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Abstract

We derive and investigate two DPO variants that explicitly model the possibility
of declaring a tie in pair-wise comparisons. We replace the Bradley-Terry model
in DPO with two well-known modeling extensions, by Rao and Kupper and by
Davidson, that assign probability to ties as alternatives to clear preferences. Our
experiments in neural machine translation and summarization show that explicitly
labeled ties can be added to the datasets for these DPO variants without the degrada-
tion in task performance that is observed when the same tied pairs are presented to
DPO. We find empirically that the inclusion of ties leads to stronger regularization
with respect to the reference policy as measured by KL divergence, and we see this
even for DPO in its original form. We provide a theoretical explanation for this
regularization effect using ideal DPO policy theory. We further show performance
improvements over DPO in translation and mathematical reasoning using our DPO
variants. We find it can be beneficial to include ties in preference optimization
rather than simply discard them, as is done in common practice.

1 Introduction

The original formulation of DPO [Rafailov et al.,[2023]] does not allow for ties. DPO requires training
data consisting of paired options, y,, > y;, and each of these pairs should represent a clear preference
in judgment with no ambiguity as to which is the winner and which is the loser. From this data, the
DPO learning procedure encourages the underlying policy to prefer y,, over y;. This formulation
does not allow for any ambiguity or uncertainty in the comparison of the paired examples in the
training data.

This certainty is not easy to achieve in practice. A common approach is simply to discard data. [Dubey
et al.[[2024] Sec. 4.2.1] apply DPO in post-training of Llama 3 models and note that for “DPO,
we use samples that are labeled as the chosen response being significantly better or better than the
rejected counterpart for training and discard samples with similar responses.” Similarly, Qwen2
developers [[Yang et al.| 20244, Sec. 4.3] “sample multiple responses from the current policy model,
and the reward model selects the most and the least preferred responses, forming preference pairs that
are used for DPO.” Over-generation followed by aggressive selection is effective in producing the
strongly ordered judgments needed for DPO. However the process appears wasteful: many potentially
useful, and expensively collected, preference judgments are discarded simply because they are ties.
As|Rao and Kupper| [[1967]] note: “any model which does not allow for the possibility of ties is not
making full use of the information contained in the no-preference class.”

Motivated by this, we investigate DPO variants that can incorporate ties. We replace the Bradley-Terry
preference model at the heart of DPO by two well-known extensions by [Rao and Kupper [1967]
and by Davidson| [[1970] that explicitly assign probability to tied judgments alongside winners and
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losers. Since these models are generalizations of the Bradley-Terry model, we find that they are
readily incorporated into the DPO modeling framework. In experiments in neural machine translation
and summarization, we find that ties can be added to the datasets for these DPO variants without the
degradation in task performance that results from adding ties to the original DPO. We also observe
improved regularization, in reduced KL-divergence to the reference policy, by adding ties. We
provide a theoretical explanation based on ideal DPO policy theory by |Chen et al.[[2024]. We further
show DPO-RK and DPO-D improves performance over strong DPO baselines in translation and
mathematical reasoning by including previously discarded data as tied pairs. These findings suggest
it can be beneficial to incorporate ties in preference optimization rather than simply discard them, as
is done in common practice.

2 Methodology

2.1 DPO and the Bradley-Terry Preference Distribution

The Bradley-Terry model assigns probability that an item y; will be preferred to item y; in terms of
their ‘strength’ parameters A. In the RLHF setting, strengths are expressed as rewards r, A\ = e” [Eq.
1]|Rafailov et al.|[2023]], so that the preference distribution for item ¢ over item j depends on the
difference in their rewards, d;; = r; — 1
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One of the enabling observations made by Rafailov et al.|[2023] is that when a policy 7y is sought to
maximize the KL-regularized objective max,, E [r(x,y)] — 8 D(mg(y|z) || 7res(y|z)), the reward

associated with the policy has the form ry(z,y) = Blog ﬂ”ef(l(’lllﬁ) + Blog Zy(x). This allows

expressing the difference in rewards between hypotheses y,, and y; under a parameterized policy 7
as the reward margin
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The DPO policy objective [Eq. 7]Rafailov et al.|[2023]] follows by incorporating the parameterized
form of the preference distribution into a maximum likelihood objective
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We note that Eq. [2] follows from the regularized risk optimization [Rafailov et al.l 2023] A.1]. It does
not rely on any assumption that limits its use to the Bradley-Terry model.

2.2 Bradley-Terry Extensions that Accommodate Ties

An observed weakness of the Bradley-Terry model is that it does not allow for ties. Unless two items
have exactly the same strengths (so that d;; = 0), the model always assigns a higher probability of
winning to the stronger item. This may be reasonable if one item is much stronger than the other, but
when items are relatively comparable it may be desirable to allow some probability for tied outcomes.

The Rao-Kupper [Rao and Kupper, [1967|] model assigns win and tie probabilities as:
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while the Davidson [Davidson} |1970] model assigns win and tie probabilities as:
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The probabilities of the three outcomes sum to one for both of these Bradley-Terry extensions:
p(yi = y;) +p(y; = yi) +p(yi ~ y;) = 1. For both models, p(y; ~ y;) = p(y; ~ yi) and
p(y; ~ y;) tends towards 0 if \; > A;. Both variants have parameters v that control how much
probability is allocated to ties. Apart from vrx = 1 or vp = 0, when both variants agree with
Bradley-Terry, some probability is reserved for tied outcomes.

The Rao-Kupper and Davidson models arise from different considerations. |Rao and Kupper|[1967]]
begin with the formulation pZ7 (y; = y;) = iff?rfr') sech?(y/2)dy [Bradley, 1953] and note
its sensitivity to the difference in values r; — r;. They note that some judges “may not be able to
express any real preference” in paired-comparisons if their “sense of perception is not sharp enough”
to detect small differences. They reason that a “threshold of sensory perception” is needed such
that if the observed difference is less than the threshold, a judge declares a tie. They introduce the
sensitivity threshold g as follows, pf (y; = y;) = 1 f_(m_eraRK sech?(y/2)dy, and Eqs.@

and[7]follow for vy = e*RK,

Davidson| [1970] starts from Luce’s “choice axiom” [Luce} [1959al] which states that a complete
system of choice probabilities should satisfy p(y; > y;)/p(y; > i) = Ai/A;, which the Rao-Kupper
model fails to do. |Davidson| [[1970] observes that it is desirable for the probability of a tie to “be
proportional to the geometric mean of the probabilities of preference”. Adding this requirement

p(yi ~ y;) =2vp \/p(yl > yy)p(y; > y;) to the choice axioms yields Eqs. and@as a preference
model that allows for ties and also satisfies the choice axiom.

The Rao-Kupper win and tie probabilities can be written in a form more useful for DPO (Appendix
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and the Davidson win and tie probabilities can be written as
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Although their parametric forms are different, their treatments of wins and ties are similar (Ap-
pendix Fig. . For pairs (z, Y, ;) treated as wins, higher likelihood is assigned for higher
values of the reward margin dg(z, ¥, y;). For the Rao-Kupper this is particularly clear, in that the
Bradley-Terry preference distribution is simply shifted by augr. Conversely, for pairs (x, Y., yi)
treated as ties, the probability of declaring a tie is high for small reward margins dg(x, Y., ¥1)-

Balancing Wins and Ties. In the special case of two evenly matched players (A\; = };), we
are interested in the probability of a tie p(y; ~ y;) versus a clear win by either player, p(y; >
y;) + p(y; = y;). It follows that Prx (tie) = “25=1 Pry (no tie) and Pp(tie) = vpPp(no tie).
This shows that the parameters v determine the probability that equally-matched items are judged as
tied or not. v can be tuned, but in our work, we assume that equally-matched items will tie with a
probability of 1/2 and so we set vgx = 3and vp = 1.

2.3 Incorporating Rao-Kupper and Davidson Models into DPO
We extend the DPO policy objective (Eq. ) to include a binary flag ¢ to indicate a tie:

‘C(ﬂ-@;ﬂ-ref) = _Ew,yw,yl,t:() Inge(yw ~x yl) - Ex,yw,yl,tZI logpe(yw ~r yl) (14)



where pg (v = yi) and pg(y. ~ y;) are taken from either the Rao-Kupper model (Egs. or the
Davidson model (Eqs. [T2] [T3). Note that in Eq. [I4] preference pairs in the dataset are unambiguously
either wins (¢t = 0) or ties (¢ = 1). The policy objectives for these two DPO variants are:

ERK(T‘—Q% 71—ref) = _Ea:,yw,yl,t:O |:1Og U(dG (377 Yw» yl) - aRK)
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We refer to these DPO variants as DPO-RK and DPO-D. Like DPO, these objectives depend on the
policy 7y through the reward margin dg(x, y., yi) (Eq. . Unlike DPO, the training objective Eq.
consists of two competing terms. For pairs (x, ¥, ¥;) labeled as wins the objective is to find 7y to
increase the reward margin dg(x, y., y;). However, for pairs labeled as ties the objective is to find 7y
to minimize |dg(z, Y, ¥;)|- To simultaneously achieve both these objectives, the underlying policy
should learn to model both wins and ties.

2.3.1 DPO-RK and DPO-D Updates

Rafailov et al.|[2023]] show that DPO dynamically adjusts the gradient according to how well the
preference objective is optimized for each sample

7o (Y|
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higher weight when reward
estimate is wrong

DPO-RK and DPO-D also adjust their gradients dynamically (Appendix [B.2)). We define the gradient
scale factors A, and Ay, to illustrate the DPO-RK and DPO-D gradient updates on wins and ties:
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Vlogpg(yw =« y1): For data labeled as wins, the DPO-RK gradient scale factor has the same form
as DPO, but shifted by arx (Fig.d). DPO-D has a symmetric scale factor that is not as steep as
DPO-RK. All three methods work to increase the reward margin dg (2, Yo, y1)-

Vlogpg(yw ~z yi): For data labeled as ties, the DPO-D and DPO-RK gradient scale factors
are odd and work to drive dy(x, y., y1) towards zero, although the DPO-RK scale factor is more
aggressive. This is a mechanism not present in DPO.



Intuition for hyper-parameter apx and vp :  We note that DPO-RK and DPO-D each introduces
one additional hyper-parameter relative to DPO. In Appendix [B]we discuss how the Rao-Kupper and
the Davidson variants use these hyper-parameters to control the likelihood of a tie. The updates on
ties above (Eq[I9)and 2T)) offer another intuition for these hyper-parameters: agx and vp control
the width of the band in reward margin where there is little gradient contributions from tied pairs
whose difference in reward falls within the band. However, for tied pairs whose difference in reward
fall outside the band, the gradient updates work to reduce the margin. We find experimentally that
performance is not sensitive to the choice of arx and vp so long as they are in sensible range
(Appendix [FI)) and so keep to apx = log 3 and vp = 1 as motivated in Sec[2.2]

3 Experiments in Adding Ties to DPO, DPO-RK, DPO-D

DPO in its original formulation relies on a static dataset of comparisons D = {x(i), yff), yl(i) N,

where yfj) and yl(i) are preferred and dispreferred responses to a prompt () [Rafailov et al.l 2023].

