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Abstract

Drag-based image editing using generative models provides precise control over
image contents, enabling users to manipulate anything in an image with a few clicks.
However, prevailing methods typically adopt n-step iterations for latent semantic
optimization to achieve drag-based image editing, which is time-consuming and
limits practical applications. In this paper, we introduce a novel one-step drag-
based image editing method, i.e., FastDrag, to accelerate the editing process.
Central to our approach is a latent warpage function (LWF), which simulates the
behavior of a stretched material to adjust the location of individual pixels within the
latent space. This innovation achieves one-step latent semantic optimization and
hence significantly promotes editing speeds. Meanwhile, null regions emerging
after applying LWF are addressed by our proposed bilateral nearest neighbor
interpolation (BNNI) strategy. This strategy interpolates these regions using similar
features from neighboring areas, thus enhancing semantic integrity. Additionally, a
consistency-preserving strategy is introduced to maintain the consistency between
the edited and original images by adopting semantic information from the original
image, saved as key and value pairs in self-attention module during diffusion
inversion, to guide the diffusion sampling. Our FastDrag is validated on the
DragBench dataset, demonstrating substantial improvements in processing time
over existing methods, while achieving enhanced editing performance. Project
page: https://fastdrag-site.github.io/.

1 Introduction

The drag editing paradigm [28, 15, 20] leverages the unique properties of generative models to
implement a point-interaction mode of image editing, referred to as drag-based image editing.
Compared with text-based image editing methods [18, 10, 3, 30], drag-based editing enables more
precise spatial control over specific regions of the image while maintaining semantic logic coherence,
drawing considerable attention from researchers.

However, existing methods typically involve n-step iterative semantic optimization in latent space to
obtain optimized latent with desired semantic based on the user-provided drag instructions. They
focus on optimizing a small region of the image at each step, requiring n small-scale and short-
distance adjustments to achieve overall latent optimization, leading to a significant amount of time.
These optimization approaches can be categorized primarily into motion-based [23, 28, 15, 16, 32, 4]
and gradient-based [20, 19] n-step iterative optimizations, as shown in Fig. 1(a). n-step iterations in
motion-based methods are necessary to avoid abrupt changes in the latent space, preventing image
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Figure 1: (a) Existing methods usually require multiple iterations to transform an image from its original
semantic to desired semantic; (b) Our method utilizes latent warpage function (LWF) to calculate the warpage
vectors (i.e., vj) to move each individual pixel on feature map and achieve semantic optimization in one step.

distortions and ensuring a stable optimization process. This is exemplified in DragDiffusion [28]
and GoodDrag [32], which require 70 to 80 iterations of point tracking and motion supervision for
optimization. In addition, gradient-based methods align sampling results with the drag instructions
through gradient guidance [6]. In this way, they also require multiple steps due to the optimizer [13,
25] needing multiple iterations for non-convex optimization. For instance, DragonDiffusion [20]
requires around 50 gradient steps to accomplish the latent optimization. Therefore, existing drag-
based image editing methods often suffer from significant time consumption due to n-step iterations
required for latent semantic optimization, thus limiting the practical applications.

To this end, we present a novel one-step drag-based image editing method based on diffusion, i.e.,
FastDrag, which significantly accelerates editing speeds while maintaining the quality and precision
of drag operations. Specifically, a novel one-step warpage optimization strategy is proposed to
accelerate editing speeds, which can achieve the latent semantic optimization in a single step with
an elaborately designed latent warpage function (LWF), instead of using motion or gradient-based
n-step optimizations, as illustrated in Fig. 1(b). By simulating strain patterns in stretched materials,
we treat drag instructions on the noisy latent as external forces stretching a material, and introduce a
stretch factor in LWF, which enables the LWF to generate warpage vectors to adjust the position of
individual pixels on the noisy latent with a simple latent relocation operation, thus achieving one-step
optimization for drag-based editing. Meanwhile, a bilateral nearest neighbor interpolation (BNNI)
strategy is proposed to enhance the semantic integrity of the edited content, by interpolating null
values using similar features from their neighboring areas to address semantic losses caused by null
regions emerging after latent relocation operation, thus enhancing the quality of the drag editing.

