
Under review as a Tiny Paper at ICLR 2023

ONE STUDENT KNOWS ALL EXPERTS KNOW: FROM
SPARSE TO DENSE

Anonymous authors
Paper under double-blind review

ABSTRACT

Human education system trains one student by multiple experts. Mixture-of-
experts (MoE) is a powerful sparse architecture including multiple experts. How-
ever, sparse MoE model is easy to overfit, hard to deploy, and not hardware-
friendly for practitioners. In this work, inspired by the human education model,
we propose a novel task, knowledge integration, to obtain a dense student model
(OneS) as knowledgeable as one sparse MoE. We investigate this task by explor-
ing 4 different ways to gather knowledge from MoE to initialize a dense student
model, and we then refine the dense student by knowledge distillation. We evalu-
ate our model on both vision and language tasks. Experimental results show, with
3.7× inference speedup, the dense student can still preserve 88.2% benefits from
MoE counterpart.

Introduction

Most people learn from multiple experts in school. Experts from different subjects can help students
reach deep understanding and become as knowledgeable as the set of these experts fast (Bransford
et al., 1999). Recent study in deep learning proposed mixture-of-experts (MoE), a deep neural
network with multiple experts. Each expert is a sub-neural network in the whole model. The key
idea of MoE1 is to divide and conquer the task. MoE encourages each expert to learn from a subset
of the input. For each subset of the input, there would be only a sub-network activated. Such sparse
computation enables us to scale transformer to trillions of parameters with comparable computation
cost (Fedus et al., 2021; Lepikhin et al., 2020; Du et al., 2021).

The MoE-based transformer is powerful and achieved promising results due to its large but sparse-
activated model capacity. However, more trainable parameters and sparse conditional computation
of MoE introduce overfitting (Xue et al., 2021; Lou et al., 2021). In addition, an extremely large
MoE model with trillions of parameters is hard to deploy. Third, MoE is not hardware-friendly,
because it needs communication expensive expert parallelism and wasteful sparse tensor represen-
tation. Different from MoE, the dense model is widely used but weaker than the sparse model with
comparable computation cost. Then, is it possible to combine the strength of sparse and dense model
to train a model that is both effective and easy to use?
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Figure 1: An overview of our general training framework in-
troduced. The overall training framework is knowledge inte-
gration, and it includes two stages, gathering and distillation.

Approach

Inspired by human education
model, we introduce a new task,
i.e., knowledge integration shown
in Figure 1. We have two stages
in the knowledge integration: (1)
knowledge gathering (KG) from
MoE; (2) knowledge distillation
(KD) to further refine the new
dense model (i.e., student). For
the first stage, given E experts
{e1(·), e2(·), . . . , eE(·)}, we are to
maximize the knowledge covered
in the dense model s(·). Given

1More background about MoE can be found in Appendix A.1
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input representation x, within one transformer block, each expert is an FFN, which can be
formulated as ei(x) = f i

2(σ(f
i
1(x))), where f i

1(·) and f i
2(·) and linear transformations of ith expert,

σ(·) is the activation functions. For the dense student, we have the same architecture as a single
expert but different trainable parameters s(x) = g2(σ(g1(x))). Then, our target is to approximate
the trainable parameters of g1 and g2 according to {f1

1 , . . . , f
E
1 } and {f1

2 , . . . , f
E
2 }, respectively.

We define this target as gathering from MoE and explore four possible solutions, i.e., summation,
averaging, Top-K Knowledge Gathering (Top-KG), and Singular Value Decomposition Knowledge
Gathering (SVD-KG). For the Top-KG and SVD-KG, we use Top-K selection or SVD to extract key
knowledge from every expert, and then, we merge the key knowledge to initialize the feed-forward
network (FFN) layers for a dense student model to approximate the MoE. More details about these
four approaches can be found in Appendix A.2. The second stage is fine-tuning the dense student
to further minimize the difference between teacher output and student output. We follow the typical
KD approaches as our solution.

