
Query Efficient Structured Matrix Approximation

Noah Amsel∗ Pratyush Avi∗ Tyler Chen∗ Feyza Duman Keles∗

Chinmay Hegde∗ Christopher Musco∗ Cameron Musco† David Persson‡∗

Abstract

We study the problem of learning a structured approximation (low-rank, sparse, banded, etc.) to
an unknown matrix A given access to matrix-vector product queries of the form x → Ax and x →
ATx. Among many other applications at the intersection of machine learning and scientific computing,
this problem arises as a natural abstraction of the operator learning problem in Scientific Machine
Learning [Boullé, Townsend, FoCM 2023]. We take a step towards understanding the sample complexity
of structured matrix approximation by proving matching upper and lower bounds for the number of
queries needed to find a near-optimal approximation to A from any structured family, F , of finite size.
In particular, we show that Θ(

√
log |F|) queries always suffice, and are necessary in the worst case. The

upper bound improves on the natural baseline of O(log |F|) queries. In this workshop submission, we
provide a self-contained proof of this result in the simplified realizable setting, demonstrating the key
ideas and techniques used in forthcoming work to prove the general version.

1 Introduction

Operator learning has emerged as a central task in Scientific Machine Learning (SciML) [Lu+21; Li+21;
BT24]. In its most abstract form, the goal is to find an approximation to an unknown operator A : X → Y
that maps between function spaces given training observations of the form (x,Ax), where x ∈ X . In SciML,
this problem arises when developing data-driven methods for solving partial differential equations (PDEs).
Here, A is the solution operator of a differential equation, which maps an input forcing function, boundary
condition, and/or equation parameters to a solution of the corresponding PDE. Given example input-output
pairs (typically computed using a traditional numerical solver), the goal is to learn an approximation to A
(e.g., a neural network) in order to efficiently solve the differential equation for future inputs.

The benefit of a learning-based approach is that it can lead to higher efficiency in applications where the
same equation needs to be solved for a multitude of different inputs. This is often the case in applications
like uncertainty quantification (UQ), where PDE parameters are random quantities [GFWG10]; in model-
driven design, where parameters are sequentially modified to optimize some objective [LR10]; and in data
assimilation [Bin+17], where parameters are tuned to fit the solution to measured data.

The operator learning approach has been remarkably effective for several use cases, yielding approxima-
tions to solution operators that can be applied orders-of-magnitude faster than directly solving the PDE
using a traditional numerical solver [Bar+23; Lu+21]. However, faster inference comes at the price of slow
training, which is often dominated by the cost of computing a dataset of input-output pairs using a traditional
numerical solver. Given the inherent computational cost of this task, understanding the sample complexity
of operator learning is a critical challenge in SciML. Recent research has sought to put the sample complexity
problem on firmer theoretical footing [ADM24; AGM25; BT24; BHOT24; BHT23].

1.1 From Operator Learning to Structured-Matrix Approximation

In this paper, we study a recent formalization of the operator learning problem put forward by Boullé,
Townsend, and others, with the aim of capturing the important subclass of linear PDEs [BT23; BHT23;

∗New York Univeristy (noah.amsel@nyu.edu, pratyushavi@nyu.edu, tyler.chen@nyu.edu, fd2135@nyu.edu, chinmay.h@nyu.
edu, cmusco@nyu.edu)

†University of Massachusetts Amherst (cmusco@cs.umass.edu)
‡Flatiron Institute (dpersson@flatironinstitute.org)

1

noah.amsel@nyu.edu
pratyushavi@nyu.edu
tyler.chen@nyu.edu
fd2135@nyu.edu
chinmay.h@nyu.edu
chinmay.h@nyu.edu
cmusco@nyu.edu
cmusco@cs.umass.edu
dpersson@flatironinstitute.org

2

SO24]. For such problems, the solution operator we wish to approximate is linear, and moreover, if the input
and output domains are discretized, it can actually be seen as a finite matrix A ∈ Rn×n.1 The goal is to
learn an approximation to this unknown A given input-output pairs of the form:

(x,Ax) or (x,ATx),

where x ∈ Rn can be chosen to be any vector. We consider the setting where we can issue multiple “matrix-
vector product” queries x1, . . . ,xq and where each xi+1 can be chosen adaptively depending on the results of
the previous queries, x1, . . . ,xi. For shorthand, we refer to these vectors as matvec queries. The number of
matvec queries needed perform a particular operation on A, or compute a quantity about A, is known as the
“query complexity”. In general, understanding the matvec query complexity of various matrix problems has
become a central topic of theoretical work in numerical linear algebra, with applications across computational
science and machine learning [SER18; BHSW20; BCW22; BN23; MMMW21; Che+24].

Without making any assumptions onA, it is easy to see that Ω(n) queries are needed to learn a meaningful
approximation (see [HT23] for a formal argument). Moreover, A can be exactly recovered by choosing the
n standard basis vectors as queries. As such, the matrix approximation problem is only interesting if we
impose additional constraints. Most commonly, we restrict ourselves to outputting an approximation from
some hypothesis class that is a structured family of matrices. This restriction is natural if our knowledge
of the problem at hand indicates that A lies in or nearly lies in this structured class. For example, F
might be the class of low-rank matrices, sparse matrices, or banded matrices. For applications in SciML
(e.g., learning solution operators for linear PDEs) hierarchical low-rank matrices [BT23; BHT23] and related
block-structured matrices [WT23] have been proven to yield especially effective approximations. In this
work, we study a general structured approximation problem of the following form:

Problem 1. For an unknown target matrix A ∈ Rn×n and a matrix family F ⊂ Rn×n (i.e., a hypothesis
class), find B̃ ∈ F satisfying

∥A− B̃∥F ≤ C · min
B∈F
∥A−B∥F

for some approximation factor C ≥ 1 using as few matvec queries to A and AT as possible.

