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ABSTRACT

Cooperative multi-agent reinforcement learning (MARL) presents unique chal-
lenges, amongst which fostering general cooperative behaviour across various tasks
is critical. Recently, large language models (LLMs) have excelled at dealing with
challenges in the general RL paradigm, showcasing remarkable sample efficiency
and adaptability across tasks through domain specific fine-tuning, or functional
alignment. However, neither LLMs nor these fine-tuning approaches are designed
with coordination-centric solutions in mind, and the challenge of how to achieve
greater coordination, and hence performance, with LLMs in MARL has not yet been
tackled. To address this, we introduce the ’Functionally-Aligned Multi-Agents’
(FAMA) framework. FAMA harnesses LLMs’ inherent knowledge for cooperative
decision-making via two primary mechanisms. Firstly, it aligns the LLM with the
necessary functional knowledge through a centralised on-policy MARL update
rule. Secondly, it recognises the pivotal role of communication in coordination and
exploits the linguistic strengths of LLMs for intuitive, natural language inter-agent
message-passing. Evaluations of FAMA in two multi-agent textual environments,
namely BabyAI-Text and an autonomous driving junction environment, over four
coordination tasks show it consistently outperforms independent learning LLMs
and traditional symbolic RL methods.

1 INTRODUCTION

A central paradigm of multi-agent systems (MAS) research is cooperative MAS, where agents are
required to cooperate with each other to reach a desired outcome. The exact mechanism through
which agents must coordinate is task-dependent, and can range from agents taking the same action
in simple matrix games settings (Claus & Boutilier, 1998) to complex autonomous driving tasks
(Slumbers et al., 2023) where agents must act in certain ways to not to crash into one another. In
the multi-agent reinforcement learning (MARL) setting, there exists an extensive literature that
proposes approaches to encourage coordination between agents (Oroojlooy & Hajinezhad, 2023).
However, these generally suffer from a collection of problems: 1) learning is not sample-efficient or
generalisable in the online-setting, 2) it is difficult to encourage general cooperative behaviour across
a suite of tasks and 3) cooperative mechanisms are not (easily) human interpretable (Lazaridou et al.,
2020).

It has been recently shown that using large language models (LLMs) as agents in single-agent
reinforcement learning (RL) provides a potential solution to problem 1, and aspects of problem 2
(Carta et al., 2023). With respect to problem 1, LLMs encode sophisticated concepts as dictated by
their understanding of language, therefore changing the need from learning fundamental concepts
to aligning their prior knowledge to the functional requirements of the environment, allowing for
sample-efficient learning (Carta et al., 2023). Furthermore, in relation to problem 2, as LLMs already
encompass some form of fundamental knowledge, they are well suited to handling distributions
of tasks that may only differ in slight ways (often where learning methods such as symbolic RL
fail). However, these approaches are inherently single-agent, and have not been designed with
coordination-centric solutions in mind, crucially not fully solving problem 2 or considering problem
3. The goal of this paper is to begin tackling both of these problems within the framework of LLMs as
agents in MARL environments. In terms of problem 2, we focus on aligning LLMs to the functional
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Figure 1: A visualisation of FAMA. Observations from the environment pass through both an Actor
and a Critic, both providing the required data for the functional alignment process.

requirements of a multi-agent environment that requires coordination. In terms of problem 3, we
leverage the notion that coordinated behaviour in humans is generally underpinned by some form
of communication (Sally, 1995). MARL has explored using communication mechanisms between
agents for cooperative tasks (Zhu et al., 2022; Karten et al., 2023; Singh et al., 2018), however
they generally suffer from two issues: 1) explicit mechanisms need to be learned fresh for new
environments and 2) these mechanisms are likely not to be easily human interpretable. We propose
that an LLM agent can circumvent both of these issues by using natural language as an intuitive and
interpretable communication mechanism.

To this end, this paper introduces the Functionally-Aligned Multi-Agents (FAMA) framework, the
first generation of coordination-focused LLMs for MARL. Functional alignment references the idea
that, whilst LLMs maintain diverse pre-trained knowledge, they are not necessarily able to directly
convert this to the functional needs of an environment. We take an online fine-tuning approach
that aligns the model’s pre-trained knowledge with the functional requirements of the multi-agent
environment that it interacts with. We allow one LLM to be the backbone of multiple agents, whilst
centralising a Critic function in order to improve the coordination capabilities of the agents. This
requires a series of changes including centralising the LLM architecture, the action-prompt design
to distinguish between multiple agents and the fine-tuning update rule required. In addition, we
allow the agents to communicate with each other in natural language, rather than other more abstract
forms of communication like communication vectors (Sukhbaatar et al., 2016; Singh et al., 2018)
or message tokens (Karten et al., 2023). This seemingly solves our two communication problems,
natural language does not need to be learned fresh over new environments, and is completely human
interpretable. FAMA therefore embeds a module designed strictly for communication between agents
with the goal of improving coordination.

