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Abstract

Diffusion models have become a new genera-001
tive paradigm for text generation. Considering002
the discrete nature of text, in this paper, we003
propose GLYPHDIFFUSION, a novel diffusion004
approach for text generation via text-guided im-005
age generation. Our key idea is to render the006
target text as a glyph image containing visual007
language content. In this way, conditional text008
generation can be cast as a text-guided glyph009
image generation task, and it is then natural010
to apply continuous diffusion models to dis-011
crete texts. Specially, we utilize a cascaded012
architecture (i.e., a base and a super-resolution013
diffusion model) to generate high-fidelity glyph014
images based on the input text. Finally, we de-015
sign a text grounding module to transform and016
refine the visual language content from gener-017
ated glyph images into the final texts. In ex-018
periments over four conditional text generation019
tasks and two classes of metrics (i.e., quality020
and diversity), GLYPHDIFFUSION can achieve021
comparable or even better results than several022
baselines, including pretrained language mod-023
els. Our model also makes significant improve-024
ments compared to the recent diffusion model.025

1 Introduction026

Diffusion models (Sohl-Dickstein et al., 2015) are a027

class of generative models that have recently shown028

to be powerful in synthesizing high-quality im-029

age (Saharia et al., 2022), audio (Kong et al., 2021)030

and video (Ho et al., 2022a). They are trained to031

gradually transform random noise drawn from a032

Gaussian distribution into a sample from the target033

distribution portrayed by a collection of samples.034

Compared to existing generative models such as035

GANs (Goodfellow et al., 2014), VAE (Kingma036

and Welling, 2014), and flow-based models (Dinh037

et al., 2017), diffusion models present several use-038

ful properties, e.g., distribution coverage, a station-039

ary training objective, and easy scalability (Dhari-040

wal and Nichol, 2021). It has been shown that041

diffusion models are theoretically underpinned by 042

non-equilibrium thermodynamics and score-based 043

generative models (Nichol and Dhariwal, 2021). 044

Although diffusion models have made great suc- 045

cess in the vision and audio domains (Kong et al., 046

2021; Saharia et al., 2022; Ramesh et al., 2022), 047

it remains an open challenge to extend diffusion 048

models to natural language due to the inherently 049

discrete nature of texts. Consequently, prior work 050

has focused on developing approaches based on dis- 051

crete diffusion by introducing transition matrices 052

between tokens to corrupt and recover texts (Austin 053

et al., 2021; He et al., 2022; Reid et al., 2022). 054

However, these methods cannot benefit from the 055

improvements made on continuous diffusion mod- 056

els. Another line of work considers continuous 057

text representations (e.g., word embedding or hid- 058

den states) as training target, and learns diffusion 059

models in the corresponding semantic space (Li 060

et al., 2022; Gong et al., 2022; Strudel et al., 2022; 061

Lin et al., 2022). However, unlike the target is 062

usually fixed for continuous data (e.g., image and 063

audio), such training targets need to be learned 064

from scratch for discrete texts, and they also corre- 065

spond to different representation space depending 066

on the pre-trained models. Thus, it might cause the 067

collapse of the denoising loss function and bring 068

instability to the training process (Gao et al., 2022). 069

In this paper, we propose GLYPHDIFFUSION, a 070

novel diffusion approach for text generation via 071

text-guided image generation. The key idea is that 072

we render a target text as an image containing vi- 073

sual language content (called glyph image). In 074

this way, the conditional text generation task can 075

be cast as a text-guided glyph image generation 076

task, where the glyph image is expected to con- 077

tain the generated content in a visual form. Prior 078

research (Ma et al., 2023; Liu et al., 2022b) has 079

shown that the pixel representation of text can cap- 080

ture the spatial structure of characters for generat- 081

ing precise texts. More important, our method can 082
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naturally leverage continuous diffusion models and083

the fixed target (i.e., glyph image) can avoid simul-084

taneous changes in model predictions and ground085

truth to solve the collapse of the denoising loss.086

Specifically, GlyphDiffusion introduces a cas-087

caded architecture that integrates base and super-088

resolution diffusion models for glyph image gener-089

ation. We conduct the image generation based on090

the input text semantics captured by a frozen T5091

language model (Raffel et al., 2020). Since our goal092

is to produce high-quality text output that satisfies093

the need of the input text, we employ classifier-free094

guidance (Ho and Salimans, 2022) to enhance the095

content fidelity of a generated glyph image. Further,096

to improve the quality of the text output, we design097

a text grounding component to refine and transform098

the visual language content from generated images099

into the final generation results.100

To the best of our knowledge, we are the first that101

adapts continuous diffusion models to discrete text102

generation via generating glyph images. While con-103

ceptually and intuitively simple, our model yields104

surprisingly strong results. Compared to AR and105

NAR models, GlyphDiffusion obtains over 50% im-106

provements in metrics such as BLEU and ROUGE-107

L. Our model outperforms prior diffusion models108

w.r.t. quality and diversity (e.g., +2.54 BLEU in109

Quasar-T and +2.24 Diverse-4 in GYAFC).110

2 Background111

Diffusion Models. Diffusion models are a class of112

generative models that convert Gaussian noise into113

samples via an iterative denoising process (Sohl-114

Dickstein et al., 2015; Ho et al., 2020). Given115

a sample from the target data distribution x0 ∼116

q(x0), the forward process of diffusion models pro-117

duces a Markov chain of latent variables x1, ...,xT118

by adding Gaussian noise to the sample:119

q(xt|xt−1) = N (xt;
√

1− βtxt−1, βtI), (1)120

where β1, ..., βT are small enough noise levels that121

make xT well approximated by N (0, I). We can122

further compute the posterior q(xt−1|xt,x0) using123

Bayes theorem:124

q(xt−1|xt,x0) = N (xt−1; µ̃t(xt,x0), β̃tI), (2)125

where µ̃t =
√
ᾱt−1βt
1−ᾱt

x0 +
√
αt(1−ᾱt−1)

