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ABSTRACT

Diffusion or flow-based models are powerful generative paradigms that are no-
toriously hard to sample as samples are defined as solutions to high-dimensional
Ordinary or Stochastic Differential Equations (ODEs/SDEs) which require a large
Number of Function Evaluations (NFE) to approximate well. Existing methods
to alleviate the costly sampling process include model distillation and designing
dedicated ODE solvers. However, distillation is costly to train and sometimes can
deteriorate quality, while dedicated solvers still require relatively large NFE to
produce high quality samples. In this paper we introduce “Bespoke solvers”,
a novel framework for constructing custom ODE solvers tailored to the ODE
of a given pre-trained flow model. Our approach optimizes an order consistent
and parameter-efficient solver (e.g., with 80 learnable parameters), is trained for
roughly 1% of the GPU time required for training the pre-trained model, and sig-
nificantly improves approximation and generation quality compared to dedicated
solvers. For example, a Bespoke solver for a CIFAR10 model produces samples
with Fréchet Inception Distance (FID) of 2.73 with 10 NFE, and gets to 1% of
the Ground Truth (GT) FID (2.59) for this model with only 20 NFE. On the more
challenging ImageNet-64×64, Bespoke samples at 2.2 FID with 10 NFE, and gets
within 2% of GT FID (1.71) with 20 NFE.

1 INTRODUCTION

Diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020), and more generally flow-based
models (Song et al., 2020b; Lipman et al., 2022; Albergo & Vanden-Eijnden, 2022), have become
prominent in generation of images (Dhariwal & Nichol, 2021; Rombach et al., 2021), audio (Kong
et al., 2020; Le et al., 2023), and molecules (Kong et al., 2020). While training flow models is
relatively scalable and efficient, sampling from a flow-based model entails solving a Stochastic or
Ordinary Differential Equation (SDE/ODE) in high dimensions, tracing a velocity field defined with
the trained neural network. Using off-the-shelf solvers to approximate the solution of this ODE
to a high precision requires a large Number (i.e., 100s) of Function Evaluations (NFE), making
sampling one of the main standing challenges in flow models. Improving the sampling complexity
of flow models, without degrading sample quality, will open up new applications that require fast
sampling, and will help reducing the carbon footprint and deployment cost of these models.

Current approaches for efficient sampling of flow models divide into two main groups: (i) Distil-
lation: where the pre-trained model is fine-tuned to predict either the final sampling (Luhman &
Luhman, 2021) or some intermediate solution steps (Salimans & Ho, 2022) of the ODE. Distillation
does not guarantee sampling from the pre-trained model’s distribution, but, when given access to the
training data during distillation training, it is shown to empirically generate samples of comparable
quality to the original model (Salimans & Ho, 2022; Meng et al., 2023). Unfortunately, the GPU
time required to distill a model is comparable to the training time of the original model Salimans &
Ho (2022), which is often considerable. (ii) Dedicated solvers: where the specific structure of the
ODE is used to design a more efficient solver (Song et al., 2020a; Lu et al., 2022a;b) and/or employ
a suitable solver family from the literature of numerical analysis (Zhang & Chen, 2022; Zhang et al.,
2023). The main benefit of this approach is two-fold: First, it is consistent, i.e., as the number of
steps (NFE) increases, the samples converge to those of the pre-trained model. Second, it does not
require further training/fine-tuning of the pre-trained model, consequently avoiding long additional
training times and access to training data. Related to our approach, some works have tried to learn
an ODE solver within a certain class (Watson et al., 2021; Duan et al., 2023); however, they do not
guarantee consistency and usually introduce moderate improvements over generic dedicated solvers.
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Figure 1: Using 10 NFE to sam-
ple using our Bespoke solver im-
proves fidelity w.r.t. the baseline
(RK2) solver. Visualization of
paths was done with the 2D PCA
plane approximating the noise
and end sample points.

In this paper, we introduce Bespoke solvers, a framework for learn-
ing consistent ODE solvers custom-tailored to pre-trained flow
models. The main motivation for Bespoke solvers is that different
models exhibit sampling paths with different characteristics, lead-
ing to local truncation errors that are specific to each instance of a
trained model. A key observation of this paper is that optimizing
a solver for a particular model can significantly improve quality of
samples for low NFE compared to existing dedicated solvers. Fur-
thermore, Bespoke solvers use a very small number of learnable
parameters and consequently are efficient to train. For example,
we have trained n ∈ {5, 8, 10} steps Bespoke solvers for a pre-
trained ImageNet-64×64 flow model with {40, 64, 80} learnable
parameters (resp.) producing images with Fréchet Inception Dis-
tances (FID) of 2.2, 1.79, 1.71 (resp.), where the latter is within
2% from the Ground Truth (GT) FID (1.68) computed with ∼ 180
NFE. The Bespoke solvers were trained (using a rather naive im-
plementation) for roughly 1% of the GPU time required for training
the original model. Figure 1 compares sampling at 10 NFE from a
pre-trained AFHQ-256×256 flow model with order 2 Runge-Kutta
(RK2) and its Bespoke version (RK2-Bes), along with the GT sam-
ple that requires ∼ 180 NFE. Our work brings the following contributions:

1. A differentiable parametric family of consistent ODE solvers.
2. A tractable loss that bounds the global truncation error while allowing parallel computation.
3. An algorithm for training a Bespoke n-step solver for a specific pre-trained model.
4. Significant improvement over dedicated solvers in generation quality for low NFE.

2 BESPOKE SOLVERS

We consider a pre-trained flow model taking some prior distribution (noise) p to a target (data) dis-
tribution q in data space Rd. The flow model (Chen et al., 2018) is represented by a time-dependent
Vector Field (VF) u : [0, 1]×Rd → Rd that transforms a noise sample x0 ∼ p(x0) to a data sample
x1 ∼ q(x1) by solving the ODE

ẋ(t) = ut(x(t)), (1)

with the initial condition x(0) = x0 ∼ p(x0), from time t = 0 until time t = 1, and ẋ(t) := d
dtx(t).

The solution at time t = 1, i.e., x(1) ∼ q(x(1)), is the generated target sample.

Algorithm 1 Numerical ODE solver.

Require: t0, x0

for i = 0, 1, . . . , n− 1 do
(ti+1, xi+1) = step(ti, xi;ut)

end for
return xn

Numerical ODE solvers. Solving equation 1 is done in practice
with numerical ODE solvers. A numerical solver is defined by an
update rule:

(tnext, xnext) = step(t, x;ut). (2)
The update rule takes as input current time t and approximate so-
lution x, and outputs the next time step tnext and the corresponding approximation xnext to the true
solution x(tnext) at time tnext. To approximate the solution at some desired end time, i.e., t = 1, one
first initializes the solution at t = 0 and repeatedly applies the update rule in equation 2 n times, as
presented in Algorithm 1. The step is designed so that tn = 1.

An ODE solver (step) is said to be of order k if its local truncation error is

∥x(tnext)− xnext∥ = O
(
(tnext − t)k+1

)
, (3)

asymptotically as tnext → t, where t ∈ [0, 1) is arbitrary but fixed and tnext, xnext are defined by the
solver, equation 2. A popular family of solvers that offers a wide range of orders is the Runge-Kutta
(RK) family (Iserles, 2009). Two of the most popular members of the RK family are (set h = n−1):

RK1 (Euler - order 1): step(t, x;ut) = (t+ h , x+ hut(x)) , (4)

RK2 (Midpoint - order 2): step(t, x;ut) =

(
t+ h , x+ hut+h

2

(
x+

h

2
ut(x)

))
. (5)
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Algorithm 2 Bespoke solver.

Require: t0, x0, pre-trained ut, θ
for i = 0, 1, . . . , n− 1 do

(ti+1, xi+1)← stepθ(ti, xi;ut)
end for
return xn

Approach outline. Given a pre-trained ut and a target number of
time steps n our goal is to find a custom (Bespoke) solver that is
optimal for approximating the samples x(1) defined via equation 1
from initial conditions sampled according to x(0) = x0 ∼ p(x0).
To that end we develop two components: (i) a differentiable para-
metric family of update rules stepθ, with parameters θ ∈ Rp

(where p is very small), where sampling is done by replacing step with stepθ in Algorithm 1, see Al-
gorithm 2; and (ii) a tractable loss bounding the global truncation error, i.e., the Root Mean Square
Error (RMSE) between the approximate sample xθ

n and the GT sample x(1),

Global truncation error: LRMSE(θ) = Ex0∼p(x0)

∥∥x(1)− xθ
n

∥∥ , (6)

where xθ
n is the output of Algorithm 2, and ∥x∥ = ( 1d

∑d
j=1[x

(j)]2)1/2.

2.1 PARAMETRIC FAMILY OF ODE SOLVERS THROUGH TRANSFORMED SAMPLING PATHS

Our strategy for defining the parametric family of solvers stepθ is using a generic base ODE solver,
such as RK1 or RK2, applied to a parametric family of transformed paths.

Figure 2: Transformed paths.