These preferences are assumed to be sampled from some latent reward model and we refer to this
dataset as Clear Preference Pairs (CPs, for short) because they are typically selected to reflect a
clear preference between winner and loser as assessed either by human judges or by some trusted
automatic metric. We distinguish CPs from Tied Pairs (TPs). TPs also consist of a winner and a loser,
but are very similar in quality. Human judges might be less consistent, or have less confidence, in
selecting the winner in a tied pair, and automatic metrics will assign more similar or even conflicting
quality scores to TPs than to CPs. We study conflicting preferences in Sec[3.3]

3.1 Extending Preference Datasets to Include Ties

As noted, DPO datasets typically are constructed to include only CPs. We develop data selection
procedures to generate TPs along with CPs so that we can investigate how DPO changes when Tied
Pairs are included in the training data. We follow previous work [Wang et al.| 2024, Xiong et al.|
2024, [L1u et al., [2024] to collect preference pairs by sampling and then ranking model responses. We
pair the top- and bottom-ranked responses as CPs, and select TPs as pairs that are close in the ranking.
For Neural Machine Translation (NMT) on WMT-21 ZH-EN [Akhbardeh et al., 2021]] and IWSLT-17
FR-EN [Cettolo et al.| 2017]], we rank responses by BLEURT, a widely-used reference-based quality
metric [Sellam et al.}|[2020, |[Freitag et al.,|2023]]. For Summarization on TL;DR [Stiennon et al., 2020],
we rank responses using the implicit reward function learned by DPO itself, without an external
reward model. Appendix [E] gives experiment details. Studies of these selection strategies can be

found in Appendix[F7]and

3.2 Adding Ties to DPO - The Regularizing Effects of Ties

Following prior work [Rafailov et al.} 2023} [Amini et al.| 2024al [Park et al., [2024], we evaluate DPO
in terms of task performance versus KL divergence to the reference policy. For each of the three
tasks we form two training sets: CP, which contains the Clear Preference Pairs; and CP+TP, which
contains both the Clear Preference Pairs and the Tied Pairs. We refer to DPO training on these sets as
DPO(CP) and DPO(CP+TP). We note IPO [Azar et al.,[2024] yields similar results (Appendix [F.3).

The obvious conclusion from these experiments (Figure [T)) is that including tied pairs in DPO
hurts task performance. All best performing systems are obtained by DPO(CP), with DPO(CP+TP)
underperforming for nearly all values of KL relative to the reference policy. This performance
degradation from including ties is consistent with common practice in the DPO literature which only
keeps pairs with clear preference, filtering others to obtain the best-performing system [Yang et al.|
2024a, Dubey et al., 2024]. Consistent with this, the TL;DR results show that removing tied pairs
from the DPO dataset leads to improved summarization performance, even when ties are identified
by a DPO model in an unsupervised manner. However these results also suggest that tied pairs in the
DPO datasets can enhance regularization. By this we mean that including TPs causes DPO to find
models that are closer to the reference policy as measured by KL divergence. The overall effect of
the reduced task performance and more regularization is to shift the frontier ‘down and to the left’.
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Figure 1: Task Performance vs. KL to the reference policy for DPO systems trained on Clear
Preference Pairs (DPO(CP), blue) and on Clear Preference Pairs and Tied Pairs (DPO(CP+TP),
green). Task Performance is reported in BLEURT for translation tasks on WMT21 ZH-EN and
IWSLT17 FR-EN. Summarization performance is reported on TL;DR in terms of PairRM win-rate
against human-written summaries. KL is estimated over 256 test set policy samples; 3 is noted for
best performing systems. Full details are in Appendix@

3.3 Explaining the Regularization Effect of Ties via Ideal DPO Policy Theory

Theorem 3.1 of |(Chen et al.| [2024]] suggests how these regularization effects might arise. The ideal
DPO policy 7* should follow (Appendix [G):

T Ywlr)  Tret(Wwlr) 1 V(@ Yy, 1) VP
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where ~y(z, Y, 1) is the true preference probability of y,, > ¥; under prompt z. If we assume
that tied pairs have a true preference probability v(x, y.,, y;) of 0.5, from Equation 22| we have

:**((ﬁ”‘lf)) = T;fgr(éf‘f)), where 7* is the ideal DPO policy!} By this analysis, the ideal DPO model
should maintain the same chosen/rejected likelihood ratio as the reference model on tied pairs, and
this constraint serves as a form of regularization. In our NMT experiments (Figures [Ta] [Ib]), where
half of the pairs are constructed to be ties, the regularization effect is especially pronounced as
the DPO model should keep to the reference model likelihood ratio on 50% of the training data.

Regularization is less pronounced on TL;DR (Figure[Ic) where only 1/8 of the pairs are ties.

Another way to view this is to rearrange Eq[22]as follows:
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From this it follows that the reward margin on tied pairs should ideally be close to zero, which is a

form of regularization. We verify this experimentally in Table 5]

3.4 Adding Ties to DPO-RK and DPO-D - Regularization without Performance Degradation

Using the same data as in Sec[3.2] we now evaluate DPO-RK and DPO-D as DPO variants that
explicitly model both ties and clear preferences. We use the DPO datasets CP+TP (Sec. with
the DPO-D and DPO-RK algorithms to produce models DPO-D(CP+TP) and DPO-RK(CP+TP).
We follow the protocols of Sec. so that results are directly comparable to earlier DPO(CP) and
DPO(CP+TP) results. We find that the choice of v has only a minor effect on task performance
(Appendix . For all experiments we set v*% = 3 and v” = 1 for DPO-RK and DPO-D as
described in Sec.[2.2} Training dynamics are provided in Appendix

We observe consistent patterns across three datasets: DPO-D(CP+TP) and DPO-RK(CP+TP) do not
suffer the same drops in task performance that DPO(CP+TP) exhibits (Fig. [2| orange and purple
vs. green). Both reach similar levels of task performance to DPO(CP), but do so at smaller KL
values than DPO (Fig. 2| orange and purple vs. blue). For a given level of KL to reference policy,
DPO-D(CP+TP) and DPO-RK(DP+TP) yield higher task performance than DPO(CP). Compared to
DPO as it is usually done, DPO-RK and DPO-D frontiers are shifted leftwards, showing similar task

In Appendix we show that the ideal policy can also be derived for DPO-D which includes the ideal DPO
policy as a special case.
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performance but stronger regularization. Following the analysis in Sec[3.3] we empirically show the
percentage of TPs in the preference dataset is proportional to the regularization effect in Appendix

E4

3.5 Performance Improvement through DPO-RK and DPO-D

In this section, we show two realistic scenarios in machine translation and mathematical reasoning
where DPO-RK and DPO-D makes use of otherwise discarded data to achieve performance improve-
ment over strong DPO baselines. We also find DPO-RK and DPO-D leads to overall higher reward
accuracy compared to DPO (Appendix [C).

3.5.1 Modeling Conflicting Preferences as Ties

In curating preference datasets, it is common to employ multiple human or machine annotators to
rank candidate responses. Conflicts between annotators can easily arise. This is the case for the
ALMA-R-Preference dataset [Xu et al.,|2024]], which contains 3 translations sampled from human,
GPT-4, and a base model for each source sentence. These translations are ranked by the average of
their XCOMET and KIWI-XXL scores, which are reliable reference-less metrics shown to correlate
well with human expert judgment [Freitag et al.,[2023]]. In|Xu et al.|[2024]’s original work, the pair of
translations with the largest average score difference is selected as a CP and the third, middle-scoring,
translation is simply discarded. This yields 3070 CPs, one pair for each source sentence.

We propose a simple scheme to treat translations with conflicting preferences as ties. For pairs
not selected as CPs, we identify pairs for which XCOMET and KIWI-XXL disagree about which
translation is better as pairs of conflicting preferences. For each source sentence where such pair
exists, we add one to DPO-RK/DPO-D training as TP, resulting in 2302 TPs. TableE] shows DPO-
RK(CP+TP) and DPO-D(CP+TP) yield better performance across all evaluation metrics compared to
DPO(CP). This shows the ability of our DPO variants to learn from pairs of conflicting preferences.

Model COMET KIWI-22 XCOMET KIWI-XXL
ALMA-7B-LoRA Xu et al.| [2024] 79.78 76.81 83.94 73.65
+ DPO(CP) 79.66 77.73 88.87 74.12
+ DPO-RK(CP+TP) 80.63 78.91 90.40 75.77
+ DPO-D(CP+TP) 80.38 78.27 90.09 75.54

Table 1: ZH-EN translation performance on ALMA-R-Preference test set. The best result is reported
for DPO(CP), DPO-RK(CP+TP) and DPO-D(CP+TP) over a beta sweep in [0.1, 0.3, 0.5, 0.7, 0.9].

3.5.2 Preserving good behaviour in the reference model through regularization

We have shown that including ties leads to a strong regularization effect with respect to the reference
model (Sec[3.2). We now exploit this property to preserve good performance observed in the reference
model while leading to stronger overall performance in mathematical reasoning.

Following the DPO-augmented Self-Training (DPO-ST) approach by Wang et al.| [2024], we curate
preference data by sampling model responses to questions in the GSMS8K training set. For 2310 of



7470 questions, we find that the moderately-sized Qwen2.5-3B-Instruct model [[Yang et al., 2024b]|
answers correctly in all of its 8 sampled responses (at temperature 0.7). In DPO-ST, these 2310
questions would be excluded from preference data, even though they are a substantial portion (30.9%)
of the training set. We show instead that correct responses to these instances can be treated as ties.

We label CPs and TPs as follows: for training instances where there is at least one correct and one
incorrect model response, we randomly choose a correct-versus-incorrect pair as a CP; for examples
where all model responses are correct, we randomly choose a pair as a TP. We then conduct DPO
training on CP and DPO-RK and DPO-D training on CP+TP with a range of beta values. We also
report SimPO and CPO training on the CP set for comparison.

B3 SimPO(CP) CPO(CP) DPO (CP) DPO-RK (CP+TP) DPO-D (CP+TP)

0.1 82.5% 82.6% 76.4% 83.5% 81.7%
0.3 81.8% 83.1% 83.7% 84.4% 83.2%
0.5 81.8% 83.1% 83.6% 83.8% 84.5%
0.7 81.6% 82.6% 83.3% 83.7% 84.5%
1.0 82.2% 83.6% 83.5% 84.1% 83.7%

Table 2: GSMSK test set performance with greedy decoding after one-epoch of preference opti-
mization for a range of beta values, evaluated by exact match after “####”°. Tie-compatible variants
yield better performance for every beta value. The base Qwen2.5-3B-Instruct model scores 70.9%.
Standard deviation is reported in Appendix @

Table [Z] shows that DPO-RK(CP+TP) and DPO-D(CP+TP) achieve better performance than the
DPO(CP) model at every beta value. Intuitively, these TPs provide strong regularization signals for
examples where the reference model already excels, thereby preserving good behaviour in DPO-
RK/DPO-D training. Such a mechanism is not available in the original DPO formulation. To verify
this intuition, we define Preservation Rate (PR) as the percentage of questions where the policy
continues to answer the question correctly provided that the reference model gives the correct answer
under greedy decoding. Lower PR indicates more instances where the answer flips from correct
to incorrect after training, which is clearly undesirable. Table |3| shows PR along with KL and
overall accuracy on the GSMSK test set. We find that compared to DPO(CP), DPO-RK(CP+TP) and
DPO-D(CP+TP) has lower KL and higher PR which leads to higher overall accuracy.