Additionally, a consistency-preserving strategy is introduced to maintain the consistency of the
edited image, which adopts the original image information saved in diffusion inversion (i.e., key
and value pairs of self-attention in the U-Net structure of diffusion model) to guide the diffusion
sampling for desired image reconstruction, thus achieving precise editing effect. To further reduce
time consumption for inversion and sampling, the latent consistency model (LCM) [17] is employed
in the U-Net architecture of our diffusion-based FastDrag. Therefore, our FastDrag can significantly
accelerate editing speeds while ensuring the quality of drag effects.

Experiments on DragBench demonstrate that the proposed FastDrag is the fastest drag-based editing
method, which is nearly 700% faster than the fastest existing method (i.e., DiffEditor [19]), and
2800% faster than the typical baseline method (i.e., DragDiffusion [28]), with comparable editing
performance. We also conduct rigorous ablation studies to validate the strategies used in FastDrag.

Contributions: 1) We propose a novel drag-based image editing approach based on diffusion i.e.,
FastDrag, where a LWF strategy is proposed to achieve one-step semantic optimization, tremendously
enhancing the editing efficiency. 2) We propose a novel interpolation method (i.e., BNNI), which
effectively addresses the issue of null regions, thereby enhancing the semantic integrity of the edited
content. 3) We introduce a consistency-preserving strategy to maintain the image consistency during
editing process.

2 Related Work

2.1 Text-based Image Editing

Text-based image editing has seen significant advancements, allowing users to manipulate images
through natural language instructions. DiffusionCLIP [12] adopts contrastive language-image pre-
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training (CLIP) [24] for diffusion process fine-tuning to enhance the diffusion model, enabling
high-quality zero-shot image editing. The study in [7] manipulates the cross-attention maps within
the diffusion process and achieves text-based image editing. Imagic [11] further enhances these
methods by optimizing text embeddings and using text-driven fine-tuning of the diffusion model,
enabling complex semantic editing of images. InstructPix2Pix [1] leverages a pre-trained large
language model combined with a text-to-image model to generate training data for a conditional
diffusion model, allowing it to edit images directly based on textual instructions during forward
propagation. Moreover, Null-text Inversion [18] enhances text-based image editing by optimizing the
default null-text embeddings to achieve desired image editing. Although text-based image editing
methods enable the manipulation of image content using natural language description, they often lack
the precision and explicit control provided by drag-based image editing.

2.2 Drag-based Image Editing

Drag-based image editing achieves precise spatial control over specific regions of the image based
on user-provided drag instructions. Existing drag-based image editing methods generally rely on
n-step latent semantic optimization in latent space to achieve image editing. These methods fall
into two main categories: motion-based [23, 28, 32, 4, 16, 15, 9] and gradient-based [20, 19]
optimizations. For example, DragGAN [23] employs generative adversarial network (GAN) for
drag-based image editing with iterative point tracking and motion supervision steps. However, the
image quality of the methods using GAN for image generation is worse than diffusion models [5].
Therefore, a series of diffusion-based methods have been proposed for drag-based image editing.
For instance, DragDiffusion [28] employs iterative point tracking and motion supervision for latent
semantic optimization to achieve drag-based editing. Building on this foundation, GoodDrag [32],
StableDrag [4], DragNoise [16], and FreeDrag [15] have made significant improvements to the motion-
based methods. Without coincidence, by utilizing feature correspondences, DragonDiffusion [20] and
its improved version DiffEditor [19] formulate an energy function that conforms to the desired editing
results, thereby transforming the image editing task into a gradient-based process that enables drag-
based editing. However, these methods inherently require n-step iterations for latent optimization,
which significantly increases the time consumption. Although SDEDrag [22] does not require n-step
iterative optimization, it is still time-consuming due to the stochastic differential equation (SDE)
process for diffusion. In addition, while EasyDrag [9] offers user-friendship editing, its requirement
for over 24GB of memory (i.e., a 3090 GPU) limits its broad applicability. To this end, based on latent
diffusion model (LDM) [26], we propose a novel one-step optimization method that substantially
accelerates the image editing speeds.

3 Proposed Method

FastDrag is based on LDM [26] to achieve drag-based image editing across four phases. The overall
framework is given in Fig. 2, and the detailed description of strategies in FastDrag are presented as
follows: (1) Initially, FastDrag is based on a traditional image editing framework including diffusion
inversion and sampling processes, which will be elaborated in Sec. 3.1. (2) The core phase in
Sec. 3.2 is a one-step warpage optimization, employing LWF and a latent relocation operation to
simulate the behavior of stretched material, allowing for fast semantic optimization. (3) BNNI is then
applied in Sec. 3.3 to enhance the semantic integrity of the edited content, by interpolating the null
regions emerging after the one-step warpage optimization. (4) The consistency-preserving strategy is
introduced in Sec. 3.4 to maintain the desired image consistency with original image, by utilizing the
key and value of self-attention in inversion to guide the sampling.

