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Abstract

This work studies online zero-order optimization of convex and Lipschitz functions.
We present a novel gradient estimator based on two function evaluations and
randomization on the `1-sphere. Considering different geometries of feasible sets
and Lipschitz assumptions we analyse online dual averaging algorithm with our
estimator in place of the usual gradient. We consider two types of assumptions
on the noise of the zero-order oracle: canceling noise and adversarial noise. We
provide an anytime and completely data-driven algorithm, which is adaptive to
all parameters of the problem. In the case of canceling noise that was previously
studied in the literature, our guarantees are either comparable or better than state-
of-the-art bounds obtained by Duchi et al. [14] and Shamir [33] for non-adaptive
algorithms. Our analysis is based on deriving a new weighted Poincaré type
inequality for the uniform measure on the `1-sphere with explicit constants, which
may be of independent interest.

1 Introduction

In this work we study the problem of convex online zero-order optimization with two-point feedback,
in which adversary fixes a sequence f1, f2, . . . : Rd

! R of convex functions and the goal of the
learner is to minimize the cumulative regret with respect to the best action in a prescribed convex set
⇥ ✓ Rd. This problem has received significant attention in the context of continuous bandits and
online optimization [see e.g., 1, 3, 12, 13, 16, 18, 21, 25, 29, 33, and references therein].

We consider the following protocol: at each round t = 1, 2, . . . the algorithm chooses x0
t,x

00
t 2 Rd

(that can be queried outside of ⇥) and the adversary reveals
ft(x

0
t) + ⇠

0
t and ft(x

00
t ) + ⇠

00
t ,

where ⇠
0
t, ⇠

00
t 2 R are the noise variables (random or not) to be specified. Based on the above

information and the previous rounds, the learner outputs xt 2 ⇥ and suffers loss ft(xt). The goal of
the learner is to minimize the cumulative regret

TX

t=1

ft(xt) � min
x2⇥

TX

t=1

ft(x) .

At the core of our approach is a novel zero-order gradient estimator based on two function evaluations
outlined in Algorithm 1. A key novelty of our estimator is that it employs a randomization step over
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Algorithm 1: Zero-Order `1-Randomized Online Dual Averaging
Input: Convex function V (·), step size ⌘1 > 0, and parameters ht, for t = 1, 2, . . . ,

Initialization: Generate independently vectors ⇣1, ⇣2, . . . uniformly distributed on @B
d
1 , and set

z1 = 0
for t = 1, . . . , do

xt = arg maxx2⇥ {⌘t hzt, xi � V (x)}
y
0
t = ft(xt + ht⇣t) + ⇠

0
t and y

00
t = ft(xt � ht⇣t) + ⇠

00
t // Query

gt = d
2ht

(y0
t � y

00
t ) sign(⇣t) // `1-gradient estimate

zt+1 = zt � gt // Update zt

update the step-size ⌘t+1

end

the `1 sphere. This is in contrast to most of the prior work [see e.g., 1, 3–5, 14, 16, 17, 22, 28, 32] that
was employing `2 or `1 type randomizations to define x0

t,x
00
t . We use the proposed estimator within

an online dual averaging procedure to tackle the zero-order online convex optimization problem,
matching or improving the state-of-the-art results. Duchi et al. [14] and Shamir [33] have studied
instances of the above problem under the assumption that ⇠

0
t = ⇠

00
t , which we will further refer to

as canceling noise assumption. Specifically, [14] considered the stochastic optimization framework
where ft = f , for every t, and obtained bounds on the optimization error rather than on cumulative
regret, while [33] analyzed the case ⇠

0
t = ⇠

00
t = 0. The results in [14, 33] are obtained for the objective

functions that are Lipschitz with respect to the `q-norm for q = 1 and q = 2, although, with extra
derivations it is possible to extend the above mentioned results beyond such cases. The proposed
method allows us to improve upon these results in several aspects.