We answer the following two key questions when it comes to utilising LLMs in MARL:

1. What architectural and/or optimisation changes are required to foster a more coordination-
centric solution for LLM MARL agents? How is overall performance impacted with respect
to these changes, is coordination improved and error-making reduced?

2. Is natural language communication between agents a useful tool for improving coordination?
Are the communication protocols that are arrived at by the models interpretable?

In order to answer these questions, we employ FAMA in two different textual MARL environments,
our own multi-agent extension to BabyAI-Text (Carta et al., 2023; Hui et al., 2020) which generalises
the BabyAI-Text single-agent tasks to multi-agent coordination variants, and a traffic junction
environment (Sukhbaatar et al., 2016) where coordinated actions must be taken by the agents to avoid
crashes. We answer Question 1 by evaluating FAMA over a series of tasks in the aforementioned
environments against independent LLM approaches and symbolic baselines. To answer Question 2,
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we specifically compare FAMA with and without a communication module, and focus on both the
changes in performance and what communication actually occurs.

2 RELATED WORK

Language-conditioned RL This work falls generally into the field of language-conditioned MARL.
At a high-level, language-conditioned RL involves agents that takes actions based on a language
instruction / goal (Luketina et al., 2019). There exists a wide range of work that studies this language-
conditioned RL setting in 2D or 3D environments (Colas et al., 2020; Chevalier-Boisvert et al., 2018;
Küttler et al., 2020). In the MARL domain, language-conditioned algorithms is less well-understood,
with Li et al. (2023); Ding et al. (2023) being two works that aim to solve some of the inherent
problems of single-agent algorithms in multi-agent domains. Notably, these approaches do not
directly use an LLM as the agent in the environment, but rather focus on taking language goals and
grounding them to the environment, rather than interacting only in a text domain.

Foundation Models and Decision Making Self-supervised foundation models have proved to be
incredibly powerful at knowledge transfer over a range of downstream tasks (Bommasani et al., 2021),
and are increasingly being applied to more complex problems such as control (Brohan et al., 2022),
planning (Huang et al., 2022b) and long-term reasoning (Wei et al., 2022). Notably, the intersection
of foundation models in sequential decision-making problems is largely new. In the field of robotics,
foundation models have been fairly extensively used as high-level planners (Huang et al., 2022b; Ahn
et al., 2022; Liang et al., 2023). However, utilising an LLM as a high-level planner is fundamentally
different from our goal, where the LLM directly takes actions in the environments. Another branch
of works focus on fine-tuning either via behaviour cloning or offline RL (Wang et al., 2022; Reid
et al., 2022; Takagi, 2022), which remains distinct from our work which only utilises online data.
The closest work to ours is Carta et al. (2023), in which they also use online RL to ground an LLM
as an action taker in text-worlds. The critical distinction is that we are operating in the multi-agent
setting which requires fundamentally different considerations in the framework design.

3 PROBLEM FORMULATION

We consider a text-only augmentation of partially observable Markov games (POMG) (Liu
et al., 2022). Therefore, we begin by defining a POMG, and then define the text-only
elements that augment it. We denote an episodic POMG with n agents by the tuple
(T,S, {Ai}ni=1, {Oi}ni=1;P,O, µ1; {ri}ni=1), where T denotes the length of each episode, S the
state space, Ai denotes the action space for the i-th agent. We denote by a := (a1, ..., an) the joint
action of all n agents, and by A := A1 × ...×An the joint action space. P is the transition matrix,
so that P(·|s,a) ∈ ∆S gives the distribution of the next state if joint action a is taken at state s. µ1

denotes the distribution of the initial state s1. Oi denotes the observation space for the i-th agent.
We denote by o := (o1, ..., on) the joint observation of all n agents, and the joint observation space
by O := O1 × ...×On. O is the emission matrix, such that that O(·|s) ∈ ∆O gives the emission
distribution over the joint observation space O at state s. Finally, ri is the collection of known reward
functions for the i-th agent, so that ri(oi) gives the deterministic reward received by the i-th agent if
she observes oi. In a POMG, at least some part of the state is always hidden from all agents, and each
agent only observes their own individual observations and actions. At the beginning of each episode,
the environment samples s1 from µ1. At each step t ∈ [T ], each agent i observes her own observation
oi,t, where ot := (o1,t, ..., on,t are jointly sampled from O(·, st). Then each agent i receives reward
ri(oi,t) and picks action ai,t ∈ Ai simultaneously. After that the environment transitions to the next
state st+1 ∼ P(·|st,at) where at := (a1,t, ..., an,t).