1−ᾱt
xt. For gen-126

eration, diffusion models are trained to reverse this127

forward process. The reverse process starts from128

a Gaussian noise xT ∼ N (0, I) and gradually de- 129

noise xt with learned Gaussian transition: 130

pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)). (3) 131

The reverse process is to match the joint distribu- 132

tion of the forward process by optimizing the varia- 133

tional lower bound (VLB). The VLB objective can 134

be estimated using the posterior q(xt−1|xt,x0) in 135

Eq. 2 and the prior pθ(xt−1|xt) in Eq. 3. To param- 136

eterize pθ(xt−1|xt), the most straight method is to 137

predict µθ(xt, t) with a neural network. However, 138

(Ho et al., 2020) have shown that predicting the 139

noise ϵ works much better. So the final objective 140

can be simplified as follows: 141

Lsimple(θ) = Ex0,ϵ,t(∥ϵ− ϵθ(xt, t)∥22). (4) 142

This objective is equal to optimizing a 143

reweighted VLB and has a connection to genera- 144

tive score matching (Song and Ermon, 2019; Song 145

et al., 2020). To compute this surrogate objective, 146

we generate samples xt ∼ q(xt|x0) by applying 147

Gaussian noise ϵ to x0 then train a model ϵθ to 148

predict the added noise using Eq. 4. 149

Diffusion Models for Conditional Generation. 150

In conditional generation, the data x0 is associated 151

with a condition c, such as a label in class-condition 152

generation (Ho et al., 2022b), a low-resolution im- 153

age for super-resolution (Saharia et al., 2021), or 154

a text prompt in text-guided generation (Ramesh 155

et al., 2022). The goal is to learn a conditional 156

diffusion model pθ(x0|c). Thus, the condition c 157

is included into the reverse process in Eq. 3 as 158

pθ(xt−1|xt, c) for deriving a new objective: 159

Lsimple(θ) = Ex0,ϵ,t(∥ϵ− ϵθ(xt, t, c)∥22). (5) 160

During training, the data x0 and the condition c are 161

sampled jointly from the data distribution q(x0, c), 162

and the forward process q(x1:T |x0) remains un- 163

changed. The only change required is to add the 164

condition c as an extra input to the neural network 165

in the reverse process pθ(xt−1|xt, c). 166

3 GLYPHDIFFUSION 167

In this section, we present GLYPHDIFFUSION that 168

casts conditional text generation as text-guided 169

image generation, by establishing the semantic 170

map from text condition to visual language con- 171

tent based on diffusion models. The overall sketch 172

of our approach is shown in Figure 1. 173
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Figure 1: Overview of our GLYPHDIFFUSION model. “MCA” denotes multi-head cross attention.

3.1 Overview174

To adapt diffusion models to text generation, exist-175

ing work typically reconstructs continuous targets,176

e.g., word embeddings (Li et al., 2022; Gong et al.,177

2022) and hidden states (Lovelace et al., 2022).178

Since these targets need to be learned beforehand179

during training, it is likely to cause the collapse180

of the denoising loss function (Gao et al., 2022).181

Different from previous work, we introduce a novel182

diffusion approach for conditional text generation183

by directly learning to map a text condition into an184

image containing the generated text content.185

Task Formulation. Formally, given an input186

text (a.k.a., a condition) c, the conditional text187

generation task aims to generate an output text188

w = {w1, ..., wn} that consists of a sequence of189

words. In our approach, we propose to represent190

the output text with glyph image x, which is taken191

as the training target of a text-guided image dif-192

fusion model f(·). Our focus lies in training a193

capable glyph image diffusion model, so as to gen-194

erate high-quality language content in the visual195

form. Furthermore, we use a lightweight and dis-196

entangled text grounding model g(·) to refine and197

transform the visual content (glyph image) into the198

final text output ŵ.199

Text Rendering. To train our diffusion model, we200

need to prepare condition-image pairs ⟨c,x⟩ to re-201

place condition-text pairs ⟨c,w⟩. For this purpose,202

we follow Rust et al. (2022) to design a text ren-203

derer that can convert one or more pieces of text204

(i.e., a target text in text generation datasets) into205

an RGB image x ∈ RH×W×C (taken as the tar-206

get output of diffusion models). We set the height207

H = 16, the width W = 8464, and select C = 3 208

RGB input channels. In this setting, the rendered 209

glyph image is equal to a sequence of 529 image 210

patches of size 16× 16 pixels, and can be equally 211

converted into a square image with a 368 × 368 212

resolution (see Figure 1 for an example of text ren- 213

dering). For those texts longer than the maximum 214

length, we truncate them as in discrete case. In 215

this way, we can readily transform any existing text 216

generation dataset to fit our setting. 217

3.2 Glyph Image Diffusion 218

In this section, we first introduce condition encod- 219

ing, then present text-guided glyph image diffusion, 220

and finally describe text grounding that maps im- 221

ages into text output. 222

3.2.1 Text Condition Encoding 223

In general text-to-image diffusion models, the input 224

texts are encoded by text encoders which can be 225

trained on specific datasets (Nichol et al., 2021) or 226

pretrained on large-scale image-text data (Radford 227

et al., 2021a). Since they focus on natural images 228

for generation, the goal of text encoder is to en- 229

code visually meaningful and relevant semantics 230

from input texts. By contrast, in our approach, the 231

image to be generated is a rendering image only 232

containing glyph features. Therefore, without con- 233

sidering visual features, we adopt pretrained text 234

language models (e.g., BERT (Devlin et al., 2019) 235

and T5 (Raffel et al., 2020)) as text encoder to 236

capture the semantics from the condition. 237

Compared to pre-trained image-text models (Jia 238

et al., 2021; Radford et al., 2021b), language mod- 239

els are pretrained on text corpus substantially larger 240

than paired image-text data, thus being exposed to 241
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very rich and diverse distribution of text and having242

