
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

REFLECTIVE REINFORCEMENT TOOL LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Tool learning enables large language models (LLMs) to interact with real-world
environments. While prior work mainly relies on supervised fine-tuning (SFT),
recent reinforcement learning (RL) methods have shown promise in improving
the tool-use capabilities of LLMs by leveraging richer reward signals. However,
during RL rollouts, failures often stem from environmental perturbations such as
network issues or tool instability rather than policy errors. These failed trajectories
are typically discarded, resulting in low data efficiency and high costs, especially
when using paid tools. To solve the issue, we find that many failures can be
recovered through simple retries, reasoning, or reflection. Yet these augmented
new policies for self-correction introduce distribution shifts that hinder the reuse
of recovered data for origin policy learning. In this paper, we propose Tool-
Reflective Reinforcement Learning (Tool-ReRL), an off-policy RL framework
that equips LLMs with a reflection mechanism to temporarily adjust the rollout
policy, thus analyzing failures, attempting self-correction, and exploring diverse
solution paths. To bridge the distribution gap between modified and original policy,
we introduce an importance sampling estimator, enabling rewards from reflection-
enhanced trajectories to effectively guide the optimization of the original policy.
Our extensive experiments on four tool-learning benchmarks demonstrate that,
given the same training data, Tool-ReRL significantly improves data efficiency and
achieves average performance gains of up to 7.60% and 6.11% over standard RL
algorithms based on Qwen2.5-7B and LLaMA3.1-8B, respectively.

1 INTRODUCTION

Tool learning, aiming to enable LLMs to master various external tools, makes LLM-based agents
perceive and interact with real-world environments through tools (Baker et al., 2020; Nakano et al.,
2022; Qin et al., 2023). Previous methods primarily focus on delicately curating high-quality expert
data (e.g., tool-use demonstrations) for supervised fine-tuning (SFT) (Schick et al., 2023; Qin et al.,
2024; Qu et al., 2025), where LLMs tend to imitate the demonstrations instead of exploration. This
paradigm limits their generalization in open-ended and complex real-world tool-using scenarios.
Recent methods adopt reinforcement learning (RL) to mitigate the limitations inherent in SFT by
enabling LLMs to interact with the environment through trial-and-error learning (OpenAI et al., 2024;
DeepSeek-AI et al., 2025), thereby allowing them to refine their policies based on environmental
feedback and learn from more flexible reward signals (Chu et al., 2025).

Existing RL methods for tool learning mainly focus on designing reward mechanisms, such as format
compliance (Qian et al., 2025; Singh et al., 2025), call correctness (Feng et al., 2025; Li et al., 2025d),
and hierarchical multi-step execution (Dong et al., 2025). These mechanisms implicitly assume that
environments are relatively stable and predictable. However, in real-world settings shown in Fig 1,
environmental perturbations, such as network instabilities and IP restrictions triggered by exceeding
access limits, inevitably generate substantial numbers of failed trajectories. Under current reward
mechanisms, these failure trajectories are either treated as uninformative negative examples or, more
problematically, may erroneously penalize correct model behaviors (Arnal et al., 2025; Singh et al.,
2025). This leads to training inefficiency due to the prevalence of negative samples.

Given the prevalence of failed trajectories and their limited utility in current RL frameworks, a natural
question arises: should we simply discard all failed trajectories, or can we differentiate among them
to extract valuable training signals? To address this fundamental challenge, we first investigate the
value and characteristics of failed trajectories in tool learning scenarios. Our analysis reveals that

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 1: An illustration of current reinforcement learning (RL)-based tool learning methods shows
that the rollout processes are frequently interrupted by environmental perturbations, such as network
fluctuation, API limits, Invalid Files and IP change. Since these errors are external to the policy, they
are commonly excluded from training. This practice, while preventing unfair penalization of the
policy, inadvertently leads to the systematic discarding of trajectories, thereby limiting data efficiency
and inflating training costs.

beyond cases that exceed model capabilities, a substantial portion of failed trajectories represent
near-success instances where the policy executes most steps correctly but fails due to minor oversights
or environmental interruptions. Specifically, in a dataset (Mialon et al., 2024) of 2,400 trajectories
generated by Qwen3-32B (Yang et al., 2025), we identified 834 failures in total, of which 373 (44.7%)
were attributable to near-success or environment-related issues. This suggests that nearly half of the
failed trajectories are not fundamentally erroneous. For these cases, the model requires only minimal
reflection or simple retry mechanisms to transform these previously unusable negative samples into
valuable positive training signals. This insight leads to our core design principle: instead of discarding
near-success failures, we should actively repair them within the training loop. To achieve this, we
need a framework that can learn from corrected trajectories generated by a “reflection” policy, while
ensuring the stability of the main learning process.

In this paper, we propose Tool-Reflective Reinforcement Learning (Tool-ReRL), an off-policy online
RL framework designed to effectively utilize these near-success failures. At its core, Tool-ReRL
integrates a novel online correction mechanism. Unlike previous methods that perform correction
offline, our approach invokes a temporary, reflection-driven policy to repair trajectories within a
single RL training loop. A key challenge arises from this design: learning from data generated by
this alternate reflection policy can introduce a distribution mismatch, destabilizing the training of
the original target policy. To address this, Tool-ReRL employs importance sampling (Precup, 2001;
Degris et al., 2012; Schulman et al., 2015), a theoretically-grounded technique that re-weights the
corrected trajectories. This allows the target policy to safely and efficiently absorb the valuable
signals from repaired failures, ensuring stable and unbiased policy updates.

Specifically, we first propose an online reflection strategy that enables LLMs to perform self-criticism
and reflection during RL, thereby repairing failed trajectories by generating reflection-augmented
queries that transform previously discarded rollouts into valuable training signals. Second, we
construct an importance-sampling-based estimator that re-weights these reflection-driven trajectories,
aligning them with the original on-policy distribution. This dual design enables the original policy
to benefit from repaired failures while maintaining unbiased updates and stable training dynamics,
thereby improving both data efficiency and overall effectiveness.

The extensive experiments on four popular used tool-learning benchmarks demonstrate that, given
the same training data, Tool-ReRL significantly improves data efficiency and achieves average
performance gains of up to 7.60% and 6.11% over standard RL algorithms on Qwen2.5-7B and
LLaMA3.1-8B, respectively.

2 RELATED WORK

Reinforcement Learning for LLMs. Recently, the o1 and R1 models have garnered substantial
attention due to their remarkable task-solving capabilities, achieving strong reasoning performance

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

that surpasses that of humans on popular mathematical and coding benchmarks (Shao et al., 2024;
DeepSeek-AI et al., 2025; OpenAI et al., 2024; Yang et al., 2025). This success attracts extensive
research endeavors leveraging RL to enhance various aspects of LLM capabilities, resulting in
numerous successful models (Hu et al., 2025; Chen et al., 2025; Cheng et al., 2025; Xiang et al.,
2025). Despite these achievements, most approaches in RL training continue to face constraints related
to positive sample search success rates and data efficiency (Zelikman et al., 2022; Gulcehre et al.,
2023; Hosseini et al., 2024; Kumar et al., 2024). Specifically, during the rollout phase, if the policy
lacks sufficient capability to sample positive examples with reasonable success rates, its contribution
to RL effectiveness becomes negligible. To address this challenge, research focusing on mathematical
and coding domains has employed negative feedback signals to penalize model failures, thereby
encouraging models to explore correct solution paths and achieve significant improvements (Shao
et al., 2024; Zheng et al., 2025; Hu et al., 2025). While these domains typically feature unique correct
answers and singular error sources caused by LLMs themselves, penalizing models solely based
on incorrect final outcomes is inappropriate in tool-calling scenarios, as error sources are diverse
and may stem from environmental perturbations (such as API key limits, network instabilities, file
system changes, etc.) rather than policy deficiencies. Penalizing models based solely on incorrect
results often leads to policy collapse (Arnal et al., 2025; Singh et al., 2025). Consequently, negative
samples in tool-calling scenarios are frequently discarded, which exacerbates RL data efficiency
issues and introduces high computational costs. In this paper, we differentiate between negative
samples and extract valuable training signals through an online reflection mechanism, which enhances
the effectiveness and efficiency of RL.

