9545 0.0530 0.9089 17.45
GPVAE-T5 FT  0.0803 0.3048 0.4235 0.9567 0.0901 0.5949 19.80

NAR-LevT  0.0538 0.2078 0.3523 0.9037 0.8343 0.3145 12.20

DiffuSeq  0.0729 0.3046 0.4695 0.9440 0.1023 0.9120 12.35

GlyphDiffusion  (.0813 0.3088 0.4834 0.9510 0.0934 0.9344 14.30

GRU-attention ~ 0.1894 0.5129 0.7763 0.9423 0.9958 0.3287 8.30

Transformer-base  0.0580 0.2489 0.5392 0.7889 0.7717 0.4312 5.52

Paraphrase GPT2-base FT ~ 0.1980 0.5212 0.8246 0.9798 0.5480 0.6245 9.67
Generation GPT2-large FT ~ 0.2059 0.5415 0.8363 0.9819 0.7325 0.5020 9.53
GPVAE-T5FT  0.2409 0.5886 0.8466 0.9688 0.5604 0.6169 9.60

NAR-LevT  0.2268 0.5795 0.8344 0.9790 0.9995 0.3329 8.85

DiffuSeq  0.2413 0.5880 0.8365 0.9807 0.2732 0.8641 11.20

RDMs  0.2498 0.5886 0.8466 0.9817 - - -
GlyphDiffusion  0.2503 0.5895 0.8355 0.9810 0.2344 0.8701 12.32

ity and diversity are two key aspects for generated
texts. To evaluate the quality, we adopt BLEU (Pap-
ineni et al., 2002) and ROUGE (Lin, 2004) to com-
pute the overlapping n-grams between generated
and gold texts. Since string matching based met-
rics can be insufficient, we use BERTScore (Zhang
et al., 2020) to assess the semantic similarity be-
tween generated and gold texts at the embedding
level. As for diversity, we adopt Distinct (Li et al.,
2016), which computes the number of distinct n-
grams in generated texts, and Diverse (Deshpande
et al., 2019), which measures the ratio of distinct
n-grams to the total number of generated words.
Besides token-level diversity evaluation, we use
self-BLEU (Zhu et al., 2018), a sentence-level met-
ric that measures the overlapping n-grams among
the generated texts. Following (Gong et al., 2022),
we generate three samples for each text condition
to compute the diversity metrics.

4.2 Main Results

Table 1 show the results of GLYPHDIFFUSION and
baselines on four conditional text generation tasks.

First, compared to vanilla auto-regressive (AR)
text generation models GRU and Transformer,
GlyphDiffusion can achieve better results in four
tasks at all quality and diversity metrics, which
demonstrates the emergent capabilities of diffusion
models in text generation. For the NAR baseline
LevT, although it can outperform vanilla AR mod-
els in some cases, our GlyphDiffusion model can
always obtain better performance with large mar-
gins (over 50% improvements on BLEU in Daily-
Dialogue and ROUGE-L in GYAFC).

Second, compared to pretrained models GPT-2
and GPVAE-TS5, GlyphDiffusion can outperform
the base variants for most tasks and metrics, while
achieving comparable performance to the large
variants. It is worth noting that the large models
have much more parameters than GlyphDiffusion



to ensure high-quality generation results. As for the
recent diffusion model DiffuSeq, our model wins
21 out of 24 competitions (4 tasks X 6 metrics),
which indicates the effectiveness of our method
that casts conditional text generation as a glyph
image generation task.

Finally, in terms of diversity, GlyphDiffusion can
generate significantly more diverse texts compared
to AR, NAR, and pre-trained models, as shown by
sentence-level diversity metrics (self-BLEU and
Diverse-4). As for the word-level measure Distinct-
1, we can observe that GlyphDiffusion is compa-
rable with the pretrained GPT-2 models, indicat-
ing that our model has little repetition in word-by-
word generation. To compare with DiffuSeq, our
GlyphDiffusion model adopts a free way of gen-
eration — producing glyph images (contain visual
language contents) then refining as final texts based
on the condition. This approach can yield more di-
verse texts at both sentence and word levels.