In other words, our goal is to find an approximation from F that is competitive with the best possible
approximation to A in the class. We measure error with respect to the Frobenius norm, but other norms,
such as the spectral norm, could be considered as well. The problem is interesting in the setting where C
is close to 1 (e.g., C = 1 + ϵ for some small ϵ), in the case when C is a fixed constant, or even when C is
allowed to grow in n or other problem parameters [Ams+25a].

Beyond operator learning, sample-efficient methods for structured matrix approximation have many other
applications at the intersection of machine learning and computational science. For example, among other
applications [Amb+20], methods for approximation via hierarchical low-rank matrices are used to construct
fast direct solvers for integral equations given access to an implicit solver like a fast multipole method [LLY11;
Mar16]. Methods for learning diagonal and sparse approximations to Hessian matrices—for which x→ Ax
can be computed efficiently using automatic differentiation [Pea94]—are used to construct preconditioners
for first-order optimization methods [DVB15; YGKM20]. And as a special case, Problem 1 captures the
ubiquitous problem of near-optimal low-rank approximation [Woo14; HMT11; MM15].

1.2 Prior Work

Given the wide applicability of structured matrix approximation, significant research effort has focused on
obtaining query efficient algorithms for solving Problem 1 for various choices of the matrix family F . There
has also been interest in proving lower bounds on query complexity. Perhaps the most well-studied class is
that of rank-k matrices [HMT11; RST09; Woo14; MM15], for which it is known that O(k/ϵ1/3) queries suffice
[BCW22] and Ω(k + 1/ϵ1/3) queries are necessary [BN23] to achieve an approximation factor C = 1 + ϵ.
There has also been interest in families with a fixed pattern of s non-zeros per row, including diagonal,
banded, and block diagonal matrices [BKS07; TS11; BN22; DM23], as well as sparse matrices with unknown

1We can assume that the matrix is square without loss of generality by padding with zeros.

3

sparsity patterns [CPR74; CC86; CM83; PN24; WEV13; DSBN15; WSB11; SO24]. Matching upper and
lower bounds of Θ(s/ϵ) queries are known for C = 1+ ϵ when the sparsity pattern is fixed [Ams+24]. Recent
work has also analyzed matvec query algorithms for hierarchically low-rank matrix families (HOLDR, HSS,
etc.) [LLY11; LM24; Mar16; Che+25; Ams+25b], butterfly matrices [LY17; Liu+21], and more [HT23].

1.3 Beyond Specific Matrix Families

Given this large and growing body of work studying specific matrix-families, it is natural to ask if a more
general theory exists for determining the query complexity of approximation via a given class, F . In su-
pervised learning, a rich theory based on VC dimension, Rademacher complexity, and covering numbers
categorizes the complexity of learning arbitrary hypothesis classes. Does an analogous theory hold for the
problem of structured matrix approximation with arbitrary hypothesis classes?

We believe this problem is interesting because Problem 1 differs in important ways from standard su-
pervised learning problems. Most obviously, data collection is active and adaptive, although there has been
significant work on active learning [Set09]. Perhaps more interesting is the fact that the target/label corre-
sponding to any data example x ∈ Rn is itself an n dimensional vector, Ax. We might therefore hope to
learn more from each example than in a problem with scalar valued targets. An example of a such a problem
is the well-studied rank-1 matrix sensing problem from compressed sensing, in which the goal is to find an
approximation to A, but the matrix is only accessible via queries of the form xTAy [ZJD15]. Indeed, for
many of the families discussed above, there is a lot to be gained from the multidimensional output. Rank-k
matrices, for example, requires O(nk) parameters to represent, and Ω(nk) queries to learn in the matrix-
sensing setting, but can be learned using just O(k) matvec queries. Similarly, matrices with s non-zeros per
row have O(ns) parameters, but can be learned using O(s) matrix-vector product queries [Ams+24].

In this work, we take an initial step towards understanding structured matrix-approximation in greater
generality by considering any finite family of matrices F (i.e, with finite size |F|). Such families require
log(|F|) bits (i.e., parameters) to represent, and it is not hard to show using standard techniques from
sketching/compressed sensing that it is always possible to solve Problem 1 with fixed constant C using
O(log |F|) queries (see Section 2.2 for more details). Indeed, this bound can even be achieved in the more
restrictive setting where queries are of the form xTAy. Optimistically, we might hope to improve the bound
to something like O(log |F|/n) given that, as discussed above, any query of the form Ax returns up to n
times more information than a single quadratic form query.

Unfortunately however, it is easy to come up with families for which achieving such a bound is impossible:
simply consider the family of matrices that are zero everywhere except their top left k × k block, on which
they can equal any possible k × k binary matrix. This family has size 2k

2

, so log(|F|) = k2. However, it
clearly requires Ω(k) > k2/n queries to learn an approximation from this family to any constant accuracy (see
Section 4 for more details). Perhaps more realistically, constant rank butterfly matrices are a common class of
structured matrices used to approximate non-uniform Fourier transforms and other operators. Such matrices
require O(n log n) parameters to represent but our best known matvec-query algorithms for approximation
via constant-rank butterfly matrix require Õ(

√
n) matvecs [Liu+21], and Ω̃(

√
n) can be shown to be tight.

Interestingly, even for these “hard” matrix families, matvec queries still allow for a significant quadratic
improvement over, e.g., scalar valued xTAy queries.

1.4 Our Contributions

Our main result is to establish that the examples of the previous paragraph are essentially worst-case. In
particular, in forthcoming work, we prove the following general result for any finite matrix family.