Transformed sampling paths. We transform the sample trajectories
x(t) by applying two components: a time reparametrization and an
arbitrary invertible transformation. That is,

x̄(r) = φr(x(tr)), r ∈ [0, 1], (7)

where tr, φr(x) are arbitrary functions in a family F defined by the
following conditions: (i) Smoothness: tr : [0, 1] → [0, 1] is a diffeo-
morphism1, and φ : [0, 1]× Rd → Rd is C1 and a diffeomorphism in
x. We also assume rt and φ−1

r are Lipschitz continuous with a con-
stant L > 0. (ii) Boundary conditions: tr satisfies t0 = 0 and t1 = 1,
and φ0(·) is the identity function, i.e., φ0(x) = x for all x ∈ Rd. Fig-
ure 2 depicts a transformation of a path, x(t). Note that x̄(0) = x(0), however the end point x̄(1)
does not have to coincide with x(1). Furthermore, as tr : [0, 1] → [0, 1] is a diffeomorphism, tr is
strictly monotonically increasing.

The motivation behind the definition of the transformed trajectories is that it allows reconstructing
x(t) from x̄(r). Indeed, denoting r = rt the inverse function of t = tr we have

x(t) = φ−1
rt (x̄(rt)). (8)

Our hope is to find a transformation that simplifies sampling paths and allows the base solver to
provide better approximations of the GT samples. The transformed trajectory x̄r is defined by a VF
ūr(x) that can be given an explicit form as follows (proof in Appendix A):

Proposition 2.1. Let x(t) be a solution to equation 1. Denote φ̇r := d
drφr and ṫr := d

dr tr. Then
x̄(r) defined in equation 7 is a solution to the ODE (equation 1) with the VF

ūr(x) = φ̇r(φ
−1
r (x)) + ṫr∂xφr(φ

−1
r (x))utr (φ

−1
r (x)). (9)

Solvers via transformed paths. We are now ready to define our parametric family of solvers
stepθ(t, x;ut): First we transform the input sample (t, x) according to equation 7 to

(r, x̄) = (rt, φrt(x)). (10)

Next, we perform a step with the base solver of choice,

(rnext, x̄next) = step(r, x̄; ūr), (11)

and lastly, transform back using equation 8 to define the parametric solver stepθ via

(tnext, xnext) = stepθ(x, t;ut) =
(
trnext , φ

−1
rnext

(x̄next)
)
. (12)

The parameters θ denote the parameterized transformations tr and φr satisfying the properties of F
and the choice of a base solver step. In Section 2.2 we derive the explicit rules we use in this paper.

1A diffeomorphism is a C1 continuously differentiable function with a C1 continuous differentiable inverse.
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Consistency of solvers. An important property of the parametric solver stepθ is consistency.
Namely, due to the properties of F , regardless of the particular choice of tr, φr ∈ F , the solver
stepθ has the same local truncation error as the base solver.

Theorem 2.2. (Consistency of parametric solvers) Given arbitrary tr, φr in the family of functions
F and a base ODE solver of order k, the corresponding ODE solver stepθ is also of order k, i.e.,

∥x(tnext)− xnext∥ = O((tnext − t)k+1). (13)

The proof is provided in Appendix B. Therefore, as long as tr, φr(x) are in F , decreasing the base
solver’s step size h → 0 will result in our approximated sample xθ

n converging to the exact sample
x(1) of the trained model in the limit, i.e., xθ

n → x(1) as n→∞.

2.2 TWO USE CASES

We instantiate the Bespoke solver framework for two cases of interest (a full derivation is in Ap-
pendix E), and later prove that our choice of transformations in fact covers all “noise scheduler”
configurations used in the standard diffusion model literature. In our use cases, we consider a time-
dependent scaling as our invertible transformation φr,

φr(x) = srx, and its inverse φ−1
r (x) = x/sr, (14)

where s : [0, 1]→ R>0 is a strictly positive C1 scaling function such that s0 = 1 (i.e., satisfying the
boundary condition of φ). The transformation of trajectories, i.e., equations 7 and 8, take the form

x̄(r) = srx(tr), and x(t) = x̄(rt)/str , (15)

and we name this transformation: scale-time. The transformed VF ūr (equation 9) is thus

ūr(x) =
ṡr
sr

x+ ṫrsrutr

(
x

sr

)
. (16)

Use case I: RK1-Bespoke. We consider RK1 (Euler) method (equation 4) as the base solver step
and denote ri = ih, i ∈ [n], where [n] = {0, 1, . . . , n} and h = n−1. Substituting equation 4 in
equation 11, we get from equation 12 that

stepθ(ti, xi;ut) :=

(
ti+1,

si + hṡi
si+1

xi + hṫi
si

si+1
uti(xi)

)
, (17)

where we denote ti = tri , ṫi = d
dr |r=ritr, si = sri , ṡi = d

dr |r=risr, and i ∈ [n − 1]. The
learnable parameters θ ∈ Rp and their constraints are derived from the fact that the functions tr, φr

are members of F . There are p = 4n− 1 parameters in total: θ = (θt, θs), where

θt :

{
0 = t0 < t1 < · · · < tn−1 < tn = 1

ṫ0, . . . , ṫn−1 > 0
, θs :

{
s1, . . . , sn > 0 , s0 = 1

ṡ0, . . . , ṡn−1
. (18)

Note that we ignore the Lipschitz constant constraints in F when deriving the constraints for θ.

Use case II: RK2-Bespoke. Here we choose the RK2 (Midpoint) method (equation 5) as the base
solver step. Similarly to the above, substituting equation 5 in equation 11, we get

stepθ(ti, xi;ut) :=

(
ti+1,

si
si+1

xi +
h

si+1

{
ṡi+ 1

2

si+ 1
2

zi + ṫi+ 1
2
si+ 1

2
ut

i+1
2

(
zi

si+ 1
2

)})
, (19)

where we set ri+ 1
2
= ri +

h
2 , and accordingly ti+ 1

2
, ṫi+ 1

2
, si+ 1

2
, and ṡi+ 1

2
are defined, and

zi =

(
si +

h

2
ṡi

)
xi +

h

2
siṫiuti(xi). (20)

In this case there are p = 8n− 1 learnable parameters, θ = (θt, θs) ∈ Rp, where

θt :

{
0 = t0 < t 1

2
< · · · < tn = 1

ṫ0, ṫ 1
2
, . . . , ṫn−1, ṫn− 1

2
> 0

, θs :

{
s 1

2
, s1, . . . , sn > 0 , s0 = 1

ṡ0, ṡ 1
2
, . . . , ṡn− 1

2

. (21)
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Equivalence of scale-time transformations and Gaussian Paths. We note that our scale-time
transformation covers all possible trajectories used by diffusion and flow models trained with Gaus-
sian distributions. Denote by pt(x) the probability density function of the random variable x(t),
where x(t) is defined by a random initial sampling x(0) = x0 ∼ p(x0) and solving the ODE in
equation 1.

When training a Diffusion or Flow Matching models, pt has the form pt(x) =
∫
pt(x|x1)q(x1)dx1,

where pt(x|x1) = N (x|αtx1, σ
2
t I). A pair of functions α, σ : [0, 1]→ [0, 1] satisfying

α0 = 0 = σ1, α1 = 1 = σ0, and strictly monotonic snr(t) = αt/σt (22)

is called a scheduler2. We use the term Gaussian Paths for the collection of probability paths pt(x)
achieved by different schedulers. The velocity vector field that generates pt(x) and results from zero
Diffusion/Flow Matching training loss is

ut(x) =

∫
ut(x|x1)

pt(x|x1)q(x1)

pt(x)
dx1, (23)

where ut(x|x1) =
σ̇t

σt
x +

[
α̇t − σ̇t

αt

σt

]
x1, as derived in Lipman et al. (2022). Next, we generalize

a result by Kingma et al. (2021) and Karras et al. (2022) to consider marginal sampling paths x(t)
defined by ut(x), and show that any two such paths are related by a scale-time transformation:
Theorem 2.3. (Equivalence of Gaussian Paths and scale-time transformation) Consider a Gaussian
Path defined by a scheduler (αt, σt), and let x(t) denote the solution of equation 1 with ut defined
in equation 23 and initial condition x(0) = x0. Then,

(i) For every other Gaussian Path defined by a scheduler (ᾱr, σ̄r) with trajectories x̄(r) there
exists a scale-time transformation with s1 = 1 such that x̄(r) = srx(tr).

(ii) For every scale-time transformation with s1 = 1 there exists a Gaussian Path defined by a
scheduler (ᾱr, σ̄r) with trajectories x̄(r) such that srx(tr) = x̄(r).

(Proof in Appendix C.) Assuming an ideal velocity field (equation 23), i.e., the pre-trained model
is optimal, this theorem implies that searching over the scale-time transformations is equivalent to
searching over all possible Gaussian Paths. Note, that in practice we allow s1 ̸= 1, expanding
beyond the standard space of Gaussian Paths. Another interesting consequence of Theorem 2.3
(simply plug in t = 1) is that all ideal velocity fields in equation 23 define the same coupling, i.e.,
joint distribution, of noise x0 and data x1.