Model (optimal ) KL  Overall Acc% PR% 1
Base model 0 70.9% 100%

DPO(CP), 8 =0.3 2.258 83.7% 95.19%
DPO-RK(CP+TP), 5 =0.3 1.762 84.4% 97.11%
DPO-D(CP+TP), 8 = 0.7 1.465 84.5% 97.65%

Table 3: Preservation Rate (PR%) of the best-performing models.
4 Additional Supporting Experiments and Analyses

Due to space constraints, we briefly highlight additional findings and provide pointers to supporting
experiments in the appendices.

DPO-RK and DPO-D yields higher reward accuracy than DPO Like DPO, DPO-RK and
DPO-D yields an implicit reward function formed by the trained policy and the reference model,
which can be used to classify preference pairs. In Table ] we show that DPO-RK and DPO-D yields
overall higher reward accuracy compared to DPO in classifying held-out clear preference pairs and
ties. See Appendix [C|for details.

The proportion of TPs controls regularization We show empirically that the number of ties
included in DPO-RK and DPO-D training is proportional to the strength of regularizaion (Table [T4).
This provides additional support for the regularization effect of ties shown in Sec[3.4]

Ideal DPO-D policy theory Following the ideal DPO policy theory by |Chen et al.| [2024] used
in explaining regularization (Sec{3.3), we derive the ideal DPO-D policy theory starting from the



ternary classification objective that accounts for ties in Appendix [G] This can be view as an extension
to|Chen et al.| [2024]’s theory in that the ideal DPO policy emerges as special case.

Convergence behaviour In Appendix [D] we investigate how reward margins and gradient scale
factors (defined in Eqs[I7]- 1)) evolve when tied pairs are included in training. We find that reward
margins on TPs remain close to zero as desired, and that reward margins on CPs rise less sharply
and to lower magnitude compared to DPO(CP). An interesting consequence is that, contrary to
DPO(CP) training where gradient scale factor decreases to < 0.05 after 1/4 epoch and stabilizes, the
gradient scale factors remain non-negligible throughout the entirety of training for DPO(CP+TP),
DPO-RK(CP+TP), and DPO-D(CP+TP), indicated prolonged learning.

Qualitative Analyses Example responses from DPO, DPO-RK, and DPO-D systems are provided
and analyzed in Appendix [l

5 Related Work

Related Variants of Direct Preference Optimization ODPO [Amini et al., 2024b]] incorporates
preference strength in the objective by introducing an offset parameter. In deriving ODPO, the offset
parameter of Amini et al.|[2024a, Theorem 3]) plays a role similar to the sensitivity threshold of Rao
and Kupper| [[1967]. We note that the ODPO objective with a fixed offset agrees with our proposed
DPO-RK objective restricted to clear preference data, but does not extend to ties. We note DPO-RK
is independently proposed by contemporaneous work |Guo et al.|[2024]]. Compared to their work,
we additionally introduce DPO-D, propose novel tie selection strategies, identify the regularization
effects of ties and provide theoretical explanations. Our experimental setups are complementary:
while they primarily focus on general chatbots, we conduct experiments in translation, summarization
and mathematical reasoning.

Frameworks for Pair-wise Preference Optimization Several works propose theoretical frame-
works for understanding general Preference Optimization from which DPO can be obtained as a
special case. Dumoulin et al.|[2024] formulate learning from pair-wise preference as learning the im-
plicit preference generating distribution of the annotators. In this formalism, DPO is a well-specified
model for the implicit preference distribution assuming that the human preference generative process
follows the Bradley-Terry model. Our work can be viewed as assuming an annotator preference gen-
erating distribution that allows for the outcome of a tie (i.e. the Rao-Kupper or the Davidson model).
Tang et al.|[2024]] propose a generalized approach to deriving offline preference optimization losses
through binary classification. In this work, we extend binary classification to ternary classification
with the possibility of declaring a tie (Appendix [G).

Pair-wise Comparison Models |[Hamilton et al.|[2023] review the Bradley-Terry model, including
its relation to the logistic distribution [Bradley and Gartl [1962] and Luce choice axiom Luce][[1959b].
The Rao-Kupper [Rao and Kupper, |1967|] and the Davidson model [David, |1988]] are two notable
extensions to Bradley-Terry (Sec.[2.2). See the review by [David|[1988]] and bibliography by Davidson
and Farquhar| [1976]. Modeling ties remains an active research topic in fields such as sport team
ranking [Zhou et al.,|2022]], medical treatments [|[Gaohong Dong and Vandemeulebroecke, [2020]], and
chatbots [[Ameli1 et al., [2025]).

6 Conclusion

We have derived and investigated two tie-compatible DPO variants, DPO-RK and DPO-D, by
replacing the Bradley-Terry preference model with the Rao-Kupper and the Davidson models,
respectively. Our experiments show that DPO-RK and DPO-D can accommodate tied pairs in
preference data without the degradation in task performance that is observed when the same tied
pairs are added to the original DPO. We find empirically that the inclusion of ties in preference
learning leads to stronger regularization with respect to the reference model and provide theoretical
explanations based on ideal DPO policy theory. We further show our DPO variants can improve model
performance over DPO by making fuller use of the available data on translation and mathematical
reasoning. These findings motivate the use of tied pairs in available preference data as opposed to
wastefully discarding them. We discuss limitations in Appendix [A]
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A Limitations

The effect of accommodating ties in preference learning can be further investigated using human-
annotated tied pairs. However, at the time of writing, there is no substantial preference dataset with
annotated ties; notably, current annotation guidelines are typically written to explicitly exclude ties.
We note that this enforcement of win/lose judgments has likely conditioned the generative process of
human preference towards the Bradley-Terry model. A meaningful extension of this work would be
to assess the effectiveness of DPO-RK and DPO-D on preference datasets where the annotators are
asked to identify ties. As explained in Sec[2.2] the hyper-parameter vrx and vp can be tuned which
would require either grid search or estimation given ground-truth preference/tie probabilities. We find
that the choice of vgx = 3 and vp = 1 as motivated in Sec[2.2] works well and we did not need to
tune the parameter to obtain good performance. It is likely that better performance and more efficient
frontiers can be obtained by tuning v to better fit the underlying preference generative process for
both DPO-RK and DPO-D. Given our focus on accommodating ties from a modeling perspective, we
leave performance optimization to future works concerning applications.

B Mathematical Derivations

B.1 Rao-Kupper and Davidson Preference and Tie Probabilities

We derive the win and tie probabilities as functions of the reward margin dg(, Yo, Y1) = 70(Z, Yo ) —
79(x, y1) (Eq[2) under the Rao-Kupper (Eq[10} [11) and Davidson formulations (Eq[12}[13).

The Rao-Kupper win and tie probabilities can be obtained by substituting \,, = e’ (@¥w) )\, =
e @) and vk = eRK into EqE]and Eq respectively:
A ero (T yw)

Ao + Ve ero@ve) 4+ ppeero(@ )

P (g = y1) =
1

1 + ero (@) —7o(,yw)+ark
(VIQ?,K — 1))‘w)‘l
Aw +VREAN) (N + VREK Aw)
(V%{K _ 1)6T9($,yw)ere(957yl)

(ere(l"yw) —+ yRKere(fﬂ,yz))(ere(Iyyz) + Z/RKQTS(:E,yu;))

ere (1) ero(@,yw)
= (Vhk — 1)(

= (Vix — 1) o(—do(@, yw, m1) — ark) o(do(2, Yo, y1) — ORrK)

= (V}2%K —1)o(—do(x,Yw,y1) — QRK)pgK(yw =)

= U(de(xvyun yl) - aRK)

o (Y ~ y1) = (

eTe(%?ﬂ) + VRKBTQ(m’y“’) ) (ere(r,yw) + yRKere(rvyl) )

The Davidson win and tie probabilities can be obtained with the same substitution into Eq[§]and Eq[9]
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In Figure [3] we plot the preference and tie probabilities as a function of reward margin dy under
Bradley-Terry (as used in DPO), Rao-Kupper (as used in DPO-RK), and Davidson (as used in
DPO-D).

B.2 Gradients for DPO-RK and DPO-D

The gradients of the Rao-Kupper log probabilities (Eq[I8] [I9) are as follows. For convenience, we
use the short-hand dy for dg(x, yu, i ).

Volog pg™ (yw =2 01)
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The gradients of the Davidson log-probabilities (Eq[20] 21)) follow similarly.
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For illustration, we plot A,,;;, and Ay;. as a function of reward margin dy in Figure El

= Age (dg)Vg log

The quantities VgL p(mg; mre ) and VoL g (m; mre p) follow by substituting the above results into
the gradient of Eq[T4]
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= VoEa y, p,t=1108 po (Yo ~z Y1) (24)
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Figure 3: The clear preference probabilities P(y., = yi|z) (left) and tie probabilities P(y., ~ yi|x)
(right) as a function of reward margins dg(x, y.,, y;) for Bradley-Terry (as used in DPO) (blue), Rao-
Kupper (purple) (as used in DPO-RK), and Davidson ( ) (as used in DPO-D). arx = log3
and vp = 1 are used in producing these plots.
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Figure 4: The gradient scale factors for DPO (blue) and DPO-RK (purple) and DPO-D ( )asa

function of reward margins dg(x, Y., y;) on clear preference pairs (up) and tied pairs (down).agx =
log 3 and vp = 1 are used in producing these plots.

C Using DPO-RK and DPO-D model as Preference Classifier

C.1 Rao-Kupper and Davidson Classifiers

The DPO-RK and DPO-D variants yield probability distributions pg (Y., > 1) and pg(yw ~z Y1) in
terms of the policy g and the reference model 7,..;. We can use these distributions as classifiers
to label a pair (x, y1, y2) as either a win (y; >, Y2 Or Y2 >, y1) or a tie (y1 ~, Y2), whichever has
the highest probability under either the Rao-Kupper or the Davidson model (Eqs. or [12][13).
We will evaluate classification performance on held-out data not used in training to see if policies
produced by our DPO variants learn to distinguish wins from ties.
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C.2 Preference Pair Classification Accuracy

We assess the performance of the Rao Kupper and Davidson classifiers introduced in Sec[C.1]in
terms of their ability to label preference pairs as either clear preferences or ties. Ideally, classification
performance will improve: (1) as tied pairs are added to the clear preference data sets (CP vs CP+TP);
and (2) with margins generated from models produced by DPO variants that emphasize the distinction
between tied pairs and clear preference pairs (DPO-D(CP+TP), DPO-RK(CP+TP)).