Contributions. The contributions of the present paper can be summarized as follows. 1) We
present a new randomized zero-order gradient estimator and study its statistical properties, both under
canceling noise and under adversarial noise (see Lemma 1 and Lemma 4); 2) In the canceling noise
case (⇠0t = ⇠

00
t ) in Theorem 1 we show that dual averaging based on our gradient estimator either

improves or matches the state-of-the-art bounds [14, 33]. We derive the results for Lipschitz functions
with respect to all `q-norms, q 2 [1,1]. In particular, when q = 1 and ⇥ is the probability simplex,
our bound is better by a

p
log(d) factor than that of [14, 33]; 3) We propose a completely data-driven

and anytime version of the algorithm, which is adaptive to all parameters of the problem. We show
that it achieves analogous performance as the non-adaptive algorithm in the case of canceling noise
and only slightly worse performance under adversarial noise. To the best of our knowledge, no
adaptive algorithms were developed for zero-order online problems in our setting so far; 4) As a key
element of our analysis, we derive in Lemma 3 a weighted Poincaré type inequality [following the
terminology of 10] with explicit constants for the uniform measure on `1-sphere. This result may be
of independent interest.

Notation. Throughout the paper we use the following notation. We denote by k·kp the `p-norm in
Rd. For any x 2 Rd we denote by x 7! sign(x) the component-wise sign function (defined at 0 as
1). We let h·, ·i be the standard inner product in Rd. For p 2 [1,1] we introduce the open `p-ball and
`p-sphere respectively as

B
d
p ,

n
x 2 Rd : kxkp < 1

o
and @B

d
p ,

n
x 2 Rd : kxkp = 1

o
.

For two a, b 2 R, we denote by a ^ b (resp. a _ b) the minimum (resp. the maximum) between a and
b. We denote by � : (0,1) ! R, the gamma function. In what follows, log always stands for the
natural logarithm and e is Euler’s number.

2 The algorithm

Let ⇥ be a closed convex subset of Rd and let V : ⇥ ! R be a convex function. The procedure that
we propose in this paper is summarized in Algorithm 1.

Intuition behind the gradient estimate. The form of gradient estimator gt in Algorithm 1 is
explained by Stokes’ theorem (see Theorem 5 in the appendix and the discussion that follows).
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Stokes’ theorem provides a connection between the gradient of a function f (first order information)
and f itself (zero order information). Under some regularity conditions, it establishes that

Z

D
rf(x) dx =

Z

@D
f(x)n(x) dS(x) ,

where @D is the boundary of D, n is the outward normal vector to @D, and dS(x) denotes the
surface measure. Introducing UD and ⇣@D distributed uniformly on D and @D respectively, we can
rewrite the above identity as

E[rf(UD)] =
Vold�1(@D)

Vold(D)
·E[f(⇣@D)n(⇣@D)] ,

where Vold�1(@D) is the surface area of D and Vold(D) is its volume. In what follows we
consider the special case D = B

d
1 . For this choice of D we have n(x) = 1p

d
· sign(x) with

Vold�1(@D)/ Vold(D) = d
3/2 leading to our gradient estimate for the two-point feedback setup.

Computational aspects. Let us highlight two appealing practical features of the `1-randomized
gradient estimator gt in Algorithm 1. First, we can easily evaluate any `p-norm of gt. Indeed, it holds
that kgtkp = (d1+1/p

/2ht)|y0
t�y

00
t |, i.e., computing kgtkp only requires O(1) elementary operations.

Second, this gradient estimator is very economic in terms of the required memory: in order to store
gt we only need d bits and 1 float. None of these properties is inherent to the popular alternatives
based on the randomization over the `2-sphere [see e.g., 5, 16, 22] or on Gaussian randomization [see
e.g., 19, 23, 24].
To compute gt one needs to generate ⇣t distributed uniformly on @B

d
1 . The most straightforward way

to do it consists in first generating a d-dimensional vector of i.i.d. centered scaled Laplace random
variables and then normalizing this vector by its `1-norm. The result is guaranteed to follow the
uniform distribution on @B

1
d [see e.g., 30, Lemma 1]. Furthermore, to sample from the centered

scaled Laplace distribution one can simply use inverse transform sampling. Indeed, if U is distributed
uniformly on (0, 1), then log(2U)1(U > 1/2) � log(2 � 2U)1(U � 1/2) follows centered scaled
Laplace distribution.

3 Assumptions

We say that the convex function V (·) is 1-strongly convex with respect to the `p-norm on ⇥ if

V (x0) � V (x) + hw, x0
� xi +

1

2
kx� x0

k
2
p ,

for all x,x0
2 ⇥ and all w 2 @V (x), where @V (x) is the subdifferential of V at point x.