Theorem 1. There exists an algorithm that, for any matrix family F ⊂ Rn×n with size |F|, finds, with high
probability, an approximation B̃ ∈ F to a target matrix A using Õ(

√
log |F|) matrix-vector product queries

with A and AT, such that, for a fixed constant C,

∥B̃−A∥F < C · min
B∈F
∥B−A∥F .

This theorem establishes that, surprisingly, it is possible to always achieve a quadratic improvement over
the naive O(log |F|) bound. Our algorithm that achieves this bound is adaptive and strongly relies on the

4

ability to query both A and AT: it is not hard to see that a lower bound of Ω(log |F|) holds if we can only
query A (see Section 4). The same lower bound holds for xTAy queries since these can be evaluated while
only querying Ay.

In this workshop paper, we prove a special case of Theorem 1 when A is assumed to lie in the hypothesis
class F : i.e., minB∈F ∥A−B∥F = 0. In machine learning language, we might call this the realizable setting.
In particular, we prove the following in Section 3:

Theorem 2. There exists an algorithm (Algorithm 2) that, for any matrix family F ⊂ Rn×n with size |F| and
any δ ∈ (0, 1), can recover an unknown matrix A ∈ F with probability 1− δ using O

(√
log |F|+ log(1/δ)

)
matrix-vector product queries with A and AT.

The proof of Theorem 2 is based on a simulation argument: we show how to simulate a basic one-sided
O(log |F|) query algorithm (i.e., of the form Ax) with Õ(

√
log(|F|) two-sided queries (i.e., of the form Ax

and ATx). The proof captures the main ideas of that of Theorem 1.

Remark 1. A reader might notice that, if we are not more careful with how we define our computational
model, in the special case when A ∈ F , the problem above can be trivially solved with a single query : choose
x to be a random real-valued Gaussian vector. With probability 1, Ax ̸= Cx for any C ∈ F with C ̸= A,
so we can uniquely determine A from the result of the query. This approach, however, requires x to have
arbitrary precision entries (which is unrealistic in applications) and does not extend to the approximation
setting of Theorem 1. Our algorithm, on the other hand, uses bounded bit complexity vectors (in fact, all
queries have ±1 entries) and naturally extends to the more challenging setting where A /∈ F .

2 Preliminaries

Notation. For i ∈ {1, . . . , n}, ai is the ith entry of the vector a ∈ Rn. For i ∈ {1, . . . ,m} and j ∈
{1, . . . , n}, Bij is the entry at the ith row and jth column of the matrix B ∈ Rm×n. For B ∈ Rm×n,

∥B∥F =
(∑m

i=1

∑n
j=1 B

2
ij

)1/2

is the Frobenius norm. For a,b ∈ Rn, ⟨a,b⟩ =
∑n

i=1 aibi is the inner product.

unif({−1, 1}m×n) is the distribution over m × n matrices with independently and identically drawn (i.i.d.)
Rademacher entries, i.e., uniform over {−1, 1}. Throughout, log(x) refers to the base-2 logarithm of x.

For x ∈ Rn, a query is defined as an oracle call to a matrix-vector mutiplication routine for our matrix
A, or its transpose. I.e., a query is either of the form x → Ax or x → ATx; we call these right and left
queries, respectively. The query complexity of an algorithm is the total number of oracle calls that it makes
to the target matrix A. We do not consider computational costs in this paper, only query complexity. We
note that all of our methods run in time linear in |F|, but the goal in practice is typically to obtain much
faster runtimes, i.e., on the order of poly(n, log |F|), which requires F to have some compact representation.
Obtaining simultaneously low query complexity and computational complexity is an interesting topic in its
own right.

2.1 Zero Testing

Our analysis requires the following standard fact on detecting if a matrix is zero via multiplication by a
random vector. Readers may have seen this fact before in the context of Freivalds’ algorithm for testing the
correctness of a matrix-matrix product.

Claim 1. Consider any non-zero X ∈ Rm×n and let V ∼ unif({−1, 1}n×q) with q = log2(1/δ) columns.

Pr [XV = 0] ≤ δ,

where 0 is the all 0s matrix.

Proof. Every non-zero matrix X has at least one non-zero row, x. It suffices to show that Pr
[
xTV = 0

]
≤ δ.

To prove this, it suffices to show that xTv(i) ̸= 0 for any column vi in V. Moreover, since these columns are
chosen independently, it suffices to show that Pr

[
xTv(i) = 0

]
≤ 1/2.

5

To see why this is the case, observe that x must have at least one non-zero entry, xk. Then, for any
w ∈ {−1, 1}n, consider the vectorw′ formed by negating the kth entry and keeping all other entries the same.
It is not hard to see that, for any x, either ⟨w,x⟩ or ⟨w′,x⟩ is non-zero. In particular, ⟨w,x⟩ − ⟨w′,x⟩ =
±2wkxk, which is nonzero because xk ̸= 0 and wk ∈ {−1, 1}. Since the kth entry of v is equally like to be 1
or negative −1, we immediately conclude that Pr

[
xTv(i) ̸= 0

]
≥ 1/2. The probability that Pr

[
xTv(i) = 0

]
for all i ∈ {1, . . . , q} is thus at most (1/2)q ≤ δ, which establishes the claim.

2.2 Warm-Up: O(log |F|) queries

It is not hard to use Claim 1 to give an O(log |F|) matvec query algorithm for recovering a matrix A from a
finite family F . While there are many ways to see why this is the case, we consider an iterative application
of the claim, using it to refine a candidate set of matrices, C. In particular, begin with C = F . Draw a
single random vector, v ∈ Rn, and remove any candidates B ∈ C such that Bv ̸= Av. After O(log(|F|/δ))
repetitions, simply return any matrix remaining C. We will argue that with high probability, the only such
matrix is A itself. We formalize this “iterative refinement” approach in Algorithm 1. Our main result
(Theorem 2) will achieve O(

√
log |F|) query complexity via an efficient simulation of this algorithm.