We assess classifier performance on the held-out set created by collecting CPs and TPs from the
WMT18 ZH-EN test set as was done for WMT20 ZH-EN (Appendix [E); this yields pairs with gold
labels as either clear preference pairs or tied pairs. Classification and assessment proceeds as follows:
we generate reward margins for the WMT18 ZH-EN pairs using DPO(CP), DPO(CP+TP), DPO-
RK(CP+TP), DPO-D(CP+TP) models; we use these reward margins to label the unseen pairs using
the Davidson and Rao-Kupper classification rules (Sec. [C.I)); and finally compute the classification
accuracy relative to the gold labels.

Results are shown in Table 4] We find that smaller beta in training consistently leads to better
overall RK-classification accuracy (+10% overall Acc. from 5 = 1.0 to 5 = 0.1), suggesting heavy
regularization with respect to the reference model impedes preference ranking. Classifiers based on
reward margins generated from DPO(CP) models perform well in identifying clear preference pairs
(Acc. > 85%) but poorly in identifying tied pairs (Acc. < 35%). This imbalance is likely explained
by the DPO(CP) model never having seen tied pairs in training. Adding TPs to the DPO datasets
(DPO(CP+TP)) significantly improves the classification accuracy of tied pairs (+30%) with more
balanced classification accuracies for CPs and TPs. The best overall classification accuracies (=~ 73%)
are obtained with reward margins generated by models trained to match its classifier. Across all beta
values, DPO-RK(CP+TP) and DPO-D(CP+TP) achieve better overall accuracy and more-balanced
CP accuracy and TP accuracy under their respective decision rules.

Model

B=0.1

B=05

=10

DPO(CP)
DPO(CP+TP)
DPO-RK(CP+TP)

60.1% (87.1%, 33.1%)
67.0% (72.0%, 62.1%)
73.1% (74.5%, 71.7%)

Rao-Kupper Classifier
52.8% (87.3%, 18.3%)
57.5% (69.3%, 45.7%)
64.2% (73.2%, 55.3%)

50.1% (86.9%, 13.3%)
51.5% (71.2%, 31.9%)
58.5% (73.4%, 43.5%)

DPO(CP)
DPO(CP+TP)
DPO-D(CP+TP)

65.3% (84.4%, 46.3%)
71.0% (59.1%, 82.8%)
73.8% (79.6%, 67.9%)

Davidson Classifer
57.4% (83.7%, 31.0%)
62.1% (58.3%, 65.8%)
66.8% (75.9%, 57.8%)

53.6% (84.6%, 22.6%)
57.2% (62.3%, 52.2%)
62.7% (75.2%, 50.3%)

Table 4: Preference pair classification accuracies (Overall Acc. (CP Acc., TP Acc.)) for Rao-Kupper
and Davidson classification rules based on reward margins computed using DPO(CP), DPO(CP+TP),
DPO-RK(CP+TP), and DPO-D(CP+TP) models as evaluated on the WMT18 ZH-EN test set.

C.3 Empirical Reward Margin Distributions

We now look at the reward margins on held-out pairs to determine how the DPO objective generalizes
to unseen data. Ideally, a post-DPO model should assign reward margins that are large for clear
preference pairs but close to zero for tied pairs. We assess this on the same held-out data as in the
previous section (Sec. [C).

In Table 5] reward margins of DPO(CP+TP), DPO-RK(CP+TP), and DPO-D(CP+TP) are similar and
well-behaved, showing means close-to-zero on TPs (< 0.4) and farther from zero for CPs (> 2.3).
Reward margin standard deviations are also similar and reasonably small. However the standard
deviation for both tied pairs and clear preference pairs are much higher for DPO(CP) models (> 11.1
on CPs and > 7.9 on TPs).

This can be explained by Figure [5] which shows that DPO(CP) models overwhelmingly assign
preference probability values of either ~ 1.0 or ~ 0.0 to tied pairs, corresponding to very positive
and very negative reward margins, respectively. This contributes to the high standard deviation and
shows that for a tied pair (y1, y2), DPO(CP) model exhibits a strong preference for either y; > yo or
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Model | B=01 B=05 B=10 | =01 B=05 B=10

Clear Preference Pairs Tied Pairs
DPO(CP) 82+120 95+132 10.0*11.1 | 0.7+132 06+94 04479
DPO(CP+TP) 24433 2.3 432 2.5 433 0.4 +4.8 03432 02+27

DPO-RK(CP+TP) | 2.9 +4.3 2.8 £33 3.0+33 0.0+13 0.0+14 0.0=£1.7
DPO-D(CP+TP) 4.6 +5.8 4.8 £6.1 4.9 +6.3 0.0+20 0.1+23 0.0=+24

Table 5: Reward margin statistics (mean =+ std) for held-out Clear Preference Pairs and Tied Pairs
collected from WMT18 ZH-EN.

o
e S 800
@ 4000 g
> o 600
53000 5
= 2000 - 400
1000 200
060 02 04 06 08 1.0 %00 02 04 06 0.8 1.0
Estimated P(y; > y>) P§T(y1 > y2)
(a) Held-out Clear Preferences Pairs (CP) (b) Held-out Tied Pairs (TP)

Figure 5: Empirical distribution of preference probabilities under the Bradley-Terry model using the
implicit reward function from the trained DPO policy on heldout CPs and TPs. DPO(CP) in blue, and
DPO(CP+TP) in

Y2 > Y1, even though these are tied pairs by construction (y; ~ y2). In contrast, DPO(CP+TP) yields
well-behaved estimated preference probability distribution more centered around 0.5 for tied pairs.

The DPO(CP) model correctly assigns high preference probability to most of the held-out CPs. This
is consistent with its high classification accuracy on clear preference pairs in Table[d] Similar to the
estimated preference probability on held-out TPs, the DPO(CP) model tends to give confident, clear
preference judgment with > 0.8 probability in either direction. In comparison, the DPO(CP+TP)
model is more conservative in making preference judgments, showing a less-sharp preference
probability distribution over the held-out CP pairs. These results suggest that incorporating ties in
DPO training leads to preference probability distributions that more evenly spread on both CPs and
TPs as opposed to one concentrated on the two ends.

For completeness, we also show the clear preference/tie probability distributions produced by models
trained with DPO-RK(CP+TP) and DPO-D(CP+TP) on held-out clear preference pairs and tied pairs.
Figure [6] show that these distributions are well-behaved in that most of the probability mass are
allocated to Py(y1 > y2) > 0.5 on held-out clear preference pairs and to Py(y; ~ y2) ~ 0.5 on
held-out tied pairs. We note that under our hyper-parameter setting for the Rao-Kupper and Davidson
models, the maximal tie probability is 0.5.

All models in this analysis are trained with 5 = 0.1.
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Figure 6: DPO-D ( ) and DPO-RK (purple) preference/tie probability on held-out sets under

the Davidson and Rao-Kupper models, respectively.

D Training Dynamics and Convergence Behaviour

We analyse how the inclusion of tied pairs affects the training dynamics of DPO, DPO-RK, and
DPO-D. We study the BLOOMZ-mt-7b datasets with 8 = 0.7 for WMT21 ZH-EN as these systems
show both strong regularization effects and task performance degradation when tied pairs are added.
Figure[7) shows the evolution of reward margins and gradient scale factors (Eqs[T7]-21).

—— DPO(CP) N \ —— DPO(CP)

—— DPO(CP+Ties) N ~~- DPO(CP+Ties)

—— DPO-RK(CP+Ties)
DPO-D(CP+Ties)

rrrrr DPO-RK(CP+Ties)
DPO-D(CP+Ties)

Train/Reward Margins on CP
Train Gradient Scaling on Clear Preferences

Step : Step

(a) Reward margins on CP (b) Gradient scaling on CP

——- DPO(CP+Ties)
--—- DPO-RK(CP+Ties)
DPO-D(CP+Ties)

Train/Reward Margins on Ties

o] — DPO(CP+Ties)
~—- DPO-RK(CP+Ties) ... .o

DPO-D(CP+Ties) .
1eaf —+ DPO-RK. p_tie = p_pref
DPO-D. p_tie = p_pref

“Step ) ) ) Step )

(c) Reward margins on TP (d) Gradient scaling on TP

Figure 7: DPO(CP) (blue), DPO(CP+TP) (green), DPO-RK(CP+TP) (purple), and DPO-D(CP+TP)
( ) training statistics on WMT21 ZH-EN.

DPO(CP) is well behaved: the reward margins on the CP data increase over the epoch; the DPO
losses on the CP dataset decrease over the epoch; and the DPO gradient scale factor shows that
learning slows and stabilizes after the 500" batch.

Adding tied pairs to the DPO dataset alters this behaviour for both tied pairs and clear preference
pairs. DPO(CP+TP) does yield some gains in reward margins for clear preference pairs, but these are
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well below that of DPO(CP). By contrast, DPO(CP+TP) fails almost entirely to find any improvement
in the reward margins for its tied pair data. While this is less than ideal from a modelling perspective,
we note that it provides empirical support for the observation in the previous section that the reward
margins on tied pairs should ideally remain close to zero. Similar behaviour is observed in the DPO
loss. Decreases in loss over clear preference pairs are offset by loss increases on the tied pairs. This
is reflected in the gradient scale factors. The gradient scale factors remain high as DPO(CP+TP)
searches for a better policy.

DPO-RK(CP+TP) and DPO-D(CP+TP) exhibit largely the same dynamics as DPO(CP+TP) except
that the gradient scale factors on TPs have mean close to O instead of 0.5 and fluctuate between
positive and negative values. This showcases that DPO-RK and DPO-D work to drive reward margin
on TPs close to zero by possibly reversing optimization direction, a mechanism not present in the
original DPO.

E Experimental Details and Full Results

We provide additional details of our experiments on Neural Machine Translation and Summarization
with respect to the SFT models, the training configurations, and the decoding procedures. All
experiments are run with the random seed set to 0. Codes are available at https://github.com/
EriChen@615/DPO-RKD.

E.1 Neural Machine Translation

We largely follow |Yang et al.|[2024c] in our experimental setup for NMT where the preference dataset
is obtained via sampling and BLEURT-based ranking as explained in Sec[3.1}

CPs and TPs in NMT. We use DPO to improve translation quality similar to that done in|Yang et al.
[2024c]. We apply DPO with BLOOMZ-mt-7b [Muennighoft et al.| [2023]] as the baseline model.
Translation quality is measured with BLEURT [Sellam et al., 2020] and COMET [Rei et al.| 2020]]
on the WMT21 ZH-EN and IWSLT17 FR-EN translation test sets. We note that the WMT-23 metric
overview paper reports high correlations (0.776 and 0.779, Table 1, Freitag et al.|[2023]]) between
BLEURT and COMET and human judgment. To construct a DPO preference dataset for the WMT21
ZH-EN test set, we use BLOOMZ-mt-7b to generate 32 translations (via sampling) for each source
sentence in the WMT20 ZH-EN test set. For each source sentence, the translations are ranked by
their BLEURT scores computed with respect to the reference translations. The highest and lowest
scoring translations form the Clear Preference Pairs; for each source sentence, these are the two
translations with the greatest difference in BLEURT score. By contrast, we take the Tied Pairs as the
two non-identical translations with the minimum absolute BLEURT difference; the translation with
higher BLEURT is labeled as the winner of each Tied Pair. This yields ca. 16K CPs and TPs for use
in DPO. The same procedure is applied to the IWSLT17 validation set, yielding ca. 800 CPs and TPs
for use as DPO preference datasets. We validate the selected TPs using GPT-4 in Appendix

SFT Models On WMT-21 ZH-EN, we performed supervised fine-tuning on the BLOOMZ-mt-
7b Muennighoff et al.| [2023]] using previous WMT test sets to obtain the SFT model from which we
train with DPO/DPO-RK/DPO-D. The clear preference pairs and tied pairs are generated by sampling
from this SFT model. On IWSLT-17 FR-EN, we use the pretrained BLOOMZ-mt-7b model directly
in sampling clear preferences and tied pairs and in DPO fine-tuning, as we find further SFT leads to
repetitive generation.