a strong ability of deep textual understanding. In243

this paper, we use T5-Base model as our frozen text244

encoder, which can achieve decent performance in245

our experiments. We leave scaling the text encoder246

size for an improvement as future work.247

3.2.2 Text-Guided Glyph Image Diffusion248

Since we consider glyph image containing visual249

language content, it is infeasible to reuse or fine-250

tune prior general text-to-image models (Nichol251

et al., 2021; Ramesh et al., 2022) for glyph image.252

In order to generate high-fidelity images contain-253

ing clear glyphs, we adopt a cascaded architec-254

ture (Ho et al., 2022b) to model the reverse process255

pθ(xt−1|xt, c) for glyph image diffusion.256

Cascaded Diffusion Achitecture. We use a257

pipeline of a base 64 × 64 model and a super-258

resolution model that upsamples a 64 × 64 base259

image into a 368 × 368 image (the target glyph260

image rendered in Section 3.1). For both base261

and super-resolution models, we adopt the U-Net262

model (Ronneberger et al., 2015), which is the263

current best architecture for image diffusion mod-264

els, but change the attention layers to use multi-265

head attention (Vaswani et al., 2017). To adapt266

U-Net to text-guided glyph image diffusion, we267

take input text embeddings (encoded by the text268

condition encoder in Section 3.2.1) as input. Each269

step of the U-Net network can attend to the se-270

quence of word emeddings via multi-head cross-271

attention. Specifically, the condition encoder τθ272

projects the input text c to a sequence of em-273

beddings τθ(c) ∈ Rm×dτ , where m is the num-274

ber of tokens and dτ is the embedding dimension.275

The text-conditional cross-attention layer is imple-276

mented as follows:277

MHA(Q,K, V ) = softmax(
QK⊤
√
d

)V, (6)278

Q =W
(i)
Q ψi(xt), K =W

(i)
K τθ(c), V =W

(i)
V τθ(c),

(7)
279

where ψi(xt) denotes the flatten representation at280

the i-th layer,W (i)
Q ∈ Rd×dψ ,W (i)

K ,W
(i)
V ∈ Rd×dτ281

are learnable matrices. For super-resolution model,282

we adopt the Efficient U-Net model (Saharia et al.,283

2022) for improving the memory efficiency, infer-284

ence time, and convergence speed.285

Enhancing the Text Guidance. Unlike general286

image generation, we rely on the visual content287

of glyph images for text generation. Thus, text 288

semantics from the input text are particularly im- 289

portant to consider in our approach. To enhance 290

the guidance of input condition on the output, clas- 291

sifier guidance is proposed by equipping diffusion 292

models with a separate classifier (Dhariwal and 293

Nichol, 2021). However, this approach strength- 294

ens the impact of input condition at the expense 295

of output diversity. Thus, we adopt classifier-free 296

guidance (Ho and Salimans, 2022) by jointly train- 297

ing a single diffusion model on conditional and 298

unconditional objectives without a separate classi- 299

fier as follows: 300

θ̂(xt, c) = w · ϵθ(xt, c) + (1− w) · ϵθ(xt), (8) 301

where ϵθ(xt, c) is implemented by the text-guided 302

cascaded diffusion model, ϵθ(xt) is realized by 303

randomly dropping c from the diffusion model with 304

a fixed probability (e.g., 10%), and w ≥ 1 is the 305

guidance weight. By using classifier-free guidance, 306

the objective in Eq. 5 can be modified and adapt to 307

our text-guided glyph image diffusion as: 308

Lsimple = Ex0,ϵ,t(∥ϵ− ϵ̂θ(xt, c)∥22). (9) 309

3.2.3 Output Text Grounding 310

Once a glyph image is generated under the guid- 311

ance of the text condition, we consider transform- 312

ing it into an output text. A simple way is to employ 313

some off-the-shelf toolkits such as optical charac- 314

ter recognition for recognizing the words on the 315

glyph image. However, such a way only focuses on 316

word-level recognition and lacks an overall consid- 317

eration of the text semantics, also suffering from 318

potential issues such as incorrect word spelling. 319

Therefore, we design a lightweight and disentan- 320

gled text grounding module for mapping the glyph 321

image into output text. 322

The text grounding module has a similar ar- 323

chitecture to Transformer layer (Vaswani et al., 324

2017), while making special extensions that take 325

a glyph image as input and condition on the input 326

text. Specifically, it consists of three sub-layers, 327

including multi-head self-attention (MHA), cross- 328

attention (MCA), and feed-forward network (FFN). 329

To feed the image as input, we flatten it into a se- 330

quence of 16× 16 patches and map them to patch 331

embeddings with dimension D: 332

hinp = [x1
pE, ...,xjpE, ...,xNp E] +Epos, (10) 333

where E ∈ R(P 2·C)×D is a learnable matricx that 334

projects each 2D patch xj
p into a patch embedding, 335
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and N is the number of patches described in Sec-336