3.1 Diffusion-based Image Editing

Similar to most existing drag editing methods [28, 32, 20], FastDrag is also built upon diffusion
model (i.e., LDM), including diffusion inversion and diffusion sampling.

Diffusion Inversion [29] is about mapping a given image to its corresponding noisy latent representa-
tion in the model’s latent space. We perform semantic optimization on the noisy latent zt ∈ Rw×h×c,
due to it still captures the main semantic features of the image but is perturbed by noise, making it
suitable as a starting point for controlled modifications and sampling [28]. Here, w, h, c represent the
width, height and channel of zt, respectively. This process for a latent variable at diffusion step t can
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Figure 2: Overall framework of FastDrag with four phases: diffusion inversion, diffusion sampling, one-step
warpage optimization and BNNI. Diffusion inversion yields a noisy latent zt and diffusion sampling reconstructs
the image from the optimized noisy latent z′

t. One-step warpage optimization is used for noisy latent optimization,
where LWF is proposed to generate warpage vectors to adjust the location of individual pixels on the noisy latent
with a simple latent relocation operation. BNNI is used to enhance the semantic integrity of noisy latent. A
consistency-preserving strategy is introduced to maintain the consistency between original image and edited
image.

be expressed as:

zt =

√
αt√

αt−1
(zt−1 −

√
1− αt−1 · ϵt) +

√
1− αt · ϵt, (1)

where z0 = E(I0) denotes the initial latent of the original image I0 from the encoder [14] E(·). αt

is the noise variance at diffusion step t, and ϵt is the noise predicted by U-Net. Subsequently, we
perform a one-step warpage optimization on zt in Sec. 3.2.

Diffusion Sampling reconstructs the image from the optimized noisy latent z′
t by progressively

denoising it to the desired latent z′
0. This sampling process can be formulated as:

z′
t−1 =

√
αt−1 ·

(
z′
t −

√
1− αt · ϵt√
αt

)
+

√
1− αt−1 − σ2 · ϵt + σ2 · ϵ, (2)

where ϵ is the Gaussian noise and σ denotes the noise level. By iterating the process from t to 1,
z′
0 is reconstructed, and the desired image can be obtained by I ′

0 = D(z′
0), with D(·) being the

decoder [14].

3.2 One-step Warpage Optimization

Building upon the phases in Sec.3.1, we propose a one-step warpage optimization for fast drag-based
image editing. The core idea involves simulating strain patterns in stretched materials, where drag
instructions on the noisy latent are interpreted as external forces stretching the material. This enables
us to adjust the position of individual pixels on the noisy latent, optimizing the semantic of noisy
latent in one step, thus achieving extremely fast drag-based editing speeds. To this end, we design the
LWF in Sec. 3.2.1 to obtain warpage vector, which is utilized by a straightforward latent relocation
operation in Sec. 3.2.2 to adjust the position of individual pixels on the noisy latent.

3.2.1 Warpage Vector Calculation using LWF

In drag-based image editing, each drag instruction di in a set of k drag instructions D = {di | i =
1, . . . , k; k ∈ Z} can simultaneously influence a feature point pj on the mask region P = {pj |
j = 1, . . . ,m;m ∈ Z} provided by the user. As shown in Fig. 3, the mask region is represented by
the brighter areas in the image, indicating the specific image area to be edited. To get a uniquely
determined vector, i.e., warpage vector vj to adjust the position of feature point pj (will be discussed
in Sec.3.2.2), we propose a latent warpage function fLWF (·) to aggregate multiple component
warpage vectors caused by different drag instructions, i.e., vi∗

j , with balanced weights to avoid
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deviating from the desired drag effect. The function is given as follows:

vj = fLWF (P ,D, j) =

k∑
i

wi
j · vi∗

j , (3)

where wi
j is the normalization weight for component warpage vector vi∗

j . Here, drag instruction di

is considered as a vector form handle point si to target point ei. During dragging, we aim for the
semantic changes around the handle point si to be determined by the corresponding drag instruction
di, rather than other drag instructions far from the si. Therefore, wi

j is calculated as follows:

wi
j =

1/|pjsi|∑k
i (1/|pjsi|)

, (4)

where si is considered as the “point of force” of di, and the weight wi
j is inversely proportional to

the Euclidean distance from si to pj .