Training Details We use the RMSProp optimizer with the learning rate set to 5¢~* and the number
of warm-up steps set to 150. All NMT experiments are run on two Nvidia A100-80G GPUs with
an effective batch size of 4. We used FP32 for training the policy. The log-probabilities from the
reference model are pre-computed with FP32 precision. Each training run takes ~ 2 hours on
WMT20 ZH-EN CP+TP data and ~ 1 hour on IWSLT17 FR-EN data.

Decoding Following Yang et al.|[2024c]], we use beam search with a beam size = 4 to decode all
models.
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Held-out Clear Preference Pairs and Tied Pairs We curate held-out sets by generating translations
by sampling on the WMT18 ZH-EN test set. Clear Preference Pairs and Tied Pairs are identified
using their rankings under BLEURT exactly as done for WMT21 ZH-EN. This gives 3980 CPs and
3980 TPs for held-out evaluation in Appendix [C]

E.2 Experiments with Stronger Translation Systems

We conducted additional experiments, replacing the BLOOMZ-mt-7B model with the ALMA-7B-
LoRA model reported in [Xu et al.|[2024], which has better translation performance.

We repeated the procedure described in Section 3.1 to collect 3000 Clear Preferences (CPs) and
3000 Tied Pairs (TPs) for ZH-EN translation. This was done by sampling candidate translations
using ALMA-7B-LoRA on the ZH-EN training set of |Xu et al.|[2024]], followed by pair selection
based on scores from automatic metrics. Following | Xu et al.|[2024], we used the average score of
KIWI-XXL and XCOMET to rank responses. We evaluated our models on the ZH-EN test set of
Xu et al.|[2024], which consists of 2009 parallel sentences selected from FLORES-200. We report
COMET, KIWI-XXL, and XCOMET as evaluation metrics. We also report KL. divergence with
respect to the reference model.

The table below shows the best-performing system evaluated on ZH-EN translation obtained from a 3
sweep in [0.1,0.3,0.5, 0.7, 0.9] under each configuration. For reference, we provide the performance
of the base ALMA-7B-LoRA model as reported in |Xu et al.| [2024]. Additionally, ALMA-7B-R
represents the best 7B model reported in | Xu et al| [2024], trained with Contrastive Preference
Optimization (CPO) on a larger dataset than the one we used. While it is not directly comparable, it
serves as a strong translation baseline.

Model KL COMET KIWI-XXLL XCOMET Mean(X+K)
ALMA-7B-LoRA [Xu et al.[[2024] - 79.8 73.7 83.9 78.8
ALMA-7B-R Xu et al.|[2024] - 81.0 75.7 90.7 83.2
Our Systems N

DPO(CP) 101.64 80.5 75.2 91.1 83.2
DPO(CP+TP) 60.37 80.2 75.0 90.8 82.9
DPO-RK(CP+TP) 75.57 80.2 75.0 90.8 82.9
DPO-D(CP+TP) 30.92 80.5 75.9 90.8 83.4

Table 6: Performance metrics for ZH-EN translation systems. Results include KL divergence,
COMET, KIWI-XXL, and XCOMET scores, along with the mean of XCOMET and KIWI-XXL.
ALMA-7B-LoRA and ALMA-7B-R results are from Xu et al.|[2024]].

We achieve the best performance under the metrics with DPO-D(CP+TP), which also has the lowest
KL divergence, on top of a very strong baseline. Consistent with all our other results, including Tied
Pairs in all training procedures yields a strong regularization effect.

E.3 Summarization

CPs and TPs in Summarization. We follow Amini et al.|[2024b] in DPO fine-tuning of Pythia-
2.8B [|Biderman et al., 2023|] on the TL;DR dataset [Stiennon et al.,|2020] with evaluation via win-rate
against human-written summaries. Previous works use GPT-4 to compute the win-rate [[Rafailov
et al.,|2023} |/Amini et al., 2024a]. We find that the judgments of PairRM [Jiang et al.,2023]] agree
well with those of GPT-4 (Appendix [F.6) and opt to use PairRM win-rate as a cost-effective automatic
metric. In the TL;DR task, each prompt is associated with a collection of paired summaries, with
a winner and a loser identified for each pair. There is no immediately obvious way to distinguish
TPs from CPs in the collection and so we use DPO itself to select TPs. We first apply DPO with
£ = 0.1 on the full TL;DR training dataset. Using the reward model formed by this model and the
reference model, we compute the reward margins of all pairs of summaries in the training split. For
each prompt, the pair with minimal reward margin is treated as a TP, with all other pairs kept as CPs,
yielding ca. 14k (15.3%) TPs. See Appendix [F7]for a study of this selection strategy.

We follow |/Amini et al.| [2024b] in experimental setups. The preference dataset is obtained via
sampling and ranking with a DPO model without requiring an external reward model as explained in
Sec31l
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SFT Model We follow Amini et al.|[2024b] to supervise-finetune a Pythia-2.8B model Biderman
et al.|[[2023]] on the chosen responses in TL;DR train split for one epoch to obtain the initial checkpoint
for preference learning. We use the summarization prompt provided in Appendix D.2 by |Rafailov
et al.|[2023]].

Training Details We use the RMSProp optimizer with the learning rate set to 5¢ =7 and the number
of warm-up steps set to 150. All summarization experiments are run on two Nvidia A100-40G GPUs
with an effective batch size of 64. We used FP32 for the policy and FP16 for the reference model.
Each training run takes ~ 7 hours on TL;DR CP+TP data.

Decoding We use greedy decoding for all models as we find it performs on-par or better than
temperature sampling (Appendix [F.6).

E.4 Tabulated KL-Performance Results on NMT and Summarization

We tabulate the KL-Performance results shown in Figure [T]and Figure 2}

E.4.1 Neural Machine Translation

In addition to KL Divergence and BLEURT, we also provide COMET [Rei et al., [2020] scores,
BLEU [Post, 2018 scores and BLEU’s Length Ratio.

We observe the “reward hacking” phenomenon identified by |Yang et al.| [2024c] on both WMT?21
ZH-EN and IWSLT17 FR-EN where systems achieve good BLEURT but have large length ratio
(>1.5) and lower COMET than the pre-DPO system. These systems learn to generate long, repetitive
translations which BLEURT fails to recognize as low-quality. [Yang et al.|[2024c] find that using small
beta values (e.g. 0.1) in DPO training results in reward hacking models. Our results are consistent
with their findings and further suggest that large KL divergence from the reference model is a good
indicator for reward hacking. On WMT21 ZH-EN, the only model that exhibits reward hacking is
trained by DPO(CP) with beta=0.1 which also yields the highest KL divergence (174.13) among
all models, greatly exceeding the second-highest KL divergence (68.12). On IWSLT17 FR-EN,
Almost all models with KL Divergence > 30 (DPO(CP), 8 = 0.1, DPO-RK(CP+TP), 8 = 0.1 and
DPO-D(CP+TP) 8 = 0.1, 0.5) show reward hacking behaviours.

Reward hacking on NMT can be resolved by increasing regularization with respect to the reference
model. We find that training with larger beta values or incorporating ties in DPO-RK/DPO-D training
can provide such regularization without performance degradation.

E.4.2 Summarization

Table [0 shows the KL-PairRM winrate on TL;DR summarization.
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System beta KL Divergence

BLEU Length Ratio

COMET BLEURT

Bloomz-mt-7b1-SFT - 0 17.6 77.9 61.6
DPO(CP) 0.1 174.13 7.23 3.01 70.2 67.7
DPO(CP) 0.2 68.12 20.8 1.10 80.8 66.2
DPO(CP) 0.3 62.85 20.7 1.13 80.6 66.4
DPO(CP) 0.4 56.02 21.4 1.09 80.7 66.4
DPO(CP) 0.5 50.99 21.2 1.11 80.8 66.5
DPO(CP) 0.6 47.97 21.5 1.09 80.9 66.5
DPO(CP) 0.7 44.08 21.5 1.11 81.0 66.7
DPO(CP) 0.8 41.88 21.3 1.14 80.8 66.7
DPO(CP) 0.9 41.24 21.5 1.14 80.8 66.8
DPO(CP) 1.9 33.69 223 1.09 81.2 67.0
DPO(CP) 1.2 32.01 22.4 1.09 81.3 67.1
DPO(CP) 1.5 29.58 21.7 1.13 81.1 67.1
DPO(CP) 1.55 29.01 21.9 1.13 81.1 67.1
DPO(CP+TP) 0.1 51.29 20.3 1.16 80.0 66.0
DPO(CP+TP) 0.2 36.37 18.8 1.30 80.1 66.6
DPO(CP+TP) 0.3 26.15 19.5 1.24 80.2 66.6
DPO(CP+TP) 0.4 18.21 20.6 1.20 80.4 66.6
DPO(CP+TP) 0.5 15.47 21.2 1.15 80.4 66.4
DPO(CP+TP) 0.6 14.74 21.9 1.10 80.6 66.4
DPO(CP+TP) 0.7 13.29 22.1 1.11 80.5 66.4
DPO(CP+TP) 0.8 12.57 22.2 1.10 80.5 66.2
DPO(CP+TP) 0.9 12.10 21.9 1.10 80.5 66.3
DPO(CP+TP) 1.0 11.43 22.0 1.11 80.5 66.2
DPO-RK(CP+TP) 0.1 48.55 19.3 1.22 80.2 66.9
DPO-RK(CP+TP) 0.2 28.61 22.1 1.11 80.9 66.9
DPO-RK(CP+TP) 0.3 20.21 225 1.11 81.0 67.1
DPO-RK(CP+TP) 0.4 14.80 22.4 1.12 81.1 67.1
DPO-RK(CP+TP) 0.5 11.66 22.8 1.10 81.0 67.1
DPO-RK(CP+TP) 0.6 9.74 222 1.13 80.8 66.8
DPO-RK(CP+TP) 0.7 8.04 223 1.12 80.8 66.7
DPO-RK(CP+TP) 0.8 8.10 22.1 1.13 80.8 66.8
DPO-RK(CP+TP) 0.9 7.58 21.8 1.15 80.7 66.8
DPO-RK(CP+TP) 1.0 6.31 223 1.11 80.7 66.6
DPO-D(CP+TP) 0.2 42.74 21.4 1.13 80.8 66.6
DPO-D(CP+TP) 0.3 38.56 21.2 1.15 80.2 66.5
DPO-D(CP+TP) 0.4 17.01 225 1.11 81.0 67.1
DPO-D(CP+TP) 0.5 20.20 22.7 1.10 81.1 67.1
DPO-D(CP+TP) 0.6 26.85 223 1.10 81.1 66.9
DPO-D(CP+TP) 0.7 14.97 22.6 1.11 81.1 67.1
DPO-D(CP+TP) 0.8 13.33 22.7 1.11 81.1 67.1
DPO-D(CP+TP) 1.0 10.05 223 1.12 80.9 67.0