We introduce multiple text objects to form a Text-POMG. Our goal is to allow LLMs to in-
teractive with an underlying POMG. We denote a Text-POMG with n agents by the tuple
(T,S, {Ai}ni=1, {Oi}ni=1;T,O, µ1; {ri}ni=1,V,K, {AV

i }ni=1, {OV
i }ni=1,CA,CO, {GV

i }ni=1). All tu-
ple objects of the original POMG remain unchanged. V denotes the vocabulary space, with v ∈ V
representing the available words. K is the maximum text length, and can be thought of as the size
of the context window of an LLM. AV

i is the text-action space of the i-th agent as described in
terms of words v ∈ V . We denote by aV := (aV1 , ..., a

V
n ) the joint text-action space of all n agents,

and by AV := AV
1 × ... × AV

1 the joint text-action. CA is a deterministic function that takes as
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input joint text-actions aV and converts them to environment joint actions a = CA(aV ). OV
i is

the text-observation space of the i-th agent as similarly described in terms of words. We denote by
oV := (oV1 , ..., o

V
n ) the joint text-observation of all n agents, and by OV := OV

1 × ...×OV
n the joint

text-observation space. CO is a deterministic functions that takes as input joint observations o and
converts them to text-observations oV = CO(o). GV

i is the text-goal space for the i-th agent which
is described in terms of words v ∈ V . We denote by gV := (gV1 , ..., gVn ) the joint text-goal of all n
agents, and by GV := GV

1 × ...× GV
n the joint text-goal space. The reward functions are conditioned

on a text-goal, such that agent i observes their own text-observation oVi,t and receives ri(oVi,t, g
V
i ).

4 FAMA FRAMEWORK

FAMA is comprised of two core components, as demonstrated in Fig. 1, these are:

1. An Actor that provides a categorical distribution over discrete actions given an observation.
In FAMA this will be dictated by the LLM and is discussed in Sec. 4.2.

2. A Critic that provides values given states or observations Vϕ : S → R. In FAMA, a separate
Critic head is used and is discussed in Sec. 4.4.

FAMA builds on top of these two components, giving it three key characteristics that we believe
promotes solving problems 2 and 3, which are described further in this section. The first is the sharing
of a singular LLM Actor between agents (Sec. 4.2), the second is the presence of a communication
module (Sec. 4.3) and the third is a centralised Critic for training (Sec. 4.4).

4.1 PROMPT FUNCTION

The first requirement for any LLM-based agent framework is a prompt for agent i, pVi . In our setting,
the prompt contains relevant information such that an LLM agent can take actions to maximise rewards.
This is generally analogous to an observation in the RL setting, which contains the information an RL
policy requires to take actions. We define an action prompt function ρA : OV

i ×GV
i ×AV

i ×CV
i → V

that takes as input an agent i’s text-observations, text-goals, text-actions and agent identifiers to
construct a prompt for the LLM. For example, given the above information at time-step t, the prompt
for the agent is defined as pVi,t = ρA(o

V
i,t, g

V
i,t,AV

i,t, c
V
i ) where cVi is the agent identifier (not dependent

on t) and is described in Sec. 4.2, and note that the set of actions AV
i,t is passed in to represent all

the actions that can possibly be taken given an observation at step t. The exact composition of pVi,t
is determined by the specifics of function ρA which are different for each environment, and will be
detailed for each environment in Appendix A. The following are two examples of an Actor prompt
and then a Critic prompt:

Instruction: You are an agent in a multi-agent reinforcement learning environment. <Brief
environment description>. You are given a goal which requires coordinated behaviour with
other agents. You can take the following actions: <AV

i,t>. You must pick the best action based
on your observation to achieve the goal.

Goal: <gVi,t>

Observation: <oVi,t>

Action: <LLM begins response here>

Instruction: You are a critic value function in a multi-agent reinforcement learning environ-
ment. <Brief environment description>. You are given a goal which requires coordinated
behaviour between agent <cVi > and agent <cVj >. Given an observation containing information
from both of the agents, you will provide a numeric value of the observation.

Goals: Agent <cVi : gVi,t>, agent <cVj : gVj,t>.

Observation: Agent <cVi : oVi,t>, agent <cVj : oVj,t>
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4.2 FAMA ACTOR

In FAMA, we avoid the practical (computational) issues of maintaining multiple large active LLMs
for each independent agent Actor. Instead, we utilise one LLM to represent all of the agent’s actor
networks. The individual nature of the Actors are instead captured by agent identifiers cVi . These
agent identifiers update a prompt with the required agent specific information that allows the LLM to
differentiate between the Actor that it is meant to be representing. Examples of cVi could be: ’You
are acting as Agent i’, or ’Identity: Agent i, Role: Chef’ dependent on the environment context. For
our experiments, we provide the agent identifiers used in Appendix A.