It is worth noting that under an external force, the magnitude of component forces at each position
within the material is inversely proportional to the distance from the force point, while the movement
direction at each position typically aligns with the direction of the applied force [21]. Similarly,
the component warpage vector vi∗

j on each pj aligns with the direction of drag instruction di, and
magnitudes of vi∗

j are inversely proportional to the distance from si. Hence, vi∗
j can be simplified as:

vi∗
j = λi

j · di, (5)

where λi
j is the stretch factor that denotes the proportion between vi∗

j and di.

siei
O

*i

jp

i

jq

si
ei

O

jp

id

Figure 3: Geometric representation of vi∗
j . Circle

O is the circumscribed circle of the circumscribed
rectangle enclosing the mask’s shape. pj is the
feature point requiring relocation, and pi∗j is its
new position following the drag instruction di

To appropriately obtain the stretch factor λi
j and fa-

cilitate the calculation, we delve into the geometric
representation of the component warpage vector vi∗

j .
As shown in Fig. 3, vi∗

j can be depicted as the guid-
ance vector from point pj to point pi∗j , where pi∗j is
the expected new position of pj under the drag effect
of di. Recognizing that the content near to mask edge
should remain unaltered, we define a reference circle
O where every vi∗

j will gradually reduce to 0 as pj
approaches the circle. Consequently, since vi∗

j and
di are parallel, magnitudes of vi∗

j are inversely pro-
portional to the distance from si and vi∗

j is reduced
to 0 on circle O, the extended lines from sipj and
eip

i∗
j will intersect at qij on circle O. Hence, based

on the Eq. (5) and the geometric principle in Fig. 3, we calculate λi
j as follows:

λi
j =

|vi∗
j |

|di|
=

|
−−−→
pjp

i∗
j |

|−−→siei|
=

|pjqij |
|siqij |

. (6)

Finally, we obtain the warpage vector vj using only di and two factors as follows:

fLWF (P ,D, j) =

k∑
i

wi
j · λi

j · di (7)

Note that, for the special application of drag-based editing, such as object moving as shown in Fig. 8,
drag editing is degenerated to a mask region shifting operation, requiring the spatial semantics of the
mask region to remain unchanged. In that case, we only process a single drag instruction, and all
component drag effects will be set equal to the warpage vector, i.e., vj = d1 and D = {d1}.

3.2.2 Latent Relocation with Warpage Vector

Consequently, we utilize the warpage vector vj to adjust the position of feature point pj via a latent
relocation operation FWR, achieving the semantic optimization of noisy latent for drag-based editing.
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Figure 4: Illustration of bilateral nearest neighbor interpolation.
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preserving strategy.

Establishing a Cartesian coordinate system on the latent space, let (xpj
, ypj

) denote the position of
point pj ∈ P within this coordinate system. The new location of the point p∗j after applying the
vector vj = (vxj , v

y
j ) can be written as:

(x∗
pj
, y∗pj

) = (xpj
, ypj

) + (vxj , v
y
j ) (8)

Then the new coordinates set C of all feature points in P can be written as:
C = FWR(P ,V) = {(x∗

pj
, y∗pj

)|(x∗
pj
, y∗pj

) = (xpj , ypj ) + (vxj , v
y
j ); j = 1, · · · ,m}, (9)

where V = {vj |j = 1, · · · ,m,m ∈ Z}. If (xpj
, ypj

) has already been a new position for a
feature point, it no longer serves as a new position for any other points. Consequently, by assigning
corresponding values to these new positions, the optimized noisy latent z′′

t can be obtained as shown
in the following equation:

z′′
t (xpj

+vx
j ,ypj

+vy
j )

= zt(xpj
,ypj

) (10)

In essence, the latent relocation operation optimizes semantics efficiently by utilizing the LWF-
generated warpage vector, eliminating the need for iterative optimization.

However, as certain positions in the noisy latent may not be occupied by other feature points, z′′
t

obtained from one-step warpage optimization may contain regions with null values as shown in Fig. 4,
leading to semantic losses that can adversely impact the drag result. We address this issue in Sec. 3.3.