tion 3.1. The MHA and MCA layers use the same337

attention layer in Eq. 7 and attend to the input text338

embeddings τθ(c). The final FFN layer contains339

two linear layers with a GELU activation and out-340

puts a hidden state hout, which will be used to341

compute the word probability distribution over the342

vocabulary as follows:343

Pr(wi|x0, c) = softmax(Wvhout + bv). (11)344

The text grounding model is trained to minimize345

the negative log-likelihood (NLL) loss as follows:346

Lnll = −
n∑
i=1

log Pr(wi|x0, c). (12)347

During optimization, the image diffusion model348

and the text grounding module are separately349

trained, and the text grounding module only in-350

troduces almost negligible parameters compared351

to the total parameters of the text-guided cascaded352

diffusion model.353

3.3 Discussion and Learning354

Comparison. Existing diffusion models for text355

generation can be categorized into two classes356

based on the modeling space. The first line of357

research, such as D3PM (Austin et al., 2021), Dif-358

fusER (Reid et al., 2022), and DiffusionBERT (He359

et al., 2022), proposed to model the transition be-360

tween words considering the discrete categories361

of texts. However, these models depart from the362

diffusion modeling framework and lose some capa-363

bilities of diffusion models designed for continuous364

representations. Another line of research, such as365

LD4LG (Lovelace et al., 2022), DiffusionLM (Li366

et al., 2022), and DiffuSeq (Gong et al., 2022),367

focused on mapping words to continuous represen-368

tations (e.g., word embeddings), which need to be369

learned beforehand. Such a way suffers from the370

collapse of the denoising process and training insta-371

bility. Our model is the first to map texts into glyph372

images, in which conditional text generation is cast373

as a glyph image generation task. We present a374

detailed comparison in Table 4.375

Optimization. The training procedure of GlyphD-376

iffusion can be described as: given a training pair377

(c,x0), we first obtain a low-resolution image z0378

of the glyph image x0 and map the text condition379

c to embeddings; then, we add Gaussian noise to380

z0 and x0 and obtain zt and xt using Eq. 1; fi-381

nally, a neural network ϵθ is trained to predict the382

Gaussian noise based on c, zt, xt, and time step 383

t with classifier-free guidance (Eq. 8). The dif- 384

fusion model is optimized using Lsimple in Eq. 9. 385

Besides, we train the text grounding model given 386

a training paier (c,x0,w), where w is the corre- 387

sponding text of x0, using Lnll in Eq. 12. At infer- 388

ence time, based on the text condition, GlyphDiffu- 389

sion first iteratively denoises the Gaussian noise to 390

low-resolution glyph images, upon which the final 391

glyph images can be generated in the same way. 392

4 Experiments 393

In this section, we detail the experimental setup 394

and then highlight the conclusions of our results. 395

4.1 Experimental Setup 396

Tasks and Datasets. We evaluate GLYPHDIFFU- 397

SION on four conditional text generation tasks and 398

datasets: 1) Open-domain dialogue: we adopt the 399

DailyDialogue dataset (Li et al., 2017a), which 400

contains 13, 118 multi-turn dialogues covering di- 401

verse daily topics; 2) Question generation: we 402

use the Quasar-T dataset (Dhingra et al., 2017), 403

consisting of 43, 013 open-domain trivia questions 404

and their answers obtained from various internet 405

sources; 3) Style transfer: we test on Entertain- 406

ment&Music and Family&Relationship domains of 407

the Grammarly’s Yahoo Answers Formality Corpus 408

(GYAFC) dataset (Rao and Tetreault, 2018), con- 409

taining a total of 56, 888 informal/formal sentence 410

pairs; and 4) Paraphrase generation: we adopt the 411

Quora Question Pairs (QQP) dataset crawled from 412

the community question answering forum Quora 413

with 147K positive pairs. The detailed descriptions 414

and statistics of these tasks and datasets are shown 415

in Appendix A. 416

Baselines. Following previous work (Gong et al., 417

2022), we compare GLYPHDIFFUSION to four 418

groups of baselines: 1) GRU with attention (Cho 419

et al., 2014) and Transformer (Vaswani et al., 420

2017); 2) GPT-2 (Radford et al., 2019) and GP- 421

VAE (Du et al., 2022); 3) NAR-LevT (Gu et al., 422

2019); and 4) DiffuSeq (Gong et al., 2022) and 423

RDMs (Zheng et al., 2023). We implement these 424

models following their original papers. Other dif- 425

fusion models (Lovelace et al., 2022; Yuan et al., 426

2022) present similar performance to DiffuSeq, so 427

we select DiffuSeq as a representative. The details 428

of baselines are shown in Appendix B. 429

Evaluation Metrics. In text generation tasks, qual- 430
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Table 1: Evaluation results on four text generation tasks. The best results are denoted by bold fonts, and the best
results without PLMs are denoted by underline fonts. “FT” means fine-tuning PLMs.

Tasks Models BLEU↑ ROUGE-L↑ BERTScore↑ Dist-1↑ Self-BLEU↓ Diverse-4↑ Length

Open-domain
Dialogue

GRU-attention 0.0662 0.2137 0.4545 0.7889 0.8145 0.1540 10.45
Transformer-base 0.0704 0.1990 0.4778 0.8934 0.4003 0.5777 20.01

GPT2-base FT 0.0749 0.2176 0.5223 0.9445 0.0229 0.9654 20.23
GPT2-large FT 0.0803 0.2434 0.5189 0.9502 0.0221 0.9500 20.33
GPVAE-T5 FT 0.0843 0.2402 0.5089 0.6634 0.3677 0.5809 21.90

NAR-LevT 0.0489 0.1054 0.4634 0.9233 0.8207 0.1453 6.43
DiffuSeq 0.0740 0.2329 0.5794 0.9490 0.0136 0.9641 11.84

GlyphDiffusion 0.0855 0.2450 0.5844 0.9500 0.0200 0.9660 13.20

Question
Generation

GRU-attention 0.0651 0.2617 0.5222 0.7930 0.9999 0.3178 10.10
Transformer-base 0.0364 0.1994 0.5334 0.8236 0.8767 0.4055 12.10

GPT2-base FT 0.0741 0.2714 0.6052 0.9602 0.1403 0.9216 10.00
GPT2-large FT 0.1110 0.3215 0.6346 0.9670 0.2910 0.8062 10.00
GPVAE-T5 FT 0.1251 0.3390 0.6308 0.9381 0.3567 0.7282 11.40

NAR-LevT 0.0930 0.2893 0.5491 0.8914 0.9830 0.4776 6.93
DiffuSeq 0.1731 0.3665 0.6123 0.9056 0.2789 0.8103 11.50

RDMs 0.1802 0.3550 0.6310 0.9082 - - -
GlyphDiffusion 0.1985 0.3566 0.6530 0.9137 0.2005 0.8334 14.31

Style
Transfer

GRU-attention 0.0502 0.2757 0.3145 0.8390 0.8290 0.3321 10.34
Transformer-base 0.0677 0.2860 0.3232 0.8591 0.7991 0.3550 13.23

GPT2-base FT 0.0734 0.2945 0.4360 0.9477 0.0657 0.9112 16.50
GPT2-large FT 0.0757 0.3050 0.4143 0.9545 0.0530 0.9089 17.45
GPVAE-T5 FT 0.0803 0.3048 0.4235 0.9567 0.0901 0.5949 19.80

NAR-LevT 0.0538 0.2078 0.3523 0.9037 0.8343 0.3145 12.20
DiffuSeq 0.0729 0.3046 0.4695 0.9440 0.1023 0.9120 12.35