Tool Learning with LLMs. The tool learning domain has experienced rapid development driven by
the remarkable advancement in LLMs’ language understanding capabilities (Nakano et al., 2022;
Yao et al., 2023; Surís et al., 2023; Gou et al., 2024; Gao et al., 2024). Most previous methods
employ SFT to enhance the tool learning abilities of models (Schick et al., 2023; Hao et al., 2023;
Qin et al., 2024). They typically construct training data by sampling from the trajectories of stronger
models, thereby scaling both data and training effectiveness and yielding numerous well-performing
models (Qin et al., 2024; Liu et al., 2025). Recently, the tremendous success of o1 and R1 has sparked
a surge of interest in exploring the effectiveness and efficiency of reinforcement learning in the tool
learning domain (Jin et al., 2025; Feng et al., 2025; Singh et al., 2025). Existing reinforcement
learning approaches for tool learning can be categorized into two paradigms: the first focuses on
maximizing the value of positive samples through sophisticated reward design (Qian et al., 2025;
Singh et al., 2025; Li et al., 2025d), external models such as LRMs (Li et al., 2025a; Wu et al.,
2025a; Li et al., 2025b), or enhanced reasoning processes (Jin et al., 2025; Li et al., 2025c; Dong
et al., 2025) to extract maximum learning from successful trajectories. The second category draws
inspiration from preference learning methodologies, such as DPO (Li et al., 2025c; Dong et al., 2025),
which employs contrastive learning that leverages both successful and failed trajectories to guide the
learning process. However, these approaches incur substantial costs and data efficiency challenges
due to the unavoidable environmental perturbation. In this paper, we propose Tool-ReRL to repair
failed trajectories through online reflection within a single RL training loop, which enhances both
data efficiency and effectiveness of RL for tool learning.

3 TOOL-RERL

In this section, we introduce our proposed novel Tool-Reflective Reinforcement Learning framework
(Tool-ReRL), aiming at improving both the efficiency and effectiveness of RL training for LLMs in
the tool learning domain. We begin by formalizing the tool learning task as a reinforcement learning
problem (Section 3.1), establishing the foundation for policy-based optimization. To address the
inefficiency of standard RL approaches that discard failed interactions during data collection, we
introduce a New Reflection-Recovery Strategy (Section 3.2) that transforms such waste trajectories
into valuable training signals. However, this introduces off-policy data and induces a distributional
shift. Such a shift, if left unaddressed, can severely compromise both the stability and the convergence
of policy optimization toward the intended learning objective. To address the distributional shift
introduced by reflection-augmented trajectories, we introduce our Importance-Weighted Correction
mechanism (Section 3.3), which re-weights each trajectory based on its likelihood under the current
policy. This ensures alignment with the on-policy distribution while preserving the informational
value of reflection-based feedback.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Figure 2: An illustration of the Tool-ReRL framework. Top: Standard PPO-based training, where
the policy model generates a trajectory (o) from an original query (q). Bottom: Our proposed Tool-
ReRL framework. For each failed trajectory during data collection, a reflection model generates an
explanatory reflection concatenated after q and its historical output to form an augmented query q∗.
During training, the policy generates two trajectories, one conditioned on q and the other on q∗. The
key innovation lies in the use of an Importance weight, which reweights the advantage based on the
likelihood ratio.

3.1 TASK FORMULATION

Following prior work, we formulate tool learning as a reinforcement learning problem where the
language model, governed by a policy πθ, interacts with an external environment over multiple steps.
At each step t, the state st includes the user query and interaction history; the model then samples an
action at such as an intermediate reasoning step or a structured tool call. The environment returns
an observation ot+1 and a reward Rt, producing a trajectory τ = (s0, a0, . . . , sT , aT ). For later
analysis, we also use τi = (ti, ai) to denote a trajectory fragment consisting of a reasoning step ti
and a tool call ai at step i, conditioned on the current query qi. The learning objective is to maximize
the expected return:

max
θ

Eτ∼πθ

[
T∑

t=0

γtRt

]
, (1)

with discount factor γ ∈ [0, 1]. This formulation serves as the foundation for the Tool-ReRL
framework, which aims to optimize tool-use behavior in language models through interaction-driven
learning.

3.2 THE REFLECTION-RECOVERY STRATEGY

In tool-use scenarios, many trajectory failures stem not from policy errors but from external factors
such as API limits, network disruptions, or tool instability. These failures, which can often be identi-
fied through abnormal tool responses or known error codes, are typically discarded in conventional
RL pipelines—leading to significant data inefficiency.

To address this, we propose a Reflection-Recovery Strategy that transforms such failed interactions
into training signals. Specifically, for each failed trajectory τ , we retain the interaction context and

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

invoke a separate reflection module. This module analyzes the failure and generates a reflection rfl
that contains a diagnosis and a suggested remedy.

We then construct an augmented query q∗ = [q, t, a, rfl] by concatenating the original user query q,
the model’s thought t, its failed action a, and the reflection rfl. This enriched input is used to guide
the policy model πθ in generating a revised trajectory τ∗ that addresses the original error.

Although these corrected trajectories provide valuable supervision, they are generated under altered
input conditions not present during standard inference. As such, they are inherently off-policy with
respect to the original query distribution. In the next section, we discuss how to incorporate these
off-policy samples via importance-weighted correction.

3.3 IMPORTANCE-WEIGHTED CORRECTION

As discussed in the previous section, the construction of a corrected whole multi-step trajectory τ∗

is conditioned on an augmented query q∗, which includes externally generated reflection text. As
a result, these trajectories are off-policy with respect to the original policy πθ we aim to optimize.
Naively training on τ∗ would lead to a severe distributional shift. To correct this mismatch, we
employ importance weighting to reweight each training signal based on the likelihood ratio between
the target policy and the behavior policy that generated the data. We first formalize the underlying
distributions as follows:

Definition 1. We define two trajectory sampling processes: i. πθ(τi) = πθ(ti, ai | qi) denotes
a fragment trajectory sampled from policy πθ conditioned on the each query qi, where ti is the
intermediate reasoning and ai is the tool call. ii. πθ(τ

∗
i ) = πθ(t

∗
i , a

∗
i | q∗i ) denotes a trajectory

sampled under the same policy conditioned on an augmented query q∗ = [q, t, a, rfl], which includes
historical reasoning steps and a reflection generated by another LLM. In practice, τ∗ is obtained via
iterative sampling with early stopping: at each round, the model generates a candidate under q∗, and
the process stops once a valid trajectory is found or a maximum number of attempts is reached.

Note that while we introduce τi to denote trajectory fragments for the convenience of analysis, the
final policy optimization objective is still defined over full trajectories τ .
Assumption 1. The existence of a behavior policy πθrfl —a parameterization of the same model that
can generate improved trajectories τ∗ when conditioned on the original query qi for all queries in a
multi-step task :

πθrfl(τ
∗
i ) = πθrfl(t

∗
i , a

∗
i | qi).

Since the actual data is collected by sampling τ∗ under an augmented prompt q∗ using the current
policy πθ, we make the following approximation:

πθrfl(t
∗
i , a

∗
i | qi) ≈ πθ(t

∗
i , a

∗
i | q∗i ).