3.3 Bilateral Nearest Neighbor Interpolation

To enhance the semantic integrity, BNNI interpolates points in null region using similar features from
their neighboring areas in horizontal and vertical directions, thus ensuring the semantic integrity and
enhancing the quality of drag editing. Let N be a point with coordinate (xN , yN ) in null regions,
we identify the nearest points of N containing value in four directions: up, right, down, and left, as
illustrated in Fig. 4, which are used as reference points for interpolation. Then, the interpolated value
for null point N can be calculated as:

z′
t(xN ,yN ) =

∑
loc=u,r,d,l

wloc · ref loc (11)

where ref loc denotes the value of reference point, and loc indicates the direction, with u, r, d and l
representing up, right, down and left, respectively. wloc is the interpolation weight for each reference
point, which is calculated based on its distance to N , as follows:

wloc =
1/lenloc∑

loc=u,r,d,l 1/lenloc
(12)

where lenloc represents the distance between the reference point and N . Such that we can obtain
the optimized noisy latent z′

t with complete semantic information by using BNNI to exploit similar
semantic information from surrounding areas, further enhancing the quality of the drag editing.
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Figure 6: Illustration of qualitative comparison with the state-of-the-art methods.

3.4 Consistency-Preserving Strategy

Following [20, 2, 28], we introduce a consistency-preserving strategy to maintain the consistency
between the edited image and the original image by adopting the semantic information of the original
image (i.e., key and value pairs) saved in self-attention module during diffusion inversion to guide the
diffusion sampling, as illustrated in Fig. 5. Specifically, during the diffusion sampling, the calculation
of self-attention AttentionSa within the upsampling process of the U-Net is as follows:

AttentionSa(QSa,KIn,VIn) = softmax(
QSa ·KIn√

d
) · VIn (13)

where query QSa is still used from diffusion sampling but key KIn and value VIn are correspondingly
from diffusion inversion. Thus, the consistency-preserving strategy maintains the overall content
consistency between the desired image and original image, ensuring the effect of drag-based editing.

4 Experiments

4.1 Qualitative Evaluation

We conduct experiments to demonstrate the drag effects of our FastDrag method, comparing it against
state-of-the-art techniques such as DragDiffusion [28], FreeDrag [15], and DragNoise [16]. The
qualitative comparison results are presented in Fig. 6. Notably, FastDrag maintains effective drag
performance and high image quality even in images with complex textures, where n-step iterative
methods typically falter. For instance, as shown in the first row of Fig. 6, FastDrag successfully
rotates the face of an animal while preserving intricate fur textures and ensuring strong structural
integrity. In contrast, methods like DragDiffusion and DragNoise fail to rotate the animal’s face, and
FreeDrag disrupts the facial structure.

In the stretching task, FastDrag outperforms all other methods, as shown in the second row of
Fig. 6, where the goal is to move a sleeve to a higher position. The results show that other methods
lack robustness to slight deviations in user dragging, where the drag point is slightly off the sleeve.
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Table 1: Quantitative comparison with state-of-art methods on
DragBench. Here, lower MD indicates more precise drag re-
sults, while higher 1-LPIPS reflects greater similarity between
the generated and original images. The time metric represents
the average time required per point based on RTX 3090. Prepa-
ration denotes LoRA training. † means FastDrag without LCM-
equipped U-Net.

Approach Venue MD ↓ 1− LPIPS ↑ Time
Preparation Editing(s)

DragDiffusion [28] CVPR2024 33.70 0.89 1 min (LoRA) 21.54
DragNoise [16] CVPR2024 33.41 0.63 1 min (LoRA) 20.41
FreeDrag [15] CVPR2024 35.00 0.70 1 min (LoRA) 52.63
GoodDrag [32] arXiv2024 22.96 0.86 1 min (LoRA) 45.83
DiffEditor [19] CVPR2024 28.46 0.89 % 21.68

FastDrag†(Ours) 33.22 0.87 % 5.66
FastDrag (Ours) 32.23 0.86 % 3.12

Despite this, FastDrag accurately moves the sleeve to the desired height, understanding the underlying
semantic intent of dragging the sleeve.

Additionally, we perform multi-point dragging experiments, illustrated in the fourth row of Fig. 6.
Both DragDiffusion and DragNoise fail to stretch the back of the sofa, while FreeDrag incorrectly
stretches unintended parts of the sofa. Through the LWF introduced in Sec. 3.2.1, FastDrag can
manipulate all dragged points to their target locations while preserving the content in unmasked
regions. More results of FastDrag are illustrated in supplementary Sec. E.