To understand the workings of the Actor for agent i, we first outline the generation of discrete actions
given a prompt as described in Sec. 4.1. At time-step t, agent i receives a text-observation oVi,t and
a text-goal gVi,t. This is subsequently transformed into the text-prompt pVi,t = ρA(o

V
i,t, g

V
i,t,AV

i,t, c
V
i )

for agent i, where ρA is defined in Sec. 4.1. We want the agent to take an action aVi,t(p
V
i,t) that is

some function of the prompt provided to it. There are multiple ways to generate actions based on a
prompt pVi,t, for example in the single-agent setting Huang et al. (2022a); Li et al. (2022); Carta et al.
(2023) propose methods such as free-text generation: given a prompt pVt , query the LLM to generate
a sequence of output words ât(pVt ) = {v0, v1, ..., vK}, with K being the max number of words, and
each vk ∈ V . Then heuristically (e.g. parse the sequence for mentions of an action) interpret this
sequence to select an action aVt ∈ AV such that for some k, vk corresponds to the chosen action
aVt . Ahn et al. (2022) propose utilising |AV | action heads to compute the probability of each action
aVt ∈ AV by computing for each aVt the conditional probability of each of its constituent tokens wk.
However, Carta et al. (2023) find that creating individual action heads is not necessary, and it is more
effective to just simply query the full LLM as the Actor. This is the approach that we adopt in order
to generate actions in FAMA. Formally, the probability of agent i taking the action aVi,t is:

PLLM (aVi,t|ρA(oVi,t, gVi,t,AV
i,t, c

V
i ), θ) =

|aV
i,t|∏

k=0

PLLM (wi,k|ρA(oVi,t, gVi,t,AV
i,t, c

V
i ), wi,<k, θ) (1)

where |aVi,t| ∈ Z+ is the k number of tokens wk that make up the word aVi,t. The prompt for the LLM
is ρA(oVi,t, g

V
i,t,AV

i,t, c
V
i ) and is based on the text-observation, text-goal, available actions and agent

identifier, and PLLM (wi,k|ρA(oVi,t, gVi,t,AV
i,t, c

V
i ), wi,<k, θ) represents the probability that token wi,k

of action aVi,t is selected given the prompt and the already selected tokens wi,<k, and θ are the
parameters of the Actor.

4.3 COMMUNICATION MODULE

A characteristic of human coordination is that we use words as a method to coordinate with each
other to reach our goals (Wittgenstein, 1953; Austin, 1975; Clark, 1996). Therefore, we believe
a natural step to improve coordination in our framework is to leverage our agents being language
models, by introducing a form of natural language communication between agents. We envisage two
useful reasons for a communication module: 1) Agent’s in the system can share internal information
about their own current goals / intent which can guide the actions of others and 2) natural language
communication is human-interpretable and could act as a natural method to improve human-AI
coordination in the future.

Agents generate a discrete message that is broadcast to other agents. At the start of a time-step t each
agent receives their own observation oVi,t, we allow the agents to communicate information based on
oVi,t. The information communicated is intended to improve the ability of the agents to coordinate with
each other. Inspired by Karten et al. (2023), we let the agent’s communicate their intent based on oVi,t.
This framework places no restriction on what message is communicated, for example allowing for the
agents to generate free-text with a token limit of Km (generally Km << K). However, we focus on
discrete message selection in a similar manner to action selection. For agent i, we have a discrete set of
potential text-messages MV

i,t. We define a message prompt function ρM : OV
i ×GV

i ×MV
i ×CV

i → V
that is mostly similar to ρA, but instead takes the set of possible messages rather than possible actions.
The conditional probability of selecting each message mV

i,t ∈ MV
i,t is calculated by calculating the
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constituent tokens being selected by the LLM given the prompt:

PLLM (mV
i,t|ρM (oVi,t, g

V
i,t,MV

i,t, c
V
i ), θ) =

|mV
i,t|∏

k=0

PLLM (wi,k|ρM (oVi,t, g
V
i,t,MV

i,t, c
V
i ), wi,<k, θ)

(2)

where |mV
i,t| ∈ Z+ is the k number of tokens wk that make up the word mV

i,t. We then pass
these messages between agents, such that the message of agent i is passed to agent j and vice
versa. The actions that the agents then take are conditioned on not only the local observation
oVi,t, but also the intentions of both of the agents. We define a new observation, ôVi,t(o

V
i,t,m

V
−i,t),

that wraps the messages from the other −i agents into the environment observation. This al-
lows us to calculate the probabilities of each discrete action for agent i, PLLM(aVi,t|mV

−i,t) =∏|aV
i |

k=0 PLLM (wi,k|ρA(ôVi,t(oVi,t,mV
i,t), g

V
i,t,AV

i,t, c
V
i ), wi,<k, θ) for all âVi,t ∈ AV

i,t. We hypothesise
that communicating intentions between agents will aid in improving coordination ability in environ-
ments where coordination is time-sensitive between agents, or there requires some separation of tasks
between agents that needs to be decided.