We define a metric, MoE benefits to measure the ability of a dense student to integrate knowledge
from the MoE counterpart, which can be written as MoEbenefits =

sstu−sdense

sMoE−sdense
, where the score s

can be any metric to evaluate the model. For instance, s is accuracy for image classification. The
sdense here denotes the dense model’s performance without knowledge integration.

Model #Para ImageNet Benefits(%)

Dense ViT-B 10M 72.8 -
ViT-L 15M 76.9 -

Teacher WideNet-B 29M 77.5 -
WideNet-L 40M 79.5 -

Baseline

Distill-B 10M 73.8 21.3
Distill-L 15M 77.3 15.3
Switch-B 10M 74.8 42.6
Switch-L 15M 77.8 34.6

Ours

OneS-B Sum 10M 75.2 51.1
OneS-L Sum 15M 78.2 48.1
OneS-B Avg 10M 75.3 53.2
OneS-L Avg 15M 78.0 40.7
OneS-B Top-K 10M 75.3 53.2
OneS-L Top-K 15M 78.4 57.7
OneS-B SVD 10M 75.7 61.7
OneS-L SVD 15M 78.4 57.7

Table 1: Top-1 Accuracy and MoE Benefits(%) on
ImageNet pre-training. For all models, we share the
trainable parameters across transformer blocks for a
fair comparison.

Experiments

We conduct experiments on both language
transformer MoE and vision transformer
MoE. For vision, we train on ImageNet fol-
lowing Dosovitskiy et al. (2020) and re-
port the top-1 accuracy. For language, we
pre-train following BERT (Devlin et al.,
2019), and fine-tune on GLUE bench-
mark Wang et al. (2018) and two versions
of SQuAD (Rajpurkar et al., 2016; 2018).
We use WideNet (Xue et al., 2021) as the
teacher MoE model because its parame-
ters are dominated by MoE layers. As we
are the first work, to our best knowledge,
focusing on integrating knowledge from
a pre-trained MoE, the only two existing
strong baselines are the naive knowledge
distillation framework proposed in Meta
AI MoE Artetxe et al. (2021) and Switch
Transformer Fedus et al. (2021). The first
one simply initializes the student dense model randomly. The second work initializes the dense
model with the non-expert weights. For the weights that cannot be matched (i.e., experts), they train
these layers from scratch instead.

Model #para FLOPs Speedup SQuAD1.1 SQuAD2.0 MNLI SST-2 Avg Benefits(%)

Dense ALBERT 12M 1.0× 3.7× 89.3/82.3 80.0/77.1 81.5 90.3 84.03 0.0

Teacher WideNet 26M 2.4× 1.0× 89.6/82.7 80.6/77.4 82.6 91.1 84.71 -

Baseline Distill 12M 1.0× 3.7× 89.4/82.7 79.8/76.6 81.9 90.7 84.21 26.5
Switch 12M 1.0× 3.7× 89.5/82.6 79.9/77.0 82.0 90.3 84.20 25.0

Ours OneS SVD 12M 1.0× 3.7× 89.7/83.0 80.2/77.1 82.3 91.2 84.63 88.2

Table 2: Results of fine-tuning on MNLI, SST-2, and two versions of SQuAD datasets. The FLOPs
here means the floating-point operations in FFN layer or MoE layer. We also compare the inference
speed on TPU v3-8.

The results can be found in Table 1 and 2. We can observe: (1) SVD-KG performs best in the four
KG approaches; (2) OneS can preserve higher MoE benefits than baselines; (3) Compressed models
have a significant speedup than MoE counterparts. We also conduct ablation study to verify the
effectiveness of different modules, which can be found in Appendix A.5.
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A APPENDIX

A.1 MIXTURE-OF-EXPERTS

Mixture-of-experts is a typical conditional computation model. In this work, we use a pre-trained
MoE model as a teacher, and a dense model as a student to imitate the human education model.
Therefore, we briefly review MoE first. Given one MoE model with E trainable experts and input
representation x ∈ RD, the output of MoE model can be formulated as Shazeer et al. (2017),:

MoE(x) =

E∑
i=1

G(x)iei(x) (1)

where ei(·) is a non-linear transformation RD → RD of the ith expert, and G(·) : RD → RE is the
gating network, G(x)i is the routing weights of x to the i-th expert. Usually, both e(·) and G(·) are
parameterized by neural networks. Please note the output of G(·) should be activated by softmax
function:

G(x) = topK(ω(h(x) + ϵ)) (2)
where ω is the softmax function, h(·) is a linear layer mapping RD → RE , and ϵ ∼ N (0, 1

E2 )
is a Gaussian noise for exploration of expert routing. The top-K selection is a key module to acti-
vate sub-network sparsely. We usually set K as 1 or 2 for comparable computation cost with the
corresponding dense model.

When training MoE model, if we have no regularization, most tokens may be dispatched to a small
portion of experts, and other experts receive few tokens. Such an imbalanced assignment would lead
to lower efficiency and inferior accuracy Lepikhin et al. (2020); Fedus et al. (2021). Therefore, to
achieve balanced workload for different experts, we usually combines router g(·) with load balance
loss Lepikhin et al. (2020) Lbalance:

Lbalance = E ·
E∑
i=1

mi · Pi (3)

where m is a vector and the ith element of m represents the fraction of tokens dispatched to expert
i:

mi =
1

N

N∑
j=1

k(xj)i (4)

where N is the number of tokens to route, k(xj) is an index vector from top-K function. Since the
index vector generation here is non-differentiable, we define Pi as:

Pi = ω(h(x) + ϵ)i (5)
where P is g(x) without top-K routing. When we minimize Lbalance, we can see both m and P
would close to a uniform distribution.

The trainable router here can also be replaced by non-trainable modules, e.g., BASE layer Lewis
et al. (2021). This work focuses on integrating knowledge from a pre-trained MoE instead of MoE
variants.

A.2 DETAILED APPROACH

A.2.1 KNOWLEDGE GATHERING FROM MOE

We first formulate our KG task. Given an MoE layer with E experts, the target here is to gather
knowledge from all experts for one dense student. Each expert comprises two linear layers, and the
student shares the same model structure with one single expert. For brevity, we treat each expert
as one linear transformation to show our idea, which can be expanded to multiple linear layers
easily. For E linear layers {f1, f2, . . . , fE}, each linear layer f i(·) : Rd1 → Rd2 with weights
W i

f ∈ Rd1×d2 and bias bif ∈ Rd2 ,

KG(f1, f2, . . . , fE)

=KG(W 1
f ,W

2
f , . . . ,W

E
f ; b1f , b

2
f , . . . , b

E
f )

≈(Wg; bg) = g

(6)
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where g(·) : Rd1 → Rd2 is a linear layer with Wg ∈ Rd1×d2 and bias bg ∈ Rd2 .

Before merging the weights, we first initialize bg from different experts. Since it has much fewer
trainable parameters, we simply average the bias vector from different experts:

bg =
1

E

E∑
i=1

bif (7)

We employ such a simple policy because knowledge stored in bias is much less than in weights, due
to fewer trainable parameters. We justify this assumption by experiments in Appendix A.5.4.

After copying the weights and bias in the perfectly matched layers and averaging bias in the MoE
layers, we initialize the dense student model weights by sparse MoE. As the first work focusing on
this task, we investigate four methods to gather the knowledge, i.e., summation, averaging, Top-
KG and SVD-KG. The first two are the most straightforward methods. We also propose two novel
approaches, Top-KG and SVD-KG to extract key knowledge from different experts of a pre-trained
MoE.

Summation and Averaging For weights in MoE, we first consider two simple methods. The first
one is the summation:

Wg =

E∑
i=1

W i
f (8)

and the second one is averaging:

Wg =
1

E

E∑
i=1

W i
f (9)

Although these two gathering methods are simple, as the first work focusing on this task, we inves-
tigate them to pave the way for gathering knowledge from MoE models.