4.2 Quantitative Comparison

To better demonstrate the superiority of FastDrag, we conduct quantitative comparison using Drag-
Bench dataset [28], which consists of 205 different types of images with 349 pairs of handle and
target points. Here, mean distance (MD) [23] and image fidelity (IF) [11] are employed as perfor-
mance metrics, where MD evaluates the precision of drag editing, and IF measures the consistency
between the generated and original images by averaging the learned perceptual image patch similarity
(LPIPS) [31]. Specifically, 1-LPIPS is employed as the IF metric in our experiment to facilitate
comparison. In addition, we compare the average time required per point to demonstrate the time
efficiency of our proposed FastDrag. The results are given in Table 1.

Apart from [28],[16],[15], two other state-of-the-art methods, i.e., GoodDrag [32] and DiffEditor [19],
are also adopted for comparison, with DiffEditor being the current fastest drag-based editing method.
Due to well-designed one-step warpage optimization and consistency-preserving strategy, our Fast-
Drag does not require LoRA training preparation, resulting in significantly reduced time consumption
(i.e., 3.12 seconds), which is nearly 700% faster than DiffEditor (i.e., 21.68 seconds), and 2800%
faster than the typical baseline DragDiffusion (i.e., 1 min and 21.54 seconds). Moreover, even using
standard U-Net without LCM, our method is still much faster than DiffEditor and far outperforms all
other state-of-the-art methods. It is particularly noteworthy that, even with an A100 GPU, DiffEditor
still requires 13.88 seconds according to [19], whereas FastDrag only requires 3.12 seconds on an
RTX 3090.

In addition, our FastDrag also achieves competitive quantitative evaluation metrics (i.e., IF and MD)
comparable to the state-of-the-art methods, and even better drag editing quality, as illustrated in Fig. 6.
These results demonstrate the effectiveness and superiority of our method.

4.3 Ablation Study

Inversion Step: To determine the number of inversion steps in diffusion inversion with LCM-
equipped U-Net, we conduct an ablation experiment with number of inversion steps set as t = 4, 6, 8,
10, 12, 14, 20, and 30, where IF and MD are used to evaluate the balance between the consistency
with original image and the desired drag effects. The results are given in Fig. 8 and Fig. 7, where
we can see that when t < 6, the generated images lack sufficient detail to accurately reconstruct the
original images. Conversely, when t > 6, it can successfully recover complex details such as intricate
fur textures and dense stone while maintaining high image quality. However, when t > 14, some
image details lost, which negatively impacts the effectiveness of the drag effect. By comprehensive
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Figure 8: Ablation study on number of inversion steps in terms of drag effect.
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Figure 9: Ablation study on bilateral nearest neighbor interpolation.

evaluation of both the drag effect and the similarity to the original images, we select 10 as the number
of inversion steps for our method with LCM to balance the drag effect.

BNNI: To demonstrate the effectiveness of BNNI, we compare it with several interpolation methods
on null point N , including maintaining the original value of this position, interpolation by zero-value,
and interpolation by random noise, denoted as “original value”, “0 interpolation”, and “random
interpolation”, respectively. The results are given in Fig. 9, where we can see that, by effectively
utilizing surrounding feature values to interpolate null points, BNNI can address semantic losses, and
enhance the quality of the drag editing.

Consistency-Preserving: We also conduct an experiment to validate the effectiveness of the
consistency-preserving strategy in maintaining image consistency. The results are illustrated in
Fig. 10, where “w/ CP” and “w/o CP” denote our FastDrag with and without using consistency-
preserving strategy, respectively. It is obviously that our method with consistency-preserving strategy
can effectively preserve image consistency, resulting in better drag editing effect.

User edit w/o CP w/ CP w/o CP w/ CPUser edit

Figure 10: Ablation study on consistency-preserving strategy.
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DragDiffusionFreeDrag DragNoise FastDrag (Ours)User editOriginal Image

Figure 11: Illustration of failure cases for limitation analysis under extremely long-distance drag editing. Our
FastDrag method may lose some detailed information in these cases but still achieves better editing performance
compared to state-of-the-art (SOTA) methods.

FastDragUser editOriginal Image FastDragUser editOriginal Image

Failed

Succeed

(a) Desired editing effect: Thin the hair 

while keeping the face size

(b) Desired editing effect: 

Lengthen the beak

Figure 12: Illustration of the limitation analysis with failed and successful drag editing for highly relying on
precise drag instruction. (a) It is best to exclude the face from the mask region. (b) The handle point should
ideally be placed where the “beak" feature is more prominent.