GlyphDiffusion 0.0813 0.3088 0.4834 0.9510 0.0934 0.9344 14.30

Paraphrase
Generation

GRU-attention 0.1894 0.5129 0.7763 0.9423 0.9958 0.3287 8.30
Transformer-base 0.0580 0.2489 0.5392 0.7889 0.7717 0.4312 5.52

GPT2-base FT 0.1980 0.5212 0.8246 0.9798 0.5480 0.6245 9.67
GPT2-large FT 0.2059 0.5415 0.8363 0.9819 0.7325 0.5020 9.53
GPVAE-T5 FT 0.2409 0.5886 0.8466 0.9688 0.5604 0.6169 9.60

NAR-LevT 0.2268 0.5795 0.8344 0.9790 0.9995 0.3329 8.85
DiffuSeq 0.2413 0.5880 0.8365 0.9807 0.2732 0.8641 11.20

RDMs 0.2498 0.5886 0.8466 0.9817 - - -
GlyphDiffusion 0.2503 0.5895 0.8355 0.9810 0.2344 0.8701 12.32

ity and diversity are two key aspects for generated431

texts. To evaluate the quality, we adopt BLEU (Pap-432

ineni et al., 2002) and ROUGE (Lin, 2004) to com-433

pute the overlapping n-grams between generated434

and gold texts. Since string matching based met-435

rics can be insufficient, we use BERTScore (Zhang436

et al., 2020) to assess the semantic similarity be-437

tween generated and gold texts at the embedding438

level. As for diversity, we adopt Distinct (Li et al.,439

2016), which computes the number of distinct n-440

grams in generated texts, and Diverse (Deshpande441

et al., 2019), which measures the ratio of distinct442

n-grams to the total number of generated words.443

Besides token-level diversity evaluation, we use444

self-BLEU (Zhu et al., 2018), a sentence-level met-445

ric that measures the overlapping n-grams among446

the generated texts. Following (Gong et al., 2022),447

we generate three samples for each text condition448

to compute the diversity metrics.449

4.2 Main Results 450

Table 1 show the results of GLYPHDIFFUSION and 451

baselines on four conditional text generation tasks. 452

First, compared to vanilla auto-regressive (AR) 453

text generation models GRU and Transformer, 454

GlyphDiffusion can achieve better results in four 455

tasks at all quality and diversity metrics, which 456

demonstrates the emergent capabilities of diffusion 457

models in text generation. For the NAR baseline 458

LevT, although it can outperform vanilla AR mod- 459

els in some cases, our GlyphDiffusion model can 460

always obtain better performance with large mar- 461

gins (over 50% improvements on BLEU in Daily- 462

Dialogue and ROUGE-L in GYAFC). 463

Second, compared to pretrained models GPT-2 464

and GPVAE-T5, GlyphDiffusion can outperform 465

the base variants for most tasks and metrics, while 466

achieving comparable performance to the large 467

variants. It is worth noting that the large models 468

have much more parameters than GlyphDiffusion 469
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to ensure high-quality generation results. As for the470

recent diffusion model DiffuSeq, our model wins471

21 out of 24 competitions (4 tasks × 6 metrics),472

which indicates the effectiveness of our method473

that casts conditional text generation as a glyph474

image generation task.475

Finally, in terms of diversity, GlyphDiffusion can476

generate significantly more diverse texts compared477

to AR, NAR, and pre-trained models, as shown by478

sentence-level diversity metrics (self-BLEU and479

Diverse-4). As for the word-level measure Distinct-480

1, we can observe that GlyphDiffusion is compa-481

rable with the pretrained GPT-2 models, indicat-482

ing that our model has little repetition in word-by-483

word generation. To compare with DiffuSeq, our484

GlyphDiffusion model adopts a free way of gen-485

eration – producing glyph images (contain visual486

language contents) then refining as final texts based487

on the condition. This approach can yield more di-488

verse texts at both sentence and word levels.489

4.3 Detailed Analysis490

In this part, we conduct a series of in-depth analysis491

to study the effectiveness of GlyphDiffusion.492

Ablation Study. In Section 3.2.2, we design a493

cascaded diffusion architecture to generate high-494

fidelity glyph images, and utilize the classifier-free495

guidance technique to enhance the text guidance.496

To examine their importance, we design two vari-497

ants of our model: (1) w/o Cascaded removes the498

super-resolution model and uses the base diffusion499

model to generate glyph images with a 368×368500

resolution; (2) w/o Guidance removes the uncondi-501

tional objective ϵθ(xt) from Eq. 8. Furthermore, in502

Section 3.2.3, we designed a text grounding module503

to improve the transformation from glyph images504

to output texts. To confirm its effectiveness, we505

design a counterpart: (3) w/o Grounding removes506

the text grounding module and directly recognize507

the content in glyph images as final output. The ab-508

lation results are shown in Table 2. We can observe509

that removing the cascaded pipeline suffers from510

a large performance drop in terms of both quality511

and diversity metrics. This demonstrates the effec-512

tiveness of the cascaded framework in generating513

high-fidelity glyph images. In addition, removing514

classifier-free guidance or the text grounding mod-515

ule results in a decreased performance, but the latter516

is more important. The reason might be that it may517

circumvent some potential issues (e.g., incorrect518

spelling) in glyph images and improve final texts.519

Table 2: Ablation study on GYAFC dataset.

Models BLEU BERTScore Dist-1 Diverse-4

GlyphDiffusion 0.0813 0.4834 0.9510 0.9344

w/o Cascaded 0.0601 0.4438 0.9112 0.9011
w/o Guidance 0.0790 0.4730 0.9410 0.9219
w/o Grounding 0.0643 0.4566 0.9220 0.9090
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Figure 2: The Distinct-1 and BLEU scores w.r.t. differ-
ent guidance weights w (a) and sampling steps T (b).