Algorithm 1 One-Sided Recovery

Input: Finite family F , failure probability δ, oracle for computing Ax for target matrix A ∈ F .
Output: Matrix A with probability ≥ 1− δ.

1: Initialize candidate set C(0) = F .
2: for i = 1, . . . , log(|F|/δ) do
3: Draw v(i) ∼ unif({−1, 1}n
4: For all B ∈ C(i−1), add B to C(i) if Bv(i) = Av(i).

5: return Any remaining B ∈ C(log(|F|/δ)).

Theorem 3. Algorithm 1 returns the unknown matrix A ∈ F with probability 1−δ, and uses O (log(|F|/δ))
(one-sided) matrix-vector product queries with A.

Proof. First, it is clear that A always gets added to C(i) in Line 4, so the matrix remains in C(log(|F|/δ)). It
thus suffices to show that no B ̸= A also remain in C(log(|F|/δ)).

To see why this is the case, fix a single matrix B. By Claim 1, Pr[Bv(i) = Av(i)] ≤ 1/2 for all i. The
probability that B is added to C(i) conditioned on being in C(i−1) is thus ≤ 1/2. We conclude that:

Pr
[
B ∈ C(log(|F|/δ))

]
≤

(
1

2

)log(|F|/δ)

=
δ

|F|
.

By a union bound, we conclude that the probability that any B ∈ F with B ̸= A is in C(log(|F|/δ)) is less
than δ

|F| · (|F|− 1) ≤ δ. So with probability ≥ 1− δ, the algorithm returns A, as desired. It uses one matvec

query per iteration to compute Av(i), so a total of log(|F|/δ) queries.

3 Main Result

In this section, we will present and analyze Algorithm 2, which achieves the Õ(
√

log |F|) query complexity
of Theorem 2. The aim of the method is to use a combination of left and right queries to efficiently simulate
the one-sided Algorithm 1 given in Section 2.2. Like that method, the goal is to repeatedly reduce the size
of a candidate set C, initially containing all of F , until it contains only A itself.

The high-level idea of our algorithm begins with the observation that any potential right query x partitions
the current candidate set C into subsets of matrices that would return the same response given that query.
We call such subsets “buckets”, and give a formal definition below:

Definition 1. Let C ⊂ Rn×n be a family of matrices . For query vector x ∈ Rn, a bucket Tx→z is the set of
all matrices B ∈ C such that Bx = z, i.e.,

Tx→z = {B ∈ C : Bx = z} .

6

To recovery A using a small number of queries, the hope is that we can find a query x for which Tx→Ax

is much smaller than the current candidate set C – i.e., we want Ax to lie in a small bucket, since we can
update our candidate set to only contain other matrices in that bucket. If we choose a random Rademacher
vector, as in the analysis of Theorem 3, we are guaranteed that Tx→Ax is no more than roughly half the size
of C. Accordingly, we obtain a query complexity of O(log |F|) by repeatedly halving the candidate set.

Our key idea to improve this bound is to take advantage of a natural dichotomy that arises. While
Tx→Ax is guaranteed to be roughly 1/2 the size of C in the worst-case (via Claim 1), in many cases it can
be much much smaller. If it is much smaller, than we can make more progress by issuing the query Ax. In

particular, imagine an ideal situation where we always have Tx→Ax ≲ |C|/2
√

log |F|. Then we could hope to
converge to a candidate set containing just A after just log

2
√

log |F|(|F|) = O(
√
log |F|) queries.

Of course, this ideal situation may not always arise. However, suppose on the other hand that Tx→Ax >

|C|/2
√

log |F| – i.e., Ax lies in a “large bucket”. There can only be at most 2
√

log |F| such buckets, each
corresponding to some different length n vector z. In this case, our idea is to use a fixed set of random left

queries, ΠA, to learn Ax without ever issuing the query x. In particular, since there are only have 2
√

log |F|

possible choices for Ax, we only need Π to have roughly O(
√
log |F|) rows in order to uniquely identify Ax

from ΠAx with high probability. Moreover, the same left sketch can be reused across iterations of the our
algorithm to refine the candidate set, recovering Ax for any query x that does not make sufficient.

This high-level strategy is formalized in Algorithm 2, which is presented and analyzed below.

Algorithm 2 Finite Family Recovery

Input: Finite family F , failure probability δ, oracles for computing Ax and ATx for target matrix A ∈ F .
Output: Matrix A with probability ≥ 1− δ.
1: Let q ← ⌈3

√
log |F|+ 2 log(1/δ)⌉.

2: Draw Π ∼ unif({−1, 1}q×n) and compute Ψ← ΠA. ▷ Costs O(
√
log |F|) left queries.

3: Initialize candidate set C(0) ← F .
4: for i = 1, . . . , log(|F|/δ) do
5: Draw v(i) ∼ unif({−1, 1}n).
6: Compute set Z(i) ←

{
z : z = Bv(i) for some B ∈ C(i−1)

}
▷ Set of all possible outputs for Av(i).

7: For all z ∈ Z(i), compute Tv(i)→z =
{
B ∈ C(i−1) : Bv(i) = z

}
. ▷ Bucket for each output z.

8: Collect large bucket representatives L(i) =
{
z ∈ Z(i) : |Tv(i)→z| >

|C(i−1)|
2
√

log |F|

}
.

9: if Ψv(i) = Πz for some z ∈ L(i) then
10: zout ← z ▷ Goal is that zout = Av(i).
11: else
12: zout ← Av(i). ▷ Costs 1 right query.