5 Limitations

Despite FastDrag’s impressive editing speed compared to SOTA methods, it shares some common
limitations. 1) Overly Smooth and Finer Details Loss: Similar to other diffusion-based methods [3,
28], FastDrag occasionally loses fine textures from the original images, as shown in Fig. 6, row 4.
Despite this, FastDrag outperforms other methods in speed and overall performance. 2) Extremely
Long-distance Drag Editing: In such case, object details may be lost due to the lower-dimensional
latent space, in which significant changes in detail (i.e., long-drag editing) can disrupt the semantics,
making it harder to preserve all details. Nevertheless, FastDrag handles long-distance editing better
than other SOTA methods, as illustrated in Fig. 11, where our method successfully achieves long-
distance drag editing that others fail to achieve. 3) Highly Relying on Precise Drag Instruction:
Achieving optimal results depends heavily on clear drag instructions. As with other SOTA methods,
precise input, such as excluding irrelevant areas from the mask (e.g., the face in Fig. 12, row 2) or
correctly placing the handle point (e.g., beak in Fig. 12), is essential for better performance.

6 Conclusion

This paper has presented a novel drag-based image editing method, i.e., FastDrag, which achieved
faster image editing speeds than other existing methods. By proposing one-step warpage optimization
and BNNI strategy, our approach achieves high-quality image editing according to the drag instruc-
tions in a very short period of time. Additionally, through the consistency-preserving strategy, it
ensures the consistency of the generated image with the original image. Moving forward, we plan to
continue refining and expanding our approach to further enhance its capabilities and applications.
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A Supplementary Experiments

We conduct supplementary quantitative experiments on BNNI and consistency-preserving strategies to
further validate their effectiveness. The quantitative metrics used are consistent with those described
in Sec. 4.1.

BNNI: Following the setup in Sec.4.3, we compare it with several interpolation methods on null
point N , including maintaining the original value of this position, interpolation by zero-value, and
interpolation by random noise, denoted as “origin”, “0-inter”, and “random-inter”, respectively. As
illustrated in Fig. 13, FastDrag with BNNI achieves the best MD levels compared to other interpolation
methods, while its IF is second only to “origin”. However, “origin” can lead to negative drag effects,
as shown in Fig. 9. Therefore, by effectively utilizing surrounding feature values to interpolate null
points, BNNI can address semantic losses and enhance the quality of drag editing.

Consistency-Preserving: We also conduct experiments to assess the impact of initiating the
consistency-preserving strategy at different sampling steps. The results, as shown in Fig. 14, indicate
that as the starting step increases ( i.e., the frequency of key and value replacements decreases),
the IF decreases, leading to poorer image consistency. Meanwhile, the MD initially decreases and
then increases as the starting step increases. It is evident that consistency-preserving strategy can
effectively maintain the consistency between the generated images and the original images.
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Figure 13: Ablation study on BNNI in terms of quan-
titative metrics.

3 4 5 6 7 8
Start step of Consistency-Preserving

32

33

34

35

36
M

ea
n 

Di
st

an
ce

Mean Distance

0.80

0.81

0.82

0.83

0.84

0.85

Im
ag

e 
Fid

el
ity

 (1
-L

PI
PS

)

Image Fidelity (1-LPIPS)

Figure 14: Ablation study on consistency-
preserving in terms of quantitative metrics.

B Single-step Diffusion

Figure 15: Overall editing time comparison with differ-
ent diffusion steps between FastDrag and DragDiffusion.
All experiments are conducted on RTX 3090 with diffu-
sion step set as 1, 20, and 50 respectively. Optimization
means latent optimization.

When integrating DragDiffusion with a single-
step diffusion model, the editing time is still
much longer than that of FastDrag. For DragDif-
fusion and FastDrag under diffusion steps of
1, 20, and 50, we calculate the time required
for inversion, sampling, and latent optimization
respectively. The results provided in Fig. 15
show that even with a single diffusion step (i.e.,
diffusion step set as 1), DragDiffusion still re-
quires significantly more time (20.7 seconds)
compared to FastDrag (2.88 seconds).