Throughout the paper, we assume that p, q 2 [1,1], d � 3, and set p
⇤
, q

⇤
2 [1,1] such that

1
p + 1

p⇤ = 1 and 1
q + 1

q⇤ = 1, with the usual convention 1/1 = 0. We will use the following
assumptions.
Assumption 1. The following conditions hold:

1. The set ⇥ ⇢ Rd
is compact and convex.

2. There exists V : ⇥ ! R, which is lower semi-continuous, 1-strongly convex on ⇥ w.r.t. the

`p-norm and such that

sup
x2⇥

V (x) � inf
x2⇥

V (x)  R
2

for some constant R > 0.

3. Each function ft : Rd
! R is convex on Rd

for all t � 1.

4. For all x,x0
2 Rd

, and all t � 1 we have |ft(x)�ft(x0)|  Lkx�x0
kq for some constant

L > 0.

Assumption 1 is rather standard in the study of dual averaging-type algorithms and have been
previously considered in the context of zero-order problems in [14, 33]. We assume that ⇥ is compact
as we are interested in the worst-case regret, which ensures that R < +1. We discuss extensions of
our results to the case of unbounded ⇥ in Section 8. Note that the constant R > 0 is not necessarily
dimension independent. Below we provide two classical examples of V [see e.g., 31, Section 2].
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Example 1. Let ⇥ be any convex subset of Rd
and p 2 (1, 2]. Then, V (x) = 1

2(p�1)kxk
2
p is

1-strongly convex on ⇥ w.r.t. the `p-norm.

Example 2. Let ⇥ =
�
x 2 Rd : kxk1 = 1 , x � 0

 
. Then

1
, V (x) =

Pd
j=1 xj log(xj) is 1-

strongly convex on ⇥ w.r.t. the `1-norm and R
2
 log(d).

Assumptions on the noise. We consider two different assumptions on the noises ⇠
0
t, ⇠

00
t . The first

noise assumption is common in the stochastic optimization context [see e.g., 14, 19, 23, 24, 33].
Assumption 2 (Canceling noise). For all t = 1, 2, . . ., it holds that ⇠

0
t = ⇠

00
t almost surely.

Formally, Assumption 2 permits noisy evaluations of function values. However, due to the fact that
we are allowed to query ft at two points, taking difference of y

0
t and y

00
t in the estimator of the gradient

effectively erases the noise. It results in a smaller variance of our gradient estimator. Importantly,
Assumption 2 covers the case of no noise, that is, the classical online optimization setting as defined,
e.g., in [31].

Second, we consider an adversarial noise assumption, which is essentially equivalent to the assump-
tions used in [3, 4].
Assumption 3 (Adversarial noise). For all t = 1, 2, . . ., it holds that: (i) E[(⇠0t)

2]  �
2

and

E[(⇠00t )2]  �
2
; (ii) (⇠0t)t�1 and (⇠00t )t�1 are independent of (⇣t)t�1

Assumption 3 allows for stochastic ⇠
0
t and ⇠

00
t that are not necessarily zero-mean or independent

over the trajectory. Furthermore, it permits bounded non-stochastic adversarial noises. Part (ii) of
Assumption 3 is always satisfied. Indeed, ⇠

0
t’s and ⇠

00
t ’s are coming from the environment and are

unknown to the learner while ⇣t’s are artificially generated by the learner. We mention part (ii) only
for formal mathematical rigor.

Note that, since the choice of function V belongs to the learner and ⇥ is given, it is always reasonable
to assume that parameter R is known. At the same time, parameters L and � may be either known or
unknown. We will study both cases in the next sections.

4 Upper bounds on the regret

In this section, we present the main convergence results for Algorithm 1 when L, �, T are known
to the learner. The case when they are unknown is analyzed in Section 5, where we develop fully
adaptive versions of Algorithm 1.

To state our results in a unified way, we introduce the following sequence that depends on the
dimension d and on the norm index q � 1:

bq(d) , 1

d + 1
·

(
qd

1
q if q 2 [1, log(d)),

e log(d) if q � log(d).

The value bq(d) will explicitly influence the choice of the step size ⌘ > 0 and of the discretization
parameter h > 0.