Sensitivity Analysis. In classifier-free guidance 520

(Eq. 8), the weight w is an important factor affect- 521

ing the guidance from the text condition. A large 522

guidance weight can improve the image-text align- 523

ment but damage the output diversity. Here, we fur- 524

ther examine the model performance (i.e., Distinct- 525

1) on Quasar-T and QQP datasets by varying the 526

guidance weight in the set {3.0, 5.0, 7.0, 10.0}. As 527

we can see from Figure 2(a), w = 5.0 gives the 528

best Distinct-1 score, which is the final setting in 529

our model. While generating using larger weights 530

(e.g., 10.0) can enhance the guidance of the con- 531

dition by the super-resolution model, it gives con- 532

siderably worse Distinct-1 (e.g., 0.75 in Quasar-T). 533

The sampling step T is another critical factor that 534

significantly affects the model performance and 535

generation speed. Here, we fix the number of diffu- 536

sion steps during training while shrinking the infer- 537

ence steps from 1000 to 200 on DailyDialogue and 538

GYAFC. As we can see from Figure 2(b), with the 539

sampling step decreasing, the generated results also 540

drop significantly (e.g., from 8.55 to 1.65 BLEU 541

in DailyDialogue). In practice, there is a trade-off 542

between generation quality and inference speed. 543

4.4 Case Study 544

In this section, we perform qualitative analysis to 545

show the effectiveness of our model. In Table 6, 546

we present two examples for DailyDialogue and 547

GYAFC datasets, and the generated outputs from 548

three baselines (i.e., GPT2-base, NAR-LevT, and 549
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DiffuSeq) and our GlyphDiffusion model. As can550

be seen from Table 6, compared to NAR-LevT, our551

model can generate more informative and diverse552

texts. Since NAR-LevT adopt an iterative gener-553

ation strategy, it tends to generate safe and short554

sentences such as “that’s all right” in the dialogue555

task. As for GPT2-base which uses the power-556

ful pretraining-finetuning paradigm, it can gener-557

ate more fluent and richer content but sometimes558

going outside the topic of input texts. DiffuSeq559

sometimes generate irrelevant texts (e.g., “drink560

my rests”). Since we adopt a cascaded diffusion561

framework, our model can generate high-quality562

glyph images. The text grounding module can re-563

solve some potential issues in glyph images such564

as repetition (e.g., “noooo”) and incorrect spelling565

(e.g., “gues”). More examples can be found in566

Appendix C.567

5 Related Work568

Diffusion Models for Image Generation. Diffu-569

sion models (Ramesh et al., 2022; Saharia et al.,570

2022) have demonstrated great success in gen-571

erating high-quality and realistic images. Since572

the emergence of denoising diffusion probabilis-573

tic models (DDPM) (Ho et al., 2020), diffusion574

models are formalized as a forward process that575

corrupts the training images using Gaussian noise576

and a reverse denoising process that estimates the577

noise in the images at each step. On top of DDPM,578

(Nichol and Dhariwal, 2021) observe that the linear579

noise schedule is sub-optimal for low resolution580

and propose a new method to avoid fast informa-581

tion destruction towards the end of the forward pro-582

cess. The work of (Nachmani et al., 2021) replaces583

the Gaussian noise distributions with two other584

distributions, i.e., a mixture of the Gaussian and585

the Gamma distribution. These works focused on586

unconditional image generation without any super-587

vision signals. By contrast, recent work has been588

devoted to studying text-conditioned image gener-589

ation that relies on CLIP text encoding (Galatolo590

et al., 2021; Gal et al., 2022; Ramesh et al., 2022).591

For example, (Kim and Ye, 2021) edit images with592

text prompts guided by a CLIP loss between the593

prompt and latent vector. (Ho et al., 2022b) present594

cascaded diffusion models, an approach for gener-595

ating high-resolution images combining multiple596

diffusion models. Different from prior work, our597

work renders the target texts as textual images and598

uses a diffusion model to generate visualized texts.599

Diffusion Models for Text Generation. To han- 600

dle discrete text, prior work has extended diffu- 601

sion models by defining a discrete corruption pro- 602

cess (Hoogeboom et al., 2021a,b). For example, 603

(Austin et al., 2021) and (He et al., 2022) use tran- 604

sition matrices to enable gradual corruption and 605

denoising on a sequence of discrete tokens. Unlike 606

these works, more recent work has focused on con- 607

tinuous diffusion models for text (Li et al., 2022; 608

Gong et al., 2022; Strudel et al., 2022). Diffusion- 609

LM (Li et al., 2022) works on the word embeddings 610

and uses mapping functions to connect the dis- 611

crete and continuous space of texts. Similarly, Dif- 612

fuSeq (Gong et al., 2022) is designed for sequence- 613

to-sequence text generation using one single model 614

to model the conditional probability. Furthermore, 615

(Liu et al., 2022a) propose a new efficient approach 616

for composable text operations in the compact, low- 617

dimensional latent space of text. In this paper, we 618

also focus on continuous diffusion models for text 619

generation but differ in that texts are rendered as 620

continuous images instead of word embeddings. 621

The key advantage of our method is that it allows 622

an efficient diffusion process without a need of 623

training an embedding step and a rounding step. 624

Therefore, rendered text images can be an effective 625

alternative to embeddings to leverage the continu- 626

ous diffucion models. To the best of our knowledge, 627

our work is the first to explore this setting for con- 628

ditional text generation. 629

6 Conclusion 630

This paper presented a diffusion model, GLYPHD- 631

IFFUSION, for conditional text generation. We ren- 632

der a target text onto a glyph image containing 633

visual language content, so that conditional text 634

generation can be cast as a glyph image genera- 635

tion task. It enables continuous diffusion models 636

to be naturally leveraged in our approach. In order 637

to generate high-fidelity glyph images, we intro- 638

duce a cascaded diffusion architecture equipped 639

with classifier-free guidance. Further, we design 640

a text grounding module that can refine and trans- 641

form the content from glyph images into final texts. 642

Experiments on four conditional text generation 643

tasks show the effectiveness of our model to pre- 644

vious AR, NAR, and diffusion models. In future 645

work, we will consider applying our model to more 646

kinds of tasks. This study proposes a new line of 647

research using diffusion models for text generation 648

and demonstrates its effectiveness. 649
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7 Limitations650