2.3 RMSE UPPER BOUND LOSS

Optimizing directly the RMSE loss (equation 6) is theoretically possible but would require keeping
a full computational graph of Algorithm 2, i.e., n×order compositions of ut leading to a large
memory footprint. Therefore, we instead derive an upper-bound to the RMSE loss that enables
parallel computation over the steps of the solver, considerably reducing memory consumption. To
construct the bound, let us fix an initial condition x0 ∼ p(x0) and denote as before x(1) to be
the exact solution of the sample path (equation 1). Furthermore, consider a candidate solver stepθ,
and denote its t and x coordinate updates by stepθ = (stepθ

t , stepθx). Applying Algorithm 2 with
t0 = 0, x0 produces a series of approximations xθ

i , each corresponds to a time step ti, i ∈ [n].
Lastly, we denote by

eθi =
∥∥x(ti)− xθ

i

∥∥ , dθi =
∥∥x(ti)− stepθ

x(ti−1, x(ti−1);ut)
∥∥ (24)

the global and local truncation errors at time ti, respectively. Our goal is to bound the global error
at the final time step tn = 1, i.e., eθn. Using the update rule definition (equation 2) and triangle
inequality we can bound

eθi+1≤
∥∥x(ti+1)− stepθx(ti, x(ti);ut)

∥∥+∥∥stepθ
x(ti, x(ti);ut)− stepθx(ti, x

θ
i ;ut)

∥∥ ≤ dθi+1 + Lθ
i e

θ
i ,

where Lθ
i is defined to be the Lipschitz constant of the function stepθ

x(ti, · ;ut). To simplify notation
we set by definition Lθ

n = 1 (this is possible since Lθ
n does not actually participate in the bound).

2We use the convention of noise at time t = 0 and data at time t = 1.
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Algorithm 3 Bespoke training.

Require: pre-trained ut, number of steps n
initialize θ ∈ Rp

while not converged do
x0 ∼ p(x0) ▷ sample noise
x(t)← solve ODE 1 ▷ GT path
L ← 0 ▷ init loss
parallel for i = 0, ..., n− 1 do

xθ
i+1 ← stepθ

x (x
aux
i (ti), ti;ut)

L+=Mθ
i+1

∥∥xaux
i+1(ti+1)−xθ

i+1

∥∥
end for
θ ← θ − γ∇θL ▷ optimization step

end while
return θ

Using the above bound n times and noting that eθ0 = 0 we get

eθn ≤
n∑

i=1

Mθ
i d

θ
i , where Mθ

i =

n∏
j=i

Lθ
j . (25)

Motivated by this bound we define our RMSE-Bound loss:

LRMSE-B(θ) = Ex0∼p(x0)

n∑
i=1

Mθ
i d

θ
i , (26)

where dθi is defined in equation 24 and Mθ
i defined in equation 25. The constants Lθ

i depend both on
the parameters θ and the Lipschitz constant Lu of the network ut. As Lu is difficult to estimate, we
treat Lu as a hyper-parameter, denoted Lτ (in all experiments we use Lτ = 1), and compute Lθ

i in
terms of θ and Lτ for our two Bespoke solvers, RK1 and RK2, in Appendix D. Assuming that Lτ ≥
Lu, an immediate consequence of the bound in equation 25 is that the RMSE-Bound loss bounds
the RMSE loss, i.e., the global truncation error defined in equation 6, LRMSE(θ) ≤ LRMSE-B(θ).

Implementation of the RMSE-Bound loss. We provide pseudocode for Bespoke training in Algo-
rithm 3. During training, we need to have access to the GT path x(t) at times ti, i ∈ [n], which we
compute with a generic solver. The Bespoke loss is constructed by plugging stepθ (equations 17 or
19) into di (equation 24). The gradient∇θLRMSE-B(θ) requires the derivatives ∂x(ti)/∂ti. Comput-
ing the derivatives of x(ti) can be done using the ODE it obeys, i.e., ẋ(ti) = uti(xi). Therefore, a
simple way to write the loss ensuring correct gradients w.r.t. ti is replace x(ti) with xaux

i (ti) where

xaux
i (t) = x(JtiK) + uJtiK(x(JtiK)) (t− JtiK), (27)

where J·K denotes the stop gradient operator; i.e., xaux
i (t) is linear in t and its value and deriva-

tive w.r.t. t coincide with that of x(ti) at time t = ti. Full details are provided in Appendix F. In
Appendix K.1 we provide an ablation experiment comparing different Bespoke losses and corre-
sponding algorithms including the direct RMSE loss (eq. 6) and our RMSE-Bound loss (eq. 26).

3 PREVIOUS WORK

Diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020) are a powerful paradigm for gen-
erative models that for sampling require solving a Stochastic Differential Equation (SDE), or its
associated ODE, describing a (deterministic) flow process (Song et al., 2020a). Diffusion models
have been generalized to paradigms directly aiming to learn a deterministic flow (Lipman et al.,
2022; Albergo & Vanden-Eijnden, 2022; Liu et al., 2022). Flow-based models are efficient to train
but costly to sample. Previous works had tackled the sample complexity of flow models by building
dedicated solver schemes and distillation.

Dedicated Solvers. This line of works introduced specialized ODE solvers exploiting the structure
of the sampling ODE. Lu et al. (2022a); Zhang & Chen (2022) utilize the semi-linear structure of
the score/ϵ-based sampling ODE to adopt a method of exponential integrators. (Zhang et al., 2023)
further introduced refined error conditions to fulfill desired order conditions and achieve better sam-
pling, while Lu et al. (2022b) adapted the method to guided sampling. Karras et al. (2022) suggested
transforming the ODE to sample a different Gaussian Path for more efficient sampling, while also
suggesting non-uniform time steps. In principle, all of these methods effectively proposed—based
on intuition and heuristics—to apply a particular scale-time transformation to the sampling trajec-
tories of the pre-trained model for more efficient sampling, while Bespoke solvers search for an
optimal transformation within the entire space of scale-time transformations.

Other works also aimed at learning the solver: Dockhorn et al. (2022) (GENIE) introduced a higher-
order solver, and distilled the necessary JVP for their method; Watson et al. (2021) (DDSS) opti-
mized a perceptual loss considering a family of generalized Gaussian diffusion models; Lam et al.
(2021) improved the denoising process using bilateral filters, thereby indirectly affecting the effi-
ciency of the ODE solver; Duan et al. (2023) suggested to learn a solver for diffusion models by
replacing every other function evaluation by a linear subspace projection. Our Bespoke Solvers be-
long to this family of learnt solvers, however, they are consistent by construction (Theorem 2.2) and
minimize a bound on the solution error (for the appropriate Lipschitz constant parameter).
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Distillation. Distillation techniques aim to simplify sampling from a trained model by fine-tuning
or training a new model to produce samples with fewer function evaluations. Luhman & Luhman
(2021) directly regressed the trained model’s samples, while Salimans & Ho (2022); Meng et al.
(2023) built a sequence of models each reducing the sampling complexity by a factor of 2. Song
et al. (2023) distilled a consistency map that enables large time steps in the probability flow; Liu et al.
(2022) retrained a flow-based method based on samples from a previously trained flow. Yang et al.
(2023) used distillation to reduce model size while maintaining the quality of the generated images.
The main drawbacks of distillation methods is their long training time (Salimans & Ho, 2022), and
lack of consistency, i.e., they do not sample from the distribution of the pre-trained model.

4 EXPERIMENTS
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Figure 3: Bespoke RK1/2,
ImageNet-64 FM-OT.
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Figure 4: Bespoke solver
applied to EDM’s (Karras
et al., 2022) CIFAR10 pub-
lished model.

Models and datasets. Our method works
with pre-trained models: we use the
pre-trained CIFAR10 (Krizhevsky & Hin-
ton, 2009) model of (Song et al., 2020b)
with published weights from EDM (Kar-
ras et al., 2022). Additionally, we trained
diffusion/flow models on the datasets: CI-
FAR10, AFHQ-256 (Choi et al., 2020a) and ImageNet-64/128 (Deng et al., 2009). Specifically,
for ImageNet, as recommended by the authors (ima) we used the official face-blurred data (64×64
downsampled using the open source preprocessing scripts from Chrabaszcz et al. (2017)). For dif-
fusion models, we used an ϵ-Variance Preserving (ϵ-VP) parameterization and schedule (Ho et al.,
2020; Song et al., 2020b). For flow models, we used Flow Matching (Lipman et al., 2022) with
Conditional Optimal Transport (FM-OT), and Flow Matching/v-prediction with Cosine Scheduling
(FM/v-CS) (Salimans & Ho, 2022; Albergo & Vanden-Eijnden, 2022). Note that Flow Matching
methods directly provide the velocity vector field ut(x), and we converted ϵ-VP to a velocity field
using the identity in Song et al. (2020b). For conditional sampling we apply classifier free guid-
ance (Ho & Salimans, 2022), so each evaluation uses two forward passes.

Method NFE FID

D
is

til
la

tio
n Zheng et al. (2023) 1 3.78

Luhman & Luhman (2021) 1 9.36
Salimans & Ho (2022) 1

2
8

9.12
4.51
2.57

D
ed

ic
at

ed
so

lv
er

s

DDIM(Song et al., 2020a) 10
20

13.36
6.84

DPM (Lu et al., 2022a) 10
20

4.7
3.99

DEIS (Zhang & Chen, 2022) 10
20

4.17
2.86

GENIE (Dockhorn et al., 2022) 10
20

5.28
3.94

DDSS (Watson et al., 2021) 10
20

7.86
4.72

RK2-BES ϵ-VP
ϵ-VP

10
20

3.31
2.75

RK2-BES FM/v-CS
FM/v-CS

10
20

2.89
2.64

RK2-BES FM-OT
FM-OT

10
20

2.73
2.59

Table 1: CIFAR10 sampling.