Top-K Knowledge Gathering We also propose two novel methods to gather knowledge. For
weights, in MoE, a wide over-parameterized model with much more trainable parameters, it is chal-
lenging to cover all knowledge in a narrow dense model. Therefore, we have to extract the key
knowledge from each expert and then merge them into a single small dense model. Then, the
question is, how can we extract the key knowledge of each trainable matrix (i.e., weights)? We
first propose Top-K knowledge gathering to extract the sub-matrix of each expert. For ith expert
weight matrix W i ∈ Rd1×d2 , we calculate the l2 norm of each column as li ∈ Rd1 . We then use
Top-K selection to pick K columns of W i according to li, where K = d2

E . The extracted ma-
trix W i

g ∈ Rd1×K . Then we concatenate the extracted matrices from all experts as final student
initialization Wg ∈ Rd1×d2 .

In practice, since each expert has two linear layers W i1 ∈ Rd1×d2 and W i2 ∈ Rd2×d1 , there would
be a column-mismatch for two extracted matrices from the same expert if we select the sub-matrices
of these two matrices independently. To alleviate this issue, we calculate the l2 norm of each column
in W i1 and the l2 norm of each row in W i2 . The sum of these two l2 norm vectors, i.e., li ∈ Rd1 is
fed into Top-K selection and then extract the sub-matrix.

SVD Knowledge Gathering We investigate another novel way to extract key knowledge from
experts. Low-rank compression CHen et al. (2021) has shown promising results in capturing key
knowledge, which was used to convert a not low-rank matrix to a rank-k decomposition of the weight
matrix. Such a low-rank matrix can approximate the knowledge of the whole matrix. On this basis,
we can merge the low-rank matrix easier by reconstructing a high-rank matrix from multiple low-
rank matrices. Please note, in this work, obtaining rank-k decomposition is not our target. Instead,
the rank-k decomposition is just an intermediate step of our decomposing and merging. In this work,
we propose to use SVD to extract key knowledge and merge them to initialize another dense matrix:

W i
f = U i

fS
i
fV

i
f

T ≈ U i
fKiS

i
fKiV

i
f

T

Ki (10)
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where U i
f ∈ Rd1×d1 and V i

f ∈ Rd2×d2 are unitary matrices, Si
f ∈ Rd1×d2 is a diagonal matrix. We

usually select the top-K elements in Si
f and then construct U i

fKi
∈ Rd1×Ki

, Si
fKi

∈ RKi×Ki

and

V i
f Ki

∈ Rd2×Ki

to approximate W i
f .

When k is fixed, every matrix has the rank-k decomposition to approximate the original matrix.
However, we cannot guarantee the key knowledge in every expert can be covered by a fixed rank-k
decomposition. Thus, we define an adaptive SVD ratio λ ∈ (0, 1] to ensure:

ρ(Si
fKi) ≈ λρ(Si

f ) (11)

where ρ(Si
f ) denotes the sum of diagonal elements of Si

f . If λ = 1, all ranks would be preserved
for a full-rank matrix. We then collect the decomposition of each expert and concatenate them as:

[ Ug ] =
[
U1

f K1 . . . UE
f KE

]
,

[ Sg ] =

 S1
fK1

. . .
SE
f KE

 ,

[ Vg ] =

 V 1
f K1

...
V E
f KE


(12)

We can then obtain Wg as:
Wg = UgSgVg

T (13)

Wg is a rank-Kg matrix, where Kg = ΣE
i=1K

i, covering the key knowledge of every expert.

After SVD-KG, knowledge has been integrated from pre-trained MoE. However, during knowledge
gathering, it is unavoidable to induce noise when we remove conditional computation. Detailed
analysis of the induced noise during gathering can be found in Appendx A.3.