Table 7: KL-Performance evaluated on WMT-21 ZH-EN.
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System beta KL Divergence BLEU Length Ratio COMET BLEURT
Bloomz-mt-7b1 - 17.6 854 74.8
DPO(CP) 0.1 53.60 25.8 1.40 82.3 74.7
DPO(CP) 0.3 30.80 23.7 1.60 83.6 76.5
DPO(CP) 0.5 16.70 36.8 1.00 86.1 76.2
DPO(CP) 0.7 13.80 38.5 1.00 86.4 76.4
DPO(CP) 1.0 12.40 38.6 1.00 86.5 76.5
DPO(CP) 1.2 11.80 38.8 0.98 86.5 76.5
DPO(CP) 1.5 10.70 38.9 0.99 86.5 76.5
DPO(CP+TP) 0.1 35.60 35.8 1.00 85.6 75.5
DPO(CP+TP) 0.3 25.80 35.7 1.10 85.4 75.9
DPO(CP+TP) 0.5 22.00 35.1 1.10 85.8 76.3
DPO(CP+TP) 0.7 17.00 38.7 1.00 86.3 76.3
DPO(CP+TP) 1.0 11.50 38.9 1.00 86.4 76.4
DPO(CP+TP) 1.2 8.50 39.1 0.98 86.5 76.4
DPO(CP+TP) 1.5 6.30 39.0 0.98 86.4 76.3
DPO-RK(CP+TP) 0.1 46.70 23.0 1.60 78.7 76.3
DPO-RK(CP+TP) 0.2 19.51 35.9 1.05 85.9 76.4
DPO-RK(CP+TP) 0.3 15.50 36.1 1.10 86.1 76.5
DPO-RK(CP+TP) 0.5 13.30 31.4 1.20 85.7 76.6
DPO-RK(CP+TP) 0.7 10.90 31.3 1.20 85.8 76.5
DPO-RK(CP+TP) 0.8 10.90 29.9 1.28 85.6 76.5
DPO-RK(CP+TP) 0.9 11.60 27.2 1.40 85.3 76.4
DPO-RK(CP+TP) 1.0 11.60 26.1 1.50 85.1 76.3
DPO-RK(CP+TP) 1.2 11.80 24.4 1.57 84.8 76.3
DPO-D(CP+TP) 0.1 48.60 25.3 1.41 82.6 76.3
DPO-D(CP+TP) 0.3 19.90 354 1.07 85.8 76.5
DPO-D(CP+TP) 0.5 51.90 8.4 4.35 75.1 76.1
DPO-D(CP+TP) 0.7 12.80 36.6 1.06 86.2 76.6
DPO-D(CP+TP) 1.0 10.30 37.8 1.03 86.3 76.6
DPO-D(CP+TP) 1.2 10.90 32.1 1.20 85.9 76.6

Table 8: KL-Performance evaluated on IWSLT17 FR-EN
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System beta KL Divergence PairRM Winrate

Pythia-2.8B-SFT, Greedy - 0.00 375
DPO(CP) 0.025 97.03 67.9
DPO(CP) 0.05 60.31 70.3
DPO(CP) 0.07 57.14 715
DPO(CP) 0.08 38.16 66.4
DPO(CP) 0.10 26.82 62.5
DPO(CP) 0.30 9.97 63.7
DPO(CP) 0.50 5.79 59.0
DPO(CP) 0.70 378 57.8
DPO(CP+TP) 0.025 87.66 63.7
DPO(CP+TP) 0.03 119.60 66.8
DPO(CP+TP) 0.04 70.69 69.5
DPO(CP+TP) 0.05 35.39 63.3
DPO(CP+TP) 0.10 17.21 57.4
DPO(CP+TP) 0.30 4.50 58.6
DPO(CP+TP) 0.50 7.61 57.8
DPO(CP+TP) 0.70 2.91 55.9
DPO-RK(CP+TP) 0.04 80.86 65.2
DPO-RK(CP+TP) 0.05 62.57 67.2
DPO-RK(CP+TP) 0.10 40.50 67.6
DPO-RK(CP+TP) 0.20 22.24 67.6
DPO-RK(CP+TP) 0.30 12.45 68.0
DPO-RK(CP+TP) 0.50 6.15 65.6
DPO-RK(CP+TP) 0.70 4.33 61.7
DPO-D(CP+TP) 0.05 82.35 64.8
DPO-D(CP+TP) 0.10 54.06 715
DPO-D(CP+TP) 0.20 39.23 66.0
DPO-D(CP+TP) 0.30 22.46 68.8
DPO-D(CP+TP) 0.40 12.57 67.6
DPO-D(CP+TP) 0.50 9.92 67.2
DPO-D(CP+TP) 0.70 6.82 64.8

Table 9: KL-PairRM winrate against 256 human-written summaries on TL;DR summarization
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E.5 Standard Deviation on GSM8K Mathematical Reasoning

B

DPO (CP)

DPO-RK (CP+TP)

DPO-D (CP+TP)

0.1
0.3
0.5
0.7
1.0

80.4% + 1.34%
83.7% £ 0.45%
83.5% £ 0.14%
83.6% £ 0.53%
83.8% £+ 0.29%

82.9% =+ 0.90%
84.3% + 0.18%
84.1% £ 0.08%
83.4% £ 0.19%
84.0% £ 0.08%

82.2% £ 1.95%
83.7% =+ 0.68%
84.2% £ 0.15%
84.5% + 0.58%
83.7% £ 0.42%

Table 10: Median accuracy (= standard deviation) on GSMSK test set across five random seeds for
each [ value. Tie-compatible variants (DPO-RK, DPO-D) consistently outperform the baseline DPO.

We run experiments for five random seeds for each variant at each /3 value (75 training runs in total).
In Table we report the median accuracy and standard deviation. Consistent with our previous
finding, tie-compatible variants achieve higher median accuracy at all 5 values. Gains are generally
greater than one standard deviation.

F Additional Supporting Experiments and Analyses

F.1 Sensitivity Study on the Value of o for DPO-RK and DPO-D

In our early experiments with a weaker translation model, we find that the choice of « does not have
a strong impact on final task performance. In Table[TI] we vary the hyperparameter c and report the
KL divergence, KIWI-22, BLEURT, and COMET scores with the BLOOMZ-mt-7B setup evaluated
on WMT-21 ZH-EN.

o KL  KIWI-22 BLEURT COMET
DPO-RK
05 11.23 78.9 66.9 81.0
In3 14.80 79.0 67.1 81.1
20 21.84 79.1 67.1 81.1
3.0 3041 79.0 66.9 80.9
5.0 76.66 69.9 68.9 74.6
DPO-D
2.5 11.56 79.0 67.0 81.0
-1.0  15.25 79.0 67.1 81.1
0.0 11.66 79.2 67.1 81.0
1.0 29.72 79.0 67.0 81.0
2.5 4720 79.2 67.1 81.1

Table 11: Effect of varying a on DPO-RK (8 = 0.4) and DPO-D (5 = 0.5) systems. For DPO-RK,
a = agg in Eq[I5} For DPO-D, @ = Invp in Eq[I6] Results are reported for KL divergence,
KIWI-22, BLEURT, and COMET metrics. Default values of « are underlined.

We find that (1) The final task performance is stable over a range of « values (note that o < 0 is
illegal for DPO-RK) and (2) for large values of «, there is relatively little regularization as measured
by KL divergence.

As explained in Sec[2.3.1] « controls the width of the band in reward margins where there’s little
or no gradient contributions from the tied pairs whose difference in reward falls within the band.
This explains the lack of regularization under large . Given large «, the gradient on TPs approach
zero regardless of the reward margin of the pair under the current model. As we show in the paper,
tied pairs contribute to a regularization effect. This explains why large and hence little gradient
contribution from TPs leads to relatively little regularization.

F.2 Grid search of 5 and « on WMT

We further conduct a grid search over 8 and « values on WMT to investigate their effects. The results
are shown in Table[12]
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Variant 8 Q KL COMET

0.1 19.73 80.9

0.5 2231 81.0

DPO-RK (CP+TP) 0.2 In3 28.61 80.9
2.0 37.05 81.1

3.0 49.00 81.0

0.1 9.54 80.9

0.5 14.80 81.0

DPO-RK (CP+TP) 04 In3 21.84 81.1
20 3041 81.1

3.0 76.66 74.6

0.1 6.32 80.7

05 591 80.6

DPO-RK (CP+TP) 0.8 In3  8.10 80.8
2.0 1037 80.9

3.0 14.53 80.9

—-2.5 2746 80.9

—1.0 34.80 80.6

DPO-D (CP+TP) 0.2 0 4274 80.8
1.0 56.83 80.6

—2.5 14.56 81.0

—-1.0 18.71 81.0

DPO-D (CP+TP) 0.4 0 17.01 81.0
1.0 33.15 81.0

2.5 56.18 80.7

—-2.5 11.56 81.0

—1.0 15.25 81.1

DPO-D (CP+TP) 0.5 0 11.66 81.0
1.0 29.72 81.0

25 47.20 81.1

-25 8.16 80.7

—1.0 9.10 80.7

DPO-D (CP+TP) 0.8 0 1333 81.1
1.0 19.54 81.0

25 3048 80.8

Table 12: Grid search results for S and « on WMT showing the corresponding KL divergence and
COMET scores.

Consistent with our findings in Appendix [F-I] we find that task performance is stable over a range of
[ and « values. These results add further empirical evidence supporting the role of 3 and « as knobs
for regularization strength. Controlled for a fixed value of 3, increasing v and 3 generally leads to
higher KL divergence with respect to the reference model at the end of training.

Based on these experiments, we recommend the following hyperparameter tuning scheme for DPO-
RK and DPO-D:

1. Run training across a range of 3 values with the default « to identify the effective range of

B.

2. Adjust « (and 3, if desired) at those values, using the final KL divergence as a guide.

As shown in experiments, there is typically a “sweet range” of KL where performance is optimal.
This procedure allows practitioners to efficiently identify the best performance—KL trade-off for a
given setup.
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F.3 GPT-4 Evaluation on Summarization

For TL;DR, we additionally report the win-rate as evaluated by GPT-4 of the best-performing systems
in Table 13l

Model PairRM GPT-4
Pythia-2.8-DPO(CP) 71.5% 62.1%
Pythia-2.8-DPO-D(CP+TP) 71.5% 64.1%
Pythia-2.8-DPO(CP+TP) 69.5% 62.1%
Pythia-2.8-DPO-RK(CP+TP) 68.0% 57.8%
Pythia-2.8-SFT 37.5% 36.7%

Table 13: Win-rate comparison of the best-performing systems evaluated using PairRM and GPT-4.