13: C(i) ← Tv(i)→zout

14: return Any remaining B ∈ C(log(|F|/δ))

Proof of Theorem 2. In addition to the variables defined in the algorithm, let S(i) be the set of “small buckets
representitives” included by query v(i). Concretely,

S(i) =
{
z ∈ Z(i) : |Tv(i)→z| ≤

|C(i−1)|

2
√

log |F|

}
Note that S(i) ∪ L(i) = Z(i). We consider two cases in our analysis: when Av(i) ∈ S(i) (i.e., Av(i) is in a
small bucket), we should issue the query, and make significantly progress towards reducing the size of C(i).
On the other hand, when Av(i) ∈ L(i) (i.e., Av(i) is in a large bucket), we should detect this, and avoid
issuing the query explicitly by using our left queries Ψ to recover Av(i).

Case 1: Av(i) ∈ S(i). The key claim we will prove holds in this case is as follows:

Ψv(i) ̸= Πz for all z ∈ L(i) with probability ≥ 1− δ2

22
√

log |F|
. (1)

7

A consequence of this fact is that, with high probability, we issue 1 right matvec query on Line 11 of

Algorithm 2 whenever Av(i) ∈ S(i). Moreover, we will have |C(i)| ≤ |C(i−1)|
2
√

log |F|
, and C(i) contains A, as

required. So, while a right query is issued, we make significant progress in cutting down the candidate set.
Assuming C(i−1) is independent of Π (we will argue why this is the case later), we can prove (1) as a

direct consequence of Claim 1. In particular, this would imply that Z(i), L(i), and S(i)) are independent of
Π, so for any z ∈ L(i), we have that:

Pr
[
Πz−Ψv(i) = 0

]
= Pr

[
Πz−ΠAv(i) = 0

]
≤ 1

23
√

log |F|+2 log(1/δ)
=

δ2

23
√

log |F|

There are at most 2
√

log |F| vectors in L(i), so we conclude via a union bound that:

Pr
[
Ψv(i) ̸= Πz for all z ∈ L(i)

]
≥ 1− |L(i)|

23
√

log |F|
≥ 1− δ2

22
√

log |F|
. (2)

Case 2: Av(i) ∈ L(i). In this case, we would like identify Av(i) ∈ L(i) without issuing a right query, and
store its value as zout. We will do so using Ψ. Be definition, Ψv(i) = ΠAv(i). So, we will only fail to set
zout equal to Av(i) on Line 9 if there is some other z ∈ L(i) for which Ψv(i) = Πz. By the same logic as in
Case 1, the probability that this happens is low:

Pr
[
Ψv(i) ̸= Πz for all z ∈ L(i), z ̸= Av(i)

]
≥ 1− δ2 · (|L(i)| − 1)

23
√

log |F|
≥ 1− δ2

22
√

log |F|
(3)

Correctness. Combining (1) and (3) and observing that the algorithm runs for log(|F|/δ) iterations, we
can conclude via a union bound that zout = Av(i) for all i. In particular, with probability at least:

1− δ2 · log(|F|/δ)

22
√

log |F|
≥ 1− δ2 · log(1/δ)− δ2 log(|F|)

22
√

log |F|
≥ 1− δ.

Above we used that log(|F|)
22

√
log |F|

< .5 for any sized family. Importantly, in applying (1) and (3), we also require

that Π is independent of C(i) for all i. This holds inductively: conditioned on zout = Av(j) for all j < i, C(i)
is only a function of F and v(1), . . . ,v(j).

Finally we note that, iff zout = Av(i) for all i, then the output of Algorithm 2 is actually identical to
that of Algorithm 1, so correctness follows immediately. We are left to confirm query complexity.

Query complexity. We issue q ← ⌈3
√

log |F| + 2 log(1/δ)⌉ left queries to form Ψ. Via the same union
bound argument as above, with overall probability 1− δ, we issue a single right query every time we are in
Case 1 and we issue not queries when in Case 2. Moreover, it is not hard to see that we can only enter Case
1 at most

√
log |F| times. Indeed, every time we enter Case 1, the size of C(i) reduces by a multiplicative

factor of 1/2
√

log |F|. If this happened more than
√

log |F| times, we would have an empty candidate set,
which is not possible since A always remains in the candidate set with probability 1− δ.

Our final query complexity is thus:

3
√
log |F|+ 2 log(1/δ) +

√
log |F|.

4 Lower Bounds

It is interesting to ask whether the recovery results from Theorem 3 (for one-sided query access) and The-
orem 2 (for two-sided query access) are optimal. In this section, we provide short information theoretical
arguments proving that they are up to logarithmic factors. As discussed in Remark 1, to do so, we must
assume that all matvec queries to A or AT only involve inputs, x, whose entries have bounded precision;
otherwise, A can be trivially recovered from any finite family F using a single query with arbitrary precision.

8

We note that the assumption of finite precision is both reflective of the sorts of queries and responses that
can be computed in applications. Moreover, the assumption can be eliminated when proving lower bounds
for the more challenging “approximation” problem (Problem 1), which we will address in forthcoming work.

Formally, a natural restriction is to assume that x contains integer entries bounded between [−m,m] for
some constant m. I.e., its entries can be represented using log(2m) bits. Since any such x can be written
as a weighted sum of O(logm) binary {0, 1} vectors, up to a logarithmic factor in the query complexity, we
can equivalently assume binary queries. This is how our theorems are stated below.