In addition, as observed in Fig. 15, DragDiffu-
sion spends significantly more time on latent op-
timization compared to diffusion inversion and
sampling. Therefore, reducing the time spent
on latent optimization is crucial for minimiz-
ing overall editing time, which is precisely what
FastDrag accomplishes.
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C Statistical Rigor

To further validate the superiority of our work and to achieve statistical rigor, we conducted an
additional experiment by repeating our experiment 10 times under the same experimental settings.
We observed that the variances of the performance metrics obtained from 10 realizations of our
FastDrag are MD (0.000404), 1-LPIPS (9.44E-11), and Time (0.018), all of which fall within a
reasonable range. These statistical results further demonstrate the effectiveness and stability of our
method for drag editing.

D Implementation Details

We utilize a pretrained LDM (i.e., Stable Diffusion 1.5 [27]) as our diffusion model, where the U-Net
structure is adapted with LCM-distilled weights from Stable Diffusion 1.5. It is worth emphasizing
that the U-Net structure used in our model is widely used in image generation methods [28, 15,
16, 32, 4]. Unless otherwise specified, the default setting for inversion and sampling step is 10.
Following DragDiffusion [28], classifier-free guidance (CFG) [8] is not applied in diffusion model,
and we optimize the diffusion latent at the 7th step. All other configurations follow that used in
DragDiffusion. Our experiments are conducted on an RTX 3090 GPU with 24G memory.

For the special application of drag-based editing, i.e., object moving, as shown in Fig. 8, significant
null region may be left at the original position of the object due to long-distance relocation, posing
challenges for BNNI. To ensure semantic integrity in the image and facilitate user interaction, we
adopted two straightforward strategies. For first strategy, specifically, we introduce a parameter r,
set as 2, centered at the unique target point e1, defining a rectangular area with dimensions 2r. We
then extract the noised-latent representation within this rectangular area and fill it into the mask,
effectively restoring the semantics at the original position of the object. For second strategy, we just
maintain the original semantic of original position to avoid null region. Under second strategy, object
moving will produce the effect of object replication, as shown in the third row of Fig. 16.

E More Results

We apply FastDrag to drag-based image editing in various scenarios, including face rotation, object
movement, object stretching, object shrinking and so on. The experimental results, as shown in Fig. 16,
demonstrate that FastDrag achieves excellent drag-based effects across multiple scenarios.

F Societal Impacts

FastDrag has the potential to bring about several positive societal impacts. Firstly, they offer intuitive
and efficient image editing tools, catering to artists, designers, and creators, thereby fostering creativity
and innovation. Secondly, their user-friendly nature simplifies the image editing process, increasing
accessibility and participation among a wider audience. In addition, our FastDrag improves efficiency
and saves the user’s time and effort, thus increasing productivity. Moreover, the innovative and
flexible nature of these methods opens up possibilities for various applications, spanning art creation,
design, education, and training.

However, along with these positive aspects, FastDrag can also have certain negative societal implica-
tions. They may be exploited by unethical individuals or organizations to propagate misinformation
and fake imagery, potentially contributing to the spread of false news and undermining societal trust.
Furthermore, widespread use of image editing tools may encroach upon individual privacy rights,
particularly when unauthorized information or imagery is manipulated. Moreover, inappropriate or
irresponsible image editing practices could lead to social injustices and imbalances, such as distorting
facts or misleading the public, thereby influencing public opinion and policies negatively.
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Figure 16: More visualized results of FastDrag.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We clearly outline the contributions of our approach in both the abstract and
the introduction in Sec.1 of our paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of the our method in Section 5
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: Our paper does not involve theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Our experimental results are reproducible. We provide a detailed description
of our method’s workflow in Sec.3 and implementation details in Sec.D.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: We include the implementation code for our method in the supplementary
materials submitted.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The main experimental details of our method are discussed in Appendix D.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Our experiments, conducted on the DragBench dataset, yield average metrics
that are statistically significant and provide a reliable basis for comparing our method with
others. And we discuss experimental statistical significance in Appendix C.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We have provided detailed information about the computer resources used for
all our experiments in Appendix D

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have thoroughly reviewed the NeurIPS Code of Ethics and can confirm
that our research conducted in the paper adheres to the NeurIPS Code of Ethics

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The potential positive societal impacts and negative societal impacts of the our
work is discussed in Appendix F

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our paper does not introduce any new datasets or pretrained models.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The models and baselines utilized in our method are detailed in Appendix D
of the paper.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: Our paper does not introduce any new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: During our research, we do not employ crowdsourcing or conduct studies
involving human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: In our research process, human subjects were not required to assist with the
study.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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