We note that the rank based on PairRM win-rate agrees with the rank produced by GPT-4 except that
GPT-4 prefers Pythia-2.8-DPO-D(CP+TP).

F.4 Varying the Percentage of Ties

In Table[T4] we vary the proportion of TPs and evaluate on the WMT-21 ZH-EN dataset, keeping the
CPs unchanged. We train systems with three /3 values [0.2, 0.4, 0.6] and report the best-performing
system in terms of BLEURT. We observe that, under the same ( value, including more TPs reduces
the KL divergence with respect to the reference model at the end of training while maintaining the
same performance. This provides further empirical evidence for our analysis in Sec[3.3] where ties
regularize training.

TP% KL KIWI-22 BLEURT COMET
DPO-RK (CP+TP)

25% 10.16 784 66.5 80.7

50%  6.05 78.2 66.2 80.4

75%  4.40 78.5 66.4 80.7
DPO-D (CP+TP)

25% 1726 785 66.4 80.8

50% 1040 785 66.3 80.7

75%  6.63 78.5 66.5 80.8

Table 14: Regularization effects of varying TPs in DPO-RK and DPO-D systems. KIWI-22 |Rei et al.
[2022] is a reference-less metric. A TP% of 50% means that we keep 50% of all the TPs, resulting in
a CPs:TPs ratio of 2:1.

F.5 1IPO Baselines and KIWI-22 Evaluation on WMT

We additionally evaluate our systems with KIWI-22 [Re1 et al.l 2022], a popular reference-less neural
metric used by recent works in evaluating state-of-the-art (SoTA) machine translation systems [Xu
et al.,2024].

Model Best BLEURT Best COMET Best KIWI-22
Bloomz-mt-7b1-SFT 61.6 77.9 77.3
Bloomz-mt-7b1-DPO (CP) 67.1 81.3 82.0
Bloomz-mt-7b1-DPO (CP+TP) 66.6 80.6 78.5
Bloomz-mt-7b1-DPO-RK (CP+TP) 67.1 81.0 79.0
Bloomz-mt-7b1-DPO-D (CP+TP) 67.1 81.0 79.2
Bloomz-mt-7b1-IPO (CP) 66.6 80.6 78.6
Bloomz-mt-7b1-IPO (CP+TP) 66.3 80.5 78.4

Table 15: Evaluation results under BLEURT, COMET, and KIWI-22 metrics for various models.
DPO and its variants show clear gains over the SFT baseline across all three metrics.

We perform additional NMT experiments with IPO fine-tuning on CPs (IPO(CP+TP) and CPs+TPs
(IPO(CP+TP)). We conduct IPO fine-tuning (using code from https://github.com/eric-mitchell/direct-
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preference-optimization) with the a range of beta values [0.025, 0.05, 0.1, 0.3, 0.5, 0.7, 1.0] and
report the best performing system as evaluated on the WMT-21 ZH-EN dataset in Table We use
identical training hyper-parameters as used in DPO, DPO-RK and DPO-D fine-tuning. We note that
these metrics are strongly rated in the WMT-23 metric overview paper [Freitag et al., [2023]].

We find that (1) both IPO(CP) and IPO(CP+TP) yield substantial gains compared to the baseline SFT
model (+4.7 BLEURT. (2) Adding TPs to IPO causes a small degradation (<-0.3) across all metrics.
(3) IPO(CP) performs on par with DPO(CP+TP) but under-performs DPO(CP), DPO-RK(CP+TP),
and DPO-D(CP+TP) on all metrics.

F.6 PairRM as a Proxy Evaluator for GPT-4

System  GPT-4 PairRM

DPO
T=1.0 234% 27.3%
T=0.75 402% 40.6%
T=0.5 523% 54.7%
T=0.25 469% 51.6%
T=0.0 504% 55.5%

SFT
T=1.0 223% 23.0%
T=0.5 37.5% 38.7%
T=0.0 36.7% 39.8%

Table 16: Win-rate of Pythia-2.8B model SFT/DPO on TL;DR train against 256 human-written
summaries as judged by GPT4-0613 and PairRM.

PairRM [Jiang et al.| 2023 is a strong reward model that has been shown to be effective in curating
preference datasets for iterative DPO training [Tran et al.l 2023]. In our experiments on TL;DR sum-
marization, we use the PairRM reward model instead of GPT-4 for comparing generated summaries
against human references. In this appendix, we show that win-rate as judged by PairRM is a good
proxy for GPT4-0613 [[OpenAl et al., 2024] win-rate on the TL;DR dataset |Stiennon et al.|[2020].

We generate summaries from SFT pythia-2.8B model by sampling at temperature 7' = [0.0, 0.5, 1.0]
and the DPO model (8 = 0.1) trained on TL;DR’s full training set at temperature 7 =
[0.0,0.25,0.5,0.75, 1.0]. Their win-rates against the 256 human-written summaries in the TL;DR
valid-2 split as judged by GPT-4 and PairRM are tabulated in Table We find that the win-rates
by GPT-4 and PairRM are similar and that system rankings are generally preserved. We opt to use
PairRM as our evaluation metric which enables us to conduct experiments faster and at lower costs.

F.7 Verifying a Tied Pair Selection Strategy for TL;DR

As explained in Sec. @ we use the reward model associated with the DPO model trained on TL;DR
to identify summarizations that are similar in quality. Note that we are performing unsupervised
labelling of ties in the DPO training data, which is somewhat more forgiving than the classification
task discussed in other sections which requires labelling ties in held-out data not seen in training. We
do however assume that the reward model should perform well on the data it was trained on.

To investigate these assumptions, we swap the preferred and the dispreferred responses in all tied
pairs to form “reversed Tied Pairs” (rTP). If the responses in TP are truly similar in quality (i.e., it
is acceptable to reverse the preference direction), training with DPO(CP+TP) and DPO(CP+rTP)
should yield similar performing models. Furthermore, the DPO-RK and DPO-D learning procedures
which explicitly model tied pairs should yield better performing model. We conduct experiments
on TL;DR. Table[I7]shows that the performance relation DPO-D(CP+TP) ~ DPO-RK(CP+TP) >
DPO(CP+TP) ~ DPO(CP+rTP) indeed holds for TL;DR, which suggests that our Tied Pair selection
strategy is reasonable.
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System PairRM

DPO(CP+ TP) 58.6%

DPO(CP+1TP) 60.9%

DPO-RK(CP+TP)  68.0%

DPO-D(CP+TP) 68.8%
Table 17: Win-rates of Pythia-2.8B model DPO on TL;DR train against 256 human-written summaries
as judged by PairRM. Systems were trained on CP+TP or CP+rTP data with DPO, DPO-RK, or
DPO-D at fixed 8 = 0.3. For DPO-RK and DPO-D learning, rTP is equivalent to TP as there is no
preference direction for ties.

F.8 Using GPT-4 to validate ties on NMT

We conduct the following experiments with GPT-4 to evaluate whether the tied pairs selected by
BLEURT are reliable.

We randomly select 128 source sentences on our training set sampled from WMT20 ZH-EN and
collect their corresponding CPs and TPs as determined by BLERUT score’s ranking. Then, for each
source sentence, we present the two pairs of translations to GPT-40-2024-08-06 and prompt it to
decide which pair of translations is a tied pair.

We find that on the 128 randomly selected examples from WMT20 ZH-EN, the GPT-40 model agrees
82.03% of the time with BLEURTs assignment of CP and TP.

An example of our prompt and GPT-4’s response is below. In this case, GPT-4 chooses the same pair
(Pair A) as TP as BLEURT.

The prompt for GPT-4 and example responses are provided below.

Pair A:
Better Translation: Beijing Youth Daily reporters learned that there were many
important amendments in the first published " drafts”.
Worse Translation: Beijing Youth Daily reporters learned that the "First Draft” has
many important modifications.
Pair B:
Better Translation: The Beijing Youth Daily reporter learned that there were many
important changes in the Draft for the first time published.
Worse Translation: Beijing Youth Daily reporter learned that the first version of
the "Comments” had been revised many times.

You should provide a short rationale and then decide which pair is a tied pair. You
should follow the format "DECISION: [[AJ]]" or "DECISION: [[B]]" to give your
decision.

Response:

To determine which pair represents a tied pair, let's evaluate the differences between
the translations in each pair.

In Pair A:

- The "better” translation is: "Beijing Youth Daily reporters learned that there were
many important amendments in the first published 'drafts'.”

- The "worse"” translation is: "Beijing Youth Daily reporters learned that the 'First

Draft' has many important modifications.”

Both translations in Pair A convey similar meanings, describing modifications or
amendments to a draft. The primary differences are stylistic, such as the
placement and quotation of "draft”.

In Pair B:

- The "better” translation is: "The Beijing Youth Daily reporter learned that there
were many important changes in the Draft for the first time published.”

- The "worse"” translation is: "Beijing Youth Daily reporter learned that the first
version of the 'Comments' had been revised many times.”
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In Pair B, the two translations have significant differences in meaning. The "better
translation accurately captures the notion of "important changes” and "first
published,” whereas the "worse” translation introduces "first version of the
'"Comments'” and a focus on revisions rather than initial publication, which
diverges more from the source sentence.

With this analysis, Pair A has translations that are more similar in meaning and are
thus likely to be the tied pair, while Pair B shows a clearer distinction in
translation quality.

DECISION: [[A]]

Listing 1: Prompt and Response for using GPT-4 to validate tie selection on NMT
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G Simulating the Perfect DPO-Davidson Policy

In Section[3.2] we make use of the relationship derived by [Chen et al|[2024, Appendix A.2] which
specifies the optimal DPO policy to minimize the binary classification loss

minP(yy =z y2) log 7(y1 =2 y2)]
+ (1= P(y1 = y2)) log(1 = 7(y1 =2 y2))

where P(y; >, y2) is the human ground truth preference distribution.