Bespoke hyper-parameters and optimization. As our base
ODE solvers, we tested RK1 (Euler) and RK2 (Midpoint).
Furthermore, we have two hyper-parameters n – the number
of steps, and Lτ – the Lipschitz constant from lemmas D.2,
D.3. We train our models with n ∈ {4, 5, 8, 10, 12} steps and
fix Lτ = 1. Ground Truth (GT) sample trajectories, x(ti),
are computed with an adaptive RK45 solver (Shampine,
1986). We compute FID (Heusel et al., 2017) and valida-
tion RMSE (equation 6) is computed on a set of 10K fresh
noise samples x0 ∼ p(x0); Figure 12 depicts an example
of RMSE vs. training iterations for different n values. Un-
less otherwise stated, below we report results on best FID
iteration and show samples on best RMSE validation itera-
tion. Figures 21, 22, 23 depict the learned Bespoke solvers’
parameters θ for the experiments presented below; note the
differences across the learned schemes for different models
and datasets.

Bespoke RK1 vs. RK2. We compared RK1 and RK2 and
their Bespoke versions on CIFAR10 and ImageNet-64 mod-
els (FM-OT and FM/v-CS). Figure 3 and Figures 10, 9 show best validation RMSE (and corre-
sponding PSNR). Using the same budget of function evaluations RK2/RK2-Bespoke produce con-
siderably lower RMSE validation compared to RK1/RK1-Bespoke, respectively. We therefore opted
for RK2/RK2-Bespoke for the rest of the experiments below.

CIFAR10. We tested our method on the pre-trained CIFAR10 ϵ-VP model (Song et al., 2020b)
released by EDM (Karras et al., 2022). Figure 4 compares our RK2-Bespoke solver to the EDM
method, which corresponds to a particular choice of scaling, si, and time step discretization, ti.
Euler and EDM curves computed as originally implemented in EDM, where the latter achieves

7
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ImageNet-64: ϵ-pred ImageNet-64: FM/v-CS ImageNet-64: FM-OT ImageNet-128: FM-OT
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Figure 5: Bespoke RK2 solvers vs. RK1/2/4 solvers on CIFAR-10 ImageNet-64, and Image-Net128: FID
vs. NFE (top row), and RMSE vs. NFE (bottom row). PSNR vs. NFE is shown in Figure 13.

FID=3.05 at 35 NFE, comparable to the result reported by EDM. Using our RK2-Bespoke Solver,
we achieved an FID of 2.99 with 20 NFE, providing a 42% reduction in NFE. Additionally, we
tested our method on three models we trained ourselves on CIFAR10, namely ϵ-VP, FM/v-CS,
and FM-OT. Table 1 compares our best FID for each model with different baselines demonstrating
superior generation quality for low NFE among all dedicated solvers; e.g., for NFE=10 we improve
the FID of the runner-up by over 34% (from 4.17 to 2.73) using RK2-Bespoke FM-OT model. Table
4 lists best FID values for different NFE, along with the GT FID for the model and the fraction
of time Bespoke training took compared to the original model’s training time; with 20 NFE, our
RK2-Bespoke solvers achieved FID within 8%, 1%, 1% (resp.) of the GT solvers’ FID. Although
close, our Bespoke solver does not match distillation’s performance, however our approach is much
faster to train, requiring ∼1% of the original GPU training time with our naive implementation that
re-samples the model at each iteration. Figure 11 shows FID/RMSE/PSNR vs. NFE, where PSNR
is computed w.r.t. the GT solver’s samples.

ImageNet-64 NFE FID GT-FID/% %Time

RK2-BES ϵ-VP
ϵ-VP
ϵ-VP
ϵ-VP
ϵ-VP

8
10
16
20
24

3.63
2.96
2.14
1.93
1.84

1.83 / 229
163
120
109
101

3.5
3.6
3.6
3.5
3.6

RK2-BES FM/v-CS
FM/v-CS
FM/v-CS
FM/v-CS
FM/v-CS

8
10
16
20
24

2.95
2.20
1.79
1.71
1.69

1.68 / 176
131
107
102
101

1.4
1.6
1.8
1.5
2.0

RK2-BES FM-OT
FM-OT
FM-OT
FM-OT
FM-OT

8
10
16
20
24

3.10
2.26
1.84
1.77
1.71

1.68 / 185
135
110
105
102

1.6
1.6
1.7
1.7
1.8

ImageNet-128 NFE FID GT-FID/% %Time

RK2-BES FM-OT
FM-OT
FM-OT
FM-OT
FM-OT

8
10
16
20
24

5.28
3.58
2.64
2.45
2.31

2.30 / 230
156
115
107
101

1.1
1.1
1.2
1.2
1.2

Table 2: ImageNet Bespoke solvers.

ImageNet 64/128. We further experimented with
the more challenging ImageNet-64×64 / 128×128
datasets. For ImageNet-64 we also trained 3 models
as described above. For ImageNet-128, due to com-
putational budget constraints, we only trained FM-OT
(training requires nearly 2000 GPU days). Figure 5
compares RK2-Bespoke to various baselines includ-
ing DPM 2nd order (Lu et al., 2022a). As can be
seen in the graphs, the Bespoke solvers improve both
FID and RMSE. Interestingly, the Bespoke sampling
takes all methods to similar RMSE levels, a fact that
can be partially explained by Theorem 2.3. In Ta-
ble 2, similar to Table 4, we report best FID per NFE
for the Bespoke solvers we trained, the GT FID of
the model, the % from GT achieved by the Bespoke
solver, and the fraction of GPU time (in %) it took
to train this Bespoke solver compared to training the
original pre-trained model. Lastly, Figures 6, 7, 27,
28, 29, 25, 26 depict qualitative sampling examples
for RK2-Bespoke and RK2 solvers. Note the signifi-
cant improvement of fidelity in the Bespoke samples to the ground truth.

AFHQ-256. We tested our method on the AFHQ dataset (Choi et al., 2020b) resized to 256×256
where as pre-trained model we used a FM-OT model we trained as described above. Figure 14
depicts PSNR/RMSE curves for the RK2-Bespoke solvers and baselines, and Figures 7 and 24 show
qualitative sampling examples for RK2-Bespoke and RK2 solvers. Notice the high fidelity of the
Bespoke generation samples.
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Figure 6: Comparison of FM-OT and FM/v-CS ImageNet-64 samples with RK2 and bespoke-RK2 solvers.
Comparison to DPM-2 samples are in Figure 30. More examples are in Figures 27, 28, and 29. The similarity
of generated images across models can be explained by their identical noise-to-data coupling (Theorem 2.3).
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Figure 7: FM-OT ImageNet-128 (top) and AFHQ-256 (bottom) samples with RK2 and bespoke-RK2 solvers.
More examples are in Figures 25, 26 and 24.

Ablations. We conducted two ablation experiments. First, Figure 16 shows the effect of training
only time transform (keeping sr ≡ 1) and scale transformation (keeping tr = r). While the time
transform is more significant than scale transform, incorporating scale improves RMSE for low
NFE (which aligns with Theorem 2.2), and improve FID. Second, Figure 18 shows application
of RK2-Bespoke solver trained on ImageNet-64 applied to ImageNet-128. The transferred solver,
while sub-optimal compared to the Bespoke solver, still considerably improves the RK2 baseline in
RMSE, and improves FID for higher NFE (16,20). Reusing Bespoke solvers can potentially be a
cheap option to improve solvers.

5 CONCLUSIONS, LIMITATIONS AND FUTURE WORK

This paper develops an algorithm for finding low-NFE ODE solvers custom-tailored to general pre-
trained flow models. Through extensive experiments we found that different models can benefit
greatly from their own optimized solvers in terms of global truncation error (RMSE) and generation
quality (FID). Currently, training a Bespoke solver requires roughly 1% of the original model’s
training time, which can probably be still be made more efficient, e.g., by using training data or
pre-processing sampling paths. A limitation of our framework is that it requires separate training
for each target NFE and/or choice of guidance weight. For general NFE solvers one may consider
a combined loss and/or continuous representation of φr, tr, while guidance weight or even more
general conditions can be used to directly condition φr, tr. More general/expressive models for
φr, tr have the potential to further improve fast sampling of pre-trained models.
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A TRANSFORMED PATHS

(Appendix to Section 2.1.)

Proposition A.1. Let x(t) be a solution to equation 1. Denote φ̇r := d
drφr and ṫr := d

dr tr. Then
x̄(r) defined in equation 7 is a solution to the ODE (equation 1) with the VF

ūr(x) = φ̇r(φ
−1
r (x)) + ṫr∂xφr(φ

−1
r (x))utr (φ

−1
r (x)). (9)

Proof. Differentiating x̄(r) in equation 7, i.e., x̄(r) = φr(x(tr)) w.r.t. r and using the chain rule
gives

˙̄x(r) =
d

dr
(φr(x(tr)))

= φ̇r(x(tr)) + ∂xφr(x(tr))ẋ(tr)ṫr

= φ̇r(x(tr)) + ∂xφr(x(tr))utr (x(tr))ṫr

= φ̇r(φ
−1
r (x̄(r))) + ∂xφr(φ

−1
r (x̄(r)))utr (φ

−1
r (x̄(r)))ṫr

where in the third equality we used the fact that x(t) solves the ODE in equation 1 and therefore
ẋ(t) = ut(x(t)); and in the last equality we applied φ−1

r to both sides of equation 7, i.e., x(tr) =
φ−1
r (x̄(r)). The above equation shows that

˙̄x(r) = ur(x̄(r)), (28)

where ūr(x) is defined in equation 9, as required.