The first result of this section establishes the convergence guarantees under the canceling noise
assumption. This case was previously considered by Duchi et al. [14] and Shamir [33].
Theorem 1. Let Assumptions 1 and 2 be satisfied. Then, Algorithm 1 with the parameters

⌘ =
AR

L

s
d
�1� 2

q^2+
2
p

T
and any h 

7R

100bq(d)
p

T
d

1
2+

1
q^2�

1
p ,

where A = (
p

6 +
p

12)�1
, satisfies, for any x 2 ⇥,

E

"
TX

t=1

�
ft(xt) � ft(x)

�
#
 11.9 · RL

q
Td

1+ 2
q^2�

2
p .

1We use the convention that 0 log(0) = 0.
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Note that, as in other related works [14, 20, 23, 24, 33], under the canceling noise (or no noise)
assumption the discretization parameter h > 0 can be chosen arbitrary small. This is due to the fact
that, under the canceling noise assumption, the variance of the gradient estimate gt is bounded by a
constant independent of h. It is no longer the case under the adversarial noise assumption as exhibited
in the next theorem.
Theorem 2. Let Assumptions 1 and 3 be satisfied. Then Algorithm 1 with the parameters

⌘ =
R

p
TL

✓
�bq(d)
p

2R

q
Td

4� 2
p +ALd

1+ 2
q^2�

2
p

◆� 1
2

and h =

 p
2R�

Lbq(d)

! 1
2

T
� 1

4 d
1� 1

2p ,

where A = 6(1+
p

2)2, satisfies, for any x 2 ⇥,

E

"
TX

t=1

�
ft(xt) � ft(x)

�
#
 11.9 · RL

q
Td

1+ 2
q^2�

2
p

+ 2.4 ·

p

RL�T
3
4 ·

8
><

>:

q
qd

1+ 1
q�

1
p if q 2 [1, log(d)),

q
e log(d)d1�

1
p if q � log(d).

Comparison to state-of-the-art bounds. We provide two examples of p, q, ⇥ and compare results
for our new method to those of [14, 33] where only the canceling noise Assumption 2 and q 2 {1, 2}
were considered.
Corollary 1. Let p = q = 2 and ⇥ = B

d
2 . Then under Assumption 2, Algorithm 1 with V : ⇥ ! R

defined in Example 1, satisfies

E

"
TX

t=1

�
ft(xt) � ft(x)

�
#
 11.9 · L

p

dT .

In the setup of Corollary 1, Duchi et al. [14] obtain O(L
p

dT log(d)) rate and Shamir [33] ex-
hibits O(L

p
dT ), which is the optimal rate. Both results do not specify the leading absolute constants.

Corollary 2. Let p = q = 1 and ⇥ =
�
x 2 Rd : x � 0, kxk1 = 1

 
. Then under Assumption 2,

Algorithm 1 with V : ⇥ ! R defined in Example 2, satisfies

E

"
TX

t=1

�
ft(xt) � ft(x)

�
#
 11.9 · L

p
dT log(d) .

In the setup of Corollary 2, Shamir [33] proves the rate O(L
p

dT log(d)) for the method with `2-
randomization. On the other hand, Duchi et al. [14] derived a lower bound ⌦(

p
dT/ log(d)). Thus,

our algorithm further reduces the gap between the upper and the lower bounds.

Finally, note that in the case p = 1, q = 2 with V : ⇥ ! R defined in Example 2 the bound
of Theorem 1 is of the order O(

p
T log(d)). This case was handled by an algorithm with `1-

randomization slightly different from ours in [18] leading to the suboptimal rate O(
p

dT log(d)).

5 Adaptive algorithms

Theorems 1 and 2 used the step size ⌘ and the discretization parameter h that depend on the potentially
unknown quantities L, �, and the optimization horizon T . In this section, we show that, under the
canceling noise Assumption 2, adaptation to unknown L comes with nearly no price. On the other
hand, under the adversarial noise Assumption 3, our adaptive rate has a slightly worse dependence
on L and � in the dominant term. The proof is based on combining the adaptive scheme for online
dual averaging [see Section 7.13 in 26, for an overview] with our bias and variance evaluations, cf.
Section 6 below.
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Theorem 3. Let Assumptions 1 and 2 be satisfied. Then, Algorithm 1 with the parameters
2

⌘t =
Rq

2.75 ·
Pt�1

k=1 kgkk
2
p⇤

and any ht 
7R

200bq(d)
p

t
d

1
2+

1
q^2�

1
p ,

satisfies for any x 2 ⇥

E

"
TX

t=1

�
ft(xt) � ft(x)

�
#
 110.6 · RL

q
Td

1+ 2
q^2�

2
p .