A.2.2 KNOWLEDGE DISTILLATION

To mine the knowledge from noise, we adopt soft knowledge distillation Hinton et al. (2015) to
fine-tune the dense student. Soft distillation minimizes the Kullback-Leibler divergence between
the output of the teacher and the student. The corresponding distillation loss can be written as:

Lsoft
distill = T 2LKL(ω(zs/T ), ω(zt/T )) (14)

where ω is the softmax function, LKL is Kullback-Leibler divergence loss, zs and zt are the logits
of student and teacher, respectively, and T is the softmax temperature.

A.2.3 OPTIMIZATION

Our final loss function is simple:

Ltotal = αLmain + (1− α)Ldistill (15)

where α is used to balance the main loss and the distillation loss. The main loss depends on the
task. For instance, to classify images, it is cross-entropy. For BERT pre-training, it should be the
masked language modeling loss and next sentence prediction loss. The distillation loss here can be
either soft distillation loss or hard-label distillation loss. Since our pre-trained MoE is fixed during
knowledge distillation, we do not need the load balance loss of MoE-based transformer.

A.3 KNOWLEDGE GATHERING NOISE ANALYSIS

We are to discuss and analyze the induced noise during SVD knowledge gathering in this section.

Given one MoE layer MoE(·), the target of SVD-KG is to integrate its knowledge to a dense layer
g(·) in the student model. For brevity, we set every expert and the dense student layer as the single
linear layer. There are E experts in MoE layer: {f1, . . . , fE} with weights {W 1

f , . . . ,W
E
f } and

7
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bias {b1f , . . . , bEf }. The dense student layer is g with weights Wg and bias bg . According to Eq. 1,
the MoE layer can be written as:

MoE(x) =

E∑
i=1

G(x)iei(x)

=

E∑
i=1

pihi(W
i
fx+ bif )

(16)

where p is the routing score of router, h is an index vector. For the selected experts, hi = 1, and
hi = 0 for other unselected experts. Due to the load balance loss during MoE training, we can
assume pi ≈ 1.0 when hi = 1. Then, we can approximate MoE layer by SVD:

MoE(x) =

E∑
i=1

pihi(U
i
fS

i
fV

i
f

T
x+ bif )

≈
E∑
i=1

hi(U
i
fKiS

i
fKiV

i
f

T

Kix+ bif )

≈
E∑
i=1

hi

Ki∑
j=1

uij
f Ki

sijf Ki
vijf

T

Ki
x+

E∑
i=1

hib
i
f

(17)

where Ki is the selected rank of i-th expert.

According to Eq. 13, g(·) can be formulated as:

g(x) =

E∑
i=1

Ki∑
j=1

uij
f Ki

sijf Ki
vijf

T

Ki
x+

1

E

E∑
i=1

bif (18)

For brevity, to analyze, we assume MoE layer here is to select the 1-st expert, and then the MoE
layer can be written as:

MoE(x) ≈
K1∑
j=1

u1j
f K1

s1jf K1
v1jf

T

K1
x+ b1f (19)

and the student dense layer:

g(x) =

K1∑
j=1

u1j
f K1

s1jf K1
v1jf

T

K1
x+ b1f

+

E∑
i=2

Ki∑
j=1

uij
f K1

sijf K1
vijf

T

K1
x

+
1

E

E∑
i=2

bif − E − 1

E
b1f

(20)

Since the non-selected experts do not interact with the current input token x, we assume, for the
non-selected experts, we let ϵ1 = f i(x) and ϵ1 ∼ N (µ1, σ

2
1) and ϵ2 = bifx and ϵ2 ∼ N (µ2, σ

2
2)

According to Eq. 11, g(x) can be written as:

g(x) =

K1∑
j=1

u1j
f K1

s1jf K1
v1jf

T

K1
x+ λ[(E − 1)ϵ1 −

E − 1

E
ϵ2] (21)
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The low-rank approximation ensures
∑K1

j=1 u
1j
f K1

s1jf K1
v1jf

T

K1
+ b1f cover most informative knowl-

edge in the selected expert, and noise reduced linearly along λ. When we are integrating knowledge
from experts, a smaller λ is required to reduce noise.