This inverse prompt equivalence assumption enables us to utilize the tractable quantity πθ(τ
∗ | q∗)

to approximate the behavioral policy when computing importance weights, without requiring explicit
access to πθrfl .

Consequently, the optimization objective of TOOL-RERL is:

max
θ

Eτ∗∼πθrfl

[
min

(
πθ(τ

∗)

πθrfl
(τ∗)

Â(τ∗), clip
(

πθ(τ
∗)

πθrfl
(τ∗)

, 1− ϵ, 1 + ϵ

)
Â(τ∗)

)]
(2)

Where Â(τ∗) denotes the estimated advantage of τ∗, computed following standard PPO practice. As
demonstrated in Section 4.2, this correction is both necessary and sufficient for transforming failures
into reliable learning signals—leading to consistent performance gains across all benchmarks. More
details are presented in the Appendix A.2.

4 EXPERIMENT

4.1 EXPERIMENTAL SETTINGS

Experimental Configuration. We select Qwen-2.5-7B-Instruct and Llama-3.1-8B-Instruct as
our base models. Both models are loaded in FP16 precision on eight A100-80GB GPUs. For all

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

PPO experiments, we configure the training with a total batch size of 1024 and a mini-batch size
of 256. Since tool invocation does not require long-form reasoning, each generated sequence is
limited to 512 tokens—sufficient to accommodate a brief Chain-of-Thought followed by the function
call—thereby avoiding the excessive latency and computational cost commonly associated with
Large-Reasoning-Model style long rollouts.

Baselines To assess the effectiveness of our method, we compare it against seven competitive
baselines, each representing a distinct training paradigm. All models are fine-tuned or trained on the
same ToolACE dataset to ensure fairness. Base refers to the pre-trained model without any additional
training. SFT applies supervised fine-tuning using LoRA on the open-sourced ToolACE dataset,
following the hyperparameters specified in the original paper. DPO is trained on failure-success
pairs, where each query includes an initial invalid call followed by a valid call obtained after a single
reflection retry. PPO denotes standard Proximal Policy Optimization trained on ToolACE data. In
this setting, the model is expected to directly generate the final tool call, aligning with the ToolACE
format without requiring intermediate reasoning. +CoT augments PPO by requiring rollouts to
emit an explicit Chain-of-Thought before the final function call. +Ref uses reflection-augmented
successful trajectories but naïvely treats them as on-policy, without correcting for distributional
shift. +CoT+IS allows the model to generate its own internal thought sequence but does not perform
reflection, while applying importance weights to reduce distributional discrepancy. Finally, Tool-
ReRL constitutes our complete framework: failure cases are transformed into reflection-augmented
trajectories, which are then incorporated into policy learning via importance-weighted correction,
enabling PPO to benefit from off-policy data. All baselines from +CoT onward—including +Ref,
+CoT+IS, and Tool-ReRL—adopt a consistent output format during training: the model is required
to first generate an intermediate reasoning step (thought), followed by a structured tool call asked
by the dataset. This ensures comparability across methods. The primary differences among these
variants lie in the construction of the input (e.g., use of reflection) and whether importance weighting
is applied to mitigate distributional shift. For clarity, the IS used in our baselines denotes the extra
importance-sampling correction that our framework applies to compensate for distributional shift
introduced by query-level modifications; it is distinct from the standard PPO ratio used within the
policy update.

4.2 MAIN RESULTS

Table 1 summarizes the performance of all baseline and proposed methods across four benchmarks.
As expected, Base serves as the lower bound, reflecting model performance without any task-specific
adaptation. SFT yields modest gains for Qwen-2.5, but interestingly leads to a slight performance
drop for LLaMA-3.1. Suggesting that supervised fine-tuning may not generalize well across models
with differing pretraining distributions. We adopt PPO as our primary training method for two key
reasons. First, it delivers the most substantial improvements under sparse reward conditions, which
are inherent to tool-use scenarios where learning signals are only available upon successful execution.
As discussed in Section 3.1, tool learning is naturally framed as a reinforcement learning problem
driven by outcome-based rewards. Second, unlike DPO, PPO does not require evaluating both
successful and failed responses for each query, thereby halving the real API costs as we dont need
both successful and failed trajectories while focusing updates on genuinely erroneous trajectories.

4.2.1 THE NECESSITY OF IMPORTANCE-WEIGHTED CORRECTION

To better understand the challenges posed by reflection-augmented trajectories and to motivate the
necessity of importance-weighted correction, we conduct a controlled comparison using rollouts with
explicit Chain-of-Thought reasoning (+CoT) as a baseline for analyzing distributional drift. When
these self-generated thoughts are replaced with externally provided reflections (+Ref ), the resulting
inputs become substantially more informative. However, on Qwen, the average performance drops
from 54.94% with +CoT to 51.54% with +Ref, a decline of 3.4%. LLaMA-3.1 shows no notable
difference: 46.22% with +CoT versus 46.21% with +Ref. These results suggest that, despite their
semantic richness, reflection-augmented inputs may diverge significantly from the original training
distribution, thereby impairing reinforcement learning performance and limiting generalization. In
the absence of correction mechanisms such as importance weighting, the naive incorporation of such
inputs can be ineffective or even detrimental.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Model performance on various tool learning benchmarks. All the models are trained on the
open-sourced ToolACE training data.

Qwen2.5-7B Llama3.1-8B

Benchmark B
as

e

SF
T

D
PO

PP
O

+C
oT

+R
ef

.

+C
oT

+I
S

To
ol

-R
eR

L

B
as

e

SF
T

D
PO

PP
O

+C
oT

+R
ef

.

+C
oT

+I
S

To
ol

-R
eR

L

R
ot

B
en

ch

CLE Par. 25.71 33.33 22.86 56.19 58.10 49.52 60.95 63.86 22.86 0.95 20.95 48.57 40.00 36.19 41.90 53.33
Cont. 20.00 26.67 17.14 44.76 46.67 40.95 45.71 51.43 17.14 0.00 15.24 36.19 31.43 30.48 35.24 40.00

HEA Par. 21.90 20.00 21.43 30.00 37.62 30.00 39.05 45.24 13.33 0.95 13.33 33.33 25.71 24.29 26.19 36.19
Cont. 14.29 16.19 14.29 22.38 30.00 22.86 29.52 32.86 8.10 0.48 7.62 21.90 16.67 16.19 17.14 23.81

MED Par. 25.71 23.33 23.33 49.52 55.24 45.71 58.10 59.05 15.71 4.29 17.14 46.67 37.14 35.71 43.33 53.81
Cont. 20.00 20.48 18.57 39.05 43.81 34.76 40.00 48.57 11.43 3.81 12.86 33.81 29.52 29.05 34.29 39.05

SLI Par. 24.76 29.52 23.33 50.00 51.90 42.38 57.62 60.95 16.67 2.38 18.10 40.95 34.76 30.95 36.19 47.62
Cont. 19.52 23.81 18.57 39.52 41.43 33.33 43.33 50.00 12.86 1.90 14.29 29.05 28.10 25.71 28.57 33.81

UNI Par. 20.95 20.95 24.76 38.10 45.71 34.29 45.71 53.33 14.29 6.67 13.33 36.19 29.52 29.52 34.29 44.76
Cont. 16.19 24.76 20.00 26.67 37.14 25.71 36.19 42.86 9.52 5.71 9.52 21.90 22.86 21.90 27.62 32.38