B CONSISTENCY OF SOLVERS

(Appendix to Section 2.1.)

Figure 8: Proof notations and setup.

Theorem 2.2. (Consistency of parametric solvers) Given arbitrary tr, φr in the family of functions
F and a base ODE solver of order k, the corresponding ODE solver stepθ is also of order k, i.e.,

∥x(tnext)− xnext∥ = O((tnext − t)k+1). (13)

Proof. Here (t, x) is our input sample x ∈ Rd at time t ∈ [0, 1]. By definition r = rt, rnext = r+h,
and tnext = trnext . Furthermore, by definition x̄ = φr(x) is a sample at time r; x̄(rnext) is the solution
to the ODE defined by ūr starting from (r, x̄); x̄next is an approximation to x̄(rnext) as generated from
the base ODE solver step. Lastly, xnext = φ−1

rnext
(x̄rnext) and x(tnext) = φ−1

rnext
(x̄(rnext)). See Figure 8

for an illustration visualizing this setup.

Now, since step is of order k we have that

x̄(rnext)− x̄next = x̄(rnext)− step(x̄, r; ūr)

= O((rnext − r)k+1). (29)
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Now,

x(tnext)− xnext = x(tnext)− φ−1
rnext

(x̄next)

= x(tnext)− φ−1
rnext

(x̄(rnext) +O((rnext − r)k+1))

= x(tnext)− φ−1
rnext

(x̄(rnext)) +O((rnext − r)k+1)

= O((rnext − r)k+1)

= O((tnext − t)k+1),

where in the first equality we used the definition of xnext; in the second equality we used equation 29;
in the third equality we used the fact that φ−1

r is Lipschitz with constant L (for all r); in the fourth
equality we used the definition of the path transform, x(tnext) = φ−1

rnext
(x̄(rnext)) as mentioned above;

and in the last equality we used the fact that rt is also Lipschitz with a constant L and therefore
rnext − r = rtnext − rt = O(tnext − t).

C EQUIVALENCE OF GAUSSIAN PATHS AND SCALE-TIME
TRANSFORMATIONS

(Appendix to Section 2.2.)

Theorem 2.3. (Equivalence of Gaussian Paths and scale-time transformation) Consider a Gaussian
Path defined by a scheduler (αt, σt), and let x(t) denote the solution of equation 1 with ut defined
in equation 23 and initial condition x(0) = x0. Then,

(i) For every other Gaussian Path defined by a scheduler (ᾱr, σ̄r) with trajectories x̄(r) there
exists a scale-time transformation with s1 = 1 such that x̄(r) = srx(tr).

(ii) For every scale-time transformation with s1 = 1 there exists a Gaussian Path defined by a
scheduler (ᾱr, σ̄r) with trajectories x̄(r) such that srx(tr) = x̄(r).

Proof of theorem 2.3. Consider two arbitrary schedulers (αt, σt) and (ᾱr, σ̄r). We can find sr, tr
such that

ᾱr = srαtr , σ̄r = srσtr . (30)

Indeed, one can check the following are such sr, tr:

tr = snr−1(snr(r)), sr =
σ̄r

σtr

, (31)

where we remember snr is strictly monotonic as defined in equation 22, hence invertible. On the
other hand, given an arbitrary scheduler (αt, σt) and an arbitrary scale-time transformation (tr, sr)
with s1 = 1, we can define a scheduler (ᾱr, σ̄r) via equation 30.

For case (i), we are given another scheduler ᾱr, σ̄r and define a scale-time transformation sr, tr with
equation 31. For case (ii), we are given a scale-time transformation sr, tr and define a scheduler
ᾱr, σ̄r by equation 30.

Now, the scheduler ᾱr, σ̄r defines sampling paths x̄(r) given by the solution of the ODE in equa-
tion 1 with the marginal VF ū

(1)
r (x) defined in equation 23, i.e.,

ū(1)
r (x) =

∫
ūr(x|x1)

p̄r(x|x1)q(x1)

p̄r(x)
dx1, (32)

where ūr(x|x1) =
˙̄σr

σ̄r
x+

[
˙̄αr − ˙̄σr

ᾱr

σ̄r

]
x1.

The scale-time transformation sr, tr gives rise to a second VF ū
(2)
r (x) as in equation 16,

ū(2)
r (x) =

ṡr
sr

x+ ṫrsrutr

(
x

sr

)
, (33)

where ut is the VF defined by the scheduler (αt, σt) and equation 23.
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By uniqueness of ODE solutions, the theorem will be proved if we show that

ū(1)
r (x) = ū(2)

r (x), ∀x ∈ Rd, r ∈ [0, 1]. (34)

For that end, we use the notation of determinants to express

ūr(x|x1) =
1

σ̄r

∣∣∣∣∣∣
0 x x1

σ̄r ᾱr 1
˙̄σr ˙̄αr 0

∣∣∣∣∣∣ , (35)

where x, x1 ∈ Rd and ᾱr, σ̄r, ˙̄αr, ˙̄σr ∈ R as in vector cross product. Differentiating ᾱr, σ̄r w.r.t. r
gives

˙̄αr = ṡrαtr + srα̇tr ṫr, ˙̄σr = ṡrσtr + srσ̇tr ṫr. (36)

Using the bi-linearity of determinants shows that:

ūr(x|x1) =
1

σ̄r

∣∣∣∣∣∣
0 x x1

σ̄r ᾱr 1
˙̄σr ˙̄αr 0

∣∣∣∣∣∣
=

1

srσtr

∣∣∣∣∣∣
0 x x1

srσtr srαtr 1
ṡrσtr + srσ̇tr ṫr ṡrαtr + srα̇tr ṫr 0

∣∣∣∣∣∣
=

1

srσtr

∣∣∣∣∣ 0 x x1

srσtr srαtr 1
ṡrσtr ṡrαtr 0

∣∣∣∣∣+ 1

srσtr

∣∣∣∣∣∣
0 x x1

srσtr srαtr 1
srσ̇tr ṫr srα̇tr ṫr 0

∣∣∣∣∣∣
=

ṡr
sr

x+
sr ṫr
σtr

∣∣∣∣∣∣
0 x

sr
x1

σtr αtr 1
σ̇tr α̇tr 0

∣∣∣∣∣∣
=

ṡr
sr

x+ sr ṫrutr

(
x

sr

∣∣∣x1

)
,

where in the second equality we substitute ˙̄σr, ˙̄αr as in equation 36, in the third and fourth equality
we used the bi-linearity of determinants, and in the last equality we used the definition of ut(x|x1) =
σ̇t

σt
x+

[
α̇t − σ̇t

αt

σt

]
x1 expressed in determinants notation. Furthermore, since

p̄r(x|x1) = N (x|srαtrx1, s
2
rσ

2
trI) ∝ N

(
x

sr

∣∣∣αtrx1, σ
2
trI

)
= ptr

(
x

sr

∣∣∣x1

)
(37)

we have that

p̄r(x1|x) = ptr

(
x1

∣∣∣ x
sr

)
. (38)

Therefore, ∫
ūr(x|x1)

p̄r(x|x1)q(x1)

p̄r(x)
dx1 = Ep̄r(x1|x)ūr(x|x1)

= Eptr (x1| x
sr
)

[
ṡr
sr

x+ sr ṫrutr

(
x

sr

∣∣∣x1

)]
=

ṡr
sr

x+ sr ṫrEptr (x1| x
sr
)utr

(
x

sr

∣∣∣x1

)
=

ṡr
sr

x+ sr ṫrutr

(
x

sr

)
,

where in the first equality we used Bayes rule, in the second equality we substitute ūr(x|x1) and
p̄r(x1|x) as above, and in the last equality we used the definition of ut as in equation 23. We have
proved equation 34 and that concludes the proof.
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D LIPSCHITZ CONSTANTS OF STEPθ .

(Appendix to Section 2.3.)
We are interested in computing Lθ

i , a Lipschitz constant of the bespoke solver step function
stepθ

x(ti, · ;ut). Namely, Lθ
i should satisfy∥∥stepθx(ti, x ;ut)− stepθx(ti, y ;ut)

∥∥ ≤ Lθ
i ∥x− y∥ , ∀x, y ∈ Rd. (39)

We remember that stepθx(ti, · ;ut) is defined using a base solver and the VF ūri(·); hence, we begin
by computing a Lipschitz constant for ūri denoted Lū(ri) in an auxiliary lemma:

Lemma D.1. Assume that the original velocity field ut has a Lipschitz constant Lu > 0. Then for
every ri ∈ [0, 1], Lτ ≥ Lu, and x, y ∈ Rd

∥ūri(x)− ūri(y)∥ ≤ Lū(ri) ∥x− y∥ , (40)

where

Lū(ri) =
|ṡi|
si

+ ṫiLτ (41)

Proof of lemma D.1. Since the original velocity field u has a Lipshitz constant Lu > 0, for every
t ∈ [0, 1] and x, y ∈ Rd

∥ut(x)− ut(y)∥ ≤ Lu ∥x− y∥ . (42)

Hence

∥ūri(x)− ūri(y)∥ =
∥∥∥∥ ṡisix+ ṫisiuti

(
x

si

)
−
(
ṡi
si
y + ṫisiuti

(
y

si

))∥∥∥∥ (43)

=

∥∥∥∥ ṡisi (x− y) + ṫisi

(
uti

(
x

si

)
− uti

(
y

si

))∥∥∥∥ (44)

≤ |ṡi|
si
∥x− y∥+ ṫisi

∥∥∥∥uti

(
x

si

)
− uti

(
y

si

)∥∥∥∥ (45)

≤
(
|ṡi|
si

+ ṫiLu

)
∥x− y∥ (46)

≤
(
|ṡi|
si

+ ṫiLτ

)
∥x− y∥ . (47)

We first apply the auxiliary lemma D.1 to compute a Lipschitz constant of stepθx(ti, · ;ut) with RK1
(Euler method) as the base solver in lemma D.2 and for RK2 (Midpoint method) as the base solver
in lemma D.3.