The above result gives, up to an absolute constant, the same convergence rate as that of the non-
adaptive Theorem 1. In other words, the price for adaptive algorithm does not depend on the
parameters of the problem. Finally, we derive an adaptive algorithm under Assumption 3.
Theorem 4. Let Assumptions 1 and 3 be satisfied. Then, Algorithm 1 with the parameters

⌘t =
Rq

2.75 ·
Pt�1

k=1 kgkk
2
p⇤

and any ht =

✓
6.65

p
6 ·

R

bq(d)

◆ 1
2

t
� 1

4 d
1� 1

2p ,

satisfies for any x 2 ⇥

E

"
TX

t=1

�
ft(xt) � ft(x)

�
#
 110.6 · RL

q
Td

1+ 2
q^2�

2
p

+ 5.9 ·

p

R (�+L) T
3
4 ·

8
><

>:

q
qd

1+ 1
q�

1
p if q 2 [1, log(d))

q
e log(d)d1�

1
p if q � log(d)

.

Note that the bound of Theorem 4 has a less advantageous dependency on � and L compared to
Theorem 2, where we had

p
�L instead of � + L. We remark that if � is known but L is unknown,

one can recover the
p

�L dependency by selecting ht depending on �. We do not state this result that
can be derived in a similar way and favor here only the fully adaptive version.

6 Elements of proofs

In this section, we outline major ingredients for the proofs of Theorems 1 – 4. The full proofs can be
found in Appendix C. Here, we only focus on novel elements without reproducing the general scheme
of online dual averaging analysis [see e.g., 26, 31]. Namely, we highlight two key facts, which are
the smoothing lemma (Lemma 1) and the weighted Poincaré type inequality for the uniform measure
on @B

d
1 (Lemma 3) used to control the variance.

6.1 Bias and smoothing lemma

First, as in the prior work that was using smoothing ideas [see e.g., 16, 22, 33], we show that
our gradient estimate gt is an unbiased estimator of a surrogate version of ft and establish its
approximation properties.
Lemma 1 (Smoothing lemma). Fix h > 0 and q 2 [1,1]. Let f : Rd

! R be an L-Lipschitz

function w.r.t. the `q-norm. Let U be distributed uniformly on B
d
1 and ⇣ be distributed uniformly on

@B
1
d . Let fh(x) , E[f(x + hU)] for x 2 Rd

. Then fh is differentiable and

E


d

2h

�
f(x + h⇣) � f(x� h⇣)

�
sign(⇣)

�
= rfh(x) .

Furthermore, we have for all d � 3 and all x 2 Rd
,

|fh(x) � f(x)|  bq(d)Lh . (1)

Finally, if ⇥ ⇢ Rd
is convex, f is convex in ⇥+hB

d
1 , then fh is convex in ⇥ and fh(x) � f(x) for

x 2 ⇥.

2We adopt the convention that ⌘1 = 1 and 1/0 = 1 in the definition of ⌘t.
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Proof. There are three claims to prove. For the first one, we notice that ⇣ has the same distribution as
�⇣, hence,

E


d

2h

�
f(x + h⇣) � f(x� h⇣)

�
sign(⇣)

�
= E


d

h
f(x + h⇣) sign(⇣)

�
,

and the first claim follows from Theorem 6 in the Appendix (a version of Stokes’, or divergence,
theorem) applied to g(·) = f(x + h·) with observation that rg(·) = hrf(x + h·) where rf is the
gradient defined almost everywhere and whose existence is ensured by the Rademacher theorem.

We now prove the approximation property (1). Assuming d � 3 grants that log(d) � 1. Since f is
L-Lipschitz w.r.t. the `q-norm we get that, for any x 2 Rd,

|fh(x) � f(x)|  LhEkUkq . (2)
If q 2 [1, log(d)) then (1) follows from Lemma 2. If q � log(d) then using again Lemma 2 we find

EkUkq  EkUklog(d) 
log(d)d

1
log(d)

d + 1
=

e log(d)

d + 1
,

which together with (2) yields the desired bound.

Finally, if f is convex in ⇥ + hB
d
1 , then for all x,x0

2 ⇥ and ↵ 2 [0, 1] we have

fh(↵x + (1 � ↵)x0) = E


f
�
↵(x + hU) + (1 � ↵)(x0 + hU)

��
 ↵fh(x) + (1 � ↵)fh(x0) .