We extend the analysis of |(Chen et al.[[2024]] to include the Davidson model, noting that the binary
maximum likelihood objective becomes ternary. We assume we have the ground-truth human
preference distributions P(y; = y2), P(y2 =4 y1), and P(y; ~, y2) needed to define the objective.
The resulting Theorem ] can be viewed as a generalization of Theorem 3 of [Chen et al.|[2024] that
allows for the observations of ties. Where ties are not allowed (i.e. vp = 0), the Davidson model
simplifies to the Bradley-Terry model and Theorem 3 of |Chen et al.|[2024] is recovered as a special
case of Theorem [Tl

Theorem 1 (Simulating Perfect DPO-D Policy). Assume we are given an aggregated comparison
datapoint (z,y1,y2) and human ground-truth preference probabilities P(y1 >, y2), P(y1 =z y2),
and P(yy ~ y2) which obey the Davidson model with hyper-parameter vp. Let the reference model
be e 5. It follows that the perfect DPO-Davidson policy ™ on this aggregated comparison datapoint
satisfies

T (Wilr) _ Trer(yr]a) (P(yl =z yz))l/ﬁ 25)
T (y2lz)  mrep(y2lz) \P(y2 > 1)
or equivalently
™ (y1]2) _ Tref (y1]2) (2]/ P(y1 = y2))2/ﬁ (26)
T* (y2|x) 7rref(y2|x) IP)(yl ~x y2)

Proof. The DPO-D policy objective optimizes the following three-way classification loss:
mgnp(% o y2) logm(y1 =4 y2)

+P(y2 =2 y1)logm(y2 =2 y1)
+P(y1 ~a y2)log m(y1 ~z y2)

Let 0* denotes a set of parameters such that my« is an optimal policy for the above loss, then 7y«
satisfies:

o (Y1 =z Y2) = P(y1 == y2)
o+ (Y2 =z Y1) = P(y2 == y1)
770*(?/1 ~g y2) = ]P(yl ~ y2)

Expressing the policy probability 7g (Y, =2 yi) and mg« (y; =4 Y ) in terms of the reward margins
d@* (-’L‘, Yw» yl):

1
Py a2 2) = 1+ e—do= (@:Yw.v1) 4 2ype—dor (T:yw,y1)/2
e—de* (z,y1,Y2)
P(ys =4 y1) =

1 4 e—do=(z:y1,y2) 4 2upe—do* (z:y1,y2)/2

Rearranging, we have

Py =a y1)

=exp ( — dg=(z,y1,
Blys s 52) p (— do=(z,y1,2))

o+ (Y2|T) 7o+ (Y1)
= eX 10 _— 10 —_—
p(Blog 2 o))
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Taking logarithms on both side and divide by 5.

1 P x * re
L iog B me92) 1o (o) e (]2)

g
p P(y2 =+ y1) Tref (Y2|2)mo- (y1]7)
Exponentiating both sides gives

o+ (Y2|7) _ Tres(yal2) (P(yz s y1)>1/5
To«(y1]x)  Trep(y1lz) \P(y1 =2 y2)
Taking the inverse yields Eq

To see the equivalence between Eq [25] and Eq [26] note that the ground-truth preference and tie
probabilities which obey the Davidson model satisfy the following relation:

P(y1 ~o y2) = 200V P(y1 =2 ¥2)P(y2 =2 Y1)

Rearranging Eq[25}
T (y1z) _ Tref (Y12) (P(yl ~a y2))1/5
T (y2lz)  Trep(y2lz) \P(y2 =2 1)
_ Tref(y1]2) ( P(y1 = yz))”‘*
Tres (Y2(2) P(y2 =2 y1)
_ Tref(tnlz) ( P(y1 =z y2) )2/5
Tref (Y2(2) VP =2 y2)P(y2 =2 1)
_ Trer(31]7) (QVDP(yl ~a yz))z/ﬁ
Tref (Y2(2) P(y1 ~z y2)
which is Eq[26 O

H Extended Related Work

Variants of Direct Preference Optimization A range of variants of Direct Preference Optimiza-
tion have been proposed based on problem-specific or theoretical motivations. [Park et al.| [2024]
tackle excessive response length by introducing explicit length normalization in the DPO objective.
SimPO [Meng et al., [2024]] modifies the DPO objective to remove the need for a reference model
and to include length normalization. KTO [Ethayarajh et al.l[2024] is motivated by Kahneman and
Tversky’s prospect theory and learns from non-paired preference data. ODPO [Amini et al., [2024b|]
incorporates preference strength in the objective by introducing an offset parameter. In deriving
ODPO, the offset parameter of |Amini et al.| [2024a, Theorem 3]) plays a role similar to the sensitivity
threshold of |Rao and Kupper| [1967]]. We note that the ODPO objective with a fixed offset agrees
with our proposed DPO-RK objective restricted to clear preference data, but does not extend to ties.

Frameworks for Pair-wise Preference Optimization Several works propose theoretical frame-
works for understanding general Preference Optimization from which DPO can be obtained as a
special case. |Azar et al.|[2024] introduces the ¥PO formalism which allows alternative expression of
the reward in terms of the model’s predicted probability. IPO is derived when the identity mapping is
used, and DPO arises under a log-ratio mapping. [Dumoulin et al.|[2024] formulate learning from
pair-wise preference as learning the implicit preference generating distribution of the annotators.
In this formalism, DPO is a well-specified model for the implicit preference distribution assuming
that the human preference generative process follows the Bradley-Terry model. Our work can be
viewed as assuming an annotator preference generating distribution that allows for the outcome of a
tie (i.e. the Rao-Kupper or the Davidson model). [Tang et al.|[2024]] propose a generalized approach
to deriving offline preference optimization losses through binary classification. In this work, we
consider the ternary classification with the possibility of declaring a tie. In Appendix [G] we show
that the ‘perfect’ DPO-D policy can be simulated starting from the ternary classification loss.
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Pair-wise Comparison Models [Hamilton et al.|[2023] review the Bradley-Terry model, including
its relation to the logistic distribution [Bradley and Gart, |1962] and Luce choice axiom Luce][1959D].

The Rao-Kupper [Rao and Kupper, [1967]] and the Davidson model [1988]] are two notable

extensions to Bradley-Terry (Sec.[2.2). See the review by [David| [1988]] and bibliography byDavidson|
and Farquhar] [1976]. Modeling ties remains an active research topic in fields such as sport team

ranking [Zhou et al.| [2022], medical treatments [[Gaohong Dong and Vandemeulebroecke, [2020], and
chatbots [Ameli et al., 2023].
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I Qualitative Cases from DPO, DPO-RK, and DPO-D Systems

We collect the responses on WMT-21 ZH-EN from the best performing model under each configura-
tion. Below, we present two cases where systems trained with DPO-RK(CP+TP) and DPO-D(CP+TP)
perform better than DPO(CP) and one case where they perform worse than DPO(CP) as judged by
KIWI-22.

The KIWI-22 score of each translation is shown in parentheses.

Case1: ID =10
Source: /NEN/NE, KBEBEZY -

Reference: Hometowns are the key to moderate prosperity.

* DPO(CP): It is not important whether you are rich or poor, as long as you have a good
relationship with your neighbors. (71.6)

* DPO(CP+TP): Wealthy or poor, it all depends on our neighbors. (72.0)
* DPO-RK(CP+TP): Wealthy or poor, it all depends on our neighbors. (72.0)
* DPO-D(CP+TP): Whether you are rich or poor depends on your neighbors. (77.9)

In this case, the DPO(CP) system produces a long translation with incorrect meaning. The other three
systems produce correct, literal translations. The translation from DPO-D(CP+TP) is more fluent.
However, all systems fail to fully capture the meaning of "/NFE" (i.e., "moderate prosperity") as
done in the reference.

Case 2: ID =269

Source: XA E T AEF ARG, HE N —ZREHLT H 15 H MR FERE R WA e
HNBRE TS, — B RXIRBBAK, FIREERTTYI R R SR -

Reference: The airline released a statement claiming that as its aircraft was flying from Seattle,
Washington to Austin, Texas, one of the engines suddenly stalled, and the aircraft finally made an
emergency landing in Austin.

* DPO(CP): This airline operator said in a statement that one engine on one of its aircraft
failed midflight on July 15 from Seattle, Washington to Austin, Texas, and the aircraft
successfully made an emergency landing at the Austin airport. (84.5)

* DPO(CP+TP): This airline operator said in a statement that one of its aircraft was on its
way from Seattle, Washington to Austin, Texas when one of its engines suddenly went out
of order, and the aircraft successfully made an emergency landing at the airport in Austin.
(81.4)

¢ DPO-RK(CP+TP): This airline operator said in a statement that one engine on one of its
aircraft failed during the flight from Seattle, Washington to Austin, Texas on July 15, and
the aircraft successfully made an emergency landing at the Austin airport. (85.4)

* DPO-D(CP+TP): This airline operator said in a statement that one engine on one of its
aircraft failed during the flight from Seattle, Washington to Austin, Texas on July 15, and
the aircraft successfully made an emergency landing at the Austin airport. (85.4)

The translation produced by the DPO(CP+TP) system fails to capture the date of the event ("July
15"). Translations from DPO-RK(CP+TP) and DPO-D(CP+TP) are identical and differ from that
from DPO(CP) only in rephrasing "midflight" with "during the flight."

Case 3: ID =91
Source: ZB/DERMTERFE GaahE/Pba) £7H 11 H ECERGH R AL

Reference: The inspiring competitive show for youth sports, We Are The One, was officially
broadcast on Hunan TV on July 11.
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* DPO(CP): The youth sports action show “Be Active, Be Sporty” will officially debut on
Hunan Satellite TV on July 11. (76.8)

* DPO(CP+TP): The youth sports competition show "Go, Boy!" officially landed on the
Changsha Satellite TV Station on July 11. (75.6)

* DPO-RK(CP+TP): The youth sports competition show "Go Play Boys" will be officially
broadcast on the Hunan Satellite TV on July 11. (72.1)

* DPO-D(CP+TP): The youth sports competition show "Let’s Go Boys" will officially debut
on the Hunan Satellite TV on July 11. (74.2)

In this case, all systems produced a more literal translation of the name of the TV show compared to
the reference. Although the KIWI-22 scores for DPO-RK(CP+TP) and DPO-D(CP+TP) are lower,
the translation qualities are in fact similar.

J Broader Impacts

This paper presents work whose goal is to advance the field of Machine Learning. There are many
potential societal consequences of our work, none of which we feel must be specifically highlighted
here.

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: See abstract, introduction, and conclusion.
Guidelines:
* The answer NA means that the abstract and introduction do not include the claims

made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.
2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: See Appendix [A]
Guidelines:
* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.
 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.
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* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms

and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to

address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: Complete derivation for DPO-RK and DPo-D are provided in Appendix [B]
Complete proof of ideal DPO-D policy theory is provided in Appendix

Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Hyper-parameters of our experiments are provided in[E] where model versions,
datasets, training hyper-parameters and computing platforms are specified. We will publish
code on publication.

Guidelines:

» The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

* If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

» Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
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instructions for how to replicate the results, access to a hosted model (e.g., in the case

of a large language model), releasing of a model checkpoint, or other means that are

appropriate to the research performed.

* While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: Code and scripts will be provided upon publication.
Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized

versions (if applicable).

Providing as much information as possible in supplemental material (appended to the

paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: See Appendix [E|
Guidelines:

* The answer NA means that the paper does not include experiments.
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* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: Our main results reports a grid search in hyper-parameter and we report all
available results. We note a large increase in computational cost is required to conduct
multiple training runs at each hyper-parameter setting. We note that we have reported results
on 5 different experimental setups (Appendix [E|and Sec[3.3) with at least 15 training runs
per setup (3 DPO variants times minimal 5 beta values), and our findings are consistent
across these experiments.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: See Appendix [E]
Guidelines:

* The answer NA means that the paper does not include experiments.
 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
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10.

11.

Answer: [Yes]

Justification: Our research has been conducted with strict adherence to the NeurIPS Code of
Ethics.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: See Appendix [J]
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: This paper has no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.
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12.

13.

14.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We have used open-sourced datasets and models that are widely-used in the

research community and well-known at the time of writing. They have been cited where
appropriate.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: This paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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15.

16.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: this paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

¢ For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
Declaration of LLLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used

only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: We do not use LLMs in developing the core method in this research.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for
what should or should not be described.
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