Lemma D.2. (RK1 Lipschitz constant) Assume that the original velocity field ut has a Lipschitz
constant Lu > 0. Then, for every Lτ ≥ Lu,

Lθ
i =

si
si+1

(1 + hLū(ri)) , (48)

is a Lipschitz constant of RK1-Bespoke update rule, where

Lū(ri) =
|ṡi|
si

+ ṫiLτ . (49)

Proof of lemma D.2. We begin with writing an explicit expression of stepθx(ti, x, ;ut) for Euler
solver in terms of the transformed velocity field ūr. That is,

stepθ
x(ti, x, ;ut) =

1

si+1
[six+ hūri(six)] . (50)
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So that applying the triangle inequality and lemma D.1 gives∥∥stepθx(ti, x;ut)− stepθ
x(ti, y;ut)

∥∥ =
1

si+1
∥six+ hūri(six)− [siy + hūri(siy)]∥

≤ si
si+1

∥x− y∥+ h

si+1
∥ūri(six)− ūri(siy)∥

≤ si
si+1

∥x− y∥+ h

si+1

(
|ṡi|
si

+ ṫiLτ

)
∥six− siy∥

=
si

si+1

(
1 + h

(
|ṡi|
si

+ ṫiLτ

))
∥x− y∥ .

Lemma D.3. (RK2 Lipschitz constant) Assume that the original velocity field ut has a Lipschitz
constant Lu > 0. Then for every Lτ ≥ Lu

Lθ
i =

si
si+1

[
1 + hLū(ri+ 1

2
)

(
1 +

h

2
Lū(ri)

)]
(51)

is a Lipschitz constant of RK2-Bespoke update rule, where

Lū(ri) =
|ṡi|
si

+ ṫiLτ . (52)

Proof of lemma D.3. We begin by writing explicit expression of stepθ
x(ti, x;ut) for RK2 (Midpoint)

method in terms of the transformed velocity field ūr. We set

z = six+
h

2
ūri(six), w = siy +

h

2
ūri(siy). (53)

then
stepθ

x(ti, x, ;ut) =
1

si+1

[
six+ hūr

i+1
2

(z)
]
, (54)

and
stepθx(ti, y;ut) =

1

si+1

[
siy + hūr

i+1
2

(w)
]
. (55)

So that applying the triangle inequality and lemma D.1 gives∥∥stepθ
x(ti, x;ut)− stepθx(ti, y;ut)

∥∥ ≤ si
si+1

∥x− y∥+ h

si+1

∥∥∥ūr
i+1

2

(z)− ūr
i+1

2

(w)
∥∥∥

≤ si
si+1

∥x− y∥+ h

si+1
Lū(ri+ 1

2
) ∥z − w∥ . (56)

We apply the triangle inequality and the lemmaD.1 again to ∥z − w∥. That is,

∥z − w∥ =
∥∥∥∥six+

h

2
ūri(six)−

(
siy +

h

2
ūri (siy)

)∥∥∥∥
≤ si ∥x− y∥+ h

2
∥ūri(six)− ūri (siy)∥

≤ si ∥x− y∥+ h

2
Lū(ri)si ∥x− y∥

= si

(
1 +

h

2
Lū(ri)

)
∥x− y∥ .

Substitute back in equation 56 gives

si
si+1

∥x− y∥+ h

si+1
Lū(ri+ 1

2
) ∥z − w∥ ≤ si

si+1

[
1 + hLū(ri+ 1

2
)

(
1 +

h

2
Lū(ri)

)]
∥x− y∥ .
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E DERIVATION OF PARAMETRIC SOLVER STEPθ

(Appendix to Section 2.2.)
This section presents a derivation of n-step parametric solver

stepθ(t, x ;ut) =
(
stepθ

t (t, x ;ut), stepθ
x(t, x ;ut)

)
(57)

for scale-time transformation (equation 15) with two options for a base solver: (i) RK1 method
(Euler) as the base solver; and (ii) RK2 method (Midpoint). We do so by following equation 10-
12. We begin with RK1 and derive equation 17. Given (ti, xi), equation 10 for the scale time
transformation is,

x̄i = sixi. (58)

Then according to equation 11,

x̄i+1 = stepx(ri, x̄i, ūri) (59)
= x̄i + hūri(x̄i) (60)

= x̄i + h

(
ṡi
si
x̄i + ṫisiuti

(
x̄i

si

))
(61)

= sixi + h
(
ṡixi + ṫisiuti(xi)

)
, (62)

where in the second equality we apply an RK1 step (equation 4), in the third equality we substitute
ūri using equation 16, and in the fourth equality we substitute x̄i as in equation 58. According to
RK1 step (equation 4) we also have ri+1 = ri + h. Finally, equation 12 gives,

stepθ
t (ti, xi ;ut) = ti+1 (63)

stepθx(ti, xi ;ut) =
si + hṡi
si+1

xi +
h

si+1
ṫisiuti(xi), (64)

as in equation 17.

Regarding the second case, equation 11 for the RK2 method (equation 5) is,

x̄i+1 = stepx(ri, x̄i, ūri) (65)
= x̄i + hūr

i+1
2

(x̄i+ 1
2
), (66)

where

x̄i+ 1
2
= x̄i +

h

2
ūri(x̄i) (67)

is the RK1 step from (ri, x̄i) with step size h/2. Now substituting x̄i as defined equation 58 and ūr

as defined in equation 16 we get

x̄i+1 = sixi + h

(
ṡi+ 1

2

si+ 1
2

x̄i+ 1
2
+ ṫi+ 1

2
si+ 1

2
ut

i+1
2

(
x̄i+ 1

2

si+ 1
2

))
. (68)

where

x̄i+ 1
2
=

(
si +

h

2
ṡi

)
xi +

h

2
siṫiuti(xi). (69)

Lastly, according to equation 12 we have

stepθ
x(ti, x ;ut) =

si
si+1

xi +
h

si+1

(
ṡi+ 1

2

si+ 1
2

x̄i+ 1
2
+ ṫi+ 1

2
si+ 1

2
ut

i+1
2

(
x̄i+ 1

2

si+ 1
2

))
, (70)

as in equation 19 where zi = x̄i+ 1
2

.
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F IMPLEMENTATION DETAILS

(Appendix to Section 2.3.)
This section presents further implementation details, complementing the main text. Our parametric
family of solvers stepθ is defined via a base solver step and a transformation (tr, φr) as defined in
equation 12. We consider the RK2 (Midpoint, equation 5) method as the base solver with n steps and
(tr, φr) the scale-time transformation (equation 15). That is, φr(x) = srx, where s : [0, 1]→ R>0,
as in equation 14, which is our primary use case.

Parameterization of ti. Remember that tr is a strictly monotonic, differentiable, increasing func-
tion t : [0, 1]→ [0, 1]. Hence, ti must satisfy the constraints as in equation 21, i.e.,

0 = t0 < t 1
2
< · · · < tn = 1 (71)

ṫ0, ṫ 1
2
, . . . , ṫn−1, ṫn− 1

2
> 0. (72)

To satisfy these constrains, we model ti and ṫi via

ti =

∑i
j=0 |θtj |∑n
k=0 |θtk|

, ṫi = |θṫi |, (73)

where θti and θṫi , i = 0, 1
2 , ..., n are free learnable parameters.

Parameterization of si. Since sr is a strictly positive, differentiable function satisfying a boundary
condition at r = 0, the sequence si should satisfy the constraints as in equation 21, i.e.,

s 1
2
, s1, . . . , sn > 0 , s0 = 1, (74)

and ṡi are unconstrained. Similar to the above, we model si and ṡi by

si =

{
0 i = 0

exp θsi otherwise
, ṡi = θṡi , (75)

where θsi and θṡi , i = 0, 1
2 , ..., n are free learnable parameters.

Bespoke training. The pseudo-code for training a Bespoke solver is provided in Algorithm 3. Here
we add some more details on different steps of the training algorithm. We initialize the parameters
θ such that the scale-transformation is the Identity transformation. That is, for every i = 0, 1

2 , ..., n,

ti =
i

n
, ṫi = 1, (76)

si = 1, ṡi = 0. (77)

Explicitly, in terms of the learnable parameters, for every i = 0, 1
2 , ..., n,

θti = 1, θṫi = 1 (78)

θsi = 0, θṡi = 0. (79)

To compute the GT path x(t), we solve the ODE in equation 1 with the pre-trained model ut and
DOPRI5 method, then use linear interpolation to extract x(ti), i = 0, 1, ..., n (Chen, 2018). Then,
apply xaux

i (t) (equation 27) to correctly handle the gradients w.r.t. to θti . See Table 3 for number of
trajectories used during training. To compute the loss LRMSE-B (equation 26) we compute xi+1 =
stepθ

x (x
aux
i (ti), ti;ut) with equations 19,20, and compute Mi via lemma D.3 with Lτ = 1. Finally,

we use Adam optimizer Kingma & Ba (2017) with a learning rate of 2e−3.