Ta
sk

B
en

ch

HF

n_f1 65.80 61.18 65.63 64.35 66.88 66.74 63.80 68.70 59.20 61.18 58.75 61.93 61.64 64.13 65.13 67.51
t_f1 60.50 56.91 60.36 59.21 61.80 61.79 59.10 63.54 48.70 49.37 48.30 53.99 53.71 56.46 58.30 61.64
v_f1 38.20 36.93 37.94 38.60 39.52 38.97 37.33 40.78 22.20 23.69 21.84 29.12 29.41 30.41 32.69 38.76
l_f1 17.30 16.66 17.43 16.36 17.33 17.68 16.82 18.59 18.10 16.92 17.89 18.70 18.99 19.17 18.80 19.62

Mm

n_f1 79.90 77.64 79.72 80.59 81.62 81.14 81.15 82.32 69.10 77.73 68.34 72.47 72.76 75.62 77.95 77.78
t_f1 74.50 73.28 74.38 75.14 76.39 76.11 76.57 77.18 59.70 62.95 58.99 66.96 67.46 70.72 72.94 73.18
v_f1 48.20 48.62 48.38 49.91 48.91 49.85 48.69 50.49 33.10 30.98 32.49 41.31 42.02 43.85 45.24 47.76
l_f1 31.20 30.26 31.12 31.57 32.12 31.69 32.14 32.54 29.90 32.16 29.95 32.23 32.16 32.97 33.05 33.70

B
FC

L Non-
Live Ast 85.46 85.12 86.02 85.96 86.02 86.48 86.25 86.56 83.90 81.50 84.19 77.75 84.83 85.65 85.17 85.67

Live Ast 74.76 77.42 75.57 76.83 78.39 77.87 78.68 79.20 72.54 71.21 72.35 71.65 72.61 71.43 71.87 72.76

Se
al

s Total Avg. 91.41 92.69 91.39 75.37 84.19 92.43 92.86 92.99 88.69 92.26 89.31 81.56 92.29 92.47 92.65 93.17

OOD Avg. 92.76 93.30 92.77 77.30 86.90 93.80 93.92 94.35 90.93 92.85 90.78 81.45 93.22 93.70 93.90 94.47

Total Avg. 44.09 45.35 43.86 51.24 54.94 51.54 55.61 58.84 37.18 32.72 37.07 47.10 46.22 46.21 48.79 53.21

Training directly on reflection trajectories without any distribution correction (+Ref ) yields an
impressive boost Pass@1 rises by 7.45% on Qwen-2.5 and 9.0% on Llama-3.1 relative to the base
model, but this advantage rapidly diminishes when compared to other PPO-based baselines. As
training progresses, the policy overfits to the query + reflection input pattern; once the reflection prefix
is removed during evaluation, the model’s performance is substantially limited by this input-output
mismatch, revealing a failure to generalize effectively. In contrast, our Tool-ReRL variant re-weights
each reflection trajectory with importance-weighted correction, gradually aligning them with the
on-policy query distribution. This correction preserves the informative value of reflection while
mitigating drift, leading to both higher final accuracy and greater stability, making Tool-ReRL the
strongest performer across all benchmarks and model backbones.

4.2.2 THE VALUE OF EXTERNAL REFLECTION

To decouple the contribution of external reflection content, we construct a variant CoT + IS in which
the augmented query is formed by appending the model’s own self-generated thought, rather than
an externally provided reflection. Like Ref, this variant retains the importance-weighted correction
scheme but excludes any additional feedback or retry signals. This leads to a modest 1% average
improvement over vanilla PPO on select datasets, suggesting that self-generated reasoning offers a
weak yet non-negligible training signal. However, without external feedback, these thoughts often
contain unverifiable assumptions or incorrect parameter usage, limiting their ability to surface deeper
failure modes or guide effective recovery. Substantial improvements emerge only when failure-driven
reflection is reintroduced in conjunction with importance-weighted correction. This reinforces two
key conclusions: (i) importance weighting is necessary—without it, all reflection-based variants

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Figure 3: Importance weight correction and benchmark performance of Tool-ReRL. Top left: evo-
lution of importance weights over training steps for LLaMA, demonstrating effective correction
of off-policy bias via the importance weighting strategy. Top right and bottom left: Tool-ReRL’s
performance trends across four tool-use benchmarks, showing consistent improvement and surpassing
baselines such as +CoT. Bottom right: aggregated performance over training, with a fitted quadratic
trend showing a strong positive correlation between epochs and benchmark scores—highlighting
Tool-ReRL’s ability to generalise across diverse tool-use tasks.

exhibit significant performance degradation, highlighting that naive incorporation of additional
signals without correction only amplifies distributional bias and instability; and (ii) reflection is
sufficient—when paired with importance correction, the additional failure-derived signal yields
decisive gains. Taken together, these findings demonstrate that importance weighting effectively
corrects for distributional mismatch, while external reflection provides the critical feedback required
to convert this correction into stable and substantial policy improvements.

4.2.3 ANALYSIS OF TRAINING DYNAMICS

Fig. 3 illustrates how importance score weights evolve as off-policy reflection data are integrated
into training. For Llama, during steps 0–100, there is a substantial divergence between the on-
policy behaviour and the reflection-induced distribution, as indicated by IS weights peaking around
0.12. This reflects a significant mismatch between the original policy and the reflection-conditioned
trajectories. As training proceeds and IS-weighted gradients accumulate, the policy rapidly re-aligns:
importance weights fall below 0.02 by step 200 and remain consistently low, with a brief adjustment
phase between steps 350–420 before stabilising near 0.015. This sharp rise-and-decay pattern suggests
that the initial distribution shift, although large, is effectively corrected—preventing overfitting to
off-policy inputs.

The subsequent four plots show Tool-ReRL’s performance across four diverse benchmarks: RotBench,
SealTools, BFCL, and TaskBench. Across all tasks, the blue line representing Tool-ReRL exhibits a
steady upward trend over training epochs. Notably, on RotBench and SealTools, Tool-ReRL rapidly
outperforms strong baselines such as +CoT and continues to improve. The trend is especially steep
on TaskBench, highlighting the model’s ability to progressively learn from reflection-augmented
feedback and refine its tool-use capabilities.

Finally, the bottom-right plot aggregates performance across all benchmarks. The scattered points
and the fitted quadratic trend line reveal a strong positive correlation between training progression

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 2: Comparison between different thought providers.

Model Method
RotBench TaskBench BFCL Seals Total

C
L

E

H
E

A

M
E

D

SL
I

U
N

I

H
F

M
m

N
on

-
L

iv
e

L
iv

e

To
ta

l

A
vg

.

Qwen

External + IS 31.43 24.05 31.43 30.96 26.67 46.35 59.06 86.87 76.09 92.67 50.56

External 25.72 22.62 29.53 28.33 26.67 44.76 57.30 86.46 75.87 92.01 48.93

Internal + IS 53.33 34.29 49.05 50.48 40.95 44.26 59.64 86.25 78.68 92.86 58.98

Internal 26.67 19.76 27.15 25.48 25.24 44.50 57.74 85.94 75.35 91.93 47.98

Llama

External + IS 29.53 19.29 29.05 29.53 24.29 41.67 52.51 84.56 73.28 90.28 47.40

External 20.00 10.24 16.91 15.95 10.00 39.06 48.92 84.42 72.91 89.93 40.83

Internal + IS 38.57 21.67 38.81 32.38 30.96 43.73 57.29 85.17 71.87 92.65 51.31

Internal 15.72 9.52 14.05 13.10 10.00 31.26 42.66 84.67 70.24 87.00 37.82

and overall effectiveness, further confirming the generalizability and efficiency of Tool-ReRL across
heterogeneous tool-use domains.

4.3 ABLATION STUDY

In the previous sections, we analyzed the effectiveness of reflection and importance-weighted cor-
rection, as well as training dynamics, respectively. Here we present a unified ablation in Table 2
disentangling the contributions of reasoning provenance and importance weighting.