4.3 Detailed Analysis

In this part, we conduct a series of in-depth analysis
to study the effectiveness of GlyphDiffusion.

Ablation Study. In Section 3.2.2, we design a
cascaded diffusion architecture to generate high-
fidelity glyph images, and utilize the classifier-free
guidance technique to enhance the text guidance.
To examine their importance, we design two vari-
ants of our model: (1) w/o Cascaded removes the
super-resolution model and uses the base diffusion
model to generate glyph images with a 368368
resolution; (2) w/o Guidance removes the uncondi-
tional objective €g(x;) from Eq. 8. Furthermore, in
Section 3.2.3, we designed a text grounding module
to improve the transformation from glyph images
to output texts. To confirm its effectiveness, we
design a counterpart: (3) w/o Grounding removes
the text grounding module and directly recognize
the content in glyph images as final output. The ab-
lation results are shown in Table 2. We can observe
that removing the cascaded pipeline suffers from
a large performance drop in terms of both quality
and diversity metrics. This demonstrates the effec-
tiveness of the cascaded framework in generating
high-fidelity glyph images. In addition, removing
classifier-free guidance or the text grounding mod-
ule results in a decreased performance, but the latter
is more important. The reason might be that it may
circumvent some potential issues (e.g., incorrect
spelling) in glyph images and improve final texts.

Table 2: Ablation study on GYAFC dataset.

Models BLEU BERTScore Dist-1 Diverse-4
GlyphDiffusion 0.0813 0.4834 0.9510 0.9344
w/o Cascaded  0.0601 0.4438 09112 0.9011
w/o Guidance  0.0790 0.4730 0.9410 0.9219
w/o Grounding 0.0643 0.4566 0.9220  0.9090
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Figure 2: The Distinct-1 and BLEU scores w.r.t. differ-
ent guidance weights w (a) and sampling steps 7" (b).

Sensitivity Analysis. In classifier-free guidance
(Eq. 8), the weight w is an important factor affect-
ing the guidance from the text condition. A large
guidance weight can improve the image-text align-
ment but damage the output diversity. Here, we fur-
ther examine the model performance (i.e., Distinct-
1) on Quasar-T and QQP datasets by varying the
guidance weight in the set {3.0,5.0,7.0,10.0}. As
we can see from Figure 2(a), w = 5.0 gives the
best Distinct-1 score, which is the final setting in
our model. While generating using larger weights
(e.g., 10.0) can enhance the guidance of the con-
dition by the super-resolution model, it gives con-
siderably worse Distinct-1 (e.g., 0.75 in Quasar-T).
The sampling step 7" is another critical factor that
significantly affects the model performance and
generation speed. Here, we fix the number of diffu-
sion steps during training while shrinking the infer-
ence steps from 1000 to 200 on DailyDialogue and
GYAFC. As we can see from Figure 2(b), with the
sampling step decreasing, the generated results also
drop significantly (e.g., from 8.55 to 1.66 BLEU
in DailyDialogue). In practice, there is a trade-off
between generation quality and inference speed.

4.4 Case Study

In this section, we perform qualitative analysis to
show the effectiveness of our model. In Table 6,
we present two examples for DailyDialogue and
GYAFC datasets, and the generated outputs from
three baselines (i.e., GPT2-base, NAR-LevT, and



DiffuSeq) and our GlyphDiffusion model. As can
be seen from Table 6, compared to NAR-LevT, our
model can generate more informative and diverse
texts. Since NAR-LevT adopt an iterative gener-
ation strategy, it tends to generate safe and short
sentences such as “that’s all right” in the dialogue
task. As for GPT2-base which uses the power-
ful pretraining-finetuning paradigm, it can gener-
ate more fluent and richer content but sometimes
going outside the topic of input texts. DiffuSeq
sometimes generate irrelevant texts (e.g., “drink
my rests”). Since we adopt a cascaded diffusion
framework, our model can generate high-quality
glyph images. The text grounding module can re-
solve some potential issues in glyph images such
as repetition (e.g., “nooo0”’) and incorrect spelling
(e.g., “gues”). More examples can be found in
Appendix C.