Efficient sampling. When sampling using a Bespoke solver (Algorithm 2) each step involves
applying φ−1

ri and φri consecutively. In case we use scale transformation, equation 14 (as is done
in all examples in this paper), this does not introduce any difficulty, however if a more compute
intensive φ is used the following sampling pseudo-code (Algorithm 4) provides an equivalent
sampling while avoiding this unnecessary step.
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CIFAR10 ImageNet-64 ImageNet-128 AFHQ 256

Total number of trajectories 72k 48k 48k 4k
Batch size 12 8 8 1
Number of iterations 6k 6k 6k 4k

Table 3: Hyper-parameters of Bespoke solvers training on CIFAR10/ImageNet-64/ImageNet-128/AFHQ 256.

Algorithm 4 Bespoke sampling (efficient).

Require: pre-trained ut, trained θ
x0 ∼ p(x0) ▷ sample noise
r0 ← 0, x̄0 ← x0 ▷ initial conditions
for i = 0, 1, . . . , n− 1 do

(ri+1, x̄i+1)← step(ri, x̄i; ū
θ
r)

end for
return φ−1

1 (x̄n)

G BESPOKE RK1 VERSUS RK2

ImageNet 64: FM/v-CS ImageNet 64: FM-OT
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Figure 9: Bespoke RK1, Bespoke RK2, RK1, and RK2 solvers on ImageNet-64 models: RMSE vs. NFE (top
row), and PSNR vs. NFE (bottom row).
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CIFAR10: ϵ-VP CIFAR10: FM/v-CS CIFAR10: FM-OT
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Figure 10: Bespoke RK1, Bespoke RK2, RK1, and RK2 solvers on CIFAR10: RMSE vs. NFE (top row), and
PSNR vs. NFE (bottom row).

H CIFAR10

CIFAR10 NFE FID GT-FID/% %Time

RK2-BES ϵ-VP
ϵ-VP
ϵ-VP
ϵ-VP

8
10
16
20

4.26
3.31
2.84
2.75

2.54 / 168
130
112
108

1.4
1.5
1.5
1.4

RK2-BES FM/v-CS
FM/v-CS
FM/v-CS
FM/v-CS

8
10
16
20

3.50
2.89
2.68
2.64

2.61 / 134
111
103
101

0.5
0.6
0.6
0.6

RK2-BES FM-OT
FM-OT
FM-OT
FM-OT

8
10
16
20

3.13
2.73
2.60
2.59

2.57 / 122
106
101
101

0.5
0.6
0.6
0.6

Table 4: CIFAR10 Bespoke solvers. We report best FID vs. NFE, the ground truth FID (GT-FID) for the model
and FID/GT-FID in %, and the fraction of GPU time (in %) required to train the bespoke solver w.r.t. training
the original model.
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CIFAR10: ϵ-VP CIFAR10: FM/v-CS CIFAR10: FM-OT
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Figure 11: CIFAR10 sampling with Bespoke RK2 solvers vs. RK1,RK2,RK4: FID vs. NFE (top row), RMSE
vs. NFE (middle row), and PSNR vs. NFE (bottom row).
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Figure 12: Validation RMSE vs. training iterations of Bespoke RK2 solvers on ImageNet-64, and ImageNet-
128.
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Figure 13: Bespoke RK2, RK1, RK2, and RK4 solvers on ImageNet-64, and ImageNet-128; PSNR vs. NFE.
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Figure 14: Bespoke RK2, RK1, RK2, and RK4 solvers on AFHQ-256; PSNR vs. NFE (left), and RMSE
vs. NFE (right).
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K ABLATIONS

K.1 LOSS ABLATION

We consider here three losses for optimizing the Bespoke solvers: RMSE-Bound (the parallel loss
we advocate in the paper), RMSE (optimizing directly equation 6), and a simplified version of
the RMSE-Bound: sum of Local Truncation Errors (LTE-parallel). That is, LTE is defined as in
equation 26 but taking Mθ

i = 1 for all i. Algorithm 5 provides the pseudo-codes for all three losses.
We have run all three algorithms on the ImageNet 64 dataset and compared their FID, and RMSE,
where RMSE is computed w.r.t. GT samples (see Section 4 for details). For the non-parallel RMSE
loss, we needed to use Activate Checkpointing to reduce memory consumption in order to be able
to run this loss. Figure 15 shows the results. As can be seen in the graphs, RMSE loss, as expected,
reaches lowest RMSE values per NFE, the second best is the RMSE-Bound loss and worst in terms
of RMSE is the LTE. As for FID, RMSE performs worst, while for FM-OT model RMSE-Bound
and LTE perform equivalently for NFE>10, and LTE has advantage as far as FID goes otherwise.
Since our goal is to reduce RMSE and provide memory-scalable training algorithm we opted to use
the memory efficient RMSE-Bound in the paper.

Algorithm 5 Bespoke training (parallel).

Require: pre-trained ut, number of steps n
initialize θ ∈ Rp

while not converged do
x0 ∼ p(x0) ▷ sample noise
x(t)← solve ODE 1 ▷ GT path
if RMSE loss then

xθ
n ← Bespoke sampling ▷ Alg. 2
L ←

∥∥x(1)− xθ
n

∥∥
else if RMSE-parallel loss then
L ← 0 ▷ init loss
parallel for i = 0, ..., n− 1 do

xθ
i+1 ← stepθx (x

aux
i (ti), ti;ut)

L += Mθ
i+1

∥∥xaux
i+1(ti+1)− xθ

i+1

∥∥
end for

else if LTE-parallel loss then
L ← 0 ▷ init loss
parallel for i = 0, ..., n− 1 do

xθ
i+1 ← stepθ

x (x
aux
i (ti), ti;ut)

L +=
∥∥xaux

i+1(ti+1)− xθ
i+1

∥∥
end for

end if
θ ← θ − γ∇θL ▷ optimization step

end while
return θ

K.2 SCALE-TIME ABLATIONS

This section presents an ablation experiment on the effect of each component in the scale-time
transformation. We train Bespoke-RK2 solvers with three choices of transformation: (i) time-only:
train tr, ṫr and freeze sr ≡ 1, ṡr ≡ 0, (ii) scale-only: freeze tr ≡ r, ṫr ≡ 1 and train sr, ṡr, and
(iii) scale-time: train both tr, ṫr and sr, ṡr. All experiments are performed on ImageNet 64 FM-
OT model. Figure 16 shows the FID, and RMSE of Bespoke-RK2 time-only/scale-only/scale-time
solvers and the base RK2 solver. First, all three Bespoke-RK2 solvers improve upon the base RK2
solver. Second, the time component seems more significant, but the scale component improves FID
for all NFEs and RMSE for NFE < 20. Third, in RMSE, the significance of the time component
increases as NFE increases. In addition, Figure 17 shows the trained time-only (top) and scale-only
(bottom) transformations. Interestingly, we see that even seemingly small changes (e.g., scale-only
with NFE ∈ {16, 20}) can affect dramatically the FID.
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ImageNet 64: ϵ-VP ImageNet 64: FM/v-CS ImageNet 64: FM-OT
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Figure 15: Different Bespoke losses for ImageNet 64. We compare the RMSE-Bound (the parallel loss advo-
cated in the paper), direct RMSE loss, and Local Truncation Error (LTE) which is a slightly simplified version
of RMSE-Bound loss. All three variations are provided in Algorithm 5. In terms of RMSE the direct RMSE
loss is as expected best however has large memory footprint, while RMSE-Bound is the runner-up and paral-
lelizable. FID is not perfectly correlated with RMSE and shows a somewhat opposite trend (partially excluding
the FM-OT model where RMSE-Bound and LTE are almost FID equivalent). We opted for RMSE-Bound loss
in the paper since it is memory-scalable and provides best RMSE among the parallel loss options considered.
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Figure 16: Bespoke ablation I: RK2, Bespoke RK2 with full scale-time optimization, time-only optimization
(keeping sr ≡ 1 fixed), and scale-only optimization (keeping tr = r fixed) on FM-OT ImageNet-64: FID
vs. NFE (left), and RMSE vs. NFE (right). Note that most improvement provided by time optimization where
scale improves FID for all NFEs, and RMSE for < 20 NFEs.

K.3 TRANSFERRING BESPOKE SOLVERS

This section presents an ablation experiment demonstrating trained Bespoke solvers’ generalization
to different models. We train a Bespoke-RK2 solver on an ImageNet-64 FM-OT model and evaluate
it on an ImageNet-128 FM-OT model. We compare its FID, and RMSE vs. NFE against the base
RK2 solver evaluated on ImageNet-128 FM-OT and a Bespoke-RK2 solver trained and evaluated
on ImageNet-128 FM-OT. The results is shown in Figure 18.