For the reasoning source, we evaluate the performance of two options: (1) internally generated
thoughts produced by the policy model itself, corresponding to the +CoT + IS setting; and (2)
externally provided reasoning generated by a strong open-source LLM, DeepSeek-R1 (DeepSeek-AI
et al., 2025). The external CoT traces provide step-by-step reasoning about how to answer the current
query. This contrasts with the richer "reflection" signal used in our full Tool-ReRL framework, which
explicitly analyses and corrects failures made in prior trajectories—offering diagnostic feedback
rather than direct problem-solving. For each reasoning source, we assess performance both with and
without the proposed importance-weighted correction mechanism. The results show that importance
weighting significantly improves performance in all cases. When applied, the model using self-
generated thoughts (Internal + IS) achieves slightly better aggregate performance than the one
using external reasoning (External + IS). This suggests that, once distributional mismatch is
corrected, internal reasoning may align more closely with the model’s latent policy, offering a natural
integration into the decision-making process.

By contrast, removing the correction mechanism causes a consistent and substantial drop in accuracy,
regardless of whether the reasoning is internal or external. These findings highlight that the key
factor driving performance is not the origin of the reasoning itself, but rather whether distributional
correction is applied. This reinforces our central claim: auxiliary reasoning can be beneficial, but
only when properly integrated via mechanisms such as Importance-Weighted Correction.

5 CONCLUSION

In this paper, we propose Tool-ReRL to address the fundamental challenges of low data efficiency
and high sunk costs inherent in RL-based tool learning methods. Tool-ReRL leverages a reflection
mechanism to temporarily modify the policy of LLM, enabling successful sampling of positive exam-
ples. The acquired rewards are subsequently transferred to the original policy, thereby maximizing
the utility of failure data and enhancing policy sampling efficiency. In future work, we aim to explore
transferring reasoning from successful trajectories generated by stronger external models. With
importance-weighted correction, such cross-model reflection transfer may enable the efficient reuse
of external knowledge, thereby improving both sample efficiency and generalization. Ultimately, this

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

work points toward a broader paradigm where reflection-driven correction becomes a core principle
for building data-efficient and generalizable reinforcement learning systems.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

All ICLR participants, including authors, are required to adhere to the ICLR Code of Ethics. All
authors have read and agreed to abide by the ICLR Code of Ethics. This work involves reinforcement
learning experiments conducted entirely on publicly available benchmark environments and synthetic
data. No human subjects, private or personally identifiable information, or sensitive attributes are
used. The research does not raise foreseeable concerns regarding fairness, discrimination, privacy,
security, or potential societal harm.

REPRODUCIBILITY STATEMENT

It is important that the work published in ICLR is reproducible. We have taken several measures
to ensure the reproducibility of our work. In the main paper, we provide detailed descriptions of
the reinforcement learning setup, including policy architectures, training algorithms (PPO and Tool-
ReRL), and hyperparameters in Section 4.1. Additional theoretical derivations of the algorithms are
included in the appendix A.2. All datasets and tool-use benchmarks employed in our experiments are
publicly available. To further support replication, we will release an anonymized GitHub repository
containing our source code, training configurations, and scripts.

REFERENCES

Charles Arnal, Gaëtan Narozniak, Vivien Cabannes, Yunhao Tang, Julia Kempe, and Remi Munos.
Asymmetric REINFORCE for off-Policy Reinforcement Learning: Balancing positive and negative
rewards, June 2025.

Bowen Baker, Ingmar Kanitscheider, Todor Markov, Yi Wu, Glenn Powell, Bob McGrew, and Igor
Mordatch. Emergent Tool Use From Multi-Agent Autocurricula, February 2020.

Qiguang Chen, Libo Qin, Jinhao Liu, Dengyun Peng, Jiannan Guan, Peng Wang, Mengkang Hu,
Yuhang Zhou, Te Gao, and Wanxiang Che. Towards Reasoning Era: A Survey of Long Chain-of-
Thought for Reasoning Large Language Models, March 2025.

Fengxiang Cheng, Haoxuan Li, Fenrong Liu, Robert van Rooij, Kun Zhang, and Zhouchen Lin.
Empowering LLMs with Logical Reasoning: A Comprehensive Survey, February 2025.

Tianzhe Chu, Yuexiang Zhai, Jihan Yang, Shengbang Tong, Saining Xie, Dale Schuurmans, Quoc V.
Le, Sergey Levine, and Yi Ma. SFT Memorizes, RL Generalizes: A Comparative Study of
Foundation Model Post-training, May 2025.

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu,
Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao
Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,
Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao,
Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding,
Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang
Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong,
Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang, Liang Zhao,
Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang, Minghui Tang,
Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang, Qiancheng Wang,
Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, R. J. Chen, R. L.
Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng Ye, Shiyu Wang,
Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing Wu, Shengfeng
Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen Liu, Wenfeng
Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong Liu, Xiaohan
Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu, Xinyu Yang,
Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xiaosha Chen,
Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia Shan, Y. K. Li,
Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Wang,

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong Wang, Yixuan Tan,
Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong, Yuheng Zou, Yujia
He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou, Y. X. Zhu, Yanhong
Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying Tang, Yukun Zha,
Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda Xie, Zhengyan Zhang,
Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li,
Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu Zhang, and Zhen
Zhang. DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning,
January 2025.

Thomas Degris, Martha White, and Richard S. Sutton. Off-policy actor-critic. In International
Conference on Machine Learning, Edinburgh, United Kingdom, June 2012.

Guanting Dong, Yifei Chen, Xiaoxi Li, Jiajie Jin, Hongjin Qian, Yutao Zhu, Hangyu Mao, Guorui
Zhou, Zhicheng Dou, and Ji-Rong Wen. Tool-Star: Empowering LLM-Brained Multi-Tool
Reasoner via Reinforcement Learning, May 2025.

Jiazhan Feng, Shijue Huang, Xingwei Qu, Ge Zhang, Yujia Qin, Baoquan Zhong, Chengquan Jiang,
Jinxin Chi, and Wanjun Zhong. ReTool: Reinforcement Learning for Strategic Tool Use in LLMs,
April 2025.

Zhi Gao, Yuntao Du, Xintong Zhang, Xiaojian Ma, Wenjuan Han, Song-Chun Zhu, and Qing
Li. CLOVA: A closed-loop visual assistant with tool usage and update. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 13258–13268,
June 2024.

Zhibin Gou, Zhihong Shao, Yeyun Gong, yelong shen, Yujiu Yang, Nan Duan, and Weizhu Chen.
CRITIC: Large language models can self-correct with tool-interactive critiquing. In The Twelfth
International Conference on Learning Representations, 2024.

Caglar Gulcehre, Tom Le Paine, Srivatsan Srinivasan, Ksenia Konyushkova, Lotte Weerts, Abhishek
Sharma, Aditya Siddhant, Alex Ahern, Miaosen Wang, Chenjie Gu, Wolfgang Macherey, Arnaud
Doucet, Orhan Firat, and Nando de Freitas. Reinforced Self-Training (ReST) for Language
Modeling, August 2023.

Shibo Hao, Tianyang Liu, Zhen Wang, and Zhiting Hu. ToolkenGPT: Augmenting frozen language
models with massive tools via tool embeddings. In A. Oh, T. Naumann, A. Globerson, K. Saenko,
M. Hardt, and S. Levine (eds.), Advances in Neural Information Processing Systems, volume 36,
pp. 45870–45894. Curran Associates, Inc., 2023.