An important limitation of GlyphDiffusion com-651

pared with other diffusion text generation models652

is the requirement of glyph images. The quality of653

glyph images will substantially influence the qual-654

ity of the final texts. Since the diffusion models655

has some shortcomings in text generation, such as656

low generation speed and relatively worse perfor-657

mance, compared to language models, our model658

will inevitably inherit these properties.659

Text generation techniques has been applied to660

a wide range of meaningful applications for soci-661

ety, such as game narrative generation, news report662

generation, and weather report generation. How-663

ever, this technique may be potentially utilized for664

harmful applications.665
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Appendix965

We provide some experiment-related information966

as supplementary materials. The appendix is orga-967

nized into three sections:968

• Details of each task and dataset are presented969

in Appendix A;970

• Details of baselines and our model are pre-971

sented in Appendix B;972

• Generated examples by our model are pre-973

sented in Appendix C.974

A Details of Tasks and Datasets975

We evaluate GLYPHDIFFUSION on four kinds976

of conditional text generation tasks and datasets.977

Open-domain dialogue requires models to gen-978

erate a fluent, engaging, and meaningful natu-979

ral language response given previous dialogue980

turns between itself and one or more other par-981

ticipants (Huang et al., 2020). Question generation982

aims to generate natural language questions which983

can be answered by the given contents (Duan et al.,984

2017). Style transfer aims to change the stylistic985

manner of a text while preserving its meaning (To-986

shevska and Gievska, 2021). Paraphrase genera-987

tion involves rewriting a sentence with the same se-988

mantic meaning but a different syntactic or lexical989

form (Li et al., 2017b). The detailed information990

of four datasets for these tasks is listed in Table 3.991

B Model Details992

Baselines. Following Gong et al. (2022), we com-993

pare GLYPHDIFFUSION to four groups of base-994

lines:995

• GRU with attention (Cho et al., 2014) and Trans-996

former (Vaswani et al., 2017). These are two997

popular models for conditional text generation998

based on the encoder-decoder architecture with999

the (self-)attention mechanism.1000

• GPT-2 (Radford et al., 2019) and GPVAE (Du1001

et al., 2022). They are two pre-trained language1002

models, among which GPT-2 is trained with lan-1003

guage modeling and GPVAE augments T5 (Raf-1004

fel et al., 2020) with VAE.1005

• NAR-LevT (Gu et al., 2019). It is a strong iter-1006

ative non-autoregressive (NAR) text generation1007

model that adopts two operations, i.e., insertion1008

and deletion, to generate and refine sequences1009

iteratively.1010

• DiffuSeq (Gong et al., 2022). It is the recent dif- 1011

fusion model specially designed for conditional 1012

text generation. It uses partially noising to model 1013

the conditional probability in a single model with- 1014

out a separate classifier. 1015

We implement these models following their orig- 1016

inal papers. Other diffusion models (Lovelace et al., 1017

2022; Yuan et al., 2022) present similar perfor- 1018

mance to DiffuSeq, so we select DiffuSeq as a 1019

representative. 1020

Baseline Settings. We follow the same baseline 1021

settings as Gong et al. (2022) and the results on 1022

Quasar-T and QQP are also collected from their 1023

work. The settings are listed in Table 5. For GRU- 1024

attention encoder-decoder model, we do not con- 1025

duct diversity search algorithms on it, leading to 1026

poor sentence-level diversity. For NAR-LevT, we 1027

set the max iteration to 9 and utilize the termina- 1028

tion condition described in the original paper. For 1029

GPVAE-T5, we set the scalars of all tasks as 2. 1030

GLYPHDIFFUSION Settings. For our cascaded 1031

diffusion architecture, we follow the settings as 1032

Saharia et al. (2022). For the 64× 64 base model, 1033

we use the Adafactor optimizer with a learning rate 1034

of 1e-4 for training. The hyper-parameters are set 1035

as follows: 1036

“attn_resolutions”: [32, 16, 8] 1037

“channel_mult”: [1, 2, 4, 8] 1038

“dropout”: 0 1039

“embed_dim”: 128 1040

“cond_embed_dim”: 768 1041

“num_res_blocks”: 3 1042

“text_cross_attn_res”: [32, 16, 8] 1043

For the 64 × 64 → 368 × 368 super-resolution 1044

model, we use an Efficient U-Net architecture for 1045

this model. Besides, we use the Adam optimizer 1046

with a learning rate of 1e-4 for training. The hyper- 1047

parameters are set as follows: 1048

“channel_mult”: [1, 2, 4, 8] 1049

“embed_dim”: 128 1050

“cond_embed_dim”: 768 1051

“num_res_blocks”: [2, 4, 8, 8] 1052

For the text grounding model, we use the Adam 1053

optimizer with a learning rate of 1e-3 for training. 1054
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Table 3: Statistics of four datasets. #Training, #Valid, and #Test denote the number of input-output pairs in the
training, validation, and test sets, respectively. #Output denotes the average number of tokens in the output texts.

Task Dataset #Train #Valid #Test #Output

Open-domain Dialogue DailyDialogue 76,052 7,069 6,740 13.89
Question Generation Quasar-T 116,953 2,048 10,000 10.48

Style Transfer GYAFC 52,595 2,877 1,416 13.02
Paraphrase Generation QQP 144,715 2,048 2,500 9.86

Table 4: Comparison of our work to existing diffusion models for text generation.

Models Text Condition Learning Space Learning Target Target Fixed

D3PM (Austin et al., 2021), DiffusionBERT (He et al., 2022) discrete wordsDiffusER (Reid et al., 2022), RDMs (Zheng et al., 2023)

LD4LG (Lovelace et al., 2022)

continuous

hidden states
DiffusionLM (Li et al., 2022) word

embeddingsSeqDiffuSeq (Yuan et al., 2022), DiffuSeq (Gong et al., 2022)
DiNoiser (Ye et al., 2023)

GlyphDiffusion continuous images

The hyper-parameters are set as follows:1055

“dropout”: 0.31056

“embed_dim”: 7681057

“ffn_dim”: 30721058

“num_layer”: 21059

“num_head”: 121060

C Case Study1061

We show some qualitative examples of these four1062

datasets in Table 7, Table 8, Table 9, and Table 10.1063

As we can see from these tables, GlyphDiffusion1064

tends to generate good-quality and diverse texts,1065

but still not very fluent like pretrained models.1066
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Table 5: The settings of different baselines. #Para. denotes the total amount of parameters.