5 Related Work

Diffusion Models for Image Generation. Diffu-
sion models (Ramesh et al., 2022; Saharia et al.,
2022) have demonstrated great success in gen-
erating high-quality and realistic images. Since
the emergence of denoising diffusion probabilis-
tic models (DDPM) (Ho et al., 2020), diffusion
models are formalized as a forward process that
corrupts the training images using Gaussian noise
and a reverse denoising process that estimates the
noise in the images at each step. On top of DDPM,
(Nichol and Dhariwal, 2021) observe that the linear
noise schedule is sub-optimal for low resolution
and propose a new method to avoid fast informa-
tion destruction towards the end of the forward pro-
cess. The work of (Nachmani et al., 2021) replaces
the Gaussian noise distributions with two other
distributions, i.e., a mixture of the Gaussian and
the Gamma distribution. These works focused on
unconditional image generation without any super-
vision signals. By contrast, recent work has been
devoted to studying text-conditioned image gener-
ation that relies on CLIP text encoding (Galatolo
et al., 2021; Gal et al., 2022; Ramesh et al., 2022).
For example, (Kim and Ye, 2021) edit images with
text prompts guided by a CLIP loss between the
prompt and latent vector. (Ho et al., 2022b) present
cascaded diffusion models, an approach for gener-
ating high-resolution images combining multiple
diffusion models. Different from prior work, our
work renders the target texts as textual images and
uses a diffusion model to generate visualized texts.

Diffusion Models for Text Generation. To han-
dle discrete text, prior work has extended diffu-
sion models by defining a discrete corruption pro-
cess (Hoogeboom et al., 2021a,b). For example,
(Austin et al., 2021) and (He et al., 2022) use tran-
sition matrices to enable gradual corruption and
denoising on a sequence of discrete tokens. Unlike
these works, more recent work has focused on con-
tinuous diffusion models for text (Li et al., 2022;
Gong et al., 2022; Strudel et al., 2022). Diffusion-
LM (Li et al., 2022) works on the word embeddings
and uses mapping functions to connect the dis-
crete and continuous space of texts. Similarly, Dif-
fuSeq (Gong et al., 2022) is designed for sequence-
to-sequence text generation using one single model
to model the conditional probability. Furthermore,
(Liu et al., 2022a) propose a new efficient approach
for composable text operations in the compact, low-
dimensional latent space of text. In this paper, we
also focus on continuous diffusion models for text
generation but differ in that texts are rendered as
continuous images instead of word embeddings.
The key advantage of our method is that it allows
an efficient diffusion process without a need of
training an embedding step and a rounding step.
Therefore, rendered text images can be an effective
alternative to embeddings to leverage the continu-
ous diffucion models. To the best of our knowledge,
our work is the first to explore this setting for con-
ditional text generation.

6 Conclusion

This paper presented a diffusion model, GLYPHD-
IFFUSION, for conditional text generation. We ren-
der a target text onto a glyph image containing
visual language content, so that conditional text
generation can be cast as a glyph image genera-
tion task. It enables continuous diffusion models
to be naturally leveraged in our approach. In order
to generate high-fidelity glyph images, we intro-
duce a cascaded diffusion architecture equipped
with classifier-free guidance. Further, we design
a text grounding module that can refine and trans-
form the content from glyph images into final texts.
Experiments on four conditional text generation
tasks show the effectiveness of our model to pre-
vious AR, NAR, and diffusion models. In future
work, we will consider applying our model to more
kinds of tasks. This study proposes a new line of
research using diffusion models for text generation
and demonstrates its effectiveness.