Arian Hosseini, Xingdi Yuan, Nikolay Malkin, Aaron Courville, Alessandro Sordoni, and Rishabh
Agarwal. V-STaR: Training verifiers for self-taught reasoners. In First Conference on Language
Modeling, 2024.

Jian Hu, Jason Klein Liu, and Wei Shen. REINFORCE++: An Efficient RLHF Algorithm with
Robustness to Both Prompt and Reward Models, April 2025.

Bowen Jin, Hansi Zeng, Zhenrui Yue, Jinsung Yoon, Sercan Arik, Dong Wang, Hamed Zamani,
and Jiawei Han. Search-R1: Training LLMs to Reason and Leverage Search Engines with
Reinforcement Learning, April 2025.

Aviral Kumar, Vincent Zhuang, Rishabh Agarwal, Yi Su, John D. Co-Reyes, Avi Singh, Kate
Baumli, Shariq Iqbal, Colton Bishop, Rebecca Roelofs, Lei M. Zhang, Kay McKinney, Disha
Shrivastava, Cosmin Paduraru, George Tucker, Doina Precup, Feryal Behbahani, and Aleksandra
Faust. Training Language Models to Self-Correct via Reinforcement Learning, September 2024.

Kuan Li, Zhongwang Zhang, Huifeng Yin, Liwen Zhang, Litu Ou, Jialong Wu, Wenbiao Yin, Baixuan
Li, Zhengwei Tao, Xinyu Wang, Weizhou Shen, Junkai Zhang, Dingchu Zhang, Xixi Wu, Yong
Jiang, Ming Yan, Pengjun Xie, Fei Huang, and Jingren Zhou. WebSailor: Navigating Super-human
Reasoning for Web Agent, July 2025a.

Xiaoxi Li, Guanting Dong, Jiajie Jin, Yuyao Zhang, Yujia Zhou, Yutao Zhu, Peitian Zhang, and
Zhicheng Dou. Search-o1: Agentic Search-Enhanced Large Reasoning Models, January 2025b.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Xiaoxi Li, Jiajie Jin, Guanting Dong, Hongjin Qian, Yutao Zhu, Yongkang Wu, Ji-Rong Wen,
and Zhicheng Dou. WebThinker: Empowering Large Reasoning Models with Deep Research
Capability, April 2025c.

Xuefeng Li, Haoyang Zou, and Pengfei Liu. ToRL: Scaling Tool-Integrated RL, March 2025d.

Weiwen Liu, Xu Huang, Xingshan Zeng, xinlong hao, Shuai Yu, Dexun Li, Shuai Wang, Weinan Gan,
Zhengying Liu, Yuanqing Yu, Zezhong WANG, Yuxian Wang, Wu Ning, Yutai Hou, Bin Wang,
Chuhan Wu, Wang Xinzhi, Yong Liu, Yasheng Wang, Duyu Tang, Dandan Tu, Lifeng Shang, Xin
Jiang, Ruiming Tang, Defu Lian, Qun Liu, and Enhong Chen. ToolACE: Winning the points of
LLM function calling. In The Thirteenth International Conference on Learning Representations,
2025.

Grégoire Mialon, Clémentine Fourrier, Thomas Wolf, Yann LeCun, and Thomas Scialom. GAIA:
A benchmark for general AI assistants. In The Twelfth International Conference on Learning
Representations, 2024.

Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu, Long Ouyang, Christina Kim, Christopher
Hesse, Shantanu Jain, Vineet Kosaraju, William Saunders, Xu Jiang, Karl Cobbe, Tyna Eloundou,
Gretchen Krueger, Kevin Button, Matthew Knight, Benjamin Chess, and John Schulman. WebGPT:
Browser-assisted question-answering with human feedback, June 2022.

OpenAI, Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden
Low, Alec Helyar, Aleksander Madry, Alex Beutel, Alex Carney, Alex Iftimie, Alex Karpenko,
Alex Tachard Passos, Alexander Neitz, Alexander Prokofiev, Alexander Wei, Allison Tam, Ally
Bennett, Ananya Kumar, Andre Saraiva, Andrea Vallone, Andrew Duberstein, Andrew Kondrich,
Andrey Mishchenko, Andy Applebaum, Angela Jiang, Ashvin Nair, Barret Zoph, Behrooz Ghor-
bani, Ben Rossen, Benjamin Sokolowsky, Boaz Barak, Bob McGrew, Borys Minaiev, Botao
Hao, Bowen Baker, Brandon Houghton, Brandon McKinzie, Brydon Eastman, Camillo Lugaresi,
Cary Bassin, Cary Hudson, Chak Ming Li, Charles de Bourcy, Chelsea Voss, Chen Shen, Chong
Zhang, Chris Koch, Chris Orsinger, Christopher Hesse, Claudia Fischer, Clive Chan, Dan Roberts,
Daniel Kappler, Daniel Levy, Daniel Selsam, David Dohan, David Farhi, David Mely, David
Robinson, Dimitris Tsipras, Doug Li, Dragos Oprica, Eben Freeman, Eddie Zhang, Edmund Wong,
Elizabeth Proehl, Enoch Cheung, Eric Mitchell, Eric Wallace, Erik Ritter, Evan Mays, Fan Wang,
Felipe Petroski Such, Filippo Raso, Florencia Leoni, Foivos Tsimpourlas, Francis Song, Fred
von Lohmann, Freddie Sulit, Geoff Salmon, Giambattista Parascandolo, Gildas Chabot, Grace
Zhao, Greg Brockman, Guillaume Leclerc, Hadi Salman, Haiming Bao, Hao Sheng, Hart Andrin,
Hessam Bagherinezhad, Hongyu Ren, Hunter Lightman, Hyung Won Chung, Ian Kivlichan, Ian
O’Connell, Ian Osband, Ignasi Clavera Gilaberte, Ilge Akkaya, Ilya Kostrikov, Ilya Sutskever,
Irina Kofman, Jakub Pachocki, James Lennon, Jason Wei, Jean Harb, Jerry Twore, Jiacheng Feng,
Jiahui Yu, Jiayi Weng, Jie Tang, Jieqi Yu, Joaquin Quiñonero Candela, Joe Palermo, Joel Parish,
Johannes Heidecke, John Hallman, John Rizzo, Jonathan Gordon, Jonathan Uesato, Jonathan Ward,
Joost Huizinga, Julie Wang, Kai Chen, Kai Xiao, Karan Singhal, Karina Nguyen, Karl Cobbe,
Katy Shi, Kayla Wood, Kendra Rimbach, Keren Gu-Lemberg, Kevin Liu, Kevin Lu, Kevin Stone,
Kevin Yu, Lama Ahmad, Lauren Yang, Leo Liu, Leon Maksin, Leyton Ho, Liam Fedus, Lilian
Weng, Linden Li, Lindsay McCallum, Lindsey Held, Lorenz Kuhn, Lukas Kondraciuk, Lukasz
Kaiser, Luke Metz, Madelaine Boyd, Maja Trebacz, Manas Joglekar, Mark Chen, Marko Tintor,
Mason Meyer, Matt Jones, Matt Kaufer, Max Schwarzer, Meghan Shah, Mehmet Yatbaz, Melody Y.
Guan, Mengyuan Xu, Mengyuan Yan, Mia Glaese, Mianna Chen, Michael Lampe, Michael Malek,
Michele Wang, Michelle Fradin, Mike McClay, Mikhail Pavlov, Miles Wang, Mingxuan Wang,
Mira Murati, Mo Bavarian, Mostafa Rohaninejad, Nat McAleese, Neil Chowdhury, Neil Chowd-
hury, Nick Ryder, Nikolas Tezak, Noam Brown, Ofir Nachum, Oleg Boiko, Oleg Murk, Olivia
Watkins, Patrick Chao, Paul Ashbourne, Pavel Izmailov, Peter Zhokhov, Rachel Dias, Rahul Arora,
Randall Lin, Rapha Gontijo Lopes, Raz Gaon, Reah Miyara, Reimar Leike, Renny Hwang, Rhythm
Garg, Robin Brown, Roshan James, Rui Shu, Ryan Cheu, Ryan Greene, Saachi Jain, Sam Altman,
Sam Toizer, Sam Toyer, Samuel Miserendino, Sandhini Agarwal, Santiago Hernandez, Sasha
Baker, Scott McKinney, Scottie Yan, Shengjia Zhao, Shengli Hu, Shibani Santurkar, Shraman Ray
Chaudhuri, Shuyuan Zhang, Siyuan Fu, Spencer Papay, Steph Lin, Suchir Balaji, Suvansh Sanjeev,
Szymon Sidor, Tal Broda, Aidan Clark, Tao Wang, Taylor Gordon, Ted Sanders, Tejal Patwardhan,
Thibault Sottiaux, Thomas Degry, Thomas Dimson, Tianhao Zheng, Timur Garipov, Tom Stasi,