Theorem 4. For any integer n and any k ≤ n, there exists a finite family F ⊂ Rn×n with log |F| = k such
that the following is true: Suppose an algorithm issues q adaptive, binary, one-sided queries x1, . . . ,xq ∈
{0, 1}n to an unknown A ∈ F , obtaining responses Ax1, . . . ,Axq ∈ {0, 1}n. If from these responses, the

algorithm returns A with probability > 1/2, then it must be that q ≥ log |F|
log log |F| .

This theorem establishes that Theorem 3 is optimal, up to a log log |F| factor.

Proof. Let F contain any B where the first k elements of the first row are either 0 or 1. All other entries in
the first row, and all entries in all other rows are 0. Clearly |F| = 2k, so log |F| = k.

Now, consider multiplying any A ∈ F by a binary query vector, x. For any such query, only the first
entry of Ax is non-zero, and this entry will contain an integer between 0 and k. Accordingly, the result of
the query only contains log k = log log |F| bits of information. By pigeonhole principal, there will be more
than one matrix in F that results in the same query responses unless our number of queries q satisfies:

q · log log |F| ≥ log |F| =⇒ q ≥ log |F|
log log |F|

.

Of course, if ≥ 2 matrices result in the same query responses, then any algorithm can at best guess A’s
identity with probability 1/2.

A similar result holds for the case when the algorithm can make two-sided queries. In particular, the
following result shows that our Theorem 2 is tight up to a logarithmic factor.

Theorem 5. For any integer n and any perfect square k ≤ n, there exists a finite family F ⊂ Rn×n

with log |F| = k such that the following is true: Suppose an algorithm issues q adaptive, binary, two-
sided queries x1, . . . ,xq ∈ {0, 1}n to an unknown A ∈ F , obtaining responses Ax1, . . . ,Axq ∈ {0, 1}n and
ATx1, . . . ,A

Txq ∈ {0, 1}n. If from these responses, the algorithm returns A with probability > 1/2, then it

must be that q ≥
√

log |F|
log log |F| .

Proof. Let F contain any B where the upper left
√
k×
√
k entries are either 0 or 1 and all other entries are

0. Here, F = 2k and logF = k. Consider querying an unknown target matrix A ∈ F with a binary vector x
and receiving both the left and right response Ax and ATx. Only the first

√
k entries in each of these vectors

is non-zero, and each non-zero entry contains an integer in the range [0,
√
k]. I.e., any query only returns

2
√
k log(

√
k) =

√
log |F| log log |F| bits of information. By the same argument as in Theorem 4, there must

exist matrices in F that return the same set of query responses unless q satisfies the following:

q ·
√
log |F| log log |F| ≥ log |F| =⇒ q ≥

√
log |F|

log log |F|
.

Butterfly matrices. While the family considered in Theorem 5 might seem artificial, the result actually
immediately implies a lower bound for the well-studied family of rank-1 butterfly matrices [LY17; Liu+21].
In particular, consider the family F ⊂ Rn×n where only the top-left entry of every block in a partition of
the matrix into n,

√
n×
√
n blocks is non-zero. I.e., for any B ∈ F :

Bij =

{
0 if (i mod

√
n) ̸= 0 and (j mod

√
n) ̸= 0

0 or 1 otherwise
.

9

It is not hard to see that, up to a permutation of row and column indices, this family is equivalent to the
one considered in Theorem 5, and we thus requires Ω̃(

√
n) matvecs queries to recover any A ∈ F .

However, we can also observe that any matrix in this family has complimentary rank-1 structure (see
[LY17] for details), and thus admits a rank-1 butterfly factorization. Accordingly, we conclude that recovering
a rank-1 butterfly matrix A from matvec queries also requires Ω̃(

√
n) such queries, which matches existing

upper bounds up to a log n factor [Liu+21].

(a) Only the top-left entries of every block in a
√
n ×

√
n

partition are non-zero.
(b) Only the top-left

√
n×

√
n entries are non-zero.

Figure 1: Matrix with complimentary low rank structure (left) and its permutation (right).

References

[ADM24] B. Adcock, N. Dexter, and S. Moraga. “Optimal deep learning of holomorphic operators be-
tween Banach spaces”. In: Advances in Neural Information Processing Systems 37 (NeurIPS).
2024 (cited on page 1).

[AGM25] B. Adcock, M. Griebel, and G. Maier. “Learning Lipschitz Operators with respect to Gaussian
Measures with Near-Optimal Sample Complexity”. In: (2025) (cited on page 1).

[Amb+20] I. Ambartsumyan, W. Boukaram, T. Bui-Thanh, O. Ghattas, D. Keyes, G. Stadler, G. Turkiyyah,
and S. Zampini. “Hierarchical Matrix Approximations of Hessians Arising in Inverse Problems
Governed by PDEs”. In: SIAM Journal on Scientific Computing 42.5 (2020), A3397–A3426
(cited on page 2).

[Ams+24] N. Amsel, T. Chen, D. Halikias, F. D. Keles, C. Musco, and C. Musco. “Fixed-Sparsity Matrix
Approximation from Matrix-Vector Products”. In: 2402.09379 (2024) (cited on page 3).

[Ams+25a] N. Amsel, T. Chen, D. Halikias, F. D. Keles, C. Musco, and D. Persson. “Quasi-optimal
approximation by Hierarchically Semi-Separable matrices”. In: In submission. (2025) (cited
on page 2).

[Ams+25b] N. Amsel, T. Chen, F. D. Keles, D. Halikias, C. Musco, C. Musco, and D. Persson. “Quasi-
optimal hierarchically semi-separable matrix approximation”. In: 2505.16937 (2025) (cited on
page 3).

[Bar+23] I. A. Baratta, J. P. Dean, J. S. Dokken, M. Habera, J. S. Hale, C. N. Richardson, M. E.
Rognes, M. W. Scroggs, N. Sime, and G. N. Wells. DOLFINx: The next generation FEniCS
problem solving environment. 2023 (cited on page 1).