4.4 FUNCTIONAL ALIGNMENT

Functional alignment is the process of taking an LLM’s pre-trained knowledge and aligning it with
the functional requirements of an environment. The alignment process, in our case, is an online
RL approach that tunes the LLM parameters based on rewards from the environment. In order to
functionally align our LLM agents, we propose using the MAPPO Yu et al. (2022) update rule based
on the on-policy data received from environment interaction. To do this, we require a Critic to provide
a value given the environment state. For the Critic network Vϕ we append the LLM with a ’Critic
Head’ on the last layer of the first Decoder block. The Critic Head is an MLP with a single numeric
output designed to measure the value of the observation provided to it in text form. The goal of a
Critic function is to evaluate states in order to improve the training process for the Actor, which can
then be employed in a decentralised fashion. Therefore, in order to improve the coordinated nature of
our Actors we utilise a centralised Critic that takes information from all of the agents to generate
a global observation. The Critic then approximates a value function over the global observation,
valuing states where the agents are closer to achieving their coordinated goal higher than those not.

Finally, the Actor is trained to maximise the following objective:

L(θ) =

[
1

Bn

B∑
k=1

n∑
i=1

min
(
η
(k)
θ,i A

(k)
i , clip

(
η
(k)
θ,i , 1− ϵ, 1 + ϵ

)
A

(k)
i

)]

+

[
σ

1

Bn

B∑
k=1

n∑
i=1

S
[
PLLM

(
p̂Vi (p

V,k
i , gVi , cVi ,m

V
−i, θ)

)]]

where η
(k)
θ,i =

PLLM (aV
i,k|p

V
i,k,m

V
−i,k,θ)

PLLM (a
(V,k)
i |pV,k

i ,gV
i ,cVi ,mV

−i,θold)
, B is the batch size, A(k)

i is the advantage computed

via GAE, S is the policy entropy and σ is the entropy coefficient hyperparameter. In a similar manner
we can optimise the Critic head by minimising the following loss function:

L(ϕ) =
1

Bn

B∑
k=1

n∑
i=1

max

[(
Vϕ(s

V )− R̂k

)2

,

(
clip

(
Vϕ(s

V ), Vϕold(s
V )− ϵ, Vϕold(s

V ) + ϵ
)
− R̂k

)2
]

where Vϕold is a target Critic head and R̂k is the discounted reward-to-go. Due to the nature of the
critic function being shared, there is no need for agent identifier conditioning in the value function as
all local observations oVi constitute the global observation sV .
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5 EXPERIMENTS

Figure 2: a) An instance of the multi-agent BabyAI-Text environment on the Go-To task. b) Visual
representation of the junction environment, where arrows display the direction of car movement.

We presented two main questions that we would like to address: 1) What changes are required to
improve coordination in the framework of LLM agents in MARL, and the empirical consequences
of these changes and 2) how natural language communication impacts performance, alongside its
interpretability. In this section, we will empirically evaluate FAMA under the scope of these two
questions. First, we introduce our baselines, then we overview the environments and tasks that we
study. After, we present our results with respect to the two questions. Over these experiments, we use
a mix of Flan-T5 (Rae et al., 2021) model sizes as our LLM (exact size selection for each experiment
in Appendix B.1).

5.1 BASELINES

As noted previously, we believe our work is the first to strictly utilise an LLM as an agent in the
strictly multi-agent setting. Therefore, whilst there does not exist an exact baseline, we propose to
utilise the following three algorithms similarly to Carta et al. (2023):

Independent GLAM Carta et al. (2023) - GLAM is an LLM framework that also directly acts as
a agent policy, but is designed strictly for single-agent settings. We allow each of the agents to act
independently using GLAM updates.

Symbolic IPPO - An independent PPO algorithm that instead runs on the symbolic version of the
BabyAI environment Hui et al. (2020).

Symbolic MAPPO - A multi-agent PPO algorithm that instead runs on the symbolic version of the
BabyAI environment Hui et al. (2020).

5.2 MULTI-AGENT BABYAI-TEXT ENVIRONMENT

We introduce a general set of multi-agent coordination tasks built on top of the BabyAI-text Carta
et al. (2023) environment. Specifically, we propose three multi-agent coordination tasks:

Go to ⟨object⟩ with another agent - A simple navigation task that requires reasoning abilities to
choose the right route given objects’ position. In addition, agents will only receive reward if they
both go to the object at the same time. An example of this can be seen in Fig. 2a.

Go to ⟨object⟩ with another agent (Punishment) - A simple navigation task that requires reasoning
abilities to choose the right route given objects’ position. In addition, agents will only receive reward
if they both go to the object at the same time. Agents will be punished with negative reward if they
go to the object without the other agent also being there.