Thus fh is indeed convex on ⇥. Furthermore, again by convexity of f , we deduce that for any x 2 ⇥

fh(x) = E[f(x + hU)] � E [f(x) + hw, hUi] = f(x) where w 2 @f(x) .

The proof of Lemma 1 relies on the control of the `q-norm of random vector U established in the
next result.

Lemma 2. Let q 2 [1,1) and let U be distributed uniformly on B
d
1 . Then EkUkq 

qd
1
q

d+1 .

Proof. Let W1, . . . , Wd, Wd+1 be i.i.d. random variables having the Laplace distribution with mean
0 and scale parameter 1. Set W = (W1, . . . , Wd). Then, following [6, Theorem 1] we have

U
d
=

W

kW k1 + |Wd+1|
,

where d
= denotes equality in distribution. Furthermore, [30, Lemma 1] states that the random variables

(W , |Wd+1|)

kW k1 + |Wd+1|
and kW k1 + |Wd+1| ,

are independent. Hence, for any q 2 [1,1), it holds that

EkUkq =
EkW kq

Ek(W , Wd+1)k1
=

1

d + 1
EkW kq

(a)


1

d + 1

✓
EkW k

q
q

◆ 1
q

=
d

1
q �

1
q (q + 1)

d + 1

(b)


qd
1
q

d + 1
,

where (a) follows from Jensen’s inequality and (b) uses the fact that �1/q(q+1)  q for q � 1.

6.2 Variance and weighted Poincaré type inequality

We additionally need to control the squared `p⇤ -norm of each gradient estimator gt. This is where we
get the main improvement of our procedure compared to previously proposed methods. To derive the
result, we first establish the following lemma of independent interest, which allows us to control the
variance of Lipschitz functions on @B

d
1 . The proof of this lemma is given in the Appendix.

Lemma 3. Let d � 3. Assume that G : Rd
! R is a continuously differentiable function, and ⇣ is

distributed uniformly on @B
d
1 . Then

Var(G(⇣)) 
4

d(d � 2)
E


krG(⇣)k22

⇣
1 +

p

dk⇣k2
⌘2�

.

Furthermore, if G : Rd
! R is an L-Lipschitz function w.r.t. the `2-norm then

Var(G(⇣)) 
4L

2

d(d � 2)

 
1 +

r
2d

d + 1

!2

.
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Remark 1. Since d
2
/(d(d � 2))  3 for all d � 3, the last inequality of Lemma 3 implies that

Var(G(⇣))  12
�
1 +

p
2
�2�

L/d
�2

, 8d � 3 . (3)

We can now deduce the following bound on the squared `p⇤ -norm of gt.
Lemma 4. Let p 2 [1,1] and p

⇤ = p
p�1 . Assume that ft is L-Lipschitz w.r.t. the `q-norm. Then, for

all d � 3,

Ekgtk
2
p⇤  12(1 +

p
2)2L2

d
1+ 2

q^2�
2
p +

8
<

:

0 under canceling noise Assumption 2,

d
4� 2

p �
2

h2
under adversarial noise Assumption 3.

Proof. Using the definition of gt we get

E[kgtk
2
p⇤ | xt] =

d
2

4h2
E[(ft(xt + h⇣t) � ft(xt � h⇣t) + ⇠

0
t � ⇠

00
t )2k sign(⇣t)k

2
p⇤ | xt]

=
d
4� 2

p

4h2
E[(ft(xt + h⇣t) � ft(xt � h⇣t) + ⇠

0
t � ⇠

00
t )2 | xt] .

Let G(⇣) , ft(xt + h⇣) � ft(xt � h⇣). First, observe that E[G(⇣t) | xt] = 0 and under both
Assumption 2 and Assumption 3(ii) it holds that E[G(⇣t)(⇠

0
t � ⇠

00
t ) | xt] = 0. Using these remarks

and the fact that under adversarial noise Assumption 3, E[(⇠0t � ⇠
00
t )2 | xt]  4�

2, we find:

E[kgtk
2
p⇤ | xt] 

d
4� 2

p

4h2

 
Var(G(⇣t) | xt) +

(
0 under cancelling noise Assumption 2

4�
2 under adversarial noise Assumption 3

!
.

Furthermore, since ft is L-Lipschitz, w.r.t. the `q-norm, the map ⇣ 7! G(⇣) is
�
2Lhd

1
q^2�

1
2
�
-

Lipschitz w.r.t. the `2-norm. Applying (3) to bound Var(G(⇣t) | xt), yields the desired result.