Models #Para. Learning
Paradigm

Diversity
Method

GRU 65M encoder-decoder -
Transformer 80M encoder-decoder Temperature

GPT2-base 117M pretrain-finetune Hybrid strategy
GPT2-large 774M pretrain-finetune Hybrid strategy
GPVAE-T5 220M pretrain+VAE Gaussian sampling

NAR-LevT 80M non-autoregressive -
DiffuSeq 91M non-autoregressive Gaussian sampling

Table 6: Two examples of DailyDialogue and GYAFC. We present the generations from three baselines and our
model. “w/o Grounding” shows the content in glyph images (omitting blanks).

Input: good evening, saliva. what’s that wonderful aroma
from your kitchen? what are you doing now? [SEP] i am
cooking now! [SEP] are you good at cooking? [SEP]

Input: its not really a book i guess but its
kind a long comic.

Gold: i have studied its skills recently at a training school.
i plan to run a restaurant, so i have to practise cooking! Gold: it is a long comic, not a book.

GPT2-base no, i’m just a bad. i have a little myself, regu-
lars, programs and more

it’s really a book, but it is seem it be a
despite comic.

NAR-LevT yes. that’s all right. it am not really a i book females it is

DiffuSeq no, i don’t drink my rests, and i need it crazy. not a book, but it might seem be long comic.

Ours no, i am not good at cooking, so i need to
practise more. it is so attractive! not really a book, but i guess it is long comic.

w/o
Grounding images/example-1.png images/example-2.png

Table 7: Two examples for DailyDialogue. We show generated texts from three baselines and our model.

Input: [CLS] listen, karen, i need your help. i don’t know anyone here yet. [SEP] i’m glad to help you.
what’s wrong? [SEP] my mother - in - law just went into the hospital in l. a. hank and i will be flying there
tonight. [SEP] i’m sorry to hear it. what’s wrong with her? [SEP] doctors aren’t sure yet. but the real pro-
blem is suzy. she has a bad cold, [SEP]
Gold: yes, i’d ask jill, the girl i’ve had before, but i need someone overnight. maybe even for two nights.

GPT2-base yes, i’d ask to her and there is girl. it’s number. but i know her. she is very soon.

NAR-LevT then have some do to side from and be an air. it its three and twenty and nothing domestic
have to is is be hard.

DiffuSeq i know. i’ll know her and do an park. it’s number. and nothing the soon to isn’t you.

Ours yes, i’d ask to her the girl. i’ve had before and i need someone but. maybe she is very tonight.

Input: [CLS] thanks for inviting me to work out with you, joan. [SEP] don’t mention it, let’s go in. [SEP]
yeah, this place looks great. wow, look at her, she can certainly get down, can’t she? [SEP] she sure can. are
you jealous, leslie? [SEP] a little, i wish i could do that. [SEP] you can! with a little practice. [SEP] look at
him, he’s buff. [SEP] i think he’s hot too [SEP]
Gold: that’s it. i decided to turn over a new leaf. i’m going to exercise every single day.

GPT2-base that’s right. i don’t want to make all of right now.

NAR-LevT you of that for next use to have and of my left!

DiffuSeq if you’re right, it would be true. but i don’t have to have to of my bad.

Ours that’s great. i decided to go there for that. i’m supposed to make all of my wife.
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Table 8: Two examples for Quasar-T. We present the generations from three baselines and our model.

Input: [CLS] Numerous rocks and geological features abound around the 325 million year old volcano
crater known as Arthur ’s Seat . [SEP]
Gold: Edinburgh Castle stands on Arthur ’s Seat what was Arthur ’s seat

GPT2-base what was arthur ’s seat

NAR-LevT what was castle on arthur ’s seat

DiffuSeq what was castle on arthur ’s seat

Ours what was edinburgh castle on arthur ’s seat

Input: [CLS] For his discovery of human blood groups he won the 1930 Nobel Prize in Physiology
or Medicine . [SEP]
Gold: Karl Landsteiner Won The Nobel Prize For Medicine In 1930 For His Discovery Of What

GPT2-base for what he won the 1930 nobel prize in physiology or medicine .

NAR-LevT why he won the the 1930 physiology prize

DiffuSeq for what he won the 1930 nobel prize in physiology or medicine .

Ours for what he won the 1930 nobel prize in physiology or medicine .

Table 9: Two examples for GYAFC. We present the generations from three baselines and our model.

Input: [CLS] why do they try to sound british? [SEP]
Gold: what is the appeal of sounding british?

GPT2-base why do they try to sound british?

NAR-LevT what is sounding british

DiffuSeq why do they try to sound british?

Ours why do they attempt to sound british?

Input: [CLS] do u think 3 ppl in a band is a good amount?? [SEP]
Gold: do you think that having three people in a band is a good amount?

GPT2-base do you think that three people location in a band is of amount?

NAR-LevT do that you think 3 peoplel in a band is a amount?

DiffuSeq do you feel three members is a good number

Ours do you think that three people stated in a band is enjoyable positive?

Table 10: Two examples for QQP. We present the generations from three baselines and our model.

Input: [CLS] What is a good song to lyric prank your best friend? [SEP]
Gold: What are some good lyric prank songs to send your best friends?

GPT2-base what songs with lyrics should you send to your best friends?

NAR-LevT what songs will you send your friends?

DiffuSeq what is the songs you send to your best friends?

Ours what lyrics songs you will send to your closest friends?

Input: [CLS] What happens if dictatorship is continuing in the present days? [SEP]
Gold: What happens if a dictatorship continues in the present day?

GPT2-base what would occur if a dictatorship continues in the present?

NAR-LevT what would happen now if a dictatorship continues?

DiffuSeq what would happen now if a dictatorship continues?

Ours what would happen if a dictatorship continues in the present?
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