[BCW22] A. Bakshi, K. L. Clarkson, and D. P. Woodruff. “Low-Rank Approximation with 1/ϵ1/3

Matrix-Vector Products”. In: Proceedings of the 54th Annual ACM Symposium on Theory
of Computing (STOC). 2022, pp. 1130–1143 (cited on page 2).

[BHOT24] N. Boullé, D. Halikias, S. E. Otto, and A. Townsend. “Operator learning without the adjoint”.
In: Journal of Machine Learning Research 25.364 (2024), pp. 1–54 (cited on page 1).

[BHSW20] M. Braverman, E. Hazan, M. Simchowitz, and B. Woodworth. “The Gradient Complexity of
Linear Regression”. In: Proceedings of the 33rd Annual Conference on Computational Learning
Theory (COLT). Vol. 125. 2020, pp. 627–647 (cited on page 2).

[BHT23] N. Boullé, D. Halikias, and A. Townsend. “Elliptic PDE learning is provably data-efficient”.
In: Proceedings of the National Academy of Sciences 120.39 (2023) (cited on pages 1, 2).

10

[Bin+17] P. Binev, A. Cohen, W. Dahmen, R. DeVore, G. Petrova, and P. Wojtaszczyk. “Data As-
similation in Reduced Modeling”. In: SIAM/ASA Journal on Uncertainty Quantification 5.1
(2017), pp. 1–29 (cited on page 1).

[BKS07] C. Bekas, E. Kokiopoulou, and Y. Saad. “An estimator for the diagonal of a matrix”. In:
Applied Numerical Mathematics 57.11 (2007), pp. 1214–1229 (cited on page 2).

[BN22] R. A. Baston and Y. Nakatsukasa. Stochastic diagonal estimation: probabilistic bounds and an
improved algorithm. 2022 (cited on page 2).

[BN23] A. Bakshi and S. Narayanan. “Krylov Methods are (nearly) Optimal for Low-Rank Approx-
imation”. In: Proceedings of the 64th Annual IEEE Symposium on Foundations of Computer
Science (FOCS). 2023 (cited on page 2).

[BT23] N. Boullé and A. Townsend. “Learning Elliptic Partial Differential Equations with Randomized
Linear Algebra”. In: Foundations of Computational Mathematics 23.2 (2023) (cited on pages 1,
2).

[BT24] N. Boullé and A. Townsend. “A mathematical guide to operator learning”. In: Numerical
Analysis Meets Machine Learning. Handbook of Numerical Analysis. 2024 (cited on page 1).

[CC86] T. F. Coleman and J.-Y. Cai. “The Cyclic Coloring Problem and Estimation of Sparse Hessian
Matrices”. In: SIAM Journal on Algebraic Discrete Methods 7.2 (1986), pp. 221–235 (cited on
page 3).

[Che+24] S. Chewi, J. de Dios Pont, J. Li, C. Lu, and S. Narayanan. “Query lower bounds for log-concave
sampling”. In: J. ACM (2024) (cited on page 2).

[Che+25] T. Chen, D. Halikias, F. D. Keles, C. Musco, and D. Persson. “Near-optimal hierarchical
matrix approximation from matrix-vector products”. In: SIAM Symp. on Discrete Algo. 2025
(cited on page 3).

[CM83] T. F. Coleman and J. J. Moré. “Estimation of Sparse Jacobian Matrices and Graph Coloring
Blems”. In: SIAM Journal on Numerical Analysis 20.1 (1983), pp. 187–209 (cited on page 3).

[CPR74] A. R. Curtis, M. J. D. Powell, and J. K. Reid. “On the Estimation of Sparse Jacobian Matri-
ces”. In: IMA Journal of Applied Mathematics 13.1 (1974), pp. 117–119 (cited on page 3).

[DM23] P. Dharangutte and C. Musco. “A Tight Analysis of Hutchinson’s Diagonal Estimator”. In:
Symposium on Simplicity in Algorithms (SOSA). Society for Industrial and Applied Mathe-
matics, 2023, pp. 353–364 (cited on page 2).

[DSBN15] G. Dasarathy, P. Shah, B. N. Bhaskar, and R. D. Nowak. “Sketching Sparse Matrices, Covari-
ances, and Graphs via Tensor Products”. In: IEEE Transactions on Information Theory 61.3
(2015), pp. 1373–1388 (cited on page 3).

[DVB15] Y. N. Dauphin, H. d. Vries, and Y. Bengio. “Equilibrated adaptive learning rates for non-
convex optimization”. In: Advances in Neural Information Processing Systems 28 (NeurIPS)
(2015) (cited on page 2).

[GFWG10] D. Galbally, K. Fidkowski, K. Willcox, and O. Ghattas. “Non-linear model reduction for uncer-
tainty quantification in large-scale inverse problems”. In: International journal for numerical
methods in engineering 81.12 (2010), pp. 1581–1608 (cited on page 1).

[HMT11] N. Halko, P.-G. Martinsson, and J. A. Tropp. “Finding Structure with Randomness: Proba-
bilistic Algorithms for Constructing Approximate Matrix Decompositions”. In: SIAM Review
53.2 (2011), pp. 217–288 (cited on page 2).

[HT23] D. Halikias and A. Townsend. “Structured matrix recovery from matrix-vector products”. In:
Numerical Linear Algebra with Applications 31.1 (2023) (cited on pages 2, 3).

[Li+21] Z. Li, N. Kovachki, K. Azizzadenesheli, B. Liu, K. Bhattacharya, A. Stuart, and A. Anand-
kumar. “Fourier Neural Operator for Parametric Partial Differential Equations”. In: Proceed-
ings of the 9th International Conference on Learning Representations (ICLR). 2021 (cited on
page 1).