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Trapit Bansal, Trevor Creech, Troy Peterson, Tyna Eloundou, Valerie Qi, Vineet Kosaraju, Vinnie
Monaco, Vitchyr Pong, Vlad Fomenko, Weiyi Zheng, Wenda Zhou, Wes McCabe, Wojciech
Zaremba, Yann Dubois, Yinghai Lu, Yining Chen, Young Cha, Yu Bai, Yuchen He, Yuchen Zhang,
Yunyun Wang, Zheng Shao, and Zhuohan Li. OpenAI o1 System Card, December 2024.

Shishir G. Patil, Huanzhi Mao, Charlie Cheng-Jie Ji, Fanjia Yan, Vishnu Suresh, Ion Stoica, and
Joseph E. Gonzalez. The berkeley function calling leaderboard (bfcl): From tool use to agentic
evaluation of large language models. In Forty-second International Conference on Machine
Learning, 2025.

Doina Precup. Off-policy temporal-difference learning with function approximation. In ICML, 2001.

Cheng Qian, Emre Can Acikgoz, Qi He, Hongru Wang, Xiusi Chen, Dilek Hakkani-Tür, Gokhan Tur,
and Heng Ji. ToolRL: Reward is All Tool Learning Needs, April 2025.

Yujia Qin, Shengding Hu, Yankai Lin, Weize Chen, Ning Ding, Ganqu Cui, Zheni Zeng, Yufei
Huang, Chaojun Xiao, Chi Han, et al. Tool learning with foundation models. arXiv preprint
arXiv:2304.08354, 2023.

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru
Tang, Bill Qian, Sihan Zhao, Lauren Hong, Runchu Tian, Ruobing Xie, Jie Zhou, Mark Gerstein,
dahai li, Zhiyuan Liu, and Maosong Sun. ToolLLM: Facilitating large language models to master
16000+ real-world APIs. In The Twelfth International Conference on Learning Representations,
2024.

Changle Qu, Sunhao Dai, Xiaochi Wei, Hengyi Cai, Shuaiqiang Wang, Dawei Yin, Jun Xu, and
Ji-rong Wen. Tool learning with large language models: A survey. Frontiers of Computer Science,
19(8):198343, August 2025. ISSN 2095-2228, 2095-2236. doi: 10.1007/s11704-024-40678-2.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessi, Roberta Raileanu, Maria Lomeli, Eric Hambro, Luke
Zettlemoyer, Nicola Cancedda, and Thomas Scialom. Toolformer: Language models can teach
themselves to use tools. In Thirty-Seventh Conference on Neural Information Processing Systems,
2023.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In Francis Bach and David Blei (eds.), Proceedings of the 32nd International
Conference on Machine Learning, volume 37 of Proceedings of Machine Learning Research, pp.
1889–1897, Lille, France, 2015. PMLR.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. DeepSeekMath: Pushing the Limits of
Mathematical Reasoning in Open Language Models, April 2024.

Yongliang Shen, Kaitao Song, Xu Tan, Wenqi Zhang, Kan Ren, Siyu Yuan, Weiming Lu, Dongsheng
Li, and Yueting Zhuang. TaskBench: Benchmarking Large Language Models for Task Automation,
November 2024.

Joykirat Singh, Raghav Magazine, Yash Pandya, and Akshay Nambi. Agentic Reasoning and Tool
Integration for LLMs via Reinforcement Learning, April 2025.

Dídac Surís, Sachit Menon, and Carl Vondrick. ViperGPT: Visual inference via python execution for
reasoning. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV),
pp. 11888–11898, October 2023.

Jialong Wu, Baixuan Li, Runnan Fang, Wenbiao Yin, Liwen Zhang, Zhengwei Tao, Dingchu
Zhang, Zekun Xi, Yong Jiang, Pengjun Xie, Fei Huang, and Jingren Zhou. WebDancer: Towards
Autonomous Information Seeking Agency, May 2025a.

Mengsong Wu, Tong Zhu, Han Han, Chuanyuan Tan, Xiang Zhang, and Wenliang Chen. Seal-Tools:
Self-instruct Tool Learning Dataset for Agent Tuning and Detailed Benchmark. In Derek F. Wong,
Zhongyu Wei, and Muyun Yang (eds.), Natural Language Processing and Chinese Computing,
volume 15360, pp. 372–384. Springer Nature Singapore, Singapore, 2025b. ISBN 978-981-9794-
33-1 978-981-9794-34-8. doi: 10.1007/978-981-97-9434-8_29.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Violet Xiang, Charlie Snell, Kanishk Gandhi, Alon Albalak, Anikait Singh, Chase Blagden, Duy
Phung, Rafael Rafailov, Nathan Lile, Dakota Mahan, Louis Castricato, Jan-Philipp Franken, Nick
Haber, and Chelsea Finn. Towards System 2 Reasoning in LLMs: Learning How to Think With
Meta Chain-of-Thought, January 2025.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
Gao, Chengen Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng Hu,
Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
Yang, Jiaxi Yang, Jing Zhou, Jingren Zhou, Junyang Lin, Kai Dang, Keqin Bao, Kexin Yang,
Le Yu, Lianghao Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang, Peng Wang, Qin Zhu, Rui
Men, Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao Yin, Xingzhang
Ren, Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yinger
Zhang, Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu Cui, Zhenru Zhang, Zhipeng Zhou, and Zihan
Qiu. Qwen3 Technical Report, May 2025.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik R Narasimhan, and Yuan Cao.
ReAct: Synergizing reasoning and acting in language models. In The Eleventh International
Conference on Learning Representations, 2023.

Junjie Ye, Yilong Wu, Songyang Gao, Caishuang Huang, Sixian Li, Guanyu Li, Xiaoran Fan,
Qi Zhang, Tao Gui, and Xuanjing Huang. RoTBench: A Multi-Level Benchmark for Evaluating
the Robustness of Large Language Models in Tool Learning, September 2024.

Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah Goodman. STaR: Bootstrapping Reasoning With
Reasoning. Advances in Neural Information Processing Systems, 35:15476–15488, December
2022.

Chujie Zheng, Shixuan Liu, Mingze Li, Xiong-Hui Chen, Bowen Yu, Chang Gao, Kai Dang, Yuqiong
Liu, Rui Men, An Yang, Jingren Zhou, and Junyang Lin. Group Sequence Policy Optimization,
July 2025.