A.4 HYPER-PARAMETERS

A.4.1 COMPUTER VISION

Table 3: Hyper-parameters on ImageNet pre-training and Cifar10 finetuning. α and λ are from
Eq. 15 and Eq. 11

Parameter ImageNet Cifar10

Epoch 300 100
Warmup Epochs 30 0
Batch Size 4096 512
Learning rate 0.004 0.03
Weight Decay 0.1 0
Dropout 0.1 0.1
Label smoothing 0.1 0
Mixup prob. 0.5 0.5
α 0.25 -
λ 0.75 -

Most hyper-parameters are set following existing works (e.g., ViT, WideNet). The main difference
is the learning rate. Since we are training from a dense model initialized by a MoE model. We
observe that a large learning rate harms accuracy. We, therefore, set a smaller learning rate as 0.004
(0.01 in WideNet).

A.4.2 NATURAL LANGUAGE PROCESSING

Table 4: Hyper-parameters on NLP downstream tasks fine-tuning.

Parameter SQuAD1.1/2.0 MNLI SST2

Steps 3649/8144 10000 5234
Warmup 365/814 1000 314
Batch Size 48 128 128
LR 5e-5/3e-5 3e-5 4e-5
Dropout 0/0 0 0
Max Length 384/512 512 512

We follow the hyper-parameters in Devlin et al. (2019); Lan et al. (2019); Xue et al. (2021) and the
final hyper-parameters are reported in Table 4.

A.5 ABLATION STUDY

A.5.1 ABLATION ON THE CONTRIBUTIONS OF KG AND KD

The first ablation study is to investigate the contributions of knowledge gathering and knowledge
distillation. As shown in Table 5, there is a significant performance drop without knowledge gath-
ering, which shows the knowledge included in pre-trained sparse model is critical to improve the
student model’s performance. For the model without KD, in this experiment, we adopt the Lmain in
Eq. 15 as the only loss function. We can see the knowledge distillation is helpful, as the prediction
of teacher can instruct the student to mine knowledge in noisy weights gathered. In addition, when
the dense model does not gather knowledge from MoE, the KD enables the training process of the
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Model ImageNet

OneS-B 75.7
w/o KG 73.8
w/o KD 75.0
w/o KG & KD 72.8

OneS-L 78.4
w/o KG 77.3
w/o KD 77.6
w/o KG & KD 76.9

Table 5: Top-1 Accuracy of ablation study on ImageNet to investigate the contributions of knowl-
edge gathering (KG) and knowledge distillation (KD). The KG here is using SVD-KG, and the KD
here is using soft-distillation, as we found they perform better by investigation.

lite model (i.e., OneS-B) more stable. For the large model, removing both knowledge gathering and
knowledge distillation will also harm the performance.
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Figure 2: Top-1 Accuracy of ablation on ImageNet to investigate the contribution of more global
training epochs.

A.5.2 ABLATION ON TOTAL TRAINING STEPS

Since we conduct two stages of training in our framework, the total training steps of OneS are more
than the dense model trained from scratch without distillation. The second set of ablation study is to
verify whether the improvement of our model is from more training iterations. To this end, we train
the OneS without KG and KD from scratch for comparable global training epochs. We use OneS-L
as a platform for this set of experiments because we observe the unstable training of OneS-B without
both KG and KD. As shown in Figure 2, when training with comparable global epochs, our OneS
outperforms baselines by a large margin consistently. Also, when scaling to more epochs, WideNet
without MoE stops to improve, but our OneS can still obtain benefits from more training. We also
investigate two types of knowledge distillation approaches, soft distillation Hinton et al. (2015) and
hard-label distillation Touvron et al. (2021). The last set is to ablate the SVD ratio λ.

A.5.3 ABLATION STUDY ON SVD RATIO
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Figure 3: Top-1 Accuracy of ablation on ImageNet to ablate the SVD ratio λ.
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We also conduct ablation study on SVD ratio λ, which denotes the ratio of selected k. As shown in
Figure 3, when λ = 0.75, OneS-B achieves sweet point.