11

[Liu+21] Y. Liu, X. Xing, H. Guo, E. Michielssen, P. Ghysels, and X. S. Li. “Butterfly Factorization
Via Randomized Matrix-Vector Multiplications”. In: SIAM Journal on Scientific Computing
43.2 (2021) (cited on pages 3, 8, 9).

[LLY11] L. Lin, J. Lu, and L. Ying. “Fast construction of hierarchical matrix representation from
matrix–vector multiplication”. In: Journal of Computational Physics 230.10 (2011), pp. 4071–
4087 (cited on pages 2, 3).

[LM24] J. Levitt and P.-G. Martinsson. “Linear-Complexity Black-Box Randomized Compression of
Rank-Structured Matrices”. In: SIAM Journal on Scientific Computing 46.3 (2024), A1747–
A1763 (cited on page 3).

[LR10] T. Lassila and G. Rozza. “Parametric free-form shape design with PDE models and reduced
basis method”. In: Computer Methods in Applied Mechanics and Engineering 199.23 (2010),
pp. 1583–1592 (cited on page 1).

[Lu+21] L. Lu, P. Jin, G. Pang, Z. Zhang, and G. E. Karniadakis. “Learning nonlinear operators via
DeepONet based on the universal approximation theorem of operators”. In: Nature Machine
Intelligence 3 (2021), pp. 218–229 (cited on page 1).

[LY17] Y. Li and H. Yang. “Interpolative Butterfly Factorization”. In: SIAM Journal on Scientific
Computing 39.2 (2017), A503–A531 (cited on pages 3, 8, 9).

[Mar16] P.-G. Martinsson. “Compressing Rank-Structured Matrices via Randomized Sampling”. In:
SIAM Journal on Scientific Computing 38.4 (2016), A1959–A1986 (cited on pages 2, 3).

[MM15] C. Musco and C. Musco. “Randomized Block Krylov Methods for Stronger and Faster Ap-
proximate Singular Value Decomposition”. In: Advances in Neural Information Processing
Systems 28 (NeurIPS). 2015, pp. 1396–1404 (cited on page 2).

[MMMW21] R. A. Meyer, C. Musco, C. Musco, and D. Woodruff. “Hutch++: Optimal Stochastic Trace
Estimation”. In: Proceedings of the 4th Symposium on Simplicity in Algorithms (SOSA) (2021)
(cited on page 2).

[Pea94] B. A. Pearlmutter. “Fast exact multiplication by the Hessian”. In: Neural computation 6.1
(1994), pp. 147–160 (cited on page 2).

[PN24] T. Park and Y. Nakatsukasa. “Approximating Sparse Matrices and their Functions using
Matrix-vector products”. In: 2310.05625 (2024) (cited on page 3).

[RST09] V. Rokhlin, A. Szlam, and M. Tygert. “A Randomized Algorithm for Principal Component
Analysis”. In: SIAM Journal on Matrix Analysis and Applications 31.3 (2009), pp. 1100–1124
(cited on page 2).

[SER18] M. Simchowitz, A. El Alaoui, and B. Recht. “Tight query complexity lower bounds for PCA
via finite sample deformed wigner law”. In: Proceedings of the 50th Annual ACM Symposium
on Theory of Computing (STOC). 2018, pp. 1249–1259 (cited on page 2).

[Set09] B. Settles. Active learning literature survey. Tech. rep. University of Wisconsin-Madison, 2009
(cited on page 3).

[SO24] F. Schäfer and H. Owhadi. “Sparse Recovery of Elliptic Solvers from Matrix-Vector Products”.
In: SIAM Journal on Scientific Computing 46.2 (2024), A998–A1025 (cited on pages 2, 3).

[TS11] J. M. Tang and Y. Saad. “Domain-Decomposition-Type Methods for Computing the Diagonal
of a Matrix Inverse”. In: SIAM Journal on Scientific Computing 33.5 (2011), pp. 2823–2847
(cited on page 2).

[WEV13] T. Wimalajeewa, Y. C. Eldar, and P. K. Varshney. “Recovery of sparse matrices via matrix
sketching”. In: 1311.2448 (2013) (cited on page 3).

[Woo14] D. P. Woodruff. “Sketching as a Tool for Numerical Linear Algebra”. In: CoRR abs/1411.4357
(2014) (cited on page 2).

[WSB11] A. Waters, A. Sankaranarayanan, and R. Baraniuk. “SpaRCS: Recovering low-rank and sparse
matrices from compressive measurements”. In: Advances in Neural Information Processing
Systems 24 (NeurIPS). Vol. 24. 2011 (cited on page 3).

12

[WT23] C. Wang and A. Townsend. “Operator learning for hyperbolic partial differential equations”.
In: 2312.17489 (2023) (cited on page 2).

[YGKM20] Z. Yao, A. Gholami, K. Keutzer, and M. W. Mahoney. “PyHessian: Neural Networks Through
the Lens of the Hessian”. In: 2020 IEEE International Conference on Big Data (Big Data).
2020, pp. 581–590 (cited on page 2).

[ZJD15] K. Zhong, P. Jain, and I. S. Dhillon. “Efficient Matrix Sensing Using Rank-1 Gaussian Mea-
surements”. In: Proceedings of the 26th International Conference on Algorithmic Learning
Theory. 2015, pp. 3–18 (cited on page 3).

	Introduction
	From Operator Learning to Structured-Matrix Approximation
	Prior Work
	Beyond Specific Matrix Families
	Our Contributions

	Preliminaries
	Zero Testing
	Warm-Up: O(|F|) queries

	Main Result
	Lower Bounds