Pick up ⟨object⟩ - A reasoning task combined with a navigation task. Agents receive reward if they
perform the pick-up action when facing towards the object. In the multi-agent variant, both agents
must perform the pick-up action facing the object at the same time to receive reward.

Whilst these tasks are simple, they are sufficient to demonstrate performance differences between
our method and the baselines. In addition, the tasks that are solved by these algorithms will improve
drastically as larger LLMs become more computationally feasible to run and functionally align.
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A) BabyAI Tasks

B) Junction Environment

Figure 3: Results for tasks in the multi-agent BabyAI-Text environment and traffic junction environ-
ment. The first row represents average episodic results (50 Episodes) over 5 training seeds for each
of the algorithms. The second row represents the same for the traffic junction environment. Higher
metrics are better, other than for Average Episode Crash Rate in B).

5.3 TRAFFIC JUNCTION ENVIRONMENT

Introduced in Sukhbaatar et al. (2016), the traffic junction environment consists of a g × g grid. At
each time step, new cars enter the grid with probability parrive from each of the available d directions.
The goal is to reach the end of the road without crashing into the other cars. Cars are also encouraged
to reach their goal as quickly as possible, as they receive negative rewards per time-step on the grid.
Each car occupies a single cell at any given time, and they have the options of either moving forward
or staying still at each time-step. Full environment details are provided in Appendix A.

5.4 RESULTS

5.4.1 Q1. DOES FAMA FOSTER A COORDINATION-CENTRIC SOLUTION?

In Fig. 3 we demonstrate the performance metrics of FAMA (note in this case we are not using
the communication module) versus our baselines. Fig. 3A shows the results on the multi-agent
BabyAI-Text environment. In all of the tasks, FAMA achieves both the best performance in terms
of rewards (some tasks have bonuses / penalties) and overall success rate. In the hardest task, the
multi-agent Pick-Up Task, independent GLAM is generally entirely unable to complete the task
whereas FAMA begins to learn towards the end of training to successfully complete the task in around
30% of episodes. Notably, the symbolic baselines generally fail without learning anything. The most
likely reason for this is due to the poor sample efficiency of the algorithms, with the amount of steps
needed for the LLM to learn useful behaviour being far too few for the symbolic approaches.

In terms of the traffic junction environment, we have a similar story, FAMA outperforms all of the
baselines, however to less of an extent against independent GLAM as in the multi-agent BabyAI-Text
tasks. The major noticeable difference in the performance of the two algorithms is in the crash rate,
where FAMA displays an average crash rate per episode decrease of 24.7% over independent GLAM.
This increased level of error avoidance is a particularly nice property in a coordination system.

5.5 Q2. IS NATURAL LANGUAGE COMMUNICATION BENEFICIAL?

During our experimental process, we found that the communication module was particularly useful
in the presence of penalties. For example, in our Go-To-Punishment task where agents are punished
if they arrive at the goal without the other agent, or in our traffic junction environment where agents
are punished for crashing. In Fig. 4 we demonstrate these results. In Fig. 4a we show the error rates
of FAMA and FAMA-Communication alongside their corresponding success rates on the Go-To-
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A) Go-To-Punishment Task

B) Junction Environment

C) Communication Heat-Map

Figure 4: Results of FAMA with and without the communication module. A) Represents average
episodic return (50 Episodes) over 5 training seeds on the Go-To-Punishment task. B) Same but on
the traffic junction environment. C) A heat-map for the traffic junction environment demonstrating
when the ’waiting’ message is communicated, over 100 episodes. Higher metrics are better for
Success/Complete Rate, lower metrics are better for Error/Crash Rate.

Punishment task. We first notice that, in terms of final success rates both variants arrive at similar
values, with slight under-performance from FAMA-Communication. However, from the beginning of
the training process the amount of errors that FAMA-Communication makes is much lower on this
task, and remains that way for the whole of the training process.

Similarly, in Fig. 4B, we show a similar analysis in terms of the crash rate in the traffic junction
environment. We note that the analysis is slightly different in this case, as FAMA without a com-
munication module does arrive at a final crash rate of similar to FAMA-Communication. However,
FAMA-Communication is far more sample-efficient in terms of reducing the crash rate and very
early into training is able to significantly reduce its crash rate. In Fig. 4c we provide a heat-map
demonstrating an initial investigation into what the LLM has learned in terms of a messaging system.
Note that the agents arrive at the top and the left of the grid, and once they are passed the middle
square in the grid messages become meaningless and are subsequently ignored. The heat-map shows
at which grid-step the agents sent the ’waiting’ message to the other agent. The light grey spots
represent the highest density of messaging, showing that the agents learn to predominately message in
a different grid-spot from each other. This firstly makes sense, as for example, both players messaging
’waiting’ at the entrance to the junction will cause disputes, therefore leading to one agent taking
control of messaging in this grid-spot. This leads to the other agent providing its ’wait’ message one
grid-spot earlier to 1) minimise confusion upon arriving at the junction and 2) informing the other
agent that they are close to the junction.