A APPENDIX

A.1 DISCLOSURE OF USE OF LARGE LANGUAGE MODELS (LLMS)

Large Language Models were employed exclusively for proofreading and language refinement of the
manuscript. Their use was limited to improving clarity, grammar, and style to ensure the paper meets
academic writing standards. It did not play any role in shaping the research questions, designing the
methodology, or conducting the analysis. All substantive contributions remain the sole work of the
authors.

A.2 PPO IN TOOL USING

Proximal Policy Optimization(PPO) consists of two parts: an actor-critic architecture and a gradient
clip technique. The actor-critic architecture of PPO consists of two models, an actor model πθ and a
critic model πσ . The actor πθ receives the query q, a token-level sequence, from the user as the state,
and then generates a response sequence o (token-level). The critic network model generates a value
vσ(q, ot) to evaluate the produced action policy and iterates according to the Bellman equation 3 at
position t:

σnew = σold +∇σ
1

2
[vσ(q, ot)− (γ ∗ rt + vσ(q, ot+1))]

2 (3)

where σ denotes parameters in the critic network and vσ(q, ot) denotes Q value for agent response
at position t. Then the actor network leverages the general advantage function 4 to train the actor
model:

Â(q, ot) =

T−t∑
l=0

(γλ)lAt+l =

T−t∑
l=0

(γλ)l(r(q, ot+l) + vσ(q, ot+l+1)− vσ(q, ot+l)) (4)

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

The advantage value function At+l evaluates the actor-network, indicating how much the evacuation
guidance agent can gain by generating response ot+l when in query q than the average future expected
benefit of the strategy. And the actor-network model iterates as follows:

θnew = θold +∇θ
1

D

D∑
i=1

T∑
t=1

[logπθ(q, ot)Â(q, ot)] (5)

Where D represents the query distribution, T represents the response length of the query. In actual
training, multi-trajectory sampling is often used to approximate the D and T in a gradient of the
actor-network and iterate.5 indicates that the gradient direction of the actor-network will iterate along
the direction of the action with a larger advantage function.

To ensure that each strategy update of the actor-network does not deviate too much from the original
strategy, the difference between the new strategy and the old strategy is not too large. In addition
to setting a smaller learning rate, the PPO algorithm also introduces an importancence score and
gradient truncation technique, a special objective function, which contains a truncation ratio factor to
limit the ratio of the new strategy to the old strategy, converting the last part of equation 5 into:

max
θ

Eτ∗∼πθrfl
min(

πθ(τ
∗)

πθrfl
(τ∗)

Â(τ∗), clip((
πθ(τ

∗)

πθrfl
(τ∗)

), 1− ϵ, 1 + ϵ)Â(τ∗)) (6)

A.3 PROOF OF TOOL-RERL OBJECTIVE

Unlike standard PPO, where the denominator of the importance weight comes from the old policy
πθold , we instead use a reflection-based behavior policy πθrfl , which better captures the distribution
from which the augmented trajectories are drawn. This allows Tool-ReRL to leverage reflection-
derived trajectories while maintaining training stability under off-policy conditions. Equation 2
shows the resulting objective, which preserves the rich supervision signals embedded in reflections
while mitigating bias introduced by the augmented distribution. Equation 7 shows how to derive the
objective of Tool-ReRL by reweighting reflection-based trajectories from a reflective policy, enabling
stable optimization.

Jppo(θ) = Eτ∗∼πθrfl
[
πθ(τ

∗)

πθrfl
(τ∗)

Â(τ∗)] (7)

The detailed proof is as follows:

Proof.

Jppo(θ) = Eτ∗∼πθold
[
πθ(τ

∗)

πθold(τ
∗)
Â(τ∗)] =

∫
τ∗

πθ(τ
∗)

πθold(τ
∗)
πθold(τ

∗)Â(τ∗)dτ∗ (8)

=

∫
τ∗

πθ(τ
∗)

πθold(τ
∗)

πθold(τ
∗)

πθrfl
(τ∗)

πθrfl
(τ∗)Â(τ∗)dτ∗ = Eτ∗∼πθrfl

[
πθ(τ

∗)

πθrfl
(τ∗)

Â(τ∗)]

B BENCHMARK AND VARIANT DEFINITIONS

We provide concise definitions of the benchmark variants used in Table 1.

RoTBench. Following the official RoTBench design Ye et al. (2024), we report results on its five
standard subsets: CLE (clean level), SLI (slight level), MED (medium level), HEA (heavy level),
and UNI (union level). Each subset is evaluated under Par. (Parameter identification) and Content
filling (parameter content correctness), consistent with the benchmark protocol.

TaskBench. We follow TaskBench Shen et al. (2024) and report the two task families: HF (Hug-
gingFace tasks) and Mm (multimedia tool tasks). Each family includes four structural metrics: node
F1 (n_f1), tool/type F1 (t_f1), parameter value F1 (v_f1), and parameter name&value F1 (l_f1).

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Seal-Tools. Seal-Tools Wu et al. (2025b) reports Total (in-domain) and OOD performance, where
OOD corresponds to the official out of domain subsets.

BFCL. We follow BFCL Patil et al. (2025), which contains Non-Live and Live variants. Accuracy
is used as the official metric.

C REFLECTION SETUP

Reflection Loop. We adopt a four-stage reflection loop tailored for tool-use scenarios, enabling the
model to self-correct through structured critique and controlled retry.

Step 1: Generation. The model first produces an initial tool call. For example, given the user query:

"I’m considering investing and I’d like to know what’s happening in the market
right now. Could you get me the top market trends in the US?"

Ground-truth tool call:

[Market(trend_type="MARKET_INDEXES", country="us", language="en")]

Model output:

[Market(trend_type="MARKET_INDEXES", country="us")]

Step 2: Critique. A frozen critic model evaluates the generated call using the standard
Score/Analysis template. For a well-formed call, the critic may return:

Score: Positive
Analysis: The tool call is well-formed and
uses supported parameters.

Step 3: Reflection-Guided Retry. If the critic assigns a Negative score, the system extracts the
critic’s analysis and converts it into a concise reflection describing missing or misused parameters.
For instance, if an optional parameter is omitted:

Score: Negative
Analysis: The parameter ’trend_type’ is valid, but the call
is missing the optional field ’language’,
which should be specified for this endpoint.

The failure history and reflection are then embedded in the next retry prompt:

Your previous attempt had issues. History:
Attempt 1: [Market(trend_type="MARKET_INDEXES", country="us")]
Feedback: Missing optional parameter ’language’,
which this endpoint expects.

Original request: "I’m considering investing...
top market trends in the US."
Please try again.

The model retries until a Positive score is obtained or a maximum retry limit is reached.

The full critic instruction is shown below:

You are a critic agent tasked with assessing whether the response’s
reasoning process and agent response align with the ground truth.
When the response involves tool usage, ensure that its final output
constitutes a valid tool call.
Provide a consistent and objective evaluation.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Format your answer as follows:
Score: positive or negative
Analysis: Provide a single sentence explanation detailing why the
response is effective or ineffective, avoiding bullet points.
Please be concise in your reasoning.

Evaluation Prompt. To supply the critic with context for scoring, we pass the model response
together with the corresponding ground truth. The critic receives the following evaluation template:

Analyze this interaction:
agent response: {response}
the ground truths of the questions: {ground_truth}

18


	Introduction
	Related Work
	Tool-ReRL
	Task Formulation
	The Reflection-Recovery Strategy
	Importance-weighted correction

	Experiment
	Experimental Settings
	Main Results
	The Necessity of Importance-Weighted Correction
	The Value of External Reflection
	Analysis of Training Dynamics

	Ablation Study

	Conclusion
	Appendix
	Disclosure of Use of Large Language Models (LLMs)
	PPO in Tool using
	Proof of Tool-ReRL objective

	Benchmark and Variant Definitions
	Reflection Setup