7 Limitations

An important limitation of GlyphDiffusion com-
pared with other diffusion text generation models
is the requirement of glyph images. The quality of
glyph images will substantially influence the qual-
ity of the final texts. Since the diffusion models
has some shortcomings in text generation, such as
low generation speed and relatively worse perfor-
mance, compared to language models, our model
will inevitably inherit these properties.

Text generation techniques has been applied to
a wide range of meaningful applications for soci-
ety, such as game narrative generation, news report
generation, and weather report generation. How-
ever, this technique may be potentially utilized for
harmful applications.
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Appendix

We provide some experiment-related information
as supplementary materials. The appendix is orga-
nized into three sections:

* Details of each task and dataset are presented
in Appendix A;

* Details of baselines and our model are pre-
sented in Appendix B;

* Generated examples by our model are pre-
sented in Appendix C.

A Details of Tasks and Datasets

We evaluate GLYPHDIFFUSION on four kinds
of conditional text generation tasks and datasets.
Open-domain dialogue requires models to gen-
erate a fluent, engaging, and meaningful natu-
ral language response given previous dialogue
turns between itself and one or more other par-
ticipants (Huang et al., 2020). Question generation
aims to generate natural language questions which
can be answered by the given contents (Duan et al.,
2017). Style transfer aims to change the stylistic
manner of a text while preserving its meaning (To-
shevska and Gievska, 2021). Paraphrase genera-
tion involves rewriting a sentence with the same se-
mantic meaning but a different syntactic or lexical
form (Li et al., 2017b). The detailed information
of four datasets for these tasks is listed in Table 3.

B Model Details

Baselines. Following Gong et al. (2022), we com-
pare GLYPHDIFFUSION to four groups of base-
lines:

¢ GRU with attention (Cho et al., 2014) and Trans-
former (Vaswani et al., 2017). These are two
popular models for conditional text generation
based on the encoder-decoder architecture with
the (self-)attention mechanism.

¢ GPT-2 (Radford et al., 2019) and GPVAE (Du
et al., 2022). They are two pre-trained language
models, among which GPT-2 is trained with lan-
guage modeling and GPVAE augments T5 (Raf-
fel et al., 2020) with VAE.

* NAR-LevT (Gu et al., 2019). It is a strong iter-
ative non-autoregressive (NAR) text generation
model that adopts two operations, i.e., insertion
and deletion, to generate and refine sequences
iteratively.
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* DiffuSeq (Gong et al., 2022). It is the recent dif-
fusion model specially designed for conditional
text generation. It uses partially noising to model
the conditional probability in a single model with-
out a separate classifier.

We implement these models following their orig-
inal papers. Other diffusion models (Lovelace et al.,
2022; Yuan et al., 2022) present similar perfor-
mance to DiffuSeq, so we select DiffuSeq as a
representative.

Baseline Settings. We follow the same baseline
settings as Gong et al. (2022) and the results on
Quasar-T and QQP are also collected from their
work. The settings are listed in Table 5. For GRU-
attention encoder-decoder model, we do not con-
duct diversity search algorithms on it, leading to
poor sentence-level diversity. For NAR-LevT, we
set the max iteration to 9 and utilize the termina-
tion condition described in the original paper. For
GPVAE-TS5, we set the scalars of all tasks as 2.

GLYPHDIFFUSION Settings. For our cascaded
diffusion architecture, we follow the settings as
Saharia et al. (2022). For the 64 x 64 base model,
we use the Adafactor optimizer with a learning rate
of 1le-4 for training. The hyper-parameters are set
as follows:

“attn_resolutions”: [32, 16, 8]
“channel_mult: [1, 2, 4, 8]
“dropout”: 0

“embed_dim™: 128
“cond_embed_dim”: 768
“num_res_blocks™: 3

“text_cross_attn_res”: [32, 16, 8]

For the 64 x 64 — 368 x 368 super-resolution
model, we use an Efficient U-Net architecture for
this model. Besides, we use the Adam optimizer
with a learning rate of 1e-4 for training. The hyper-
parameters are set as follows:

“channel_mult”: [1, 2, 4, 8]
“embed_dim”: 128
“cond_embed_dim”: 768
“num_res_blocks™: [2, 4, 8, 8]

For the text grounding model, we use the Adam
optimizer with a learning rate of 1e-3 for training.