6 CONCLUSION

We introduce FAMA, a framework for utilising and training coordination-centric LLMs in MARL
environments. FAMA relies on three core components to foster coordination, the dual centralisation
of both the agents within one LLM and the centralised Critic function, and a natural language
communication module allowing agents to interact with each other. The dual centralisation within
FAMA proves powerful in comparison to independent or symbolic methods in promoting coordinated
behaviour within agents in both multi-agent BabyAI-Text tasks and an autonomous driving traffic
junction environment. Furthermore, the communication module demonstrates particular benefits
in tasks that require accurate coordination timing, as it allows the agents to coordinate timing
through natural language. Future work should focus on two main directions: 1) how to improve the
inference time required to output actions for multiple agents as LLM sizes grow and 2) non-discrete
communication allowing for a diverse range of messaging opportunities.
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A ENVIRONMENT DETAILS

A.1 MULTI-AGENT BABYAI-TEXT

We introduce a general set of multi-agent coordination tasks built on top of the BabyAI-text Carta et al.
(2023) environment. First, Chevalier-Boisvert et al. (2018) introduced BabyAI, a language-driven
environment in which an agent has a finite amount of steps to fulfill a language objective. This
platform utilizes a gridworld scenario (MiniGrid) to create a series of environments for following
instructions. It’s specifically tailored for studies on grounded linguistic learning and associated
challenges with sample efficiency. The gridworld is filled with the agent and objects in 6 different
colors: boxes, balls, doors, and keys. These items are situated in 8 × 8 tile rooms connected by doors,
which can be either locked or shut. The grid’s layout is determined procedurally, meaning objects
and their positions, along with the agent’s position, are chosen at random for each episode. Some
objects are pertinent to the task, whereas others serve as distractions (the agent needs to navigate
around or move them). The agent can execute 6 basic actions: turn left, turn right, move ahead,
toggle, and pick up, which aid in completing the language directive, like "Pick up the red box".
The agent’s perspective is limited; it only perceives objects in the 6 × 6 grid directly in front of it.
BabyAI offers this limited viewpoint via a symbolic representation composed of three 6 × 6 matrices.
The first matrix identifies objects in the visible cells, the second notes their colour, and the third
defines their status (e.g., locked, unlocked). Upon task completion in N steps, the agent gets a reward
rN = 1− 0.9N

H , with H representing the maximum number of steps. During training, all rewards are
increased 20-fold, as suggested by Mirchandani et al. (2021), to ensure efficient reward propagation.
The agent receives a reward of 0 if the task remains incomplete in the given steps.

BabyAI-Text Carta et al. (2023) is a text-based setting which wraps around BabyAI and offers an
observational description rather than a symbolic view. This description follows specific template
guidelines:

• "You see a <object> <location>" if the object is a key, a ball, a box or a wall.

• "You see a(n) open/closer door <location>", if the agent sees a door.

• "You carry a <object>", if the agent carries an object.

Here, <object> combines an adjective (chosen from 6 potential colours: red, blue, green, yellow,
grey, and purple) and a noun (from 4 possibilities: key, door, box, ball). The <location> denotes the
number of moves right, left, or forward the agent would need to reach the object. For instance, as
shown in the far-left observation of Figure 5, the "yellow box" is described as being "2 steps to the
left and 1 step ahead" from the agent (represented by the red triangle). Therefore, an object depicted
as "1 step ahead" is directly in the agent’s path, meaning it doesn’t need to move to retrieve it.

Expanding on BabyAI-Text, we introduce a series of multi-agent tasks. The key addition necessary is
for a new observational description to be added:

• "You see a <colour> agent <location>", if an agent sees another agent.

A.1.1 TASK DETAILS

Here we detail the new multi-agent tasks that we add to BabyAI-Text.

Go to ⟨object⟩ with another agent - A simple navigation task that requires reasoning abilities to
choose the right route given objects’ position. In addition, agents will only receive successful task
completion reward if they both go to the object at the same time. An example of this can be seen in
Fig. 2a.

Go to ⟨object⟩ with another agent (Punishment) - A simple navigation task that requires reasoning
abilities to choose the right route given objects’ position. In addition, agents will only receive reward
if they both go to the object at the same time. Agents will be punished with negative reward if they
go to the object without the other agent also being there, receiving rN == 0.05.

Pick up ⟨object⟩ - A reasoning task combined with a navigation task. Agents receive reward if they
perform the pick-up action when facing towards the object. In the multi-agent variant, both agents
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must perform the pick-up action facing the object at the same time to receive successful completion
reward.