Note that under adversarial noise Assumption 3, the bound on squared `p⇤-norm of gt gets an
additional term d

4� 2
p �

2
h
�2. In contrast to the case of canceling noise Assumption 2, this does not

allow us to take h arbitrary small hence inducing the bias-variance trade-off.

7 Numerical illustration

In this section, we provide a numerical comparison of our algorithm with the method based on
`2-randomization from Shamir [33] (see Appendix D for the definition). We consider the no noise
model and ft = f , 8t, with the function f : Rd

! R defined as

f(x) = kx� ck2 + kx� 0.1 · ck1 ,

where c = (c1, . . . , cd)> 2 Rd such that cj = exp(j)/
Pd

i=1 exp(i) for j = 1, . . . , d. We choose

⇥ =
�
x 2 Rd : kxk1 = 1, x � 0

 
and V (x) =

dX

j=1

xj log(xj) .

As stated in Example 2, V is 1-strongly convex on ⇥ w.r.t. the `1-norm and R 
p

log(d). Moreover,
f is a Lipschitz function w.r.t. the `1-norm. We deploy the adaptive parameterization that appears in
Theorem 3. In Figure 1 we present the optimization error of the algorithms, which is defined as

f

✓
1

t

tX

i=1

xi

◆
� min

x2⇥
f(x) .

The results are reported over 30 trials. We plot all the 30 runs alongside the average performance. One
can observe that the `1-randomization method behaves significantly better than the `2-randomization
algorithm. The theoretical bound for our method in this setup has a

p
log d gain in the rate.
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Figure 1: Opt. error vs. number of iterations for `2-randomization (as in [33]) and our method.

8 Discussion and comparison to prior work

We introduced and analyzed a novel estimator for the gradient based on randomization over the
`1-sphere. We established guarantees for the online dual averaging algorithm with the gradient
replaced by the proposed estimator. We provided an anytime and completely data-driven algorithm,
which is adaptive to all parameters of the problem. Our analysis is based on deriving a weighted
Poincaré type inequality for the uniform measure on the `1-sphere that may be of independent interest.
Under the canceling noise assumption and q 2 {1, 2}, our setting is analogous to [14, 33]. For the
case q = p = 2 and canceling noise, we show that the performance of our method is the same as
in [33, Corollary 2] up to absolute constants that were not made explicit in [33]. For the case of
q = p = 1 and canceling noise, we improved the bound [33, Corollary 3] by a

p
log(d) factor. For

the case q = 2, p � 1, comparing with the lower bound in [14, Proposition 1], shows that the result
of Theorem 1 is minimax optimal. For the case q = p = 1, [14, Proposition 2] shows that our result
in Theorem 1 is optimal up to a log(d) factor.
Under the adversarial noise assumption, Theorem 2 provides the rate O(T 3/4), that is, we get
an additional T

1/4 factor compared to the canceling noise case. It remains unclear whether it is
optimal under adversarial noise – this question deserves further investigation. Note that, under
sub-Gaussian i.i.d. noise assumption and q = p = 2, one can achieve the rate Õ(da

p
T ) with a

relatively big a > 0 [2, 8, 13, 21]. In particular, with an ellipsoid type method [21] obtains the rate
O(d4.5

p
T log(T )2) for the cumulative regret.

Finally, let us discuss the compactness of ⇥. It is straightforward to extend the results of Theorems 1, 2
to any closed convex ⇥ considering the regret against a fixed action x 2 ⇥. Indeed, using [26,
Corollary 7.9], one only needs to replace R appearing in both Theorems 1, 2 by an upper bound onp

V (x) � infx02⇥ V (x0). The adaptive case is more complicated. One way to tackle this case is
to use [27, Theorem 1] requiring a control of Emaxt=1,...,T kgtkp⇤ . This term can be controlled
under the canceling noise Assumption 2 using the Lipschitzness of ft’s, so that Theorem 3 extends to
unbounded ⇥. However, without the canceling noise assumption, following the approach outlined
above, one needs to control Emaxt=1,...,T

|⇠0t�⇠00t |
ht

. The adversarial noise Assumption 3 is not
sufficient to reasonably control this term, so that extending Theorem 4 to unbounded ⇥ is not possible
without further assumptions.
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