Table 3: Statistics of four datasets. #Training, #Valid, and #Test denote the number of input-output pairs in the
training, validation, and test sets, respectively. #Output denotes the average number of tokens in the output texts.

Task | Dataset | #Train #Valid  #Test #Output

Open-domain Dialogue | DailyDialogue 76,052 7,069 6,740 13.89
Question Generation Quasar-T | 116,953 2,048 10,000 10.48
Style Transfer GYAFC 52,595 2,877 1,416 13.02
Paraphrase Generation QQP | 144,715 2,048 2,500 9.86

Table 4: Comparison of our work to existing diffusion models for text generation.

Models Text Condition Learning Space Learning Target Target Fixed
D3PM (Austin et al., 2021), DiffusionBERT (He et al., 2022) discrete ords

DiffusER (Reid et al., 2022), RDMs (Zheng et al., 2023) 15¢ W

LD4LG (Lovelace et al., 2022) hidden states

DiffusionLM (Li et al., 2022) continuous word

SeqDiffuSeq (Yuan et al., 2022), DiffuSeq (Gong et al., 2022) embeddings

DiNoiser (Ye et al., 2023) g

GlyphDiffusion continuous images

The hyper-parameters are set as follows:

“dropout”: 0.3
“embed_dim”: 768
“ffn_dim”: 3072
“num_layer”: 2

“num_head”: 12

C Case Study

We show some qualitative examples of these four
datasets in Table 7, Table 8, Table 9, and Table 10.
As we can see from these tables, GlyphDiffusion
tends to generate good-quality and diverse texts,
but still not very fluent like pretrained models.
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Table 5: The settings of different baselines. #Para. denotes the total amount of parameters.

Learning Diversity
Models #Para. Paradigm Method
GRU 65M  encoder-decoder -
Transformer | 80M  encoder-decoder Temperature

GPT2-base | 117M  pretrain-finetune Hybrid strategy
GPT2-large | 774M  pretrain-finetune Hybrid strategy
GPVAE-TS | 220M pretrain+VAE Gaussian sampling

NAR-LevT | 80M non-autoregressive -
DiffuSeq 91M  non-autoregressive Gaussian sampling

Table 6: Two examples of DailyDialogue and GYAFC. We present the generations from three baselines and our
model. “w/o Grounding” shows the content in glyph images (omitting blanks).

Input: good evening, saliva. what’s that wonderful aroma
from your kitchen? what are you doing now? [SEP] i am
cooking now! [SEP] are you good at cooking? [SEP]
Gold: i have studied its skills recently at a training school.
i plan to run a restaurant, so i have to practise cooking!

Input: its not really a book i guess but its
kind a long comic.

Gold: it is a long comic, not a book.

no, i’m just a bad. i have a little myself, regu- | it’s really a book, but it is seem it be a

GPT2-base . .
lars, programs and more despite comic.

NAR-LevT | yes. that’s all right. | it am not really a i book females it is

DiffuSeq \ no, i don’t drink my rests, and i need it crazy. \ not a book, but it might seem be long comic.

no, i am not good at cooking, so i need to

Ours practise more. it is so attractive! not really a book, but i guess it is long comic.
w/o | |. -
Grounding images/example-1.png ‘ images/example-2.png

Table 7: Two examples for DailyDialogue. We show generated texts from three baselines and our model.

Input: [CLS] listen, karen, i need your help. i don’t know anyone here yet. [SEP] i’m glad to help you.
what’s wrong? [SEP] my mother - in - law just went into the hospital in l. a. hank and i will be flying there
tonight. [SEP] i’m sorry to hear it. what’s wrong with her? [SEP] doctors aren’t sure yet. but the real pro-
blem is suzy. she has a bad cold, [SEP]

Gold: yes, i’d ask jill, the girl i’ve had before, but i need someone overnight. maybe even for two nights.