A.5.4 EXPERIMENTAL JUSTIFICATION FOR LESS KNOWLEDGE IN BIAS

Table 6: Top-1 Accuracy of MoE model without bias.

Approach ImageNet

WideNet-B 77.5
WideNet-B w/o bias 77.3

We re-trained the teacher MoE model (i.e., WideNet-B) without bias in MoE layer. As shown in
Table 6, we found that there is no obvious performance drop. That is, the bias in MoE layer has little
impact on results, which means there is less knowledge than weights.

A.6 RELATED WORK

A.6.1 MIXTURE-OF-EXPERTS

MoE has shown promising results on various tasks. Recent works scaled a dense model to a sparse
one by MoE. Faster convergence speed of MoE can save the global computation cost. One typical
way to use MoE is, by replacing the FFN layer in transformer Vaswani et al. (2017) by an MoE layer.
Lepikhin et al. Lepikhin et al. (2020) first scale machine translation transformer model to 600 million
parameters using automatic sharding. After that, Fedus et al. Fedus et al. (2021) further scales the
transformer to trillion parameter models with simple and efficient sparsity and shows promising
results on natural language understanding. In computer vision, ViT-MoE Ruiz et al. (2021) matches
SoTA performance on ImageNet using 14.7 billion of parameters, while requiring as little as half of
the computation at inference time. Recent work Lou et al. (2021) investigated the MoE usage on
MLP-Mixer, which also achieved better effectiveness and efficiency than the dense model. Instead
of scaling up, this work uses and fixes the pre-trained MoE model. The core target is to combine the
effectiveness of MoE and the usability of dense model.

A.6.2 KNOWLEDGE INTEGRATION

Knowledge inheritance Qin et al. (2021) is related to our knowledge integration. Knowledge in-
heritance usually inherits knowledge from small pre-trained model and then speed-up the training
of large models. Contrastively, our work is integrating knowledge from a large MoE model. Sun
et al. Sun et al. (2019) proposed to integrate knowledge by using knowledge masking strategies.
Please note our knowledge integration is different from theirs. Instead of a self-supervised learning
approach to integrate knowledge from data, our work is to integrate knowledge from pre-trained
MoE. There are also a few works focusing on inheriting knowledge from a dense model to initialize
a MoE model, which can be seen as an inverse process of ours. For instance, Zhang et al. Zhang et al.
(2022) duplicated dense model multiple times to initialize MoE models. Zhang et al. Zhang et al.
(2021) proposed MoEfication. The proposed approach is to inherit knowledge from a dense model
and obtain an MoE model with comparable parameters to reduce the computation cost. In general,
MoEfication is a sparsification approach. In Switch Transformer Fedus et al. (2021), authors tried to
initialize trainable parameters except for MoE layers to speed-up MoE training, although their main
purpose is to scale transformer to trillions of parameters.

A.6.3 KNOWLEDGE DISTILLATION

Knowledge distillation is a well-studied problem. One related direction is multi-teacher knowledge
distillation (You et al., 2017). For instance, Chebotar & Waters (2016) distill from multiple teach-
ers for speech recognition. Yuan et al. (2021) develop a reinforced method to dynamically assign
weights to teacher models for different training instances and optimize the performance of student
model. However, our task is different from the multi-teacher knowledge distillation in some impor-
tant aspects. First, the knowledge integration has only one teacher. This teacher is a single model
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with many experts in MoE layers. In MoE-based transformer, each expert is an FFN layer. As a
comparison, the multi-teacher distillation has many teacher models and each of them is a complete
model including many layers. Second, the MoE model has similar architecture in many layers but
also sparse architecture in MoE layers. For instance, the trainable parameters in attention layer
can be perfectly mapped into the student model. This provides a great potential to not only distill
through model outputs but also map the model weights directly. Lastly, in multi-teacher KD, the
teacher model typically has a higher computation cost compared to the student model, while the
computation cost is usually similar in MoE-based KD. How to leverage the matching computation
cost and large parameter gap is also another valuable research question.
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