K.4 DISTILLATION-TYPE PARAMETRIZATION

This section presents a distillation-type experiment in our framework. Our parametric family of
solvers is defined by a composition of a scale-time transformation and the RK2 solver, resulting
in stepθ as in equations 19 and 20, where the weights of the pre-trained model ut are frozen. A
natural comparison to a distillation-like approach is to let the weights of ut = uθ

t change during
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Figure 17: Trained θ of scale-time ablation: Bespoke-RK2 time-only optimization (top), Bespoke-RK2 scale-
only optimization (bottom), on ImageNet-64 FM-OT for NFE 8/10/16/20.
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Figure 18: Bespoke ablation II: RK2 evaluated on FM-OT ImageNet-128 model, Bespoke RK2 trained and
evaluated on FM-OT ImageNet-128 model, and Bespoke RK2 trained on FM-OT ImageNet-64 and evaluated
on FM-OT ImageNet-128 model (transferred): FID vs. NFE (left), and RMSE vs. NFE (right). Note that the
transferred Bespoke solver is still inferior to the Bespoke solver but improves considerably RMSE compared to
the RK2 baseline. In FID the transferred solver improves over the baseline only for NFE=16,20.

optimization instead of using the scale-time transformation, that is

Ldis(θ) = Ex0∼p(x0)

n−1∑
i=0

∥∥xi+1(ti+1)− stepx(xi, ti;u
θ
t ))
∥∥ , (80)

where ti = ih is fixed. We perform this experiment on ImageNet 64 FMv-CS. For a fair comparison,
we use the same compute budget as used to train our Bespoke-RK2 solvers on these models: a total
of 48K generated trajectories, 6k iterations, and we report at best FID. Figure 19 shows the RK2 base
solver, Bespoke-RK2 solver, and Distillation-RK2 on ImageNet 64 FMv-CS: FID vs. NFE (left), and
RMSE vs. NFE (right). Note that while distillation is able to improve from the baseline solver (RK2)
it does not match the performance of the Bespoke solver. Two potential explanations why distillation
is not as performant as Bespoke in this experiment are: First, the amount of trajectories/compute
budget we use to optimize Bespoke is not sufficient for effective distillation; and second, successful
distillation methods require access to training data. Training only on generated data distillation is
less effective.

K.5 TRAINING STOPPING CRITERIA

In this ablation experiment, we qualitatively compare samples when changing the stopping criteria
of the bespoke solver training. In Figure 20, we compare samples with bespoke-RK2 solvers where
the training stopping criteria is best FID versus best RMSE on four models, ImageNet 64 ϵ-VP/FMv-
CS/FM-OT and ImageNet 128 FM-OT, and NFE ∈ {8, 10, 20}. In all of the cases the differences
are practically indistinguishable.
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Figure 19: Distillation-type experiment: RK2 solver, Bespoke-R2 solver, and Distillation using same number
of trajectories and compute as Bespoke, on ImageNet 64 FM/v-CS: FID vs. NFE (left), and RMSE vs. NFE
(right).
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Figure 20: Different stopping criteria experiment. We compare samples with bespoke-RK2 solvers with train-
ing stopping criteria at best FID and best RMSE; ImageNet64 (3 top rows) and ImageNet-128 (2 bottom rows).

L TRAINED BESPOKE SOLVERS

In this section, we present the trained Bespoke solvers by visualizing their respective parameters
θ. Figures 21, 22, and 23 show the learned scale-time transformation of Bespoke-RK2 solvers
trained on ImageNet-128, ImageNet-64, and CIFAR10 (resp.) for NFE {8, 10, 16, 20}. First, we
note the significant differences between the learned scale-time transformation of ϵ-VP versus FM-
OT on ImageNet 64 in Figure 22 top and bottom rows (resp.). Second, we note that the scale-time
transformations trained on the same model type but on different datasets seem to have similarities
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to some degree but are still different from one another, see Figure 21 and Figures 22, 23 bottom
rows, for FM-OT trained on ImageNet-128, ImageNet-64, and CIFAR10 (resp.). These two obser-
vations showcase the advantage of a custom-made solver for each model. We also tested the latter
point empirically in the ablation experiment in Section K.3, where we tested a Bespoke-RK2 solver
trained on an ImageNet 64 FM-OT model to an ImageNet 128 FM-OT model and noticed a drop
in performance compared to a Bespoke solver trained directly on the ImageNet 128 FM-OT model.
In addition, we note the resemblance in the form of scale-time transformations trained on the same
model type and same dataset across different NFE (i.e., a row in Figures 21, 22, and 23). This phe-
nomenon suggests there may be a well-defined scale-time transformation in the limit of NFE→∞.
Furthermore, for ṫi and ṡi, even and odd parity points on the grid seem to converge to different
curves, possibly due to their different role in the RK2 solvers.
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Figure 21: Trained θ of Bespoke-RK2 solvers on ImageNet-128 FM-OT for NFE 8/10/16/20.
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Figure 22: Trained θ of Bespoke-RK2 solvers on ImageNet-64 for NFE 8/10/16/20; ϵ-VP (top), FM/v-CS
(middle), and FM-OT (bottom).

M PRE-TRAINED MODELS

All our FM-OT and FM/v-CS models were trained with Conditional Flow Matching (CFM) loss
derived in Lipman et al. (2022),

LCFM(θ) = Et,p0(x0),q(x1) ∥vt(xt; θ)− (σ̇tx0 + α̇tx1)∥2 , (81)

where t ∼ U([0, 1]), p0(x0) = N (x0|0, I), q(x1) is the data distribution, vt(xt; θ) is the network,
(αt, σt) is the scheduler as defined in equation 22, and xt = σtx0+αtx1. For FM-OT the scheduler
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Figure 23: Trained θ of Bespoke-RK2 solvers on CIFAR10 for NFE 8/10/16/20; ϵ-pred (top), FM/v-CS (mid-
dle), and FM-OT (bottom).

is
αt = t, σt = 1− t, (82)

and for FM/v-CS the scheduler is

αt = sin
π

2
t, σt = cos

π

2
t. (83)

All our ϵ-VP models were trained with noise prediction loss as derived in Ho et al. (2020) and Song
et al. (2020b),

Lnoise(θ) = Et,p0(x0),q(x1) ∥ϵt(xt; θ)− x0∥2 , (84)
where the VP scheduler is

αt = ξ1−t, σt =
√
1− ξ21−t, ξs = e−

1
4 s

2(B−b)− 1
2 sb, (85)

and B = 20, b = 0.1. All models use U-Net architecture as in Dhariwal & Nichol (2021), and the
hyper-parameters are listed in Table 5.
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CIFAR10 CIFAR10 ImageNet-64 ImageNet-128 AFHQ 256
ϵ-VP FM-OT;FM/v-CS ϵ-VP;FM-OT;FM/v-CS FM-OT FM-OT

Channels 128 128 196 256 256
Depth 4 4 3 2 2
Channels multiple 2,2,2 2,2,2 1,2,3,4 1,1,2,3,4 1,1,2,2,4,4
Heads 1 1 - - -
Heads Channels - - 64 64 64
Attention resolution 16 16 32,16,8 32,16,8 64,32,16
Dropout 0.1 0.3 1.0 0.0 0.0
Effective Batch size 512 512 2048 2048 256
GPUs 8 8 64 64 64
Epochs 2000 3000 1600 1437 862
Iterations 200k 300k 1M 900k 50k
Learning Rate 5e-4 1e-4 1e-4 1e-4 1e-4
Learning Rate Scheduler constant constant constant Poly Decay Polyn Decay
Warmup Steps - - - 5k 5k
P-Unconditional - - 0.2 0.2 0.2
Guidance weight - - 0.20 (vp,cs), 0.15 (ot) 0.5 0.1
Total parameters count 55M 55M 296M 421M 537M

Table 5: Pre-trained models’ hyper-parameters.

N MORE RESULTS

In this section we present more sampling results using RK2-Bespoke solvers, the RK2 baseline and
Ground Truth samples (with DOPRI5).
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Figure 24: Comparison of FM-OT AFHQ-256 GT samples with RK2 and Bespoke-RK2 solvers.
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Figure 25: Comparison of FM-OT ImageNet-128 GT samples with RK2 and Bespoke-RK2 solvers.
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Figure 26: Comparison of FM-OT ImageNet-128 GT samples with RK2 and Bespoke-RK2 solvers.
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Figure 27: Comparison of FM-OT ImageNet-64 GT samples with RK2 and Bespoke-RK2 solvers.
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Figure 28: Comparison of FM/v-CS ImageNet-64 GT samples with RK2 and Bespoke-RK2 solvers.
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Figure 29: Comparison of ϵ-pred ImageNet-64 GT samples with RK2 and Bespoke-RK2 solvers.
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Figure 30: Comparison of ϵ-VP and FM/v-CS ImageNet-64 samples with DPM-2 and bespoke-RK2 solvers.

37


	1 Introduction
	2 Bespoke solvers
	2.1 Parametric family of ODE solvers through transformed sampling paths
	2.2 Two use cases
	2.3 RMSE upper bound loss

	3 Previous Work
	4 Experiments
	5 Conclusions, Limitations and Future Work
	A Transformed paths
	B Consistency of solvers
	C Equivalence of Gaussian Paths and scale-time transformations
	D Lipschitz constants of step.
	E Derivation of parametric solver step
	F Implementation Details
	G Bespoke RK1 versus RK2
	H CIFAR10
	I ImageNet-64/128
	J AFHQ-256
	K Ablations
	K.1 Loss ablation
	K.2 Scale-time ablations
	K.3 Transferring Bespoke solvers
	K.4 Distillation-type parametrization
	K.5 Training stopping criteria

	L Trained Bespoke solvers
	M Pre-trained Models
	N More results