A.1.2 PROMPT DETAILS

Instruction: You are an agent in a multi-agent reinforcement learning grid world. You are
given a goal which requires coordinated behaviour with the other agent. You can take the
following actions: go_forward, turn_left, turn_right, pick_up. You must pick the best action
based on your observation to achieve the goal.

Goal: Go to the <colour><object> at the same time as another agent.

Observation: <oVi >

Action: <LLM begins response here>

A.2 JUNCTION ENVIRONMENT

A.2.1 TASK DETAILS

The traffic junction environment consists of a two-way junction on a 7x7 grid. At each time-step,
new cars enter the grid with probability 0.75 from one of the two directions. The total number
of cars at any given time is limited to 5. Each car occupies a single cell at any given time and is
randomly assigned to one of the two possible routes. At every time step, a car has two possible
actions: accelerate which advances it by one grid spot on its route, or brake which keeps it in its
current grid spot. Cars are removed from the grid once it reaches the destination at the edge of the
grid, providing a reward of r = 1. Two cars collide if they location overlaps, incurring a reward
of r = −10, otherwise the simulation is unaffected and the cars continue on in grid, notably not
receiving a reward for reaching the end of the road. To discourage slow driving, each car receives a
reward of r = −0.01τ at every time-step τ since the car arrived on the grid. Each car is only able to
observe its direct neighbourhood of grid spots, i.e. a 3x3 grid around them.

Therefore, junction environment text provides text observations as:

• "You see the road one step ahead of you.", if the grid-spot in front of the agent is road.
• "You see the end of the road one step ahead of you.", if the grid-spot in front of the agent is

the edge of the grid.
• "You see a car one step ahead and one step to the right of you", if the agent is at the junction

entrance whilst another agent is at a different junction entrance.

A.2.2 PROMPT DETAILS

Instruction: Instruction: You are an agent in a multi-agent reinforcement learning driving
environment. Each agent is on a different road, and all the roads meet in the middle of the
environment. You are given a goal which requires coordinated behaviour with other agents.
You can take the following actions: go_forward which moves you forward one spot on the road,
or stay_still which keeps you in the same spot on the road. You must pick the best action based
on your observation to achieve the goal.

Goal: Get to the end of the road without crashing into another agent.

Observation: <oVi >

Action: <LLM begins response here>

B MODEL DETAILS

B.1 LLM

We utilise two different Flan-T5 (Rae et al., 2021) models in our experiments dependent on the
environment.
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For the multi-agent BabyAI-Text experiments we use functionally align Flan-T5 Base (248M Param-
eters). For the junction environment experiments not using communication we functionally align
Flan-T5 Small (80M Parameters), and for the junction environment experiments with communication
we funtionally align Flan-T5 Base (248M Parameters). We used 4x Nvidia V100 GPUs for all
experiments, with Flan-T5 Base being split over two GPUs and Flan-T5 Small utilising one GPU.

B.2 HYPERPARAMETERS

We do not perform any hyperparameter tuning, opting to use reuse the hyperparameters from
(Ramamurthy et al., 2022). For the Critic heads we use MLPs with 3 hidden layers of 1024 units with
Sigmoid activation.

Table 1: PPO hyperparameters

Variable Value
Number of transitions between updates 1280
Number of epochs per update 4
Batch size 64
Entropy loss coefficient 0.01
Value function loss coefficient 0.5
Discount factor 0.99
Learning rate 1× 10−6

λ factor of GAE 0.99
Clipping parameter ϵ 0.2
Maximum gradient norm 0.5

Table 2: Adam hyperparameters

Variable Value
Learning rate 1× 10−6

β1 1× 10−5

β2 0.9
Clipping parameter ϵ 0.999

B.3 BASELINE DETAILS

Independent GLAM - We directly use the implementation of GLAM (Carta et al., 2023) pro-
vided by the authors at https://github.com/flowersteam/Grounding_LLMs_with_
online_RL/blob/main/experiments/agents/ppo/llm_ppo_agent.py for each of
the independent agents. We do not alter any hyperparameters.

Symbolic PPO - We directly use the implementation provided at https://github.com/
flowersteam/Grounding_LLMs_with_online_RL/blob/main/experiments/
agents/ppo/symbolic_ppo_agent.py for each of the independent agents. Hyperparame-
ters are provided in Table 1.

Symbolic MAPPO - We implement MAPPO (Yu et al., 2022) on top of the PPO implementation pro-
vided at https://github.com/flowersteam/Grounding_LLMs_with_online_RL/
blob/main/experiments/agents/ppo/symbolic_ppo_agent.py. We implement a
centralised critic that takes as input the partial observations of each agent. Hyperparameters are those
listed in Table 1.
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