GPT2-base \ yes, i’d ask to her and there is girl. it’s number. but i know her. she is very soon.

then have some do to side from and be an air. it its three and twenty and nothing domestic

NAR-LevT have to is is be hard.

DiffuSeq \ i know. 1’1l know her and do an park. it’s number. and nothing the soon to isn’t you.

Ours \ yes, i’d ask to her the girl. i’ve had before and i need someone but. maybe she is very tonight.

Input: [CLS] thanks for inviting me to work out with you, joan. [SEP] don’t mention it, let’s go in. [SEP]
yeah, this place looks great. wow, look at her, she can certainly get down, can’t she? [SEP] she sure can. are
you jealous, leslie? [SEP] a little, i wish i could do that. [SEP] you can! with a little practice. [SEP] look at
him, he’s buff. [SEP] i think he’s hot too [SEP]

Gold: that’s it. i decided to turn over a new leaf. i’'m going to exercise every single day.

GPT2-base ‘ that’s right. i don’t want to make all of right now.

NAR-LevT \ you of that for next use to have and of my left!

DiffuSeq \ if you’re right, it would be true. but i don’t have to have to of my bad.

QOurs \ that’s great. i decided to go there for that. i’m supposed to make all of my wife.
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Table 8: Two examples for Quasar-T. We present the generations from three baselines and our model.

Input: [CLS] Numerous rocks and geological features abound around the 325 million year old volcano
crater known as Arthur ’s Seat . [SEP]
Gold: Edinburgh Castle stands on Arthur ’s Seat what was Arthur ’s seat

GPT2-base | what was arthur ’s seat

NAR-LevT \ what was castle on arthur ’s seat

DiffuSeq \ what was castle on arthur ’s seat

Ours ‘ what was edinburgh castle on arthur ’s seat

Input: [CLS] For his discovery of human blood groups he won the 1930 Nobel Prize in Physiology
or Medicine . [SEP]
Gold: Karl Landsteiner Won The Nobel Prize For Medicine In 1930 For His Discovery Of What

GPT2-base | for what he won the 1930 nobel prize in physiology or medicine .

NAR-LevT | why he won the the 1930 physiology prize

DiffuSeq \ for what he won the 1930 nobel prize in physiology or medicine .

Ours ‘ for what he won the 1930 nobel prize in physiology or medicine .

Table 9: Two examples for GYAFC. We present the generations from three baselines and our model.

Input: [CLS] why do they try to sound british? [SEP]
Gold: what is the appeal of sounding british?

GPT2-base | why do they try to sound british?
NAR-LevT | what is sounding british

DiffuSeq \ why do they try to sound british?

Ours ‘ why do they attempt to sound british?

Input: [CLS] do u think 3 ppl in a band is a good amount?? [SEP]
Gold: do you think that having three people in a band is a good amount?

GPT2-base \ do you think that three people location in a band is of amount?

NAR-LevT ‘ do that you think 3 peoplel in a band is a amount?

DiffuSeq \ do you feel three members is a good number

Ours \ do you think that three people stated in a band is enjoyable positive?

Table 10: Two examples for QQP. We present the generations from three baselines and our model.

Input: [CLS] What is a good song to lyric prank your best friend? [SEP]
Gold: What are some good lyric prank songs to send your best friends?

GPT2-base \ what songs with lyrics should you send to your best friends?

NAR-LevT ‘ what songs will you send your friends?

DiffuSeq \ what is the songs you send to your best friends?

Ours \ what lyrics songs you will send to your closest friends?

Input: [CLS] What happens if dictatorship is continuing in the present days? [SEP]
Gold: What happens if a dictatorship continues in the present day?

GPT2-base \ what would occur if a dictatorship continues in the present?

NAR-LevT | what would happen now if a dictatorship continues?

DiffuSeq ‘ what would happen now if a dictatorship continues?

Ours ‘ what would happen if a dictatorship continues